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We discuss a coarse-grained model recently proposed by Starr and Sciortino [J. Phys.: Condens.
Matter 18, L347 (2006)] for spherical particles functionalized with short single DNA strands. The
model incorporates two key aspects of DNA hybridization, i.e., the specificity of binding between
DNA bases and the strong directionality of hydrogen bonds. Here, we calculate the effective poten-
tial between two DNA-functionalized particles of equal size using a parallel replica protocol. We find
that the transition from bonded to unbonded configurations takes place at considerably lower tem-
peratures compared to those that were originally predicted using standard simulations in the canoni-
cal ensemble. We put particular focus on DNA-decorations of tetrahedral and octahedral symmetry,
as they are promising candidates for the self-assembly into a single-component diamond structure.
Increasing colloid size hinders hybridization of the DNA strands, in agreement with experimental
findings. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773920]

I. INTRODUCTION

Recent advances in nanotechnology aim at leading to the
accurate design and manufacturing of materials with desired
electronic, optical, and mechanical properties required for
technological applications. However, realizing the full poten-
tial of nanotechnology requires a thorough understanding of
how the basic building blocks of nano-materials self-assemble
into structures of multiple length scales. DNA-functionalized
nanometer- or micrometer-sized particles have recently at-
tracted particular attention as a promising tool for controlled
self-assembly of nano-materials.1–3 The main goal would be
the self-assembly of desired structures built of nano-particles
linked by DNA.

It was first Mirkin et al.4 and Alivisatos5 who showed
that DNA oligonucleotides can be efficiently grafted onto
the surface of gold nano-particles to enable, by tuning the
temperature, the reversible formation of larger rather amor-
phous assemblies. This work introduced the novel idea of
using “encodable” interactions between particles based on
bio-molecules4–8 to direct the self-assembly process and cre-
ate materials with novel properties. Possible applications
of such materials include high-efficiency solar panels and
lasers, super-resolution microscopes, or the fabrication of
nano-composites of “metamaterials” with unusual electronic
and optical properties; even coatings to render objects invis-
ible have been discussed as a potential application of such
nano-structures.1, 9–12 Oligonucleotide functionalized nano-
particles have also found biological applications as they are
used in diagnostic tools for nucleic acids and proteins,14, 15 in-
tracellular probes,16 and gene regulators,17 to mention a few.
However, it still remains a formidable challenge to take full

a)Electronic mail: panagiotis.theodorakis@univie.ac.at.

benefit of self-assembly in order to manufacture novel mag-
netic, plasmonic and photonic metamaterials9–12 of “long-
range” ordered structures required for applications. For in-
stance, long-range, quasi-crystalline structures composed of
DNA-functionalized nanometer- or micrometer-sized parti-
cles’ mechanical properties have not been realized, yet.13

In the work of Mirkin et al.4 and Alivisatos5 and sub-
sequent experiments, mainly amorphous aggregates were
obtained from DNA-coated particles, which could be
classified as amorphous polymers.7, 18–28 Since then, various
strategies towards crystallization were applied29–31 in one and
two dimensions. Finally, it was Nykypanchuk et al.32 and
Park et al.33 who first reported crystalline structures in DNA-
functionalized colloids. In their experiments, flexible spacers
were grafted onto spherical particles with length of the or-
der of the sphere diameter of the gold nano-particles. Crys-
tallization took place at rather higher temperatures where the
binding strands were dynamically and steadily forming dou-
ble helices and dissociating back into single strands. The
DNA macromolecules were grafted at random positions onto
the surface of the spheres and over the entire surface of
the gold nano-particle,32, 33 and the number of strands was
varying from sphere to sphere as well. Nevertheless, these
investigations along with subsequent work showed that in
these self-assembly processes crystallization and lattice con-
trol were possible for face-centred-cubic (fcc) and body-
centered-cubic (bcc) lattices by changing parameters such as
the base sequence of the DNA or the overall oligonucleotide
length.7, 21, 28, 32–37 The formation of different crystal struc-
tures can mainly be attributed to a competition between the
entropic and enthalpic contributions, which are involved in
the assembly process at different temperatures.

Recently, Macfarlane et al.38 reported that gold nano-
particle-DNA conjugates can be programmed to assemble
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into various crystallographic structures. As discussed in these
contributions, the use of single-stranded DNA as linkers
might establish a general strategy to control the self-assembly
of almost any nano-particle into a wide range of different
periodic structures. Moreover, the authors proposed rules-of-
thumb that can be used deliberately to prepare crystals with
nine distinct space symmetries, in addition to fcc and bcc
structures. In total, they determined the characteristics of 41
crystals and demonstrated that they had excellent control over
lattice parameters on the 25–150-nanometers length scale:
methods were presented to tune the lattice constant to basi-
cally any arbitrary value. However, still many issues remain
open, the main one being related to the limited size of the
crystalline structures, which are typically made of a few thou-
sand nano-particles. Another approach to solve this problem
discussed recently consists in attaching DNA to non-spherical
nano-particles to create directional bonding enabling the real-
ization of more complex structures.39 In addition, in a follow-
up work by the same authors, it has been shown how hol-
low DNA nano-structures can be used as “three-dimensional
spacers” within nano-particle superlattices assembled through
programmable DNA interactions.40 Other approaches to di-
rect the self-assembly of nano-materials have been also
demonstrated, such as the use of Janus nano-particles func-
tionalized with DNA molecules.53

Although crystalline structures have been achieved
throughout for nanometer-sized particles, DNA programmed
self-assembly has also been extended to particles of
micrometer-scale size, such as in DNA-functionalized
polystyrene microbead binary mixtures.41 Occasionally, crys-
tallites of close-packed, micrometer-sized particles have been
reported.7, 28 However, the resulting structures do not lead
to the same degree of order as observed for nanometer-size
particles.38

A main focus of research in this field is the formation
of diamond structures from DNA-coated colloids. This pro-
cess is very important in colloidal crystallization42 as the
non-compact diamond lattice is essential for photonic crys-
tals in the visible-light range.43–49 However, although several
methods have been proposed so far,49–52 a successful single-
component nano-particle assembly into a diamond structure
has not been experimentally reported yet. Binary systems
(where the two components differ, for instance, in the link-
ers), in which at least one component is arranged in a dia-
mond lattice provide alternatives,49, 54, 55 but the control of in-
terparticle interactions is critical to this approach. A related
theoretical prediction was made by Tkachenko,52 who devel-
oped an effective potential acting between particles, showing
that a diamond structure of single-component nano-particles
is possible.

To assemble nano-particles with accuracy and reliable re-
producibility is a very challenging goal. The major so far un-
resolved issue has been how to design materials displaying
long-range order. In this endeavor, computer simulation can
play a major role. To take into account all the interactions
at a fully atomistic level in describing systems of few hun-
dreds of DNA-functionalized particles is a rather formidable
task. Thus, many different coarse-grained models have been
put forward in recent years56–72 yielding many important re-

sults, but none of these models have been able to propose
a design for DNA-functionalized nano-particles capable of
leading to the desired diamond structure. The sophistication
of these models varies, depending on the particular aspects
that the model tries to address. Recently, even models to cap-
ture the Hogsteen interactions between DNA bases beyond
the Watson-Crick interactions have been proposed.73 How-
ever, despite these efforts our theoretical understanding on the
self-assembly of DNA-coated colloids remains limited.

In the present study, we revisit a recently proposed and,
at first sight, simple coarse-grained model inspired by the
so-called “bead-spring model”74, 75 widely used in polymer
simulations.76–86 This model has been proposed by Starr and
Sciortino63 and embodies two main aspects of DNA hy-
bridization at the coarse-grained level. One is the bond speci-
ficity, which expresses the ability of bases to bond exactly to
their complementary bases, i.e., Adenine (“A”) can only form
a hydrogen bond with Thymine (“T”), while Cytosine (“C”)
can only form a bond with Guanine (“G”). The second com-
ponent of this model reflects in some way the nature of di-
rectionality of the hydrogen bonds, namely, once a base pair
is formed no other base can establish a bond with a base that
is already part of a bonded pair. The latter may be a strong
approximation for some situations where some sequences
can favor the formation of triple- and even four-stranded
DNA structures.87 An additional information that has to be
encoded into the model is the fact that a double-DNA-
helix exhibits a significantly higher persistence length (i.e.,
∼50 nm, corresponding to ∼150 nucleotides3) to that of
single-stranded-DNA (ssDNA) where the persistence length
is ∼12 nucleotides. There is, however, some uncertainty on
the exact value of the persistence length of ssDNA that
also depends on solvent conditions. Roughly, the persis-
tence length is about 4 nm27, 88 corresponding to 8–12 DNA
bases.13 In the model considered here, the stiffness even
of the single strands is built in appropriately via a three-
body angular interaction. This feature is justified by the fact
that the present model will be used only for short DNA
strands (4–16 nucleotides). From such a model, one is also
able to extract the effective potential between two DNA-
functionalized particles,89, 90 offering the possibility to simu-
late larger assemblies of DNA-functionalized particles. Based
on the coarse-grained model, several studies have appeared in
recent years leading to interesting conclusions on the forma-
tion of crystalline phases depending on the particular DNA
sequences, decoration and size of the DNA-functionalized
particles.91–97 In these studies, crystallization has been ob-
served for DNA-functionalized particles with octahedral sym-
metry, but, rather surprisingly, such conclusions are not drawn
for the case of DNA-nano-particles with tetrahedral symme-
try, which could be a very good candidate for diamond crys-
tals given its symmetry. Therefore, it still remains a challenge
to design these diamond structures exhibiting long-range or-
der and possible enhancements on this simplistic model have
to be considered in the future.

We have organized the present paper as follows. In
Sec. II, we discuss in detail the model and the way to cal-
culate the effective colloidal potential, as well as our simula-
tion method. In Sec. III, we present representative results of



025101-3 Theodorakis, Dellago, and Kahl J. Chem. Phys. 138, 025101 (2013)

the effective potential calculation for different choices of the
colloid size highlighting the main differences identified with
respect to previous work. Finally, we summarize our conclu-
sions in Sec. IV.

II. MODEL AND METHOD TO CALCULATE
THE EFFECTIVE POTENTIAL

A. The model

The model put forward in Ref. 63 preserves the char-
acteristic features of a standard bead-spring model for
polymers74, 75 amended in such a way to incorporate two char-
acteristic aspects of the DNA hydrogen bonds between com-
plementary bases: first, the bond specificity of DNA bases
and, second, the nature of the strong directionality of the hy-
drogen bond, i.e., one DNA base can bond with only one com-
plementary DNA base. The latter, however, is a convenient
assumption in various theoretical models as triple- and four-
stranded DNA structures are also possible.87 Furthermore, in
the model of Starr and Sciortino63 spherically symmetric po-
tentials are considered throughout. Thus, any particular de-
tails of the underlying atomistic structure are not included
at the coarse-grained level. Furthermore, the particle repre-
senting the core of a DNA-functionalized particle is assumed
to have a spherical shape. The likewise spherical backbone
beads represent the sugar/phosphate backbone along the DNA
strands, and the smaller spherical base beads carry the infor-
mation of the DNA bases. The mutual repulsion (or attraction)
in pairs of DNAs is controlled by including (or suppressing)
the attractive tail of the Lennard-Jones (LJ) potential in the
interactions between pairs of DNA bases. As in the standard
bead-spring model,74, 75 all beads interact with the standard LJ
potential, cut and shifted at a cutoff distance rc such that the
potential and the force are continuous at rc,

V (r) = VLJ(r) − VLJ(rc) − (r − rc)
dVLJ(r)

dr

∣∣∣∣
r=rc

, (1)

where VLJ(r) is the LJ potential

V
αβ

LJ (r) = 4εαβ [(σαβ/r)12 − (σαβ/r)6], r ≤ rc (2)

with α, β = P, B, A, C, G, T. The Greek superscripts α and
β correspond to the different constituent entities of the DNA-
functionalized nano-particle, where the letters P, B, A, C, G,
and T refer to the core colloid particle (P), backbone beads
(B), Adenine (A), Cytosine (C), Guanine (G), and Thymine
(T), respectively.

We next define the particular interaction parameters be-
tween the colloid, the backbone, and the bases by defining the
parameters εαβ and σαβ . In this model, εαβ = 1 for all differ-
ent combinations of α and β, setting also our units for energy.
The Boltzmann constant is set to kB = 1 for convenience to
define the temperature T in units of εαβ /kB. The size of the
backbone beads is σ BB = 1, which is chosen as the unit of
length; in contrast, the size for the bases is assumed to be σ AA

= σ CC = σ GG = σ TT = 0.35; in all cases σαβ = σβα holds.
For the colloidal particles, onto which the ssDNA strands are
grafted, we have considered the following different values:
σ PP = 2, 4, 8, 16, and 32.

The parameters σαβ for the combinations α �= β are de-
fined according to the Lorentz-Berthelot rules [σαβ = (σαα

+ σββ)/2, εαβ = √
εααεββ , therefore, εαβ = 1], with the only

exception being σ AB = σ CB = σ GB = σ TB = 0.35. The lat-
ter choice has the effect that each base is almost completely
contained within the shell of the backbone bead, thus, pre-
venting the base from connecting to more than one comple-
mentary base.63 In this way, the second aspect of this model
mentioned above related to the nature of hydrogen bonds is
fulfilled, although such an assumption may not hold in some
cases.87 However, it should be noted that the latter argument
has been previously criticized by Knorowski et al.72 for the
model of Starr and Sciortino;63 instead, the incorporation of
additional flanking beads was suggested in order to ensure
that artifacts, such as “hybridization” of three ssDNA or more,
never occur in a multi-chain simulation. Since in the present
study we will consider the model in the dilute limit, only two
DNA-coated colloids will be involved in our calculations and
consequently the above mentioned artifacts do not come into
play.

The choice of the cutoff radius rc determines whether
the interaction potential will be attractive (by including the
attractive tail of the LJ potential) or purely repulsive (when
the latter is truncated at the minimum and shifted). In the
present model, the attractive tail of the LJ potential is included
for complementary bases, i.e., rc = 2.5σ CG = 2.5σ AT while
for any other interactions between beads α and β the cutoff
radius is chosen to be rc = 21/6σ AC = 21/6σ AG = 21/6σ CT

= 21/6σ GT, i.e., the interactions are purely repulsive. As a re-
sult, complementary bases are the only ones that attract each
other via their attractive LJ tail. It should be noted that pairs of
non-complementary bases interacting via the purely repulsive
LJ potential do not really play a relevant role in the system
since for these cases the base shell is fully incorporated in the
backbone shell and it is rather the repulsive potential of the
backbone beads that is relevant.

The potential specified in Eq. (1) acts between any pair
of beads. In order to form bonds between beads, an additional
UFENE(r) potential74, 75 is introduced, given by

UFENE = −1

2
kr2

0 ln[1 − (r/r0)2], 0 < r < r0, (3)

where UFENE(r ≥ r0) = ∞; hence, r0 is the maximal dis-
tance between bonded beads.74, 75 Specifically, the FENE po-
tential acts between neighboring backbone beads and between
each backbone bead and the base attached to it. The back-
bone beads attached to the colloidal particles are fixed at a
given position on the surface of the colloid. As a consequence,
when these backbone beads are selected to be moved within
the Monte Carlo (MC) algorithm, the move is immediately re-
jected. However, if the colloidal particle is chosen for a move,
the whole macromolecule is moved, preserving the positions
of the beads within the reference frame, which is fixed at the
center of the colloidal particle. In this way, the bonds between
the colloidal particle and the first, grafted backbone beads
are fixed. For all beads that interact via FENE potentials, the
choice r0 = 1.5 and k = 30 are used as in the standard bead-
spring model,74, 75 resulting in an equilibrium average bond
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length of ∼0.96 for σ BB = 1.74, 75 This choice of parameters
prevents crystallization in systems of polymeric chains.

Between the backbone beads and between the spherical
colloidal particle and the beads grafted to its surface, a cosine-
type bending potential acts between three neighboring beads
along the same ssDNA defined as99–101

Ubend(θi) = kθ,αβ[1 − cos(θi)]. (4)

Here, kθ ,αβ is the elasticity parameter for beads of type α, β

(with α, β = P or B); as suggested in the literature63 a value
kθ ,αβ = 5 was assumed. It is worth noting that the choice of
this value for the elasticity parameter is rather arbitrary, but
it guarantees that a ssDNA chain is stiff enough, so that it
does not interact with another ssDNA chain of the same par-
ticle. Experimental observations predict a 0.255 rise per base
pair for dsDNA chains, which is very well reproduced in an-
other model.13 Also, the built-in stiffness of ssDNA in the
model of Starr and Sciortino63 excludes a priori the forma-
tion of hairpin102 and loop103 configurations, for example. In
Eq. (4), cos(θi) = r̂i,i−1 · r̂i+1,i , where the unit vector r̂i,i−1

points from the center of backbone bead i − 1 to the center of
the backbone bead i and r̂i+1,i is defined analogously.

When a DNA strand hybridizes with a complementary
strand in a real system, the DNA double helix is formed and
its stiffness is considerably larger than that of a ssDNA. Us-
ing the three-body potential specified in Eq. (4), the model
guarantees that after DNA hybridization the two strands re-
main stiff. The artifact of this model is that this stiffness is
already assumed a priori in the ssDNA strands. However, this
assumption is not meaningless since this model was mainly
suggested for short DNA strands where the length of the
ssDNA is very small or of the same order compared to its
persistence length and therefore the ssDNA strand can be con-
sidered as a “stick” in this model. One should point out that
the use of the cosine-type potential in the model, Eq. (4), does
not lead to a double helix structure after hybridization; it is
rather only the bond specificity and the nature of the hydro-
gen bonds that this model tries to mimic in a reliable way.
For more accurate descriptions of the mechanical properties
of DNA, more complex models have been proposed in the lit-
erature (e.g., Refs. 56, 57, 65, and 66), where additional inter-
actions have been included. In the present model, no potential
other than the LJ and FENE potentials acts on the bases.

Finally, we come to the decoration of the colloidal par-
ticles. All strands attached to the colloidal particle have the
same length, namely, eight bases, with sequence A-C-G-T-
A-C-G-T (see Fig. 1(a)). In previous work, various geome-
tries have been considered as potential and promising candi-
dates for a single-diamond self-assembly scenario,91–97 and
particular emphasis was put on tetrahedral (cf. Fig. 2(b))
and octahedral symmetry (cf. Fig. 2(c)). In our investiga-
tions, we have mainly considered (i) the case where two
interacting particles have either a tetrahedral (acronym “t-
t”) or an octahedral (acronym “o-o”) decoration and (ii) the
“mixed” case (acronym “t-o”, where one colloid has a tetrahe-
dral and the other one an octahedral decoration. Finally, also
quadrangular-planar geometries (acronym “c-c”) have been
studied (see Fig. 2(a)).

FIG. 1. Two spherical DNA-functionalized particles (σ PP = 4) in the un-
bonded state are shown in panel (a). The DNA sequence for each strand
is the same, namely, A-C-G-T-A-C-G-T (the bases are specified by differ-
ently colored spots on the beads). In this way, two strands can bind together
palindromically in a bonded configuration, shown in panel (b). In addition,
a schematic figure is shown on the left side of panel (a), where the defini-
tions for the angles �1 and �2, as well as the distance r are specified (see
main text). The green (or light gray) vectors are the ones that connect the
respective centers of the colloids to the center of the first backbone monomer
(attached to the colloid surface having an A-base), while the red (dark gray)
bi-directional vector of length r links the centers of the two core colloids.

The model described above is illustrated schematically in
Fig. 1, which shows for a tetrahedral geometry an initial struc-
ture used in our simulations (Fig. 1(a)) and a DNA-hybridized
structure (Fig. 1(b)) resulting from the hybridization of the
bases along one strand with the complementary bases of the
other strand. Particles with this particular type of tetrahedral
symmetry have raised much interest as promising building
blocks for self-assembly into the diamond structure. The dif-
ferent colors of the small beads in Fig. 1 correspond to differ-
ent types of bases. In the present study, as well as in previous
studies based on this model,91–97 the DNA sequence A-C-G-
T is repeated along the DNA strand. In this way, two DNA
sequences belonging to two different strands of two differ-
ent functionalized colloids are thus palindromically favoring
a particular bonded state, which is shown in Fig. 1(b).

B. Method to calculate the effective potential

An outline for the calculation of the effective potential
acting between two DNA-functionalized nano-particles de-
scribed within the model of Starr and Sciortino63 has been
presented earlier.89 This method can be applied to systems
where not only the distance between the two colloids has to
be taken into account, but where also the direction between
the arms of the particles is considered. As the model consid-
ers a spherical colloid with single and stiff DNA strands sym-
metrically grafted on it, we express the effective potential be-
tween two interacting DNA-functionalized colloids at a given

FIG. 2. Different decorations of DNA-functionalized particles with σ PP

= 8: A quadrangular planar (a), tetrahedral (b), and octahedral (c).
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temperature as a function of the distance between the cen-
ters of the colloids and the relative orientations of the DNA
strands. In this way, one obtains the probabilities to find the
two particles at a given distance, and also the probability of
having the DNA-arms oriented in a given direction.

A schematic representation of the geometrical quantities
used for the calculation of the effective potential is given in
Fig. 1. The distance between the centers of the colloids is de-
noted as r. The direction of the DNA strands on each of the
two colloids (denoted as 1 and 2) are expressed via the an-
gles �1 and �2 and illustrated in Fig. 1: �1 is the angle that
a DNA strand attached to colloid 1 forms with the line con-
necting the two colloid centers; only the arm located closest
to this vector is considered. Correspondingly, one defines an-
gle �2 for the DNA-functionalized colloid 2. Here, the direc-
tion of the colloids is defined through the vector connecting
the center of the colloid with the first backbone bead attached
to the colloid. Furthermore, we have verified that the dihe-
dral angle spanned by vectors connecting the colloid centers
with the respective anchoring points of the DNA-strands and
the vector connecting the center of the two colloids is uni-
formly distributed both in bonded and unbonded states. As a
consequence, there are no effective interactions acting on this
degree of freedom.

One now has to define a criterion when two DNA
strands are considered to be bonded: (i) two bases are defined
as bonded if they belong to different strands and are separated
by a distance smaller than 2.5σ AA; (ii) furthermore – as has
been stated previously63, 89 – two DNA strands are considered
bonded when half or more of the DNA bases of the strand
are bonded with the bases of the other strand. An alternative
criterion has also been discussed,90 namely, two molecules are
bonded if their bonding energy is lower than −0.4. We have
verified that the choice of the value of the energy or the dis-
tance criterion does not affect the final result for the effective
potential obtained here.

In Refs. 63 and 89, it has been suggested that the
effective potential can be defined as a linear combina-
tion of two states, i.e., the bonded state in which two
strands are bonded as defined above (for example, see
Fig. 1(b)) and the unbonded state, in which they are not
bonded. Then, the probability pb = pb(T) of two strands to be
bonded can be readily computed by counting during the sim-
ulation how many configurations correspond to the bonded
and unbonded state, respectively. The role of temperature is
to modify this probability: at lower temperatures, two strands
spend more time in a bonded state; as the temperature is in-
creased, bonded configurations become rarer until they even-
tually disappear. As will be shown below, the values of the
probability pb can be fitted within a two state model. Then,
the probability of the particles to be separated by a certain
distance r is described by the following expression:

P (r) = pb(T )P bonded(r) + [1 − pb(T )]P unbonded(r), (5)

i.e., the probability of two DNA-functionalized colloids be-
ing separated by a distance r is a linear combination of the
respective probabilities for bonded and unbonded configura-
tions, Pbonded(r) and Punbonded(r). These probabilities are de-

fined such that 4π
V

∫
P (r)r2dr = 1 with V being the volume

of the simulation box.
These probabilities are nothing else than the radial distri-

bution functions which are measured in bonded [Pbonded(r)]
and unbonded states [Punbonded(r)]. Accordingly, the contri-
bution of the two probabilities, Pbonded(r) and Punbonded(r), to
P(r) is weighted by the probabilities of two DNA strands to
be bonded pb(T) or unbonded [1 − pb(T)]; the temperature
dependence is purely taken into account via pb(T). Conse-
quently, an accurate determination of the probability pb plays
a pivotal role in the calculation of the effective potential.
The assumption that P(r) can be computed as a linear com-
bination of Pbonded(r) and Punbonded(r) weighted via pb and
(1 − pb) has been confirmed by determining the radial dis-
tribution function of two interacting DNA-coated colloids at
different temperatures.89

In the next step, one has to determine the probability
P(�1, �2), which accounts for the orientations of the ssDNA
strands in the calculation of the effective potentials. Again,
index 1 labels colloid 1, while 2 indicates colloid 2. An im-
portant assumption within this model is that the orientations
of the two DNA strands involved are independent in both
bonded and unbonded cases. Although this assumption seems
to be strong, it has been confirmed.89 Consequently, the joint
probability to observe angles �1 and �2 can be written as the
product of two independent probabilities,

P (�1,�2) = P (�1)P (�2). (6)

We have computed joint probabilities of the angles �1 and �2

and have verified that these two angles are indeed statistically
independent even in the bonded state. Here, P(�1) and P(�2)
are normalized such that 1

2

∫ π

0 P (�i) sin �id�i = 1, i = 1,
2. In a similar manner as for the probability P(r) it has been
assumed89 that the respective probabilities for the angles �1

and �2 can be expressed as a linear combination of the respec-
tive distributions in the bonded and unbonded states. Thus,

P (�i) = pb(T )P bonded(�i)

+ [1 − pb(T )]P unbonded(�i), i = 1, 2. (7)

In other words, one can split up the probability of finding two
particles at a given distance r with given directions of their
DNA-arms, as a linear combination of the probabilities in the
bonded or unbonded states, weighted by the probability pb(T)
and [1 − pb(T)].

Finally, the total normalized probability of finding two
colloids at a distance r and their nearest arms at angles �1

and �2 reads

P (r,�1,�2) =pbP
bonded(r,�1,�2)

+ (1 − pb)P unbonded(r,�1,�2),
(8)

where

P λ(r,�1,�2) = P λ(r)P λ(�1)P λ(�2) (9)

and λ = unbonded, bonded. For unbonded configurations,
one assumes that all directions of the DNA strands are equally
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likely, leading to the normalized angular distribution

P unbonded(�i) = 1, (10)

where i = 1, 2. Distributions of the angles �1 and �2 are
of this form for sufficiently large radial distances where the
excluded volume for one molecule due to the presence of the
other particle is negligible. For smaller distances, however,
bigger angles should be favored and Eq. (10) is not strictly
valid in this regime.

For the unbonded configurations, the joint probability
Punbonded(�1, �2) is then given by

P unbonded(�1,�2) = 1. (11)

In the case of bonded configurations, it is assumed that
the probability for a given �i (i = 1, 2) is independent of the
radial distance; in the bonded state, this radial distance varies
slightly around the average distance between the centers of
the colloids. It has been shown89 – and we also confirm this
observation in the present contribution – that the probability
Pbonded(�i) can be fitted well to a Gaussian function, namely,

P bonded(�i) = A√
2πs2

exp

(
− �2

i

2s2

)
, (12)

where A is a normalization constant. Thus, the joint probabil-
ity for �1 and �2 can be written as a product of two indepen-
dent Gaussian functions,

P bonded(�1,�2) = A√
2πs2

exp

(
− �2

1

2s2

)
A√
2πs2

exp

(
− �2

2

2s2

)

= A2

2πs2
exp

(
−�2

1 + �2
2

2s2

)
. (13)

The full probability can then be written [(Eq. (9)] as

P (r,�1,�2, T ) = pb(T )P bonded(r)P bonded(�1,�2)

+ [1 − pb(T )]P unbonded(r). (14)

Finally, the effective potential, V eff(r,�1,�2), is obtained
from the above probabilities via

βV eff(r,�1,�2, T ) = − ln[P (r,�1,�2, T )]. (15)

Within this formalism, the repulsive part of the potential
has been spherically averaged. Of course, this is only an ap-
proximation to the real situation, and as the particles move
away from each other, this approximation becomes more ac-
curate. The main reason for choosing this way of dividing
configurations in bonded and unbonded states is to guarantee
the continuity of the effective potential. At the same time, one
avoids configurations in which strands are partially bonded
with respect to the definition of bonded and unbonded config-
urations (cf. Fig. 1).

C. Simulation method

In order to calculate the effective potential within this
model,63 we first performed standard MC simulations in the
canonical ensemble in a cubic simulation box with periodic
boundary conditions: the total number of beads, N, the vol-
ume of the simulation box V , and the temperature T are con-
stant while the energy E is allowed to fluctuate. The length

TABLE I. Side length L of the cubic simulation box in units of σBB used in
our simulations for different decorations and colloid sizes as indicated.

L

Decoration σ PP = 2 σ PP = 4 σ PP = 8

t-t 26 32 38
t-o 32 36 44
o-o 38 42 50

of the box L = V 1/3 is sufficiently large that two colloids do
not interact with any of their periodic images (cf. Table I).
We note here that an increase of the size of the simulation
box results in an increase of the entropy of the unbonded state
(the number of unbonded states increases with the size of the
box). Therefore, we strictly choose the smallest possible box
to simulate our systems in order to minimize such an effect.
We have considered three different types of MC moves:

(i) Standard local bead moves, in which N attempts to
move at random a randomly chosen bead are performed.
When beads that are tethered to the colloidal surface are
selected for a move, this attempt is directly rejected. In
this way, the beads which are grafted on the surface of
the colloid are not able to slide on the colloid surface,
but remain fixed at the specific grafting point.

(ii) The second type of move involves Nm attempts (in our
case Nm = 2, as we simulate only two macromolecules)
to rotate a randomly selected colloid by a random angle.
For this pivot move the centre of the colloid particle is
taken as reference point.

(iii) The third move corresponds to Nm = 2 attempts to se-
lect one of the two colloids at random and translate it
as a whole as in a usual local move. In such a move,
the colloidal particle and all beads belonging to it are
moved by the same displacement.

The combination of the three moves, each of them re-
alized once, defines a MC step. The acceptance or rejection
of a new configuration is decided as usual via the standard
Metropolis criterion.104

For reasons which will become apparent below, we
have found it indispensable to use the parallel tempering
method105–107 to compute the effective potential between two
colloids. In a parallel tempering simulation,107 one considers
M replicas, each representing a canonical ensemble, at a dif-
ferent temperature, Ti. In our simulations, we have typically
used about 60 different temperatures. The different simulation
temperatures should be chosen such that the histograms of the
fluctuating energies of adjacent replicas overlap; in this way,
the exchange of temperatures or configurations between two
adjacent replicas (i.e., between the configurations at temper-
atures Ti and Ti+1) takes place at a sufficient rate. Different
approaches on how to select the different temperatures have
been discussed.108–110 We point out that generally a rather
dense selection of temperatures is required at lower temper-
atures where energy fluctuations are suppressed leading to a
small overlap of adjacent energy histograms. Since the repli-
cas do not interact energetically, the partition function of this
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total ensemble of M replicas can be expressed as the product
of the canonical partition functions. Moves in the temperature
space between ensembles i and j are accepted with probability

Pacc = min
{
1, exp

[
(βi − βj )

(
V

(
rN
i

) − V
(
rN
j

))]}
, (16)

where V (rN
i ) is the total energy of the system at configu-

ration rN
i . Swaps are normally attempted between systems

with adjacent temperatures, j = i + 1. To satisfy detailed
balance, the swap moves must be performed with a certain
probability, and performing the swaps after a fixed number
of single-temperature MC moves satisfies the sufficient con-
dition of balance.111 In our simulations, we have tried many
different combinations of the number of swap moves. The re-
sults shown here are taken by attempting a swap move every
50 MC steps between a replica at temperature Ti and a replica
at the higher, adjacent temperature Ti+1.

In order to implement this protocol we have developed
a parallel code implementing the Message Passing Interface,
where each replica running at different temperature Ti is as-
signed to a different processor. The total number of MC steps
we performed for each studied case amounts to 5 × 108 MC
steps, while properties are measured after equilibrium has
been achieved for a total of 3 × 104 samples which are col-
lected every 5 × 103 MC steps. This large number of sam-
ples is required for an accurate calculation of the probability
Pbonded(�1, �2), while the calculation of P(r) requires less
effort. Overall, the determination of the effective interaction
between two DNA-coated colloids is computationally very
expensive.

III. RESULTS

A. The system

We have implemented the MC simulation method out-
lined in Sec. II C to calculate the effective potential between
DNA-functionalized spherical colloids.

While in previous studies91–97 DNA-strands with 4–16
bases were considered, we have restricted ourselves in the
present study to Nb = 8 bases, their sequence being A-C-G-
T-A-C-G-T (cf. Fig. 1(a)); all strands attached to the colloidal
particles have the same length. In an effort to study the impact
of the size of the colloid, we have varied the colloidal diam-
eter, σ PP, over a representative set, assuming the following
values: σ PP = 2, 4, 8, 16, and 32.

B. Evaluation of pb(T)

Our first attempts to evaluate the effective potential be-
tween two DNA-decorated colloidal particles were carried
out in a series of standard simulations in the canonical en-
semble, where runs at different temperatures are carried out
independently, starting from a random, unbonded configura-
tion. As the simulations are carried out at each temperature
independently, the DNA strands will form bonds – in partic-
ular, as a consequence of the cosine potential Eq. (4) – only
at sufficiently low temperatures (i.e., for T ≤ 0.11). As docu-
mented in the literature63, 89 and confirmed by our investiga-
tions, the transition from unbonded to bonded configurations

FIG. 3. Different anomalously bonded (they are not strictly bonded accord-
ing to the definitions specified in the main text) configurations of two inter-
acting DNA-functionalized colloids, obtained during a standard simulation in
the canonical ensemble at a fixed temperature starting from an unbonded con-
figuration (see Fig. 1(a)). Below T ≈ 0.09 the systems can hardly change from
such a bonded state to a lower energy state during the calculation of the ef-
fective potential. Characteristic configurations for tetrahedral-tetrahedral ge-
ometry (t-t – panel (a)) at temperature T = 0.061, octahedral-octahedral (o-o
– panel (b)) at T = 0.069, and tetrahedral-octahedral (t-o – panel (c)) at T
= 0.065 are shown. In all cases, the size of the colloidal particle was as-
sumed to be σ PP = 2. Similar structures arise for values of σ PP up to 16.
Such configurations also survive within the temperature range 0.09 < T
< 0.11. For T > 0.11 only unbonded configurations are observed.

takes place in a very narrow temperature range, i.e., 0.09 ≤ T
≤ 0.11. In this interval, a decay of pb(T) could be observed,
which can be fitted in a two-state model via the expression

pb(T ) = 1

1 + e−(
E/T −
S)
, (17)

where 
E = Eu − Eb and 
S = Su − Sb are the energy and en-
tropy differences between unbonded (index “u”) and bonded
states (index “b”), respectively.

In our investigations, based on standard canonical simu-
lation, we have found that bonded configurations (according
to our definition – e.g., see Fig. 1(b)) are observed that cannot
be considered as favorable: in particular in the temperature
range 0.09 ≤ T ≤ 0.11, also other “unfavorable” (partially
bonded) configurations are observed (Fig. 3). Of course, such
configurations are an artifact of the model and cannot form in
reality, since in these cases (Figs. 3(a) and 3(b)) strands are
attached using their 5′ end. In addition, in standard canoni-
cal MC simulations, transitions from one configuration to an-
other can hardly take place at low temperatures leading to
frozen configurations that do not change anymore. This er-
godicity problem is also observed in the original data corre-
sponding to the transition regime of bonded and unbonded
configurations,63 where one can recognize the difficulty for
efficient sampling in the transition regime of pb(T).

The occurrence of such problems in two-state systems in
narrow temperature ranges is well known in a wide variety
of systems and its solution represents a challenge for com-
puter simulations.98 To improve the sampling of configura-
tion space, we have therefore implemented a parallel temper-
ing scheme described in Subsection II C. As will be discussed
below, this parallel tempering approach yields a significantly
lower transition temperature from the bonded to the unbonded
state and a considerably broader transition range in tempera-
ture compared to the results of Starr et al.63, 89

In Fig. 4, we present results for the probability pb(T) as
a function of temperature as obtained from the parallel tem-
pering simulation scheme, for different values of the colloidal
size, σ PP, and different decorations. The observed transition
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FIG. 4. The probability pb(T) of finding a bonded configuration (as the one
shown in Fig. 1(b)) for different DNA decorations. Panel (a) shows results
for σ PP = 4 for quadrangular-planar-quadrangular-planar (c-c), tetrahedral-
tetrahedral (t-t), tetrahedral-octahedral (t-o), and octahedral-octahedral ge-
ometry (o-o). Panel (b): Same as panel (a), but for σ PP = 8. Panel (c) shows
results for the tetrahedral-tetrahedral case (cf. Figs. 1(a) and 1(b)) for differ-
ent colloid sizes, i.e., σ = σ PP = 2, 4, 8 and 16 (as labeled). Similar results
(not shown here) are obtained for the other decorations considered in panels
(a) and (b). Shaded areas indicate the temperature ranges where only bonded
configurations are identified. Insets present magnified views of the transition
regime. Continuous lines are fits to pb(T) = [1 + e−(
E/T − 
S)]−1 within the
two-state model (see text). Here, 
E and 
S are treated as fit parameters and
are shown in Table II.

temperature is substantially lower than predicted via standard
simulations in the canonical ensemble.63, 89 The states corre-
sponding to the lower temperatures are now a result of the
simulation and are not imposed by the construction of the
model.63 Moreover, we have found that at very low temper-
atures (T < 0.010), also other “unfavorable” bonded states
occur (see Fig. 5) in terms of our analysis and a realistic sit-

FIG. 5. At very low temperatures and for particular combinations of system
parameters (i.e, the size of the colloid, the number of bases, and the geomet-
rical decoration), we have also identified these different cases of “bonded”
states. Case (a) was encountered for octahedral-octahedral decoration (o-o)
and for σ PP = 8. Case (b) was identified for tetrahedral-octahedral decora-
tion (t-o) and for σ PP = 2. Case (c) was encountered for tetrangular-planar
decoration (c-c) and for σ PP = 2. These states occur strictly for these cases of
decoration and colloid size and at very low temperatures, namely, T < 0.01,
i.e., far from the transition between bonded and unbonded configurations in-
vestigated in this study.

uation, i.e., far from the transition regime, where the ener-
getic penalty due to the bending of the strands is compen-
sated by the attraction strength of the complementary DNA
bases. Such configurations are possible for particular combi-
nations of decoration and colloidal size, namely, for the case
of a quadrangular planar geometry with σ PP = 2 and an octa-
hedral geometry with σ PP = 8. In these cases, we observe the
formation of two or more bonded arms. Only for these two
particular cases such peculiar configurations are encountered
(Fig. 5), which, however, do not cause any problem in our
analysis of the effective potentials, since they appear only at
very low temperatures (T < 0.01), i.e., far from the transition
between bonded and unbonded configurations.

Our results obtained for pb(T) do not reveal any substan-
tial effect of the decoration: two representative examples for
σ PP = 4 and 8 are shown in Figs. 4(a) and 4(b) for differ-
ent decorations. We observe that the higher the number of
DNA arms grafted onto the colloid, the higher is the proba-
bility of bonded configurations, thus, leading to higher val-
ues of pb(T) for the octahedral-octahedral case. From the re-
sults shown in Fig. 4(c), we can also clearly see the influence
of the colloid size σ PP on pb: as the diameter of the colloid
increases, the transition temperature between fully bonded
and fully unbonded cases shifts to lower temperatures, a re-
sult that complies with previous theoretical and experimen-
tal observations.3 By gradually increasing the size of the par-
ticles, the importance of the repulsive interaction increases
steadily, thereby, hindering the bonding of the DNA strands.
Whereas for colloidal diameters up to σ PP = 16 we were
able to obtain satisfactory data, this was not the case for col-
loids of size σ PP = 32: In this particular case, the interac-
tion between the colloids dominates all other interactions and
hence the transition regime shifts to even smaller tempera-
tures where it becomes considerably more difficult to sam-
ple configuration space in an efficient way with a reason-
able computational effort. Since for this particular case the
moves within the present approach are rather inefficient, we
suggest that additional, more efficient MC moves are needed
for very large values of the colloid size, i.e., when the ra-
dius of the colloidal particle becomes considerably larger than
the length of the DNA strands. With these considerations in
mind, we have not further considered data for a colloid size of
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FIG. 6. Pbonded(r) (top panel) and Punbonded(r) (bottom panel) as functions of
r for different decoration geometries of the interacting DNA-functionalized
colloids. Examples for different values of colloid size σ PP = 2, 4, and 8 from
left to right for the top panel and σ PP = 4 for the bottom panel are shown [cf.
Eq. (13) and Table II].

σ PP = 32 in our study. However, we expect – in line with
experimental observations38 – a smooth extrapolation of our
data with increasing particle size.

C. Evaluation of Pbonded(r) and Punbonded(r)

The next quantities needed for the evaluation of the
effective potential are the radial distribution functions for
the bonded and unbonded configurations, Pbonded(r) and
Punbonded(r).

In all cases investigated in the present study, the bonded
configurations are realized at temperatures close to T = 0.024;
it is therefore sufficient to calculate the function Pbonded(r)
at this temperature. We have not considered Pbonded(r) at a
lower temperature, because sampling becomes more ineffi-
cient as the temperature decreases. The results obtained for
Pbonded(r) shown in Fig. 6 display a significant dependence on
the type of decoration geometry of the colloid for a given col-
loidal diameter σ PP. When comparing our data with those ob-
tained from standard canonical simulations89 we observe that
Pbonded(r) obtained with parallel tempering exhibits a slightly
higher peak as a result of the shift of the transition temper-
ature to lower values (T ≈ 0.024 compared to the original
estimation63, 89 for the transition temperature at T ≈ 0.09).

For the evaluation of Punbonded(r) any temperature cor-
responding to the unbonded case can be used; thus, we
have simply used the highest temperature investigated, i.e., T
= 0.120. Results are also shown in Fig. 6: Punbonded(r) van-
ishes at short distances depending on the size of the colloid,
thus corresponding to the range of the repulsive interaction.

D. Evaluation of Pbonded(�1, �2)

The evaluation of the normalized probabilities
Pbonded(�1, �2) = Pbonded(�1)Pbonded(�2) requires a
significant computational effort in order to sample different
angles in the bonded states adequately. In Fig. 7, we show
typical results for this Pbonded(�1) for different decoration
geometries and for two selected values of the colloidal size,
σ PP = 2 and σ PP = 8. The distributions shown in Fig. 7

FIG. 7. Pbonded(�1) as a function of �1 (in units of rad) for different types
of decoration geometries and different colloid sizes (σ PP = 2 top panel and
σ PP = 8 bottom panel). Lines are Gaussian fits to the data points.

exhibit rather small variations as the colloid size increases.
Also, the decoration geometry plays a rather minor role in
the width of Pbonded(�1) in the bonded case; only for the o-o
decoration and for colloid size σ PP = 8 we only see a more
pronounced difference as our data deteriorate with increasing
colloid size. We compile the results for the Gaussian fits for
the normalized distribution of angle �1 in Table II.

E. Evaluation of βV eff(r,�1,�2)

We have now all the ingredients required for the calcula-
tion of the effective potential βV eff(r,�1,�2) via Eq. (15), as
shown in Fig. 8 for various representative examples.

Figure 8(a) presents the effective interaction for differ-
ent values of the colloidal size for the t-t type decoration.
Not surprisingly, an increase of colloid size leads to a shift
of the attractive region of the potential to larger distances. As
the colloid size increases, we observe, in addition, that the at-
tractive well at fixed temperature (e.g., T = 0.024) becomes
shallower, i.e., further evidence that the repulsive interaction
of the colloid plays an increasingly important role. Variation
of the temperature T affects the depth of the attractive well,

TABLE II. The upper panel shows the values of the parameters A and s
for the Gaussian fit of Pbonded(�1) [cf. Eq. (12)]. The lower panel shows the
values of the parameters 
E (in units of εαβ , εαβ = 1) and 
S [in units of
kB (kB = 1)] of the two-state model, which was used to fit the probability of
bonded configurations pb(T) [cf. Eq. (17)].

A s

Decoration σ PP = 2 σ PP = 4 σ PP = 8 σ PP = 2 σ PP = 4 σ PP = 8

t-t 0.159 0.163 0.165 0.249 0.247 0.229
t-o 0.159 0.157 0.161 0.239 0.214 0.213
o-o 0.160 0.151 0.160 0.240 0.247 0.264


E 
S

Decoration σ PP = 2 σ PP = 4 σ PP = 8 σ PP = 2 σ PP = 4 σ PP = 8
t-t 0.510 0.497 0.491 12.56 12.97 12.99
t-o 0.514 0.467 0.496 12.73 11.99 13.22
o-o 0.486 0.486 0.526 12.10 12.25 13.64
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FIG. 8. The effective potential βV eff(r, �1, �2) as a function of r for differ-
ent system parameters. Panel (a): Results for σ PP = 2 and 8 for t-t decoration
with �1 = �2 = 0 are shown. The arrow indicates the variation of the ef-
fective potential with increasing temperature (temperatures considered here
are T = 0.024, 0.026, 0.028, 0.030, 0.032, 0.034, 0.036, 0.038, 0.040, 0.042,
0.046, and 0.052). Panel (b): Effective potential for σ PP = 2 and 8 for a t-t
type decoration. Now, �1 = �2 is varied and temperature is fixed at T =
0.024. The arrow indicates the variation of the effective potential with in-
creasing �1 (for which the following values have been considered: �1 =
�2 = 0.0, 0.10, 0.20, . . . , and 0.90; curves are only shown if they can be
discriminated from each other). Panel (c): Effective potential for σ PP = 4
at different temperatures T = 0.024, 0.030, 0.040, and 0.046. Continuous
lines correspond to the tetrahedral-tetrahedral (t-t) and dashed lines to the
octahedral-octahedral (o-o) decoration for �1 = �2 = 0. The (t-o) case is
not shown here for clarity. The dependence on �1 = �2 (�1 = �2 = 0.00,
0.40, and 0.70) is also displayed in the inset.

i.e., as the temperature increases, the attractive interaction be-
comes weaker. Although the changes in the height of the peak
of Pbonded(r) with respect to decoration are rather pronounced
(cf. Fig. 6), the apparent differences in the ensuing effective
potentials are not so significant.

Choosing now a low temperature such that the differ-
ences in the effective interactions become more obvious (e.g.,
T = 0.024), we depicted in Fig. 8(b) the effective potential
for the case of a t-t decoration for two different values of col-
loid size (similar as in Fig. 8(a)). Increasing the value of �1

and �2 (�1 = �2) sufficiently, transforms the potential into
a purely repulsive interaction. Finally, in Fig. 8(c) we show
a comparison of the effective potential for different decora-
tions: the t-t decoration and the o-o decoration, with the t-o
decoration corresponding to an intermediate situation. For a
fixed size of the colloidal particle and choosing �2

1 + �2
2 = 0,

the variation of temperature leads to small quantitative differ-
ences between the t-t and the o-o combinations. When we fix
the temperature (e.g., T = 0.024) and vary �1and �2, then
the potential transforms rapidly to a purely repulsive poten-
tial for the o-o decoration and t-t decoration, which is a direct
effect of the contribution of Pbonded(�1, �2) to the effective
interaction.

IV. SUMMARY AND CONCLUSIONS

In this contribution, we have revisited a bead-spring
type model89, 90 for DNA-functionalized colloidal particles,
recently proposed by Starr and Sciortino63 and have discussed
in detail a computationally demanding but faithful method
to calculate the effective potential acting between two dec-
orated particles. This potential is calculated in the dilute-
regime where only two DNA-coated colloids are considered;
thus, three-body potentials are neglected a priori in the effec-
tive potential, which now provides the basis to study structure
formation in larger systems of DNA-coated colloids.

We have revisited the model put forward in Ref. 63, con-
sidering three different types of decorations of the colloidal
particle by ssDNA strands (quadrangular, tetrahedral, and oc-
tahedral geometry); throughout, DNA strands formed by eight
bases were used, assuming the sequence ACGTACGT. Five
different values for the size of the colloidal particle were
assumed. Our investigations have revealed that the apparent
simplicity of this model might be misleading. The transition
temperature between bonded and unbonded configurations in
the effective potential is controlled by the probability pb(T);
from our results we found that this transition occurs at sig-
nificantly lower temperatures than originally estimated. Thus,
well-defined bonded structures are expected only at consid-
erably lower temperatures, while at the same time undesired
bond-formation between DNA strands is nearly perfectly sup-
pressed. These revised results are the consequence of the fact
that we have used – in contrast to the approach suggested in
Ref. 89 – extensive simulations based on the parallel temper-
ing protocol. As a result of the shift of the transition regime
to lower temperatures, where fluctuations are further sup-
pressed, also the attractive well of the effective potential be-
comes slightly deeper as compared to the results presented in
Ref. 89. The evaluation of effective interactions for larger col-
loids than the ones studied here still remains a challenge for
the method described in this paper.

Finally, we point out that large scale simulations where
“effective” particles interact via effective potentials require
the following additional condition in order to obtain exactly
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the same results that one would obtain from a full coarse-
grained approach (Subsection II A): exactly one bond per ef-
fective site for the “effective” particles interacting via the ef-
fective potential has to be allowed. In this way, only one link
can be established between different directions of the “effec-
tive” particle.
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