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We study the fluid inclusion of both Lennard-Jones (LJ) particles and particles with competing inter-
action ranges – short range attractive and long range repulsive (SALR) – in a disordered porous
medium constructed as a controlled pore glass in two dimensions. With the aid of a full two-
dimensional Ornstein-Zernike approach, complemented by a Replica Ornstein-Zernike integral equa-
tion, we explicitly obtain the spatial density distribution of the fluid adsorbed in the porous matrix
and a good approximation for the average fluid-matrix correlations. The results illustrate the remark-
able differences between the adsorbed LJ and SALR systems. In the latter instance, particles tend to
aggregate in clusters which occupy pockets and bays in the porous structure, whereas the LJ fluid
uniformly wets the porous walls. A comparison with Molecular Dynamics simulations shows that
the two-dimensional Ornstein-Zernike approach with a Hypernetted Chain closure together with a
sensible approximation for the fluid-fluid correlations can provide an accurate picture of the spatial
distribution of adsorbed fluids for a given configuration of porous material. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4898713]

I. INTRODUCTION

The study of fluid inclusions and/or adsorption in a
porous matrix from an atomistic standpoint is essential to
get a better understanding of key technological issues such
as molecular sieving, heterogeneous catalysis, or gas storage.
From the theoretical perspective, the advent of the Replica
Ornstein-Zernike (ROZ) approach in the early nineties1–3 pro-
vided a powerful alternative to direct molecular simulation for
the description of fluid inclusions in disordered porous sys-
tems. Since then, the ROZ approximation has been much ex-
ploited to describe templated4–7 and sponge-like materials,8, 9

and a large variety of inclusions, such as simple binary
mixtures10 illustrating their phase behavior,11 colloid/polymer
mixtures,12 electrolytes,13–16 and associating fluids.17, 18 This
approach yields average thermodynamic properties, fluid-
fluid, and fluid-matrix correlations, but if one is interested
in the explicit spatial distribution of the fluid/adsorbate for
a given configuration of the matrix an alternative approach
is needed, aside from resorting to molecular simulation. This
structural information is particularly important when dealing
with functionalized adsorbents (see, e.g., Wood et al.19 and
references therein) both for gas storage or catalysis, since the
particular location of adsorbents or reactants within the sub-
strate is crucial to evaluate whether the adsorbent material has
the desired properties.

This is in principle a challenging theoretical problem, in
which we have to solve the statistical mechanics of a fluid in
the presence of a highly non-uniform (and topologically dis-
ordered) external field stemming from the adsorbent matrix.
Interestingly, an avenue to tackle this problem was opened

a)Electronic mail: enrique.lomba@csic.es

two decades ago by Beglov and Roux,20 who explored the
ability of the Hypernetted Chain equation (HNC) to describe
the solvation of solutes with arbitrary geometry when treated
explicitly in three dimensions. Related approximations have
been exploited with great success to study the physics of sol-
vation of complex molecules,21–23 including proteins.24, 25 It
just turns out that Beglov and Roux,20 also explored the pos-
sibility of applying their approach to confined fluids in order
to analyze the density profile of a monoatomic Lennard-Jones
(LJ) fluid adsorbed in a simplistic model of zeolite. The ap-
proach proved to be relatively successful, despite the use of
a crude approximation consisting in the replacement of the
fluid-fluid direct correlation under confinement by its bulk
counterpart.

The purpose of this paper is to study in full detail the ca-
pabilities of Beglov and Roux’s20 integral equation approach
in a model system that illustrates the effects of confinement on
the spatial distribution of adsorbates inside a given topologi-
cal configuration of the confining matrix. At the same time,
we intend to provide a somewhat more elaborate approxi-
mation for the fluid-fluid correlations under confinement. To
that aim we have analyzed the behavior of a two-dimensional
fluid with competing interaction ranges whose particles tend
to cluster at low temperatures. Our model is a soft core ver-
sion of the “short-range attractive and long-range repulsive”
(SALR) potential first proposed by Sear and co-workers,26

and analyzed in detail by Imperio and Reatto.27, 28 The clus-
tering properties under disordered confinement of this hard
core model have also recently been studied by Schwanzer and
Kahl.29 In our case, the matrix-fluid interactions are purely
repulsive and soft. For the sake of comparison, we have also
considered the inclusion of a two-dimensional LJ fluid which
interacts with matrix particles via a LJ potential as well.
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In order to create a disordered matrix with a relatively
large porosity, we have used the templating approach charac-
teristic of the fabrication of controlled porous glasses,30 us-
ing as precursor a mixture of non-additive hard disks. Once
frozen for a total density slightly below the demixing crit-
ical density,31 one of the components of the mixture is re-
moved, together with all disconnected clusters of particles of
the remaining component.30 In this way, we have generated
a system with a high degree of topological disorder but with
enough free space to enable the formation of clusters and/or
the condensation of the Lennard-Jones fluid.

Our system of interest will be then an inclusion of a ther-
mally equilibrated fluid into one particular disordered matrix
configuration. Now, with the purpose of providing a sensible
approximation for the fluid-fluid direct correlation under con-
finement required within the formalism, we have resorted to a
ROZ equation with a HNC closure for a templated matrix5, 16

(ROZ-HNC). This approach furnishes fluid-fluid correlations
averaged over matrix disorder, and these will be seen to rep-
resent a better approximation for our adsorbed fluid than the
corresponding bulk counterparts. Note that our system is self-
averaging, and hence the thermal average of the fluid correla-
tions for a selected large matrix configuration can adequately
be approximated by its average over disorder. We will see that
the two-dimensional Hypernetted-Chain approach (HNC-2D)
complemented by the ROZ-HNC equation provides an ex-
cellent description of the spatial distribution of the adsorbed
fluid.

The rest of the paper is sketched as follows. In Sec. II,
we describe in detail our model. The key elements of the
HNC-2D approach are presented in Sec. III together with a
summary of the main equations of the ROZ-HNC theory. Our
most significant results and future prospects are collected in
Sec. IV.

II. THE MODEL

Our system is formed by a disordered matrix and an
annealed fluid. Strictly speaking, we would be dealing with
a three component system consisting in a mixture of non-
additive hard disks (components α and β, being β the tem-
plate) and the fluid. Then components α and β are quenched,
and component β is removed. In addition, those α particles
that remain disconnected after the removal of the β parti-
cles are also removed. Connectivity of the matrix is analyzed
by identifying clusters of matrix particles, and two particles
are considered to be linked in a cluster if their separation is
smaller than two particle diameters. All disconnected clusters
formed by less than ten particles are removed. This procedure
attempts to roughly mimic the template and some loose ma-
trix particles being washed away from the porous matrix.

The fluid can be trapped in disconnected cavities, and in
this regard, the problem is somewhat different from a pro-
cess of fluid adsorption. In this latter instance, particles dif-
fuse only through percolating pores. However, from a prac-
tical point of view, fluid chemical potentials, excess internal
energies per particle, and averaged correlation functions, in
our case are found to be very similar, whether the presence of
fluid particles inside disconnected cavities is allowed or not.

Consequently, we will use the terms inclusion and adsorption
indistinctly.

As mentioned, our porous matrix is built by quenching a
symmetric binary system of non-additive hard disks interact-
ing through a potential of the form

βu0
i
0

j
(r) =

{
∞ if r < σ (1 + �(1 − δij ))

0 otherwise
, (1)

where the subscript 0 will denote the matrix particles, i, j
are α or β and δij is a Kronecker’s δ. We have considered
a non-additivity parameter � = 0.2, and the configurations
of the matrix have been generated for total densities (ρ0

α

+ ρ0
β
)σ 2 = 0.632, and (ρ0

α
+ ρ0

β
)σ 2 = 0.675, which lie

somewhat below the critical demixing density which we
have calculated,32 ρcσ

2 = 0.684(1). Particles of type β are
removed, and then disconnected α particles are removed
as well, by which our final matrix densities will be ρ0σ

2

= 0.314, and ρ0σ
2 = 0.324 with ρ0 = ρ0

α
≈ ρ0

β
. These den-

sities correspond to the specific matrix configurations for
which our calculations are carried out. As usual, we define
the porosity of the matrix as the ratio of area available for the
insertion of a test fluid particle in an empty matrix configu-
ration with respect to the total matrix sample area. With this
definition in mind, we find that even if our two matrix den-
sities are quite close, the porosity in the latter instance is ap-
preciably larger (47.7% for ρ0σ

2 = 0.324 vs 41.5% for ρ0σ
2

= 0.314). This results from the density of the precursor non-
additive hard disk mixture being closer to the consolute point,
by which one-component clusters are larger and tend to span
the whole simulation box. Note also that for arriving at ρ0σ

2

= 0.324 a substantial number of disconnected α particles had
to be removed (the original value for the density of the α

particles we started from was ρ0
α
σ 2 = 0.338); this was not

the case for ρ0σ
2 = 0.314 (the original value for the density,

ρ0
α
σ 2 = 0.316, is quite close to the actual one).
As to the fluid inclusion, we will first consider a system

with competing interactions (SALR) of the type studied by
Imperio and Reatto27

u11(r) = −εσ 2

R2
a

exp(−r/Ra) + εrσ
2

R2
r

exp(−r/Rr ) + usr (r)

(2)
with εr = ε, Rr = 2Ra = 2σ . Here and in what follows, the
subscript 1 denotes fluid particles. For practical purposes, we
have used a soft highly repulsive interaction of the form

usr = ε

(
σ (1 − δ)

r

)20

, (3)

where we have set δ = 0.01. This choice of potential repro-
duces the same contribution of the SALR potential to the in-
ternal energy and the same pressure as the hard disk model of
Ref. 27, for temperatures above kBT/ε > 1, where kB is Boltz-
mann’s constant as usual and T the absolute temperature. The
matrix fluid interaction is given by

u01(r) = usr (r) (4)

and Eq. (3).
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Together with the SALR potential, we have also studied
a system of LJ disks for which

u11(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

(5)

with a matrix-fluid interaction also given by a LJ potential,
but with an energy parameter ε01 = ε/2.

For computational efficiency, we have truncated and
shifted the interactions at Rc = 10σ in both cases.

III. THEORY

As mentioned, an explicit description of the structure
of a fluid inclusion in a particular matrix configuration can
be achieved by means of an approximation to the full two-
dimensional solution on the Ornstein-Zernike (OZ) equation
following the prescription of Beglov and Roux20 (see below).
A key element in this description is the approximation of the
fluid-fluid direct correlation function, for which in Ref. 20
that of the bulk fluid was used. Whereas this may well be a
good approximation for the study of solvation of molecules23

it turns out to be inappropriate under conditions of close con-
finement. In fact, in most of the cases we have studied, the
full two-dimensional OZ equation does not even converge
when this approach is used. Therefore, in the present instance,
the fluid-fluid correlation will be approximated by that of a
confined fluid in a disordered matrix, which is in turn aver-
aged (via the ROZ-formalism) over disorder. This latter prob-
lem is known since the early 1990s1–3 to be amenable to a
theoretical description in terms of the ROZ equations. Here,
the matrix is manufactured by means of a templating proce-
dure, which can also be theoretically modeled with Zhang and
van Tassel’s5 ROZ formulation, which will be summarized in
Sec. III B below.

A. The full two-dimensional OZ approach

Following the work of Beglov and Roux,20 we can actu-
ally express the inhomogeneous density of a fluid under the
influence of an external field created by a set of porous matrix
particles in terms of a HNC-like expression of the form

ρ1(r) = ρ̄1 exp

[
−U01(r)/kBT

+
∫

c11(r − r′)(ρ1(r′) − ρ̄1)dr
]

, (6)

where ρ̄1 is an effective fluid density, whose connection with
the average fluid density, ρ1 = N1/A, (N1 being the number of
fluid particles and A the sample area) will be defined below.
Equation (6) recalls Percus’ source particle approach,33 where
one would take a matrix particle as source of an external po-
tential U01(r) and hence ρ1(r) = ρ̄1g01(r), and the convolution
within the exponential accounts for the matrix-fluid indirect
correlation function, i.e., matrix-fluid correlations mediated
by fluid particles. Note that here, however, the external po-
tential stems from all matrix particles, by which, for a given
matrix configuration {r0} ≡ {(x0, y0)} with N0 matrix parti-

cles, we have

U01(x, y) =
N0∑
i=1

u01(x − x0
i
, y − y0

i
) (7)

with u01(r) given by Eq. (4). Beglov and Roux20 approximate
the fluid-fluid inhomogeneous correlation function by that of
the bulk fluid, an approach which even if it somehow works
for the crude zeolite model studied in Ref. 20 is not suitable
here, as mentioned before.

As an alternative, we propose the use of the fluid-
fluid correlations approximated by the ROZ-HNC, by which
c11(r − r′) in Eq. (6) is given by

c11(x − x ′, y − y ′) = cROZ−HNC
11 (((x − x ′)2 + (y − y ′)2)1/2)

(8)
and cROZ−HNC

11 (r) is computed by solution of Eqs. (14) and
(18) below. Once c11(x, y) is known from Eq. (8), Eq. (6) can
be solved iteratively using a mixing iterates approach.20 To
that purpose this relation is conveniently rewritten as

h(x, y) = exp

[
−U01(x, y)/kBT

+ ρ̄1

∫
dx ′dy ′c11(x − x ′, y − y ′)h(x ′, y ′)

]
− 1

(9)

and

ρ1(x, y) = ρ̄1(h(x, y) + 1). (10)

Note that the convolution in (9) can easily be evaluated in
Fourier space, and the computation of the numerical Fourier
transform is straightforward using efficient library routines
such as those of the FFTW3 library.34 For the particular na-
ture of our problem, and taken into account that we will an-
alyze fluid density distributions for a given configuration of
matrix particles that is assumed to have periodic boundary
conditions, the Fourier transforms can be carried out with-
out zero padding. Note that our calculations will be compared
to simulation results obtained using precisely the same peri-
odic boundary conditions. This periodic nature of the problem
must be very specially borne in mind when approximating the
inhomogeneous direct correlation function in Eq. (8) using the
averaged ROZ fluid-fluid correlations.

Additionally, Eq. (9) can be linearized to yield a Percus-
Yevick (PY) like approximation of the form

h(x, y) = exp(−U01(x, y)/kBT )

[
1 + ρ̄1

∫
dx ′dy ′

× c11(x − x ′, y − y ′)h(x ′, y ′)
]

− 1. (11)

Even if the main result of Eq. (9) (in combination with
a sum rule specified below) is via Eq. (10) the fluid spatial
density distribution, ρ1(x, y), this quantity can also give infor-
mation on the average matrix-fluid correlations. In fact, these
can be obtained by means of

g01(r) = 1

ρ̄1N0

N0∑
i=1

∫
ρ1(r − r0

i
)dθr , (12)
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where θ r is the polar angle of r and the summation runs over
all matrix particles.

Now, in Eq. (9), the value of the effective density ρ̄1 is
not straightforwardly defined for our problem. In solvation
problems,20, 23, 25, 35 the density in question can accurately be
approximated by the bulk density, but this is certainly not the
case in situations of strong confinement. On the other hand,
we know that the density distribution must satisfy the sum
rule

ρ1 = ρ̄1

LxLy

∫
dxdy(h(x, y) + 1), (13)

where Lx, Ly are the dimensions of the periodic cell. Once the
fluid density ρ1(x, y) is known, the effective homogeneous
density ρ̄1 can be evaluated iteratively solving Eqs. (9) and
(13) self-consistently.

B. ROZ equations in a templated matrix

Following Zhang and van Tassel,5 the ROZ equations
for a templated matrix can be derived from those of a two-
component matrix system simply dismissing the interactions
between the template and the adsorbed fluid after quenching.
The explicit procedure to build and solve the ROZ equations
for our system of interest can be found in Ref. 16, and we
briefly sketch here its main points for completion.

The ROZ equations can be written in matrix form in
Fourier space in terms of density scaled Fourier transformed
functions as16

H01 = C01 + C00 H01 + C01 H11 − C01 H12,

H11 = C11 + C10 H01 + C11 H11 − C12 H12, (14)

H12 = C12 + C10 H01 + C11 H12 + C12 H11 − 2C12 H12,

together with the decoupled matrix equation

H00 = C00 + C00 H00, (15)

where the superscript 0 and 1 denote the matrix and the fluid,
respectively, and 2 the replicas of fluid particles. Now, each
of the matrix functions Fij (where F stands for either H or
C) can be explicitly expressed in terms of the density scaled
Fourier transforms of the total correlation function, h̃αν , or the
direct correlation function, c̃αν , according to

F01 =
⎛
⎝ f̃0

α
1

f̃0
β

1

⎞
⎠ , F11 = f̃11, F12 = f̃ r

11, (16)

and correspondingly for the matrix

F00 =
⎛
⎝ f̃0

α
0

α
f̃0

α
0

β

f̃0
β

0
α

f̃0
β

0
β

⎞
⎠ . (17)

In the equations above, the superscript r specifies correlations
between the replicas of the annealed fluid. Additionally, we
have F10 = F01T

, where the superscript T denotes the matrix
transpose.

These equations in Fourier space are complemented by
the corresponding closures in r-space, which in the HNC ap-

proximation read

h11(r) = exp(−βu11(r) + h11(r) − c11(r)) − 1,

h0
α

1(r) = exp
(−βu0

α
1(r) + h0

α
1(r) − c0

α
1(r)

) − 1,

(18)
h0

β
1(r) = exp

(
h0

β
1(r) − c0

β
1(r)

) − 1,

hr
11(r) = exp

(
hr

11(r) − cr
11(r)

) − 1,

where f0
i
1 = f10

i
. For the matrix, we also have

h0
i
0

j
(r) = exp

( − βu0
i
0

j
(r) + h0

i
0

j
(r) − c0

i
0

j
(r)

) − 1,

(19)
where the interaction between the matrix components, before
the template is removed, is given by Eq. (1). Equations (19)
and (15) can be solved independently. As to Eqs. (14), for
computational convenience they can be cast into a more com-
pact matrix form⎛
⎜⎝

C01

C11

C12

⎞
⎟⎠ =

⎛
⎜⎝

I − C00 −C01 C01

−C10 I − C11 C12

−C10 −C12 I − C11 + 2C12

⎞
⎟⎠

⎛
⎜⎝

H01

H11

H12

⎞
⎟⎠,

(20)
where I is the identity matrix. Equation (20) can be efficiently
inverted for the components of the total correlation func-
tion in terms of the direct correlation function using a LU-
decomposition based algorithm.36 Equations (18) and (20)
can now be solved iteratively.

Once the correlation functions are determined, we can
calculate thermodynamic properties for the adsorbed fluid.
A first quantity that can be evaluated is the excess inter-
nal energy per particle (including both adsorbate and matrix
particles),

βU1/N = 1

2

ρ1ρ1

ρ
2π

∫
drrg11(r)βu11(r)

+ ρ1ρ0

ρ
2π

∫
drrg01(r)βu01(r) (21)

with ρ = ρ0 + ρ1. Finally, the ROZ-HNC direct expression
for the chemical potential is37–39

βμ1 = −
∑
i=α,β

ρ0
i
c̃0

i
1(0) − ρ1(c̃11(0) − c̃r

11(0))

+ 1

2

∑
i=α,β

ρ0
i
2π

∫
drrh0

i
1(r)γ0

i
1(r)

+ 1

2
ρ12π

∫
drr(h11(r)γ11(r) − hr

11(r)γ r
11(r))

+ log
(
ρ1

2
1

)
, (22)

where 1 is the de Broglie wavelength for the fluid particles,
and γ (r) = h(r) − c(r).

IV. RESULTS

As a first test of our approach, we have checked the per-
formance of the ROZ-HNC equation for the matrix density
ρ0σ

2 = 0.314. This corresponds to the highest density for
which the HNC equation can be solved for the non-additive
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hard disk fluid which is the precursor of our templated matrix.
The HNC matrix-matrix correlations enter the solution of the
ROZ-HNC equations through Eq. (20), and therefore, in all
theoretical calculations in this work, we will approximate the
confined fluid-fluid correlations by those of the ROZ-HNC
solved for a matrix of ρ0σ

2 = 0.314, even when the case of
study has a somewhat larger matrix density and a different
topology as will be illustrated below.

As mentioned, matrix configurations were generated
from a symmetric mixture of non-additive hard spheres. For
each matrix configuration, the SALR fluid is inserted in the
matrix using a Grand Canonical Monte Carlo simulation
(GCMC), generating half a million fluid configurations (each
configuration corresponds to one particle insertion/deletion
attempt, and N1 displacement trials, where N1, as before, is
the number of fluid particles for the configuration in ques-
tion), and then the results are averaged over ten matrix con-
figurations. The ROZ equations have been solved following
the procedure introduced in Ref. 16 and with the same dis-
cretization conditions.

In Figure 1, we plot the adsorption isotherms (lower
curve) and the excess potential energy for a relatively high
temperature (kBT/ε = 0.4) and a much lower one (kBT/ε
= 0.15), for which clustering effects can be appreciated.
Actually, the low density non-monotonous behavior of the

-0.2

0

0.2

0.4

U
1/N

k B
T

k
B
T/ε=0.40 (ROZ-HNC)

k
B
T/ε=0.15 (ROZ-HNC)

0 0.1 0.2 0.3

ρ1σ2

-2

0

2

4

μ 1/k
B
T

FIG. 1. Average fluid excess internal energy and chemical potential for a
matrix density ρ0σ

2 = 0.314 at various temperatures.
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1
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1.4

S
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(q
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0 5 10
qσ

0.8

1

1.2

1.4

S
11

(q
)

ROZ-HNC
MD

LJ fluid

SALR fluid

FIG. 2. Fluid-fluid structure factor as calculated from the ROZ-HNC equa-
tion (curves) and from MD (symbols) for the adsorbed SALR fluid (up-
per graph) and the LJ system (lower graph) for ρ1σ

2 = 0.0596 and ρ0σ
2

= 0.324. Note the marked pre-peak at q = 0.578σ for the SALR fluid. The
LJ fluid S11(q) grows as q → 0, which indicates the vicinity of the condensa-
tion transition.

internal energy reflects the competition between attractive
forces (dominant at low densities) and repulsive forces that
start to shape the system’s behavior for densities above ρ1σ

2

≈ 0.06. A signature of clustering can be appreciated in
Figure 2 where the fluid-fluid structure factor, S11(q), calcu-
lated from the ROZ-HNC equation is compared with the one
extracted from the simulation. This quantity is defined as

S11(q) = 1 + ρ1h̃11(0) = 1

N1

〈∣∣∣∣∣∣
N1∑
i=1

eiqr
i

∣∣∣∣∣∣
2〉

, (23)

where N1 is the number of fluid particles and 〈. . . 〉 denotes the
ensemble average. In Eq. (23), the fluid-fluid correlation func-
tion must be replaced (in the ROZ formalism) by its connected
counterpart, h11(r) − hr

11(r), when the average over disorder
is performed.

The simulation results presented in Figure 2 correspond
to a molecular dynamics (MD) run for a single matrix config-
uration and in which the initial fluid configuration is gener-
ated in a GCMC run. MD results correspond to averages car-
ried out for 1–2 × 106 configurations, using samples with 441
and 2399 fluid and matrix particles, respectively, and an inte-
gration time step of 0.0025 in reduced time units. The matrix
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FIG. 3. Average matrix-fluid and fluid-fluid correlations for a SALR fluid
inclusion as estimated from MD simulations run from a given GCMC config-
uration with a fixed matrix configuration and by means of PY-2D and HNC-
2D equations and ROZ-HNC equations. Note that the ROZ equations provide
the average of the correlations over matrix disorder.

density in this case is ρ0σ
2 = 0.324, slightly above the one

used in the solution of the ROZ-HNC equations. The presence
of intermediate range order,40 which in our case can be iden-
tified with clustering, is indicated by the marked pre-peak in
the fluid-fluid structure factor at q = 0.578σ−1, that reflects
intercluster correlations for distances around 11σ . For com-
parison in the lower graph, we present results obtained using
the same matrix and initial fluid configuration but with inter-
actions of a LJ fluid, Eq. (5). We observe in the latter case that
the structure factor lacks any signature of intermediate range
order, but it clearly shows signs of an approaching divergence
at q → 0, i.e., the vicinity of the condensation transition.

In the lower graphs of Figures 3 and 4, we can see the
performance of the ROZ-HNC equation for the calculation of
the fluid-fluid correlations, which is relatively good for the
high density case (ρ1σ = 0.3, cf. Fig. 3) and acceptable for
the low density (ρ1σ = 0.0596, cf. Fig. 4). Differences can
be in part attributed to the fact that we are comparing the
ROZ results obtained for a matrix density ρ0σ

2 = 0.314 with
those of the simulation sample for which ρ0σ

2 = 0.324, with
the additional modification induced in the matrix topology
by the removal of disconnected matrix particles. Notice that
both theory and simulation reproduce the presence of a wide
maximum at approximately 10.5σ , in approximate correspon-

0

0.5

1

g 01
(r

)

MD
ROZ
HNC-2D

0 5 10 15
r/σ

0

2

4

6

g 11
(r

)

8 12
r/σ

1

1.5
ρ0σ2=0.324

ρ1σ3=0.0596

k
B
T/ε = 0.12

10.5σ

11.5σ

FIG. 4. Same as Figure 3 for a much lower fluid density for which cluster-
ing effects are more apparent, as can be inferred by the long range of the
fluid-fluid correlations, g11(r), which exhibit a wide maximum–see the inset–
around 10.5σ (11.5σ for the theory).

dence with the location of the pre-peak in S11(q). The position
of the wide maximum in the ROZ-HNC results is somewhat
shifted to higher distances (11.5σ ), as a result of the failure of
the HNC closure to correctly reproduce the phase of the os-
cillations in the correlation functions. The comparison of the
ROZ-HNC data with simulation results considerably worsens
for the fluid-matrix correlations (upper graphs in the same
figures), particularly at low density where clustering is more
evident. Obviously, this discrepancy results from the poor
description of matrix-matrix correlations when using ρ0σ

2

= 0.314 ROZ results to model those of ρ0σ
2 = 0.324, which

is particularly crucial for the g01(r) correlations at low fluid
densities. For higher fluid densities, the packing effects of the
fluid dominate and this explains why the ROZ performance
for ρ1σ

2 = 0.3 is far better than for ρ1σ
2 = 0.0596, as far as

matrix-fluid correlations are concerned.
Nonetheless, we will only need the fluid-fluid correla-

tions g11(r) to solve the HNC-2D equation (9), and those
are reasonably approximated by the ROZ-HNC. The solution
of the HNC-2D is done using a discretized two-dimensional
grid of Nx × Ny points (in this case Nx = Ny = 512) with
a grid spacing that is given by δx = Lx/Nx and δy = Ly/Ny,
where Lx and Ly represent the size of the simulation box cor-
responding to the matrix configuration whose fluid density
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FIG. 5. Fluid density distribution ρ1(x, y) for the SALRC fluid for ρ1σ
2

= 0.3 and kBT/ε = 0.15 (ρ0σ
2 = 0.314) from MD (a) and in the HNC-2D

approximation (b).

distribution will be calculated using Eq. (9). Here, we will
consider Lx = Ly = 86.066σ for low fluid density calculations,
ρ1σ

2 = 0.0596 (with ρ0σ
2 = 0.324) and Lx = Ly = 39.84σ ,

for the moderately high fluid density, ρ1σ
2 = 0.3 (with ρ0σ

2

= 0.314). The first results that come out from the solution
of the HNC-2D equation are the matrix-fluid correlations that
are depicted in the upper graphs of Figures 3 and 4. It is evi-
dent that the full 2D approach considerably improves upon the
ROZ-HNC approximation for the average g01(r) distributions
for a specific matrix configuration, in particular at low densi-
ties. For the highest density, we include in the figures results
from the PY-2D approximation (11), which in this particular
instance is more or less of the same quality as the HNC.

Now in Figures 5 and 6 we present the explicit 2D
fluid density distributions ρ1(x, y), for ρ1σ

2 = 0.3 (ρ0σ
2

= 0.314), and ρ1σ
2 = 0.0596 (ρ0σ

2 = 0.324) for SALR fluids
at temperatures where clustering becomes apparent (particu-
larly at low density). One can immediately appreciate what
we have commented upon above concerning the different ma-
trix topologies. Despite the relatively small difference in the

FIG. 6. Fluid density distribution ρ1(x, y) of the SALR fluid for ρ1σ
2

= 0.0596 and kBT/ε = 0.12 (ρ0σ
2 = 0.324) from MD (a) and in the HNC-2D

approximation (b). Regions for which ρ1(x, y) > 0.25 are plotted in white.

density ρ0, one can see that the matrix porosity is apprecia-
bly larger for ρ0σ

2 = 0.324 (Figure 6), and therefore matrix-
matrix correlations (and hence matrix-fluid correlations as
well) are quite different in both instances as we have seen.
This effect is less appreciable in the fluid-fluid correlations,
which are mostly conditioned by the effective density of the
adsorbed fluid (similar in both cases).

In the case of the higher fluid density, in Figure 5 one
readily observes that the HNC-2D equation actually repro-
duces quite well the simulated density distribution, and inter-
estingly the maxima and minima of ρ1(x, y) are seen to dis-
play the features of a partly ordered system (approaching the
local structure of a triangular lattice). Note that in this figure
the black region represents the area of the system in which
the fluid density vanishes. In this case, this is precisely the
area inaccessible to the centers of adsorbate atoms, i.e., the
exclusion surface of the matrix as defined by the positions
of its constituent atoms and their corresponding individuals
exclusion surfaces. This exclusion surface per matrix parti-
cle is given for our matrix-fluid interaction by ≈ξπσ 2, with a
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parameter ξ that accounts for the potential softness set to ξ

= 0.98 for the SALR potential, and ξ = 0.8 for the LJ matrix-
fluid interaction. In the case of the MD picture, the black
region also includes those isolated matrix cavities that were
empty from fluid particles in the starting configuration of the
MD run. These empty cavities will be thus indistinguishable
from the area of the sample excluded by the matrix in these
spatial fluid density maps.

It can be appreciated that in the HNC-2D picture there
is a substantially larger number of small disconnected pores
partly filled with fluid inclusions as compared with the MD
results. In this latter instance, most of the disconnected pores
happen to be empty for our particular initial fluid configura-
tion. As mentioned, this results from the fact that our simu-
lation corresponds to a MD run started from a single GCMC
configuration of the fluid particles. A better agreement in this
respect would be reached at a much higher computational cost
calculating the fluid density ρ1(x, y) as the average from a
series of MD runs started from different GCMC configura-
tions of the fluids sampling the same chemical potential. In
this case, the average population of the disconnected pores
would be determined by the equilibrium grand canonical par-
tition function and we would not have to rely on a single initial
fluid configuration which might well be away from the equi-
librium average. Notice that for large pores, the subsequent
MD sampling would essentially converge toward the GCMC
result. An alternative approach, would be the use of config-
urations in which fluid particles are not allowed to populate
disconnected cavities in the matrix, and modify consequently
the matrix-adsorbate interaction in the HNC-2D approach to
include an artificial hard core potential that forces ρ1(x, y)
→ 0 inside these isolated cavities (e.g., retaining the tem-
plate matrix particles that occupy these cavities in the orig-
inal non-additive hard disk mixture). For simplicity, we have
retained the original control pore glass like interaction and
used our initial test GCMC results as input to generate the MD
trajectories.

On the other hand, the reason for using MD generated
configurations and not the output of the GCMC directly, is
simply related to computational efficiency in the calculation
of the simulated ρ1(x, y). In order to obtain a smooth den-
sity distribution, one needs to perform an intensive sampling
of the configurational space with a large number of averages
of spatially contiguous particle configurations, which is much
simpler to attain using MD.

In Figure 6, we observe a density distribution ρ1(x, y)
characteristic of the presence of clustering. One sees immedi-
ately that there are spatially separated regions of substantially
higher fluid density, which tend to concentrate in pockets and
bays of the porous structure, despite the fact that the matrix-
fluid interaction is purely repulsive. This is due to the fact
that, once particles aggregate in clusters as a consequence of
the short range attractive part of the potential, the long-range
repulsion between the clusters pushes them apart to places
where at least some of them are “sheltered” by matrix parti-
cles. The intercluster separation lies in the range 10σ ∼ 11σ ,
in agreement with the position of the S11(q) pre-peak and the
wide maximum of g11(r). The theoretical results are in excel-
lent agreement with the simulated density distribution. More-
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FIG. 7. Illustration of the density profile ρ1(x, 0) of the SALR fluid along the
x-axis taking as origin a given matrix particle. The upper figure corresponds
to the density map of Figure 5 and the lower one to the map of Figure 6.
Distances are scaled with the side of the simulation box since each figure
corresponds to samples of different size, and the reference matrix particle is
also a different one.

over, we have seen that as the simulation proceeds the results
tend to approach to the theoretical prediction, since the reor-
ganization of the clusters is a relatively slow process, particu-
larly when they get trapped in narrow pockets. This is one of
the reasons why the MD simulations have to be exceptionally
long to yield a reliable ρ1(x, y). As an illustration, the fluid
density inside the cavity at (x, y) ≈ (12σ , 55σ ) in Figure 6(a)
was found to remain well above ρ1(x, y)σ 2 > 0.3 for close to
1×106 MD steps, to slowly decrease and reach ≈0.17 after
another 2 × 106 steps, much closer to the predicted HNC-2D
estimate seen in Figure 6(b).

In order to appreciate the performance of the integral
equations more quantitatively, in Figure 7 we plot the den-
sity profiles along the x-axis using as reference a given matrix
particle. We observe that the PY-2D approximation underes-
timates the value of the density minima, and the HNC-2D
slightly overestimates the maxima, which is a characteristic
feature of the HNC correlation functions. Note that the theo-
retical profile exhibits some spikes corresponding to fluid par-
ticle inclusions in the aforementioned isolated cavities. These
spikes are either absent in the MD results or have a much
lower intensity, as a result of a much lower (or zero) ini-
tial density of fluid particles in the cavity in the starting MD
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FIG. 8. Same as Figure 4 for a LJ fluid in a LJ matrix. Note the higher inten-
sity of the first peaks as a consequence of the LJ attraction, the pronounced
spatial structure of g01(r) and the lack of maximum at 10σ in g11(r) due to
the absence of clustering.

configuration. This is again explained in the preceding para-
graph as a result of the use of a single GCMC configuration
as starting point for our MD calculations. Aside from this de-
tail, the agreement between the theory and the simulation is
remarkable.

Finally, for the sake of comparison we have run a long
MD simulation (2 × 106 independent configurations in a run
of 10 × 106 time steps) from the same starting fluid and
matrix configuration as before (ρ0σ

2 = 0.324), but where
now fluid-fluid and matrix-fluid interactions are truncated and
shifted LJ potential. The temperature of the run was set to
kBT/ε = 0.55 and the fluid density as before ρ1σ

2 = 0.0596.
These conditions are quite close to the gas-liquid transition as
can be inferred from the large S11(0) values in Figure 2. We
have solved the ROZ-HNC equations for this system and ob-
tained the density distribution using the HNC-2D equation. In
Figure 8, we show the fluid-matrix and fluid-fluid correla-
tions. As in the case of the low density SALR fluid, again
here the fluid-matrix correlation ROZ-HNC predictions are
rather poor, due to the inaccurate representation of the matrix-
matrix correlations for this matrix configuration. Also, fluid-
fluid correlations do not show any trace of intermediate long
range ordering or clustering (the high values of the first peak
of g11(r) are just an indication of confinement and the fluid-

FIG. 9. Fluid density distribution ρ1(x, y) for ρ1σ
2 = 0.0596 and kBT/ε

= 0.55 (ρ0σ
2 = 0.324) from MD (a) and in the HNC-2D approximation

(b) for a LJ fluid inclusion in a matrix formed by LJ particles.

fluid correlation dies out rapidly). This is in clear contrast with
the long range features found in Figure 4. Again, the HNC-2D
fluid-matrix correlation agrees quite well with the MD results.

Now, the fluid density distribution for the same density as
that of Figure 6 can be seen for the LJ system in Figure 9, and
again we appreciate a remarkable agreement between theory
and simulation. In this case, the simulation had to be partic-
ularly long for the density distribution to be smooth enough.
The only salient feature appreciated in Figure 9 is the fact that
the fluid density is enhanced near the pore walls, due to the at-
tractive nature of the matrix particles. During the simulation
run one can see the formation of short lived aggregates as a
consequence of the vicinity of the liquid-gas transition, but in
contrast to the SALR fluid, they have no preferred positions
within the pore space, and the local density enhancements av-
erage out. Again, in Figure 10 we can have a more quantitative
appreciation of the quality of the results in the density profile
along the x-axis. The attractive nature of the pore particles is
evidenced by the large values of ρ1(x, 0) near the matrix par-
ticle boundaries, in contrast to the situation in Figure 7, where
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FIG. 10. Illustration of the LJ fluid density profile ρ1(x, 0) along the x-axis
taking as origin a given matrix particle. The fluid-matrix attraction is reflected
in the large values of the density profile in the immediate vicinity of the ma-
trix particles.

the repulsive nature of matrix-particle interaction used for the
SALR fluid simulations is evident.

In summary, we have explored the ability of a full 2D so-
lution of the HNC (and PY) equation for the description of
a fluid inclusion in a disordered porous matrix with a large
degree of porosity. The equation was complemented by the
use of a ROZ-HNC equation to faithfully approximate the
fluid-fluid correlations under confinement. We have shown
that this approach reproduces in a satisfactory way the av-
erage fluid-fluid spatial correlations of different types of ad-
sorbates and its combination with the HNC-2D equation also
yields a fair approximation for the matrix-fluid correlations.
This avenue can be further exploited using the spatial decom-
position approach25 to analyze the solvation free energy con-
tribution in specific regions of the adsorbent, which can be of
use when dealing with functionalized substrates. The appli-
cation to three-dimensional systems, mixtures, and molecular
adsorbates is currently work in progress. Additionally, subject
of future work will be the analysis of the correlation between
porosity and cluster size distribution. In this connection, an
important quantity to describe both the topology of the clus-
ters and that of the porous network is the pair connectedness
function. Integral equations have been proposed to model this
function and obtain approximations for the mean cluster size
distribution.41, 42 Moreover, recently Sarkisov7 has exploited
these techniques to analyze the connectivity of the porous net-
work in templated porous materials. We plan to make use of
these approaches and computer simulation30 to correlate ad-
sorbate cluster size distributions with porosity for a variety of
matrix topologies.
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