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Computing Gibbs free energy differences by interface pinning
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We propose an approach for computing the Gibbs free energy difference between phases of a material. The
method is based on the determination of the average force acting on interfaces that separate the two phases of
interest. This force, which depends on the Gibbs free energy difference between the phases, is computed by
applying an external harmonic field that couples to a parameter which specifies the two phases. Validated first for
the Lennard-Jones model, we demonstrate the flexibility, efficiency, and practical applicability of this approach
by computing the melting temperatures of sodium, magnesium, aluminum, and silicon at ambient pressure using
density functional theory. Excellent agreement with experiment is found for all four elements, except for silicon,
for which the melting temperature is, in agreement with previous simulations, seriously underestimated.
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An accurate location of first-order transition lines at a
reasonable computational cost is of paramount importance
for a wide spectrum of condensed matter systems, ranging
from hard to soft materials and biological matter. Basic
principles of equilibrium thermodynamics imply that for a
given temperature and pressure the system resides in the
phase of lowest Gibbs free energy. Phase transitions occur
where Gibbs free energy differences between phases vanish,
determining phase boundaries in the pressure-temperature
plane. From the computational point of view, however, the
task of evaluating a phase diagram represents a significant
challenge, as phase transitions occur on long time scales1 such
that they cannot be studied using straightforward molecular
dynamics or Monte Carlo simulations.

Several numerical approaches have been proposed to cope
with this problem:2,3 (i) in the indirect approach, often
based on thermodynamic integration, the Gibbs free energy
is computed individually for each of the phases4–8 and the
coexistence line is then calculated by imposing the coexistence
condition of equal Gibbs free energy. (ii) Alternatively, in the
direct approach, an explicit interface is introduced between
the two phases which are then simulated simultaneously
in the same simulation box. At fixed pressure and temperature,
the system moves towards the phase with the lower Gibbs
free energy. Exactly at coexistence the thermodynamic driving
force on the interface vanishes and the interface stops moving
except for thermal fluctuations. Successful applications of
this approach have been reported for a broad spectrum of
materials.9–21

In this contribution, we present and validate a method to
compute the Gibbs free energy difference �G between two
phases. The basic idea of this approach is to compute the
average force required to pin the interface of a two-phase
system via a harmonic bias potential. This external field
couples to a suitably defined order parameter Q, which
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distinguishes between the phases of interest. The application of
the bias potential effectively transforms the out-of-equilibrium
process of the conventional moving-interface method into
a well-defined equilibrium computation, in which the free
energy difference �G is determined directly. We refer to
this approach as the “interface-pinning” method. Coexistence
points may subsequently be determined using Newton’s root-
finding method.

To validate our approach, we have first applied it to
the Lennard-Jones (LJ) model.22 Our calculations reproduce
with high accuracy the solid-liquid coexistence line identified
previously with other approaches.15,23,24 We have then used
interface pinning in combination with ab initio density func-
tional theory to compute the melting temperatures of sodium
(Na), magnesium (Mg), aluminum (Al), and silicon (Si),
demonstrating that the present method is widely applicable
and allows routine melting-point calculations using ab initio
techniques. Traditional thermodynamic integration is difficult
to combine with ab initio techniques as determining the free
energy of the liquid requires either (i) an integration from the
ideal gas to the liquid state using the ab initio techniques, or
(ii) a simple model Hamiltonian resembling the true liquid.
Unfortunately method (i) fails, since most density functional
theory codes yield diverging Coulomb and electronic energies,
when two atoms are at the same position in space, whereas
approach (ii) is suitable only when reliable model potentials
exist. Such potentials are, however, not available for materials
with short- and medium-range order in the liquid, such as
P, Sb, chalcogenides, and binary systems (oxides, nitrides,
zintl alloys), explaining the astoundingly small number of
melting-point calculations using ab initio density functional
theory.

Compared to the conventional direct and indirect methods
used in the literature so far, interface pinning offers several
advantages. In contrast to the direct approaches, interface
pinning operates at well-defined equilibrium conditions, thus
permitting the explicit calculation of free energy differences
and interface properties. The order parameter Q does not need
to be a reaction coordinate capturing the entire transforma-
tion mechanism. Finally, interface pinning (IP) inherits the
conceptual simplicity and general applicability of the direct
approaches. The latter makes it a viable option when it is
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FIG. 1. (Color online) Upper panel: Crystal-liquid configuration
from an ab initio simulation of 432 Si atoms in a periodic box. Atoms
are colored according to the coordination number (red indicates
fourfold coordinated and blue otherwise). Lower panel: Schematic
sketch of the Gibbs free energy G(Q) (black solid line) as a function
of the crystallinity order parameter Q at a state point where the liquid
is thermodynamically stable and the crystal is metastable. The double
arrows indicate the interface contribution Gi (red) and the bulk
contribution N�μ (blue), respectively. The dashed green curve
indicates the Gibbs free energy G′(Q) with bias potential applied.
The inset shows that the computed G(Q)/(kBT ) in the two-phase
region is indeed linear; here, G(Q) was computed for the LJ model
(N = 5120) via umbrella sampling (Refs. 2,26) using Eq. (2) with
κ = 2 and a range of a’s.

difficult or even impossible to use thermodynamic integration.
The drawback of the IP method is that interface particles are
represented explicitly. This may result in larger finite-size
effects and/or longer equilibration times compared to other
methods. Thus, it is could be less computationally efficient
than thermodynamic integration to state points of known
chemical potentials.

To introduce the method, consider a two-phase crystal-
liquid system25 in a periodic orthorhombic box (see Fig. 1)
at temperature T and pressure p. The box lengths X and Y

are kept constant at values for which the crystal is unstrained
for a given pressure p, while the box length Z is allowed to
change in order to maintain the constant pressure p. Thus,
the simulation is carried out under hydrostatic conditions. We
refer to this ensemble as the NpzT ensemble. To lower the
interface Gibbs free energy Gi , the system will have two
interfaces in the XY plane minimizing the interface surface
area. We assume that the system is large enough to represent
bulk phases at least at the center of the liquid and solid slabs.
Particles may then be labeled crystalline (subscript c), liquid

(subscript l), or interfacial (subscript i), so that the total number
of particles is N = Nc + Nl + Ni . The contributions to the
total Gibbs free energy of particles in the bulk phases are
determined by the chemical potentials μc and μl of the solid
and liquid, respectively, and the total Gibbs free energy is
G = Ncμc + Nlμl + Gi .

When the relative distance between the interfaces changes,
particles are transferred between the bulk phases. Assuming
that the interface quantities Gi and Ni do not change when the
interfaces shift due to the growth of one bulk phase at the cost
of the other, the number of liquid particles may be written as
Nl = −Nc + const and the Gibbs free energy is given by

G(Nc) = Nc�μ + const, (1)

where �μ ≡ μc − μl . Throughout the paper we will use the
subscripts c and l for crystal and liquid properties, respectively,
and let “�” denote “[crystal] − [liquid].”

To sample configurations in the two-phase region and to
prevent the system from complete transformation into one of
the pure phases, we apply a harmonic bias potential that pins
the relative position of the interfaces. Let U (R) be the energy
of the unbiased system for configuration R = {r1,r2, . . . ,rN },
and

U ′(R) = U (R) + κ

2
[Q(R) − a]2 (2)

the energy of the system plus the bias potential. Here, Q(R)
is a global order parameter with a linear dependence on the
number of particles in the solid phase: Q = Nc

N
Qc + Nl

N
Ql +

Ni

N
Qi where Qc and Ql are the average values when the system

is in the solid phase and the liquid phase, respectively. Thus

Nc = N
Q

�Q
+ const. (3)

[Later in the paper we introduce and discuss in detail one
choice of Q(R).] In the biased system, the position of
the interfaces relative to each other will fluctuate around
an average value and the order parameter Q will fluctuate
accordingly. The probability distribution of Q is P ′(Q) =
exp[−G′(Q)/kBT ]/Z ′, where G′(Q) is the Gibbs free energy
along the Q coordinate of the biased system, and Z ′ is the
corresponding partition function. The Gibbs free energy of
the biased system may be written in terms of the unbiased
free energy as G′(Q) = G(Q) + κ

2 (Q − a)2. By insertion of
Eqs. (1) and (3), it follows that P ′(Q) is Gaussian,

P ′(Q) =
√

κ

2πkBT
exp

{
− κ

2kBT
[Q − a + α/κ]2

}
, (4)

where α = N�μ/�Q is the slope of G(Q) in the two-phase
region, displayed in the lower panel of Fig. 1. The distribution
P ′(Q) has variance σ 2

Q = kBT /κ and average 〈Q〉′ = a −
α/κ , and the chemical potential difference between the two
phases may be computed as

�μ = −κ(〈Q〉′ − a)�Q/N. (5)

As a guideline, we choose κ such that typical fluctuations in Q

correspond to one or a fraction of a crystal plane, and a such
that the system is approximately half liquid and half crystal.
In practice, we find that a wide range of field parameters give
the same precision of the �μ estimate.27
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Once �μ is known, coexistence points may be determined
using Newton’s method for finding roots. The required
derivatives of �μ along isobars and isotherms are given by
the standard thermodynamic expressions ∂(�μ)/∂p|T = �v

and ∂(�μ)/∂T |p = −�s = −(�u + p�v − �μ)/T . In
these relations, �v, �s, and �u are changes in specific
volume, entropy, and energy, respectively.

To apply the interface-pinning method in practice, we must
choose an order parameter Q that grows linearly with the
number of crystalline particles Nc in the two-phase region.
Moreover, Q should be computationally inexpensive. Unlike
liquids, crystals have long-ranged translational order, allowing
us to use the collective density field as order parameter:
Q = |ρk| where ρk = N−1/2 ∑N

j=1 exp(−ik · rj ). Here, k =
(2πnx/X,2πny/Y,0) for some fixed integers (nx,ny) that
should be chosen such that k corresponds to a Bragg peak.
This choice will maximize the contrast between the liquid
and the crystal. The z component of k is set to zero since Z

fluctuates in the NpzT ensemble. The constant N−1/2 makes
Ql system-size invariant while Qc ∝ N1/2. Derivatives of Q

with respect to the particle coordinates, required to determine
the forces resulting from the bias, can be computed with an
algorithm scaling as O(N ). We note that this order parameter
may be problematic in the supercooled regime, since a crystal
can lower |ρk| by introducing long-wavelength displacements
of particles. The energy penalty of such displacements is low
and decreases with increasing system size. We have chosen
to use |ρk| as order parameter for most computations, since it
is generally applicable and simple. For some computations
we have in addition used the Steinhardt Q = Q6 order
parameter,28 which has the advantage of being robust in
the supercooled regime. The two choices of order parameter
give the same �μ’s within statistical error. A more detailed
description of the method will be given in a forthcoming
presentation.27

To verify the method, we first used it to determine the solid-
liquid coexistence line of the LJ model with truncated pair
interactions: U (R) = ∑N

i>j u(rij ), where u(r) = 4(r−12 −
r−6) − 4(6−12 − 6−6) for r < 6 and zero otherwise (LJ units
are used for this model throughout the paper). Molecular dy-
namics (MD) simulations with a time step of tstep = 0.004 were
performed using the LAMMPS software package29 modified
to include the bias potential. The Parrinello-Rahman barostat
was used30 with a time constant of τPR = 8 together with a
Nosé-Hoover31,32 thermostat with a time constant of τNH = 4.

Results presented in Fig. 2 demonstrate that the solid-liquid
coexistence line for the LJ model computed by interface
pinning agrees within high precision with data obtained
using other methods.24,34 The coexistence points displayed
in Fig. 2 were computed as follows. First, a crystal structure of
8 × 8 × 20 face centered cubic (fcc) unit cells (N = 5120)
was constructed and simulated at p = 1 and T = 0.8 for
tsim = 800. All box lengths were allowed to fluctuate in order
to determine the geometry of the unstrained crystal, giving
X = Y = 12.85. The unstrained crystal was then simulated
for tsim = 800 in the NpzT ensemble, and Qc = 56.31 (nx =
16,ny = 0) and the average partial volume vc = 1.036 was
recorded. Next, a liquid was prepared by melting the crystal
in a constant-volume simulation at high temperature (T = 5).
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FIG. 2. (Color online) Crystal-liquid coexistence of the LJ model
(filled black dots) in the (p,T ) plane computed with interface pinning
for the LJ model. The solid line is a cubic fit: −0.5223T 3 +
5.017T 2 + 5.502T − 5.989. The computed coexistence line agrees
well with results of other methods (Ref. 33): +’s and ×’s are from
Refs. 24 and 34, respectively. The asterisk indicates the gas-liquid
critical point (TCP = 1.31; pCP = 0.15) of the full LJ model (Ref. 35).

The NpzT ensemble (using X = Y = 12.85) of the liquid
was simulated for tsim = 800, and Ql = 0.94 and the average
specific volume of the liquid vl = 1.163 was recorded. Then,
a two-phase configuration was constructed by performing a
high-temperature constant-volume simulation where particles
at z < Z/2 were kept at their crystal positions using harmonic
springs anchored at crystal sites, with the box volume (length
Z) in between that of the crystal and the liquid. The NpzT

ensemble with the bias field of Eq. (2) with parameters
a = 26 and κ = 4 was simulated for tsim = 4000 to compute
〈Q〉′ = 25.055. Application of Eq. (5) yielded a chemical
potential difference of �μ = 0.040. The coexistence pressure
was then determined iteratively using Newton’s root-finding
method along the isotherm: p(i+1) = p(i) − �μ(i)/�v(i), pro-
viding pressures of p(i) = {1.0,1.320,1.337(1)}. In the last
iteration the estimated chemical potential difference is zero
within the error bar, �μ = −0.0007(10) (throughout the paper
numbers in parentheses indicate the statistical errors of the
last digits). In Fig. 3 we confirm that �μ(p,T ) computed with
interface pinning (symbols) is consistent with thermodynamic
integration (lines).

Due to its efficiency and flexibility, the interface pinning
approach can be combined with electronic structure methods
and ab initio molecular dynamics to computed free energy
differences from first principles. For the present simulations,
the method was implemented in the Vienna ab inito simulation
package.36 As an example, we used interface pinning to
compute the melting temperatures Tm of the period-3 elements
Na, Mg, Al, and Si at ambient pressure. The computed Tm’s
are shown in Table I along with simulation details. Melting
temperatures were computed first for crystalline Si in the
fourfold-coordinated cubic diamond (cd) structure (see Fig. 1).
To be compatible with previous calculations,8,39 density
functional theory in the local density approximation (LDA)
within the framework of the projector augmented wave method
was used.40 NpT and NpzT simulations were performed using
a time step of tstep = 3 fs with a Parrinello-Rahman barostat30
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FIG. 3. (Color online) (a), (c) �μ computed with interface-
pinning method along an isobar and an isotherm, respectively. (b), (d)
Specific entropy �s vs T and specific volume �v vs p, respectively;
the solid lines in the lower panels are quadratic polynomial fits to
these data. The solid lines in the upper panels were computed by
integration of these fits. The integration constants were chosen to
provide the best overall agreement with the �μ data.

and a Langevin thermostat.41 To compute the Si coexistence
temperature at ambient pressure, we use a similar strategy as
outlined for the LJ model: bulk properties of the crystal and the
liquid (Qc, Ql , vc, vl , X, and Y ) were evaluated in simulations
for 216 Si atoms (3 × 3 × 3 conventional cells; tsim = 60 ps)
at T = 1200 K. Next, solid-liquid simulations with a bias
field (tsim > 30 ps) were performed for four system sizes:
{2×2×4, 2×2×7, 3×3×6, 3×4×7} conventional cubic cells
corresponding to N = {128,224,432,672} atoms. Coexistence
temperatures were estimated to be {1189,1218,1225,1241} K
using Tm � T + �μ

�s
. Finally, finite-size effects were extrapo-

lated assuming a 1/N decay of the finite-size error yielding
Tm = 1250(10) K. The finite-size effects are particularly large
for liquid silicon, since the metallic liquid is embedded in
a semiconducting host, resulting in a discretization of the
electronic states in the metal (electron in a box). The present
value is fully consistent with previous LDA calculations,8,39

and the discrepancy with the experimental value of Tm =
1635 K originates from an underestimation of the energy
difference between fourfold-coordinated semiconducting Si in
the cd structure and sixfold-coordinated metallic Si in liquid
Si resembling the β-tin structure.8 The entropy of fusion

TABLE I. Ab inito and experimental (Refs. 37 and 38) melting
temperatures Tm (in K) of period-3 elements using either |ρk| or Q6

as order parameter. “Supercell” indicates the applied supercell built
from the conventional cubic cell (including liquid and solid parts). N
is the total particle number.

Unit cell Supercell N Q Tm [expt.]

Na bcc 5 × 5 × 10 500 |ρk| and Q6 354(21) [370]
Mg hcp 4 × 6 × 8a 767 |ρk| and Q6 920(20) [923]
Al fcc 4 × 4 × 8 512 Q6 985(30) [933]
Si cd 3 × 4 × 7 672 |ρk| 1241(20) [1635]

aBuilt from an orthorhombic four-atom (a,
√

3a,c) cell.

�s(Tm) = 3.5(1)kB/atom and the slope of the melting curve
dTm/dp = −51(7) K/GPa (computed using the Clausius-
Clapeyron relation) are also in agreement with previous
theoretical results.8,39 For the other elements, Na, Mg, and
Al, finite-size effects are less critical, and we considered only
system sizes comparable to the largest Si system. For these
three elements, the calculations were performed using PBESOL

(the Perdew-Burke-Ernzerhof functional for solids),42 which
yields more accurate lattice constants than the LDA. The
computed Tm’s of Na and Mg are in excellent agreement with
experimental values, while for Al the computed Tm is about
6% too large (see Table I).

In summary, we have described a computational method
that allows a direct evaluation of the Gibbs free energy
differences between two phases at given temperature and
pressure. The approach is based on the simulation of coexisting
phases with a bias acting on the interface position, effectively
transforming the nonequilibrium growth process into an equi-
librium simulation. An appropriate choice for the dimensions
of the simulation box orthogonal to the direction of interface
motion ensures hydrostatic conditions. As demonstrated by
computing the melting points of Na, Mg, Al, and Si from
first-principles simulations, the method is highly flexible and
can be applied to systems for which conventional methods are
inadequate.
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