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Abstract. Hexatic membranes are difficult to study both in theory as well as in simulations.
We present new results for the flat phase of hexatic membranes using a unique simulation
approach based on an recently developed optimization [1] of our Fourier Monte Carlo algorithm
[2, 3] which enables us to drastically reduce critical slowing down and observe critical behavior
with excellent statistical accuracy. In detail, we calculate the correlation function 〈|f̃(q)|〉2 =
G(q) and the related mean squared displacement 〈(∆f)2〉 of the membrane’s out-of-plane
deformations in the Monge parametrization f(x) and give a finite size scaling analysis of these
data. In our present treatment, the case of hexatic membranes is formally found to closely
resemble that of solid membranes for which our algorithm has already proven to be quite
successful [1].

1. Introduction
The properties of membranes constitute an active research area of modern science. Membranes
are ubiquitous in a biological context, they play an important role in advanced chemical synthesis
and technology, and the research on graphene has recently been rewarded by a Nobel prize in
physics for its exciting new perspectives on condensed matter physics and electronics. Motivated
by the continuing interest in graphene, we have recently published high precision simulation data
on the universal elastic fluctuation behavior of solid membranes.

Due to its strong covalent bondings, at low temperatures the properties of defect-free graphene
come quite close to those of a “tethered membrane”, i.e. a membrane model system whose bonds
are by definition unbreakable. The caution implicit in this statement is based on the theoretical
result that in reality there is nothing like a 2d “tethered” or “crystalline” membrane, since
the Wagner-Mermin-Hohenberg theorem [4] assures us that in two dimensions true long-range
translational order for systems with short-ranged interactions cannot exist. While the energy
required to create an isolated dislocations in a strict 2d system grows logarithmically with
system size, the energy of bound dislocations pairs in 2d turns out to be finite. Thus, at any
low but positive T there is a nonzero density of such pairs. This implies that even at the lowest
temperatures there is only quasi-long-range order in the density-density correlations, i.e. an
algebraic decay with distance r exhibiting a T -dependent exponent. According to the Kosterlitz-
Thouless-Halperin-Nelson (KTHNY) theory of 2d melting [5, 6, 7, 8, 9], above a certain critical
temperature Tc the dislocation pairs break up, resulting in a gas of free dislocations and
complete loss of translational order, but quasi-long-range orientational order of bonds persist
in this hexatic phase. Free dislocations can, however, be in turn regarded as bound pairs
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of orientational defects, so-called disclinations [10]. Below Tc the energy required to create
an isolated disclination grows quadratically with system size, but once in the hexatic phase,
the presence of free dislocations mediates a screening of this elastic energy that reduces this
growth to a logarithmic one and thus facilitates the breaking-up of dislocation pairs at a still
higher temperature Tm, resulting in complete destruction of the remaining orientational order.
According to this KTNHY scenario, it is only above this second phase transition that the system
assumes a true liquid state.

Membranes should, however, not be confused with true 2d systems in the above sense. Rather,
they can be regarded as two-dimensional manifolds immersed in a 3d space, and whithin this
embedding space they possess the additional freedom to bend and buckle, which allows them to
drastically reduce the elastic energy required to create defect configurations. Even though taking
into account the wave-vector dependent renormalization of the membrane’s elastic constants
considerably complicate the calculations, one can show [11] that for a membrane of size larger
than a certain buckling radius Rb the energy of an isolated disclination is reduced from ∼ Rb to
∼ lnRb, while that of a isolated dislocation decreases from ∼ lnRb to a finite constant. Thus, at
arbitrary low but nonzero temperature there is always a finite concentration of free dislocations,
and one concludes that any large enough would-be crystalline membrane is inevitably in a hexatic
state, provided its size exceeds Rb.

Despite of these theoretical findings that guarantee the existence of hexatic membranes,
it remains a challenge to study their properties, be it in experiment, theory or by computer
simulation. In a real solid membrane like graphene, Rb may be prohibitively large, such that the
hexatic nature of a specimen remains undetected in experiment and beyond reach in simulations
based on microscopic or atomistic model Hamiltonians. In particular, this is true when it comes
to precisely determining the universal long wavelength elastic properties of membranes, since
for such simulations also large system sizes are required, and critical slowing down becomes
a major obstacle. Thus, it comes as no surprise that the literature does not abound with
computational studies of hexatic membranes [12]. In a recent paper [1] we have shown how
to calculate the exponent η governing the asymptotic elastic behavior of solid membranes with
great precision. The reason why this became possible was that we did not conduct simulations
based on a “microscopic” Hamiltionian formulated on a lattice in direct space, but instead
carried out Fourier Monte Carlo (FMC) simulations based on an effective Hamiltonian that
focuses only on the long wavelength collective degrees of freedom. In addition, this algorithm
also allows to efficiently suppress critical slowing down by performing an initial tuning step. It
is the purpose of the present paper to extend this powerful approach to hexatic membranes in
the low temperature flat phase.

2. Effective Hamiltonian
On the level of effective Hamiltonians, it turns out that even if their derivation proceeds quite
differently in the solid and hexatic cases, the resulting expressions are extremely similar. In the
so-called Monge parametrization of the low temperature flat phase, the “height” of a square
membrane of projectted area U = L × L with coordinates x = (x1, x2) ∈ U is measured by a
scalar function f(x). Similar to the case of solid and liquid membranes, a hexatic membrane is
subject to a harmonic bending energy

H(h)
hex[f ] =

κ0

2

∫
U
d2x(∆f)2(x) (1)

In addition, the hexatic membrane Hamiltonian has an anharmonic fourth order contribution
of a structure that is formally quite similar to that for a solid membrane, although it originates
from a rather different mechanism. Since the full derivation makes heavy use of differential
geometry here we content ourselves with a quick sketch and refer the reader to the literature on
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Riemannian manifolds (of which accessible accounts can be found e.g. in Refs. [13] or [14]) the
original derivations [15, 16, 17] and the very nice reviews [18, 19] for further details.

The hexatic state is characterized by a unit vector field n(x) encoding the directional order
of bonds, which, as we are targeting an underlying triangular lattice order, is defined only
up to local 60◦ rotations. In writing down an effective continuum Hamiltionian, consider first
such a field residing on a flat membrane. Then, the lowest order contribution would actually
resemble a XY type of model, for which deviations from perfect parallelism of neighboring
hexatic “directors” are subject to an energy penalty proportional to the squared gradient of
n. Introduction of (Gaussian) curvature leads, however, to a frustration of the field n(x),
since the energetically most favorable parallel state cannot be maintained globally. Expressed
in the Monge parametrization, the resulting coupling between the field n(x) and the Gaussian
curvature of the membrane can be shown to be encoded in the anharmonic hexatic energy
contribution

H(a)
hex[f, θ] = (2)

KA

2

∫
U
d2x

(
∂µθ −

1

2
εµσ∂σ

[
P Tαβ(∂αf)(∂βf)

])2

where P Tαβ = δαβ −∆−1∂α∂β is the so-called transverse projector (∆−1 is, of course, the inverse

Laplacian in 2d), θ = θ(x) denotes the local bond angle (i.e. n(x) = (cos θ(x), sin θ(x)) with
respect to a local orthonormal frame of the membrane’s tangent bundle) and KA is termed the
hexatic stiffness.

In our present treatment, we assume that the field n(x) is single-valued and thus defect-
free, which means that we neglect configurations with disclination defects. Thus, we expect to
correctly describe the flat hexatic phase, but admittedly we will miss the disclination unbinding
transition. The advantage of this assumption is, however, that it allows to completely eliminate
the field n(x) from the partition function by virtue of a Gaussian integration. Up to an
unimportant constant, one then obtains

H(a)
hex[f ] =

KA

2

∫
U
d2x

(
1

2
∂σP

T
αβ(∂αf)(∂βf)

)2

(3)

Comparing this expression to the corresponding anharmonic contribution for solid membranes
(see Eqn. (2.14) of Ref. [20]), we note a close formal correspondence. In fact, the harmonic
contributions are identical in structure, while the anharmonic contributions only differ because
of the extra derivatives ∂σ appearing in (3). Now recall [1] that in the solid case, we had been
able to recast the anharmonic part of the membrane’s effective Hamiltonian in a form

H(a)
sol [f ] =

K0

8

∫
d2Q

(2π)2
|F̃sol(Q)|2 (4)

that is diagonal in Fourier space, albeit not with respect to the amplitudes f̃(q), but with respect
to the generalized convolution amplitude

F̃sol(Q) =

∫
d2q

(2π)2
(Q̂× q)2f̃(q)f̃(Q− q) (5)

(K0 denoted the solid membrane’s 2d Young’s modulus). Upon one partial integration in (3),
the extra derivatives ∂σ appearing in the present hexatic case translate into an extra squared
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wave vector Q2 = |Q| · |Q| that can be equally distributed between the two F-factors. Thus we
finally end up with an effective Hamiltonian

HΛ[f ] =
κΛ

2

∫
d2q

(2π)2
q4|f̃(q)|2 +

KΛ

8

∫
d2Q

(2π)2
|F̃(Q)|2 (6)

for the hexatic system that looks exactly like that for a solid one, except that the amplitude

F̃(Q) :=

∫
d2q

(2π)2
|Q|(Q̂× q)2f̃(q)f̃(Q− q) (7)

inherits an extra factor |Q| in comparison to version (5) appropriate for solids. Note that in
these last two formulas (6) and (7) we have dropped the explicit reference to the hexatic case,
but have explicitly indicated a dependence of the coupling parameters on the presence of a
wavevector cutoff Λ. Similar to the case of crystalline membranes, the anharmonic contribution
to HΛ[f ] is again of a non-local nature, encoding an effective long-range anharmonic effective
self-interaction of the field f(x) mediated by the hexatic director field n(x) that effectively
stiffens up the membrane at long wavelengths and thus stabilizes a low temperature flat phase.

3. Fourier Monte Carlo Approach
Criticality in systems with long-ranged interactions is very difficult to assess in a conventional
Monte Carlo simulation based on a spins model defined on the direct lattice. In addition, the
fact that the above model is formulated in terms of Fourier amplitudes rather suggests to employ
our FMC algorithm [2, 3] which is tailor-made for such a situation. In a FMC simulation the
continuous Fourier transform is replaced by a discrete Fourier transformation, for which we shall
use the convention

f(x) =
1

N

∑
q

f̃(q)eiqx, f̃(q) =
∑
x

f(x)e−iqx (8)

For periodic boundary conditions the admissible wave vectors q have components |qi| < Λ ≤ π
parametrized by integers mi ∈ Z as qi = 2πmi/L, where we have put the lattice constant a of
the underlying simple cubic lattice of Ld = N sites to a = 1. A FMC move consists of picking
a wave vector q0 and a complex number ε ∈ C with |ε| ≤ r at random, where r > 0 is some
prescribed radius of a circle in the complex plane around zero. One then shifts

f̃(q0)→ f̃(q0) + ε, f̃(−q0)→ f̃(−q0) + ε∗,

For the harmonic part 1/(2N)
∑
|q|≤Λ κ(q)f̃(q)f̃(−q) of a spin model Hamiltonian given in terms

of the amplitudes f̃(q), the accompanying energy change is easy to compute. The hard part is
to calculate the change in the anharmonic part of the Hamiltonian in an efficient way. Since we
have already reviewed the nuts and bolts of FMC in several publications [21, 22, 23], here we
content ourselves with the following general statements.

FMC is certainly far from being a universal weapon for performing general simulation tasks in
statistical mechanics. Rather than that, it has more of a specialized surgical tool that is capable
of solving certain types of problems that had remained difficult to assess with other methods
(see e.g. [2, 3]). In particular, FMC is a powerful strategy for studying critical behavior in
systems with effective or microscopic long-range, since the Fourier transform diagonalizes all
interactions irrespectively of their range as long as they are translationally invariant [24], and
the move scheme (8) is nonlocal and collective. Of course, the algorithm becomes only efficient to
use if a rather small cutoff Λ enclosing the critical wave vector, which is usually qc = 0, is chosen,
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and all “fast” models outside the cutoff are regarded as having been integrated out from the
partition function, such their effect is absorbed in the remaining effective “Landau-Ginzburg”
Hamiltonian governing the behavior of the “slow modes” f̃(q) with |q| < Λ. In an application
to crystalline membranes, it was recently even demonstrated [1] that by slightly modifying the
above scheme one may obtain an algorithm that is practically free of critical slowing down in the
sense that at criticality the integrated autocorrelation times of the amplitudes f̃(q) show only
negligible growth when approaching q → 0. This major improvement that catapults FMC into
the top league of algorithms for studying criticality in interactions with long range is achieved
by simply allowing for different values r(q) for the radius r governing the maximum change in
amplitude in the MC move (8), and optimizing these radii r(q) separately for, say, 30 − 40%
acceptance rates during the start-up of the simulation. A further advantage of FMC is that it
is parallelizeable using standard MPI and OpenMP approaches.

4. Results and Discussion
Similar to the approach used in Ref. [1], we have calculated the out-of-plane displacement
correlation function

G̃(q) = 〈|f̃(q)|2〉 (9)

and the related out-of-plane mean squared displacement

〈(∆f)2〉 =

∫
d2q

(2π)2
G(q) (10)

for the effective Hamiltonian (6). The largest system accessible to our available computer
resources at a wave vector cutoff Λ = π/8 had a linear size L = 1096 (thus effectively
corresponding to a real space system of linear size 8 × 1096 = 8552), and for finite size scaling
we used the sequence L = 296, 329, 360, . . . , 1096 of system sizes at the same cutoff. Our choice
of parameters κΛ = 1.0 and KΛ = 10.0 was motivated by the desire to have an approximate
balance between harmonic and anharmonic energy contributions in the simulation. In Fig. 1 we
present the results for G(q) in a double logarithmic plot. We recall that for a solid membrane
one expects G−1(q) ∼ κ(q)q4, with a renormalized q-dependent bending stiffness κ(q) ∼ q−η

that shows an infra-red power law divergence with a critical exponent η that characterizes the
nontrivial critical elastic behavior of the membrane [1]. For the hexatic case at hand, however,
we report that the best fit to the data was obtained for a scaling ansatz

G̃(q) ∼ kBT

κR(q)q4
, κR(q) = κ0 + γ ln

δ

q
(11)

of logarithmic type rather than a “true” power law (κ0, γ and δ denote fit parameters). In
other words, our present findings would thus suggest a value η = 0log. However, our precision is
hampered by the finite size of the system and the lack of a concrete crossover ansatz capturing
the crossover from mean field to critical behavior for q → 0. Thus, a small nonzero value of the
exponent η cannot be ruled out. As to (∆f)2, such a logarithmic behavior is compatible with a
finite size scaling ansatz of type

(∆f)2 ∼ ω + α2L2(1 + β logL+ ρ/L)

with parameters ω, α, β, ρ. Indeed, a corresponding fit of our data for (∆f)2 shown in Fig. 2
seems to support this reasoning. Unfortunately it is not straightforward to compare our results
to analytical predictions for the exponent η. In Ref. [16], a field-theoretic renormalization group
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Figure 1. Top: fit of simulation results for G(q) at linear system size L = 1096 and cutoff
Λ = π/8. Error bars are smaller than symbol size. Bottom: Relative deviations of simulation
data from the fit. Red lines are a guide to the eye. Gray lines indicate the relative statistical
errors of the simulation data in percent.

(RG) analysis based on expansions in inverse powers of KΛ was worked out to first order in
1/KΛ, and a line of fixed points with a value η continuously depending on the parameter KΛ is
found. For the corresponding exponent η that describes this so-called crinkled phase, the result

η = O(1/K2
Λ) (12)

was obtained, which obviously is compatible with our above findings. However, as recently
shown by Codello and Zanusso [25] using the machinery of the exact RG, η is not only nonzero
to second order in 1/KΛ, but moreover also receives contributions from the fixed point value
µ∗Λ of the (bare) surface tension coefficient µΛ to this order. To the accuracy of the Monge

parametrization, the contribution of out-of-plane fluctuations f̃(q) on the surface tension is
captured by the term

H(s)
Λ = µΛ

∫
d2q

(2π)2
q2|f̃(q)|2 (13)

and near the crinkled phase fixed point (κ∗Λ, µ
∗
Λ), the parameter µΛ represents a relevant coupling.

Thus, to obtain an accuracy beyond O(1/KΛ) for the exponent η, it is necessary to consider
the energy (13) in addition to the membrane Hamiltonian (6). Furthermore, in order to reach
the crinkled phase fixed point, the bare surface tension parameter µΛ must be tuned such as
to be located on the critical manifold C of the crinkled phase fixed point, which represents a
line in the projected renormalization flow plane with coordinates (κΛ, µΛ). Thus, even though
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Figure 2. Top: fit of FSS ansatz (12) to simulation results for 〈(∆f)2〉 obtained for
L = 296, 329, 360, . . . , 1096 and Λ = π/8. Error bars are smaller than symbol size. Bottom:
Relative deviations of simulation data from the fit. Red lines are a guide to the eye. Gray lines
indicate the relative statistical errors of the simulation data in percent.

the slope of this line in the (κΛ, µΛ)-plane may not be steep, it may well be that our above
numerical efforts, which are aimed at describing the critical behavior of the crinkled phase, have
actually been contaminated from an (hopefully small) accumulated nonzero value for µΛ picked
up during integrating out the implicit integration of modes in the FMC simulation.

Since the Hamiltonian (13) is also harmonic, it is principle straightforward to incorporate it
into our simulations. The trouble is, however, that it is difficult to actually make sure that the
system at hand was indeed critical. That is, for constant KΛ and a given a fixed value κΛ, one

must find an accurate calculation scheme for determining the specific value µ
(c)
Λ = µ

(c)
Λ (κΛ,KΛ)

of the bare surface tension µΛ such that the point (κΛ, µ
(c)
Λ ) is located on the critical manifold C.

For the moment, ignoring this difficulty by putting µΛ ≡ 0 was all we could do. This problem
is, however, not specific to our present approach. Rather than that, any simulation approach
that attempts to study the crinkled phase is challenged by this difficulty. Yet, in contrast to
other simulation strategies, FMC also offers a way out of this difficulty, as FMC in principle also
allows to implement a momentum shell RG scheme from which the RG flow of the parameters
κΛ, µt can actually be calculated [26]. Knowledge of this flow then makes it possible to assess
the desired crinkled fixed point and determine its critical manifold C. As shown in Refs. [27, 28],
such a RG scheme does not merely represent a qualitative description of what is going on, but
can be further optimized to even produce decent quantitative numerical results. While beyond
the scope of the present paper, work in this direction is currently in progress.
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[26] Tröster A 2009 Phys. Rev. E 79 036707
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