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Abstract – We use monomer-resolved numerical simulations to study the positional and ori-
entational structure of a dense dendrimer solution, focusing on the effects of the prolate shape
and deformability of the dendrimers on the short-range order. Our results provide unambigu-
ous evidence that the nearest-neighbor shell of a tagged particle consists of a mixture of crossed,
side-by-side, side-to-end, and end-to-end pair configurations, imposing antinematic rather than
nematic order observed in undeformable rodlike particles. This packing pattern persists even at
densities where particle overlap becomes sizable. We demonstrate that the antinematic arrange-
ment is compatible with the A15 crystal lattice reported in several dendrimer compounds.

Copyright c© EPLA, 2014

Introduction. – Dendrimers are branched macro-
molecules with a tree-like structure. This particular archi-
tecture is the result of a controlled, step-by-step synthesis
where – starting from a pair of bonded tri-functional
monomers – the macromolecule grows by adding core
monomers generation by generation. The outermost, so-
called shell monomers can be decorated by suitable end
groups. The first report on the synthesis of dendrimers
by Vögtle and co-workers in 1978 [1] received little at-
tention but the interest in these materials increased con-
siderably after their potential applications were pointed
out [2].

With a compact convex shape determined by their ar-
chitecture, dendrimers are in many ways more similar to
colloidal particles than to spread-out, random-coil linear
polymers – yet they are penetrable like random coils such
that two dendrimers can overlap. Much like colloidal
particles, dendrimers readily crystallize but many lat-
tices observed (e.g., A15 and σ phases [3,4]) are untyp-
ical for classical colloids which usually form face- and
body-centered cubic crystals. Some aspects of this unique
behavior may be related to the dendrimer shape: The
early-generation dendrimers can be viewed as prolate el-
lipsoids, the molecular elongation decreasing with the gen-
eration number (cf. fig. 5 of ref. [5]). The aspect ratio of
dendrimers is smaller than in linear polymers [6] but still

quite large and may exceed four in the first, innermost
generation [7].

It is natural to expect that the optimal packing mode
of dendrimers will depend on their shape and deformabil-
ity. Indeed, atomistic simulations revealed that at large
densities considerable interpenetration does take place [8]
leading to the A15 cubic lattice as seen experimentally.
Complementary to this prediction are theoretical stud-
ies of penetrable ellipsoids interacting with anisotropic
Gaussian repulsion. If forced into alignment, they form
elongated lattices obtained, e.g., by stretching the body-
centered cubic crystal along the [001], [110], or [111] di-
rections [9,10]. This implies that parallel alignment of
dendrimers is incompatible with the cubic symmetry and
that the pattern of their relative orientation in the A15
lattice must be more complex.

The existing body of experimental and theoretical re-
sults clearly shows that there exists a link connecting den-
drimer shape and deformability with the open lattices such
as the A15 and σ phases. However, the workings of this
link as well as its possible consequences beyond the sta-
bility of open crystal lattices remain poorly understood.
To shed light on the complex interplay of dendrimer de-
formation and reorientation, it is worthwhile to develop a
coarse-grained description of dendrimers where they are
regarded as soft, anisometric particles.
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Here we use monomer-resolved numerical simulations to
investigate the short-range structure of a dendrimer liquid
and we interpret the results in terms of dendrimer shape,
anisotropic positional order, and orientational order. We
find that dendrimers align such that the long axes of most
nearest neighbors are perpendicular, e.g., . . (where
dots represent rods pointing into or out of the paper). This
so-called antinematic local packing pattern [11] is robust
and reveals a new and deeper insight into the structure of
dendrimer crystals. The possibility of antinematic order
raises several interesting questions including the potential
existence of an antinematic liquid phase with long-range
orientational order (qualitatively reminiscent of the cu-
batic phase hypothesized in rodlike polyelectrolytes bound
by flexible cross-linking bonds [12]) and the phase diagram
of a dendrimer solution. A comprehensive analysis of these
issues in terms of monomer-resolved models, which entails
the exploration of a rather large parameter space, is be-
yond the scope of this exploratory study and has been
relegated to future work.

The model. – To provide a coarse-grained yet accurate
picture of interacting dendrimers, we resort to monomer-
resolved simulations, sacrificing the atomistic details so
as to maximize the number of dendrimers in the sys-
tem and to minimize the finite-size effects. The model
dendrimers studied here have already been explored in
some detail [13,14], and they are based on tri-functional
monomers. The total number of monomers in a den-
drimer of generation number G reads 2(2G+1 − 1), which
includes 2G+1 − 2 core monomers and 2G+1 terminal
shell monomers. Both core and shell monomers interact
with the Morse potential and the bonds between them
are represented by the finitely extensible nonlinear elas-
tic (FENE) potential (eqs. (2) and (1) of ref. [13], re-
spectively). The core monomers are different from the
shell monomers, the main differences being the deeper at-
tractive well and the shorter bond length. The values of
model parameters are listed in table 1 using the notation
of ref. [13]; they are virtually identical to those used as the
past studies so as to facilitate the comparison with other
aspects of dendrimer behavior discussed there [13,14]. Un-
less indicated otherwise all results reported here pertain
to fourth generation (G = 4) dendrimers.

Using standard NV T Monte Carlo simulations, we ob-
tain the equilibrium structure of a single dendrimer, a den-
drimer pair, and an ensemble of N = 220 dendrimers in a
cubic box. Our choice of N is a compromise between accu-
racy and computational effort: i) data obtained in smaller
ensembles are essentially identical so that the short-range
structure of the N = 220 system is representative of a bulk
liquid; ii) to ensure a sufficient accuracy (e.g., for proba-
bility distribution functions) we had to perform for each
state point many independent runs extending over rather
long time intervals, which was feasible at this value of N .

Starting from several independent initial configurations
at high temperatures, we cool the system using a simulated

Table 1: Parameters of the core-core (CC), core-shell (CS),
and shell-shell (SS) intermonomer Morse potential (ε, a, and d)
and of the core-core and core-shell FENE bonds (K, l0, and R)
(see eqs. (2) and (1) of ref. [13]) in our dendrimers. Lengths
are given in units of dCC whereas ε is in units of kBT . For
all Morse interactions we truncate and shift the potential at a
cut-off radius rc = 2.8dCC.

Morse FENE
ε/kBT adCC d/dCC Kd2

CC l0/dCC R/dCC

CC 0.714 6.4 1.00 40 1.8750 0.3750
CS 0.014 19.2 1.25 20 2.8125 0.5625
SS 0.014 19.2 1.50

annealing protocol to reach the desired temperature T
such that kBT is 1.4εCC, εCC being the depth of the core-
core attractive potential. The protocol employed depends
on density, which is encoded by the packing fraction

φm =
Vm

V
(1)

defined as the bare volume of monomers Vm (see
footnote 1) divided by the total volume V . The num-
ber of different realizations analyzed ranges from 1000 at
the largest packing fraction considered φm = 0.248 to 500
at φm = 0.199 and 20 at φm = 0.095. The positions of
monomers are recorded for at least 5 × 106 Monte Carlo
sweeps.

Shape of an isolated dendrimer. – We quantify the
shape of dendrimers by computing the radius of gyration
tensor Sik = 〈xixk〉, where xi is the i-th coordinate of a
monomer in the dendrimer’s center-of-mass system, and
the average is over all monomers in a dendrimer and over
2 × 104 and 2 × 105 frames for a single dendrimer and for
a pair, respectively. From the eigenvalues of S, denoted
by E1, E2, and E3 and arranged in descending order, we
compute the asphericity (b) and the acylindricity (c)

b =
E1 − (E2 + E3)/2

R2
g

, c =
E2 − E3

R2
g

(2)

as well as the radius of gyration defined by R2
g = E1 +

E2 + E3 [6,15]. We note that b and c are not the only
possible choice of shape measures [16].

In spherical dendrimers E1 = E2 = E3 so that b and
c vanish whereas in nonspherical ones they do not. After
analyzing dendrimers of generations two to ten, we find
that they can be thought of a nonaxisymmetric prolate
ellipsoids which become increasingly more spherical as G
is increased. In particular, in isolated (G = 2)-dendrimers
b = 0.35 ± 0.12 and c = 0.15 ± 0.07 (which corresponds

1In the (G = 4)-dendrimer Vm = NDπ (30d3
CC + 32d3

SS)/6 with
ND, dCC, and dSS being the number of dendrimers and the diameters
of the core and shell monomers, respectively [14].
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to a semiaxes ratio of 2.03:1.44:1) whereas the (G = 10)-
dendrimers are almost spherical with b = 0.061±0.012 and
c = 0.022 ± 0.014 [17]. In the case of (G = 4)-dendrimers
the semiaxes ratio is 1.68:1.28:1.

Two interacting dendrimers. – The effective
potential of dendrimers and their shape must be strongly
interrelated. The solid line in fig. 1 shows the effective
interaction energy, βΦeff(r), of two (G = 4)-dendrimers
in the zero-density limit computed using umbrella sam-
pling [18]. The pair potential can be approximated by the
generalized exponential model of index ≈ 2.6 [19] suggest-
ing that the dendrimers may form clusters of overlapping
particles [20]. Also plotted in fig. 1 are the dendrimer
asphericity and acylindricity as functions of the center-
to-center distance. We observe a sizeable increase of as-
phericity b of ≈ 22% as r/R0

g is decreased from 2.5 to 1.5,
R0

g being the radius of gyration of an isolated dendrimer.
On the other hand, the acylindricity c essentially does not
deviate from its value in isolated particles. Concomitantly,
the effective interaction increases by ≈ 30% of the poten-
tial at complete overlap βΦeff(r = 0). These results imply
both in terms of shape and in terms of energy that a par-
tial interpenetration takes place for 1.5 � r/R0

g � 2.5 and
that for r/R0

g � 1 one can speak of the complete overlap
regime where neither shape nor pair interaction depend
very much on the center-to-center separation.

We now focus on the anisotropic positional and orien-
tational order at close separations. Since the acylindric-
ity c is small in all cases explored here, we only monitor
the orientation of the dendrimers’ long axes relative to
the center-to-center vector (fig. 2(a)). Despite this reduc-
tion of parameters, the various configurations of two den-
drimers can still be described by three angles and therefore
a detailed representation of the pair distribution is rather
impractical. Instead, we choose to characterize each con-
figuration of two dendrimers using a single quantity

α =
1
2

[
(ε̂1 · r̂)2 + (ε̂2 · r̂)2] , (3)

where ε̂1 and ε̂2 are the directional unit vectors of the
long axes of the dendrimers and r̂ is the unit center-to-
center vector (fig. 2(a)). Note that α is symmetric with
respect to an interchange of dendrimers (1 ↔ 2) as well
as to replacing ε̂i by −ε̂i, thereby reflecting the headless
nature of dendrimers. The mapping of the relative orien-
tation of ε̂1, ε̂2, and r̂ onto α is not unique as illustrated by
the six characteristic configurations shown in the table in
fig. 2(b)2 along with their respective values of α. Nonethe-
less, we find this representation helpful – much like the
radial distribution function can be used to represent the
structure of crystals although they are not isotropic.

2The orientation of the center-to-center unit vector is given im-
plicitly in all of these configurations except

.
where we assume that

the angle between the vertical dendrimer and the center-to-center
vector is 45◦ like in the configuration and in the configura-
tion discussed below.

Fig. 1: Effective potential, βΦeff(r), of a pair of isolated
(G = 4)-dendrimers (solid line), and their asphericity, b, and
acylindricity, c (filled and open circles, respectively, both shown
on the secondary vertical axis) vs. center-to-center separation.

Additional insight into the relative arrangement of den-
drimers is provided by the orientational order parameter

S =
1
2
〈3 cos2 θ − 1〉, (4)

where θ is the angle between the long axes (fig. 2(a)) and
angular brackets denote an ensemble average. Since the
relative orientation of two dendrimers depends on r, so
does S, and as illustrated by the table in fig. 2(b) it dis-
tinguishes between some configurations with the same α
(e.g., and ). In a pair of perfectly parallel dendrimers,
S = 1 whereas in dendrimers oriented perpendicular to
each other S = −0.5 (fig. 2(b)).

In the following we discuss the conditional distribution
function P (r, α) and the orientational order parameter S
for an isolated pair of dendrimers and a pair of dendrimers
in a bulk liquid. These distributions are normalized for
each value of r separately such that the integral over the
probabilities across the entire range of α at fixed r is unity.
As for α, the distributions are normalized via a random
distribution of this variable, generated in simulations. The
relative orientation of an isolated pair depends quite dra-
matically on their separation (left column of fig. 2(c)).
The flat profile of P (r, α) for r/R0

g � 3 (not shown) in-
dicates that at large separations the orientations of the
dendrimers are completely uncorrelated such that all ori-
entations of ε̂1 and ε̂2, are equally probable at any r that
is large enough. However, as dendrimers penetrate into
each other the correlations becomes more and more pro-
nounced: As r/R0

g drops below ≈ 2.5, P (r, α) peaks at
α = 0 and at r/R0

g ≈ 1.5 the probability for configura-
tions with α � 0.25 is essentially negligible. In the regime
of partial penetration for 1.5 � r/R0

g � 2.5, the range of α
where P (r, α) is enhanced coincides with the region of pos-
itive orientational order parameter (bottom-left panel of
fig. 2(c)), indicating the presence of configurations. The
regime of complete overlap for r/R0

g � 1 is characterized
by a somewhat broader distribution of P (r, α) peaking
at α ≈ 0.4 and excluding the occurrence of states with
large α (� 0.6). Together with the strongly negative ori-
entational order parameter S at small r, this implies that
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Fig. 2: (Color online) Positional and orientational order of two interacting dendrimers. Panel (a) specifies the two unit vectors,
ε̂1 and ε̂2, needed to describe the respective orientations of two dendrimers represented by axisymmetric ellipsoids, θ being
the angle between ε̂1 and ε̂2 such that cos θ = ε̂1 · ε̂2 and r̂ being the unit center-to-center vector. Six characteristic pair
configurations are listed in panel (b) along with the corresponding values of α and S (see eqs. (3) and (4)). Density plots of the
conditional distribution function P (r, α) and of the orientational order parameter S are presented in the top and bottom row,
respectively; also shown are color codes. The left column of panel (c) shows data for the isolated pair whereas the middle and
the right columns represent the liquid state at packing fractions φm = 0.199 and φm = 0.248, respectively. Black contours are
isolines of the pair distribution function g(r;α) at a value slightly smaller than the height of the nearest-neighbor peak.

overlapping dendrimers show a strong preference to form
and configurations (which are indistinguishable from

the configuration as r → 0). We conclude that repul-
sion between the overlapping dendrimers forces them into
a perpendicular arrangement.

Structure of dendrimer liquid. – In a bulk liquid,
the relative orientation of a pair is modified by the lo-
cal structure. The middle column of fig. 2(c) shows the
conditional distribution function P (r, α) (top panel) and
the orientational order parameter S at a packing fraction
φm = 0.199; both are strikingly different from their coun-
terparts in two isolated dendrimers. In total, the vari-
ations of P (r, α) are less pronounced than in the case
of an isolated pair. We note that i) at the onset of
dendrimer-dendrimer interaction at r/R0

g ≈ 2.5, there is
a slight preference for large-α configurations (e.g., );
ii) at intermediate distances r/R0

g ≈ 1.5 the (α < 0.25)-
configurations are favored and those with large α are in-
creasingly more disfavored just like for the isolated pair;
and iii) overlapping dendrimers (r → 0) prefer configura-
tions with α close to 1, e.g. .

The differences of the relative orientation of a pair
of dendrimers in isolation and in a bulk liquid at both
small and large separations are even more pronounced at
the larger packing fraction φm = 0.248 (right column
of fig. 2(c)) where particle overlap is rather substan-
tial. This can be readily seen from the pair distribu-
tion function g(r; α) represented by an isoline which is
superposed onto the plots of P (r, α) and S; the value of
g(r; α) on the isoline is slightly smaller than the height

of the nearest-neighbor peak. This representation is
more transparent than a comprehensive set of isolines and
more robust than displaying only the exact location of
the nearest-neighbor peak. At any given α, the position
of the peak is located roughly halfway between by the re-
spective small-r and large-r points on the isoline.

At the smaller packing fraction φm = 0.199 (middle col-
umn of fig. 2(c)), the tilted g(r; α) isoline shows that the
distance between the nearest α = 0 neighbors is about
1.7R0

g; this corresponds to the configuration since the
negative S = −0.5 of the configuration is inconsistent
with the observed positive value of S (bottom-center panel
in fig. 2(c)). In contrast, the distance between neighbors
in the end-to-end configuration with α = 1 is about
2.25R0

g. The intermediate-α configurations ( . , , and
) are located at a distance of about 2R0

g. The relative
orientation of two interacting dendrimers in a liquid at the
larger packing fraction φm = 0.248 is qualitatively simi-
lar except for the finite probability of dendrimer overlap
witnessed by the presence of isolines at small r. Since for
small r the conditional distribution function P (r, α) peaks
at α = 0, we conclude that in a bulk liquid overlapping
dendrimers are preferentially parallel to each other.

The portrait of the local structure of a dendrimer liq-
uid presented in fig. 2(c) is markedly different from that
characteristic of particles that form liquid crystals. Just
like in the nematic phase, the isotropic phase of a liquid-
crystalline material consists of rodlike particles locally par-
allel to each other and the overall isotropic nature of the
phase is due to the finite size of these “swarms” of parti-
cles and the corresponding finite correlation length. In this
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phase, i) the side-to-side configurations are character-
ized by a pronounced degree of orientational order, i.e., a
large value of S and ii) the perpendicular intermediate-α
configurations ( . , , and ) are absent. Thus the con-
tour of the nearest-neighbor shell in the (r, α)-plane typi-
cal for local nematic order consists of two islands (one at
α � 1 and the other at α ≈ 1) rather than of the diagonal
stripe seen both the intermediate- and the large-density
cases presented in fig. 2(c) (φm = 0.199 and φm = 0.248),
and the degree of order for the nearest-neighbor small-α
configurations should be considerably larger than 0. The
positive but small value of S of the nearest-neighbor small-
α configurations clearly departs from this picture and so
does the presence of the intermediate-α configurations in
the nearest-neighbor shell.

Packing pattern. – These differences suggest that al-
though dendrimers are elongated, they do not align with
each other; instead they form a rather specific local struc-
ture schematically shown in fig. 3(a). With a discrete
rather than a continuous set of dendrimer orientations,
the schematic is idealized for clarity. The dendrimers are
represented by axisymmetric ellipsoids of aspect ratio of
1.49 consistent with the average ratio of semiaxes of an
isolated dendrimer (fig. 1). In the equatorial plane, the
central reference dendrimer is surrounded by , . , and

neighbors, the neighbors being a little closer to the
reference particle than the . and the neighbors. The
polar regions are populated either by neighbors or by

neighbors, the latter being somewhat farther from the
reference particle than the former. The resulting pattern
is thus antinematic [11] rather than nematic.

Unlike the origin of nematic order which is usually as-
sociated primarily with the particle shape [21], the pos-
sible microscopic mechanisms of antinematic order are
less clear. Our dendrimers probably favor it because of
the combination of elongated shape and softness. If they
were spherical, they should form a simple liquid of both
single dendrimers and dendrimer clusters as well as a
multiple-occupancy crystals [19], which implies that soft-
ness alone is not sufficient. In turn, the solid part of the
phase diagram of hard ellipsoids is dominated by an un-
usual simple monoclinic packing [22] somewhat reminis-
cent of the combination of and configurations present
in the nearest-neighbor shell – but only if the aspect ra-
tios larger than about 2, i.e., in particles that are more
elongated than our dendrimers. This means that the an-
tinematic order is not induced by the shape alone either.
We are led to conjecture that both softness and elonga-
tion of the particles are required for an antinematic local
structure.

The distinct differences between P (r, α) for an isolated
pair of dendrimers and two interacting macromolecules in
a bulk liquid (top row of fig. 2(c)) are a clear signature
of many-body effects. Equally telling is the comparison
of the panels in the bottom row of fig. 2(c) showing the
orientational order of the dendrimers. In the case of an

Fig. 3: (Color online) Schematic view of the antinematic pack-
ing pattern observed in a dendrimer liquid (a). The nearest-
neighbor shell around the reference particle (white ellipsoid)
contains (left and right), . (back), and (front) configura-
tions in the equatorial region. The polar regions may be occu-
pied either by or configurations (gray semitransparent
ellipsoids), the latter being a little farther from the reference
particle. Panel (b): the A15 lattice decorated by ellipsoids ar-
ranged in three sets of mutually interlocking columns captures
the antinematic nature of the pattern shown in panel (a); the
dodecahedral interstitial sites (small white spheres only shown
in the unit cell for clarity) lack a preferred orientation.

isolated pair the overlapping dendrimers are arranged per-
pendicular to each other ( ) as witnessed by the extended
red region in the bottom-left panel in fig. 2(c). In contrast,
in a bulk liquid they are arranged end-to-end ( ) as
argued above. Such a strong effect would not be possible
unless the local “cage” of neighbors were tight and ordered
enough, leaving little space for a perpendicular orientation
of overlapping dendrimers.

Our results are qualitatively consistent with the nature
of orientational order in crystals of hard ellipsoids [23] and
deformable hard spheres [24]. At large enough semiaxes
ratio, the former were found to form a simple monoclinic
phase with two ellipsoids per unit cell (SM2) such that
the angle between their long axes is nonzero [23], show-
ing that anisometric particles may prefer nontrivial lo-
cal orientational arrangement even in case of simple hard
interaction. On the other hand, at large densities the
minimal-energy structure of deformable hard spheres is
a layered crystal referred to as S2 and consisting of ellip-
soidal particles, their orientation alternating by 90◦ from
layer to layer [24]. Here each particle has a total of 14
nearest neighbors: 2 of them are of type, 8 of type,
and 4 of type with α = 0.5 and S = 1; note that the

neighbors are absent in our dendrimer liquid. Thus
both hard elliposoids and deformable hard spheres crys-
tallize in lattices characterized by nontrivial orientational
order, and from the comparison of SM2 and S2 lattices it
appears that the degree of misalignment of nearest neigh-
bors in deformable particles is larger than in undeformable
particles. However, even the more misaligned S2 lattice
still contains a large fraction of parallel nearest neigh-
bors compared to our dendrimer liquid. In this sense,
our antinematic local order differs qualitatively from the
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previously reported model colloidal structures. Moreover,
the numerical framework used here is more detailed and
realistic than those in refs. [23] and [24] and the model
dendrimers studied are intrinsically anisometric and de-
formable as well as interpenetrable at the same time. In
view of the results reported in refs. [23] and [24], we infer
that the antinematic order is induced by a combination of
these particle properties.

Conclusions. – Based on these observations we can
formulate our expectations for the structure of dendrimer
crystals at even higher packing fractions. As the average
orientation of dendrimers with a local antinematic order is
fairly isotropic, a crystalline lattice formed by dendrimers
is likely highly symmetric, i.e., cubic. However, the single-
site–type cubic lattices (e.g., simple, body-centered, and
face-centered) are incompatible with antinematic order,
implying that dendrimer crystals must be more complex.
An obvious candidate is the A15 lattice [3,4] based on
three sets of mutually perpendicular columns of particles
which accommodate many features of the packing pattern
(fig. 3(b)) discussed above. Each columnar site (ellipsoids
in fig. 3(b)) has neighbors and hybrids of . , , and
neighbors as well as the more distant neighbors. Un-
like any single-site cubic crystal structure, the A15 lattice
is consistent with antinematic order although the intersti-
tial sites (small white spheres in fig. 3(b)) are characterized
by a dodecahedral environment and are most easily pop-
ulated by spherical rather than elongated particles. Thus
the stability of the A15 lattice may be directly related to
the elongated shape and deformability of dendrimers.

Our investigations provide for the first time unambigu-
ous evidence about the origin of the antinematic order
itself. In contrast to hard rodlike particles where excluded-
volume interactions induce the nematic phase [25], we
identify the softness and the anisometry of the particles
as the key mechanisms that are responsible for antine-
matic local particle arrangements. The dramatic change
of the behavior due to softness is very reminiscent of the
characteristic differences between the phase diagrams of
hard and soft spheres [9,19,26]. In this context, a very
interesting question raised by our results is the possible
existence of an antinematic phase with long-range order.
The search for such a structure will entail a detailed ex-
amination of many types of deformable particles and has
been relegated to future work.
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