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We investigate the structural and thermodynamic properties of a new class of patchy colloids,
referred to as inverse patchy colloids (IPCs) in their fluid phase via both theoretical methods and
simulations. IPCs are nano- or micro- meter sized particles with differently charged surface regions.
We extend conventional integral equation schemes to this particular class of systems: our approach
is based on the so-called multi-density Ornstein-Zernike equation, supplemented with the associative
Percus-Yevick approximation (APY). To validate the accuracy of our framework, we compare the
obtained results with data extracted from N pT and NVT Monte Carlo simulations. In addition, other
theoretical approaches are used to calculate the properties of the system: the reference hypernetted-
chain (RHNC) method and the Barker-Henderson thermodynamic perturbation theory. Both APY
and RHNC frameworks provide accurate predictions for the pair distribution functions: APY results
are in slightly better agreement with MC data, in particular at lower temperatures where the RHNC
solution does not converge. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4914345]

I. INTRODUCTION

Inverse patchy colloids (IPCs) have been introduced1 as
a new class of particles within the wide field of colloids
with patterned surfaces that are usually referred to as patchy
particles;2,3 IPCs can indeed be seen as patchy particles
with charged patches. The IPC model put forward in Ref. 1
originated from the idea that positively charged star polymers
adsorbed on the surface of negatively charged colloids give rise
to complex units with differently charged surface regions;4

the coarse-grained model developed for such systems is,
nonetheless, generally valid to describe colloids with a
heterogeneous surface charge.5

IPCs are characterized by highly complex spatial and
orientational pair interactions1 due to the fact that regions
of unlike charges attract each other, while regions of like
charges mutually repel. The calculation of the effective
interactions between IPCs—evaluated via simple electrostatic
considerations—leads to expressions in terms of truncated
series expansions that are not amenable to investigations
in extended ensembles via either computer simulations or
theoretical approaches. However, appropriate coarse-graining
schemes have been proposed such that the effective interac-
tions reduce to simple analytic expressions, which nevertheless
include the characteristic features of the original model,1 thus
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allowing many body simulation approaches and theoretical
investigations.

The intricate shape of the interaction potential (which
can be tuned via either the decoration of the particles or the
properties of the solvent) is responsible for the self-assembly
of IPCs into well-defined structures at mesoscopic length
scales. In striking contrast to conventional patchy particles,
the assembly behavior of IPCs can be selectively addressed
by easily accessible, external parameters: in recent studies
on IPCs systems confined to planar quasi-two-dimensional
geometries, it was shown that the self-assembly scenarios of
IPCs can be reversibly tuned by, e.g., minute pH changes of
the solution.6,7 Further, several investigations in the bulk show
that IPCs can form—apart from different types of disordered
phases (such as gas, liquids, or gels)—a broad variety of
highly complex ordered phases.8–12 An exact localization
of the phase boundaries of competing phases is extremely
difficult and expensive from both the methodological and
the computational point of view, as demonstrated in the
comprehensive evaluation of the thermodynamic properties of
a particular system of IPCs forming a lamellar bulk phase.9,11

In view of the complexity of IPCs systems, it is advisable
to search for methods that are computationally cheaper
than simulations. Our theoretical approach is based on the
ideas proposed by Wertheim in the 1980s: to describe the
properties of associating fluids, Wertheim used a model
system with an isotropic steric repulsion complemented
with patch-patch attractive interactions.13–16 In a successive
step, thanks to the modelization of patch-center interactions
introduced by Nezbeda,17 Wertheim further extended his
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theory.18 Wertheim’s concept for associating liquids is ideally
suited to describe the structural and thermodynamic properties
of patchy particles and forms the foundation on which our
work is based. Our Wertheim-type approach relies on an
analogue of the Ornstein-Zernike (OZ) equation19 expanded
in terms of so-called bonded correlation functions, indexed by
the number of bonds that a particle actually forms; such an
expansion is referred to as the multi-density OZ equation. The
original associative scheme is very versatile and can be applied
to any type of patch decoration; the complexity is drastically
reduced when particles are decorated only by a few, equivalent
patches, as it is the case in our IPC systems. By introducing
in addition the ideal network approximation and an extension
of the Percus-Yevick or the hypernetted-chain closure, we
outline a computationally cheap iterative scheme, referred to
in the following as APY or AHNC, respectively.

Our associative description is compared to two other
well known and widely used theories, namely, the refer-
ence hypernetted-chain approach (RHNC)20 and the Barker-
Henderson thermodynamic perturbation theory (BH-TPT).21

Similar to our associative theory, also RHNC relies on the
molecular OZ equation, but in this case, the expansion of the
correlation functions occurs in terms of rotational invariants;
in contrast, BH-TPT is a simple perturbative description of the
free energy of the system.

In the present manuscript, we have two main focuses. On
one side, we investigate to what degree of accuracy the APY
approach is able to describe the features of two selected IPC
models in the fluid phase. On the other side, we study how the
choice of the mapping procedure, used to derive the coarse-
grained potential parameters from the analytical effective
interaction, affects the static properties of IPC systems. As
shown in Ref. 1, the same effective interaction can be coarse
grained in different ways, thus affecting the value of the contact
energies, the patch size and the particle interaction range. We
focus here on two different mappings of a microscopic IPC
system presented in Ref. 1 and we investigate its structural and
thermodynamic properties. We perform Monte Carlo (MC)
simulations which provide reference data. Both the APY and
RHNC frameworks are able to give a faithful description of
the simulation results, APY being slightly more accurate and
having a broader convergence range. The main difference
between the two chosen systems relies in the patch bonding
volume: when this volume is relatively small, APY works
better since the theory neglects multiple bonds per patch;
nonetheless, also for IPCs with a bigger bonding volume,
the associative theory provides a good description of the static
observables.

The paper is organized as follows. In Sec. II, the gen-
eral associative description is presented together with the
expressions for the thermodynamic properties of the system
in terms of the distribution functions; we consider here the
general case of IPCs with ns equivalent patches. In Sec. III, we
apply the developed formalism to study the two-patch version
of the model. Here, we specify the potential model parameters
for the coarse-grained version of the IPC model and report
details of the MC simulation method, RHNC and BH-TPT
theories. In Sec. IV, we present our results and conclusions
are collected in Sec. V.

II. THE THEORY FOR THE GENERAL MODEL

A. The general model

In the following, we present a general model for an IPC,
which consists of a spherical particle decorated by an arbitrary
number (ns) of patches, called off-center interaction sites.
The pair potential between two interacting IPCs is given by
U(1,2), where 1,2 = {r1,2,ω1,2} denotes the spatial as well as
the orientational degrees of freedom of particle 1, 2. U(1,2)
consists of a spherically symmetric potential, U00(r), where
r is the distance between particle 1 and 2, acting between
the centers of the particles and an orientationally dependent
potential due to the ns off-center interaction sites

U(1,2) =U00(r) +

K


UK0(1,2) +U0K(1,2)



+

KL

UKL(1,2). (1)

Here, the index 0 denotes the particle centers and capital
letters (such as K or L) specify off-center sites. The set of
all these sites will be denoted as Γ and subsets of Γ will by
specified by small Greek letters, i.e., α, β, etc. It is assumed
that the center-site potential, U0K(1,2), is attractive and short-
ranged, such that each site K of one particle can be bonded
only to one center of another particle and two sites of one
particle cannot be simultaneously bonded to the center of the
other particle. Furthermore, it is assumed that the site-site
potential, UKL(1,2), is repulsive and short-ranged.

Our particular choice of potentials (i.e., their particular
functional form, the positions of the attractive sites, etc.) will
be discussed in Sec. III, where our theory will be applied
to describe the properties of a specific IPC model, recently
proposed in Ref. 1.

We consider N particles, confined in a volume V , at
temperature T , and pressure p; the homogeneous number
density is ρ = N/V .

B. Diagrammatic analysis and topological reduction
of the general model

In the diagrammatic analysis of the general model
introduced above, we will follow a scheme developed earlier
to describe models with multiple site-site bonding15,16 and
combine it with a framework put forward for a model with
site-center bonding.22,23

For the sake of our theoretical analysis, we split up the
total pair potential, U(1,2), into a reference and an associative
part, i.e., Uref(1,2) and Uass(1,2), respectively,

U(1,2) = Uref(1,2) +Uass(1,2), (2)

where

Uref(1,2) = U00(r) +

KL

UKL(1,2) (3)

and

Uass(1,2) =

K


UK0(1,2) +U0K(1,2)


. (4)
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Consequently, the Mayer function (or Mayer f -bond),
f (1,2) = exp [−βU(1,2)] − 1, can be decomposed as follows:

f (1,2) = f ref(1,2) + eref(1,2)
×





K

[ fK0(1,2) + 1]

L

[ f0L(1,2) + 1] − 1



= f ref(1,2) +

K

FK0(1,2)

+

L

F0L(1,2) +

KL

FKL(1,2), (5)

where

eref(1,2) = exp [−βUref(1,2)]
and

f ref(1,2) = eref(1,2) − 1, (6)

fK0(1,2) = exp [−βUK0(1,2)] − 1, (7)

FK0(1,2) = eref(1,2) fK0(1,2),
FKL(1,2) = eref(1,2) fK0(1,2) f0L(1,2). (8)

We now introduce the activity z via

z = Λ−3eβµ,

where Λ is the de Broglie wavelength, β = 1/(kBT) (with kB
being the Boltzmann constant) and µ is the chemical potential.
Note that in the decomposition (5), we neglect terms containing
the products fK0(12) fL0(12) or/and f0K(12) f0L(12), which
describe the bonding of the two patches of one particle to the
center of the other. In the diagrammatic expansion of the grand
partition function of the system, Ξ, in terms of the activity z,
eachMayer f -bondwillbesubstitutedbyeither f ref-bondsorby
products of eref(1,2) with one or more fK0- or/and f0K-bonds.
We assume that each of the sites can be bonded only once.

Usually in diagrammatic expansions, the particles are
depicted by a circle; however, for our problem, it is more
convenient to introduce in the diagrammatic expressions,
hypercircles (which now represent the particles) instead of
circles:15 each hypercircle is depicted as an open circle that
contains small circles, denoting the sites. Now, the cluster
integrals that enter the diagrammatic expansion of Ξ are
represented by the collection of field z̃-hypercircles, connected
by f ref- and eref-bonds in parallel to one or more fK0- and/or
f0K-bonds. Here,

z̃(i) = ze−βU (i)

denotes the spatially and orientationally dependent activity
and U(i) is a possible external field acting on particle i; again,
this index stands for the spatial and the orientational degrees
of freedom of this particle. For a uniform system, z̃(i) = z.

In Figure 1, we show a diagram representing an ensemble
of s hypercircles, referred to as s-mer. In the figure, different
types of bonds, i.e., f ref-, eref-, f0K-, and fK0-bonds, are
distinguished by different lines. Diagrams are constructed via
the three following steps: (i) generate the subset of all possible
connected diagrams with fK0- and f0K-bonds and insert an
eref-bond between hypercircles directly connected by either
a fK0- or a f0K-bond; (ii) insert an eref-bond between all
pairs of not directly connected hypercircles, whose centers are

FIG. 1. Example of a typical diagram as it emerges in the diagrammatic
expansion of lnΞ: it corresponds to a hexamer, where each particle is rep-
resented by a hypercircle. The diagram is depicted for a general two-patch
model where the small full circles denoted by A and B represent the patches;
f0K- and/or fK0-bonds are denoted by solid arrows pointing from site (patch)
K of one hypercircle to the center of another hypercircle, eref-bonds by
dashed lines and fref-bonds by solid lines. Diagrams are built according to
a three-step procedure; here, step (i) is drawn in black, step (ii) in red, and
step (iii) in cyan. Step (i) corresponds to drawing all possible combinations
of f0K- and/or fK0-bonds, and to subsequently adding an eref-bond between
the particles that have been connected. Step (ii) corresponds to adding an
eref-bond to all the pairs of particles bonded to the same patch of a third
particle, unless they are already linked: in the depicted example, particles 1
and 2 are both connected to patch B of particle 4, so an eref-bond is added;
this procedure does not apply to particles 3 and 6 because they have been
already linked by an eref-bond in step (i). In step (iii), we consider all possible
combinations of fref-bonds between pair of particles that have not already
been directly linked by any kind of bond.

connected via either a fK0- or a f0K-bond to the same site K
of a third particle; (iii) consider all possible ways of inserting
f ref-bonds between the pairs of hypercircles which have not
been directly connected during the previous two steps.

As a result, the diagrams, which appear in the expansions
for lnΞ and for the one-point density ρ(1), defined as

ρ(1) = z̃(1) δ lnΞ
δ z̃(1) , (9)

can be expressed in terms of s-mer diagrams as follows:

lnΞ = sum of all topologically distinct connected

diagrams consisting of s–mer diagrams with

s = 1, . . . , ∞ and f ref–bonds between pairs of

hypercircles in distinct s–mer diagrams, (10)
ρ(1) = sum of all topologically distinct connected

diagrams obtained from lnΞ by replacing in

all possible ways one field z̃–hypercircle

by a z̃(1)–hypercircle labeled 1. (11)

The diagrams appearing in the expression for the one-
point density ρ(1) can be classified with respect to the set
of bonded sites at the labeled point 1. We denote the sum of
the diagrams with the set of the bonded sites α at the labeled
hypervertex as ρα(1). Thus, we have

ρ(1) =

α⊆Γ

ρα(1). (12)

Here, the terms with α = 0 (where 0 identifies the subset
of diagrams where sites have no bonds) and α = Γ (where Γ is
the subset of diagrams where all sites are bonded) are included.
Note that the term ρ0(1) denotes the one-point density of
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particles without bonded sites at 1; however, this does not
mean that particle 1 is unbonded, since its center may still be
bonded to any number of sites belonging to other particles.

Now, we will apply the procedure of topological reduction
to switch from an expansion in terms of z̃(i) to a multi-density
expansion. Following Wertheim’s work,15 we introduce oper-
ators (which are denoted by ε’s) as follows: we associate with
each labeled hypercircle i an operator εα(i) with the properties

εα(i) =

K ∈α

εK(i), α ⊆ Γ,

ε2
K(i) = 0, ε0(i) = 1

(13)

for all off-center sites K .
Now, any one- or two-point quantity—denoted by a(1) or

b(1,2), respectively—can be presented in the operator notation
in the form

â(1) =

γ⊆Γ

εγ(1)aγ(1), (14)

b̂(1,2) =

γ,λ⊆Γ

εγ(1)bγλ(1,2)ελ(2), (15)

where the hat denotes an expansion of the respective quantity
in terms of the operators εα(i).

The usual algebraic rules for linear and bi-linear terms
apply to these expressions; further, analytic functions of these
quantities are defined via their corresponding power series.

Here, we also define an operation that will be useful below

aΓ(1) = ⟨â(1)⟩1. (16)

In this relation, the angular brackets mean that as a conse-
quence of this operation, only the coefficient of the operator
εΓ(1) is retained in the expression for â(1).

Analyzing the connectivity of the diagrams in ρ(1) at a
labeled hypercircle z̃(1), we find15,16

ρ̂(1)/z̃(1) = exp [ĉ(1)] ; (17)

cα(1) (with α , 0), appearing in the expansion of ĉ(1), denotes
the sum of diagrams in the function ρα(1)/ρ0(1) for which the
labeled hypercircle 1 is not an articulation circle. Similarly,
c0(1) denotes the sum of diagrams in the function ρ0(1)/z̃(1)
for which hypercircle 1 is not an articulation circle.

To remove the diagrams containing field articulation
circles, we will follow the earlier studies15,16 and switch from
the expansions of lnΞ and ρ(1) in terms of the activity to
density expansions using the following rule: in all irreducible
diagrams appearing in ĉ(1), each field hypercircle z̃, with the
bonding state of its sites represented by the set α, is replaced
by a σΓ−α(1) hypercircle, where the minus sign denotes,
henceforward, the set-theoretic difference of two sets; these
new quantities σα(1) are related to the densities ρα(1) via15

σ̂(1) = ρ̂(1)

α⊆Γ

εα(1). (18)

This relation can be inverted by formally expanding
[α⊆Γ εα(1)]−1 in a power series and by retaining the first
term

ρ̂(1) = σ̂(1)

K ∈Γ

[1 − εK(1)] . (19)

Now, the diagrammatic expansions for cα(1) introduced
above can be expressed in terms of irreducible diagrams. To
present this result in a compact and convenient form, we
introduce the fundamental diagrams c(0) defined as follows:

c(0) = sum of all topologically distinct irreducible

diagrams consisting of s–mer diagrams with

s = 1, . . . , ∞ and f ref–bonds between pairs of

hypercircles in distinct s–mer diagrams.

All hypercircles are field circles carrying the

σ–factor according to the rule formulated above.

(20)

The cα(1) can be obtained by functional differentiation of
c(0) with respect to σΓ−α(1),

cα(1) = δc(0)

δσΓ−α(1) . (21)

Now, we are able to rewrite the regular one-density virial
expansion for the pressure p and for the Helmholtz free energy
A in terms of the density parameters σ̂(1) defined in Eq. (18).
Following a scheme proposed by Wertheim,15 we obtain

βpV =
 

ρ(1) −

α⊆Γ

σΓ−α(1)cα(1)


d1 + c(0) (22)

and

βA =
 

ρ(1) ln
σ0(1)
Λ
− ρ(1)

+


α⊆Γ,α,0

σΓ−α(1)cα(1)


d1 − c(0). (23)

These expressions satisfy the standard thermodynamic rela-
tions

ρ =

(
∂p
∂µ

)
T

,
A
V
= ρµ − p,

where the homogeneous density ρ is recovered via

ρ =
1
V


ρ(1)d1.

C. Integral equation theory for the general model

1. Multi-density Ornstein-Zernike equation

So far our analysis was focused on one-point quantities.
Now, we proceed to the corresponding analysis of two-point
quantities. In particular, we consider the pair correlation
function h(1,2) which can be calculated via the following
functional derivative:19

ρ(1)h(1,2)ρ(2) = z̃(1)z̃(2) δ2 lnΞ
δ z̃(1)δ z̃(2) ; (24)

here, the diagrammatic expansion for lnΞ — introduced in
Eq. (10) — has to be used. The elimination of the diagrams
containing articulation circles can be realized following the
topological reduction scheme described above. Via this route,
we obtain for the final expression for the pair correlation
function in operator notation
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ρ(1)h(1,2)ρ(2) = ⟨σ̂(1)ĥ(1,2)σ̂(2)⟩1,2. (25)

In the case of two particle quantities, the subscripts on
the brackets denote the arguments to which the procedure
specified in Eq. (16) has to be applied.

Alternatively, in the regular notation, one finds

ρ(1)h(1,2)ρ(2) =


α,β⊆Γ
σΓ−α(1)hαβ(1,2)σΓ−β(2). (26)

Here, the partial correlation functions, hαβ(1,2), represent
those diagrams that have sets of bonded sites α and β, which
belong to hypercircles 1 and 2, respectively.

On differentiating the diagrammatic expansion for c(0),
defined in statement (20), we obtain the analogue of the partial
direct pair correlation functions19

cαβ(1,2) = δ2c(0)

δσΓ−α(1)δσΓ−β(2) , α, β ⊆ Γ. (27)

The functions satisfy an OZ like integral equation, which—
using the operator notation— can be written as15,16

ĥ(1,2) = ĉ(1,2) +


⟨ĉ(1,3)σ̂(3)ĥ(3,2)⟩3d3. (28)

In addition to the partial direct and total correlation
functions, this equation involves also the set of the density
parameters σα(1) introduced in Eq. (18) which are not known
in advance. The self-consistent relation between the densities
follows from Eqs. (17) and (19) with cα(1) expressed in terms
of the pair correlations. We find for the regular notation15,16

cα(1) =

γ⊆Γ


gα−A,γ(1) f A0(1,2)σΓ−γ(2)d2. (29)

Here, we have introduced the partial distribution functions
gαβ(1,2), defined as

gαβ(1,2) = hαβ(1,2) + δα,0δβ,0. (30)

To close the system of equations, we require an additional
link between the partial direct and total correlation functions,
known in the literature as a closure relation: it emerges from
the diagrammatic analysis of the cavity correlation functions,
yαβ(1,2), defined in operator notation15,16 as

ŷ(1,2) = exp
�
t̂(1,2)� ; (31)

here, t̂(1,2) is the sum of all topologically distinct, irreducible
diagrams consisting of two so-called white hypercircles
labeled 1 and 2, corresponding to coordinates that are not
integrated over. Such a formulation is possible since t̂(1,2)
does not have white articulation pairs and no two white circles
are adjacent.16,19

The relation between the partial cavity correlation func-
tions and the partial pair distribution functions is established
via the following equation:15,16

ĝ(1,2) = eref(1,2) ŷ(1,2) exp


f̂ (1,2) , (32)

with

f̂ (1,2) =

K ∈Γ

[εK(1)ε10(1,2) fK0(1,2)

+ f0K(1,2)ε01(1,2)εK(2)] . (33)

Here, we have introduced the two-point operator ϵ10(1,2) in
order to prevent bonding of several sites of the same particle to
the center of the other particle. This operator has the following
properties:

ε10(1,2)ε01(1,2) = 1, ε2
10(1,2) = ε2

01(1,2) = 0. (34)

Extracting the subset Ê(1,2) from the set of diagrams
t̂(1,2) which have no nodal circles leads to the following
expression for the cavity correlation function:

ŷ(1,2) = exp
�
N̂(1,2) + Ê(1,2)� ; (35)

where N̂(1,2) is the subset of diagrams with nodal circles and
is equal to the convolution term in the OZ equation (28)

N̂(1,2) = ĥ(1,2) − ĉ(1,2). (36)

Combining Eqs. (36), (35), and (32), we finally obtain

ĝ(1,2) = eref(1,2) exp

ĥ(1,2) − ĉ(1,2) + Ê(1,2) + f̂ (1,2) .

(37)

Once Ê(1,2) is given, we can derive the analogues of the
commonly used closure relations in standard integral equation
theory.

2. Associative hypernetted-chain and associative
Percus-Yevick approximations

A HNC-like approximation to Eq. (37) can be derived by
setting Ê(1,2) = 0, i.e.,

ĝ(1,2) = eref(1,2) exp

ĥ(1,2) − ĉ(1,2) + f̂ (1,2) . (38)

On the other hand, if we assume that all possible products
of the irreducible diagrams of t̂(1,2) are canceled by the
diagrams in Ê(1,2), i.e.,

Ê(1,2) + exp [t̂(1,2)] − 1 − t̂(1,2) = 0, (39)

we obtain a Percus-Yevick (PY)-like approximation,

ŷ(1,2) = ĝ(1,2) − ĉ(1,2). (40)

In what follows, we will refer to these closure relations
as the associative HNC (AHNC) or the associative PY (APY)
approximations.

III. IPC MODEL WITH TWO EQUIVALENT PATCHES

In this section, we will apply the theory developed above
to the evaluation of the structural and the thermodynamic
properties of a recently proposed two-patch version of the
IPC model.1 Our theoretical results will be compared with
data obtained in computer simulations as well as with results
originating from the RHNC integral equation theory24 and
from the BH-TPT.21

A. Potential model

Recently, a coarse-grained model for colloids has been
put forward, characterized by an axially symmetric surface
charge distribution due to the presence of two polar patches
of the same charge, Zp, and an equatorial region of opposite
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charge, Zc.1 The model takes into account the three different
regions on the particle surface and is characterized by three
independent parameters: the range and the strengths of the
interaction—reflecting the screening conditions and the ratio
Zp/Zc, respectively—and the patch surface coverage.1 The
choice of the parameters takes advantage of the analytical
description of the microscopic system that was developed
in parallel by extending the concepts of the Debye-Hückel
theory.25

The coarse-grained model put forward in Ref. 1 features
an IPC as a hard sphere (HS) colloid (of diameter D and central
charge Zc) carrying two interaction sites (each of charge Zp)
located at distances e (<D/2) in opposite directions from
the particle center (see Figure 2). The two patches are thus
positioned at the poles of the particle, the remaining bare
surface of the colloid will be referred to as the equatorial
region. The electrostatic screening conditions (expressed via
the Debye screening length κ−1) determine the range δ of
the pair interaction independently of the relative orientation
of the particles. For each parameter set (D,e, δ), the patch
size, defined by the opening angle γ, is uniquely determined
by Eqs. (10) and (11) of Ref. 1. The energy strengths are
set by mapping the coarse-grained potential to the analytical
Debye-Hückel potential developed for IPCs in water at room
temperature.1 As in Ref. 1, we considered here only overall
neutral particles, i.e., Ztot = Zc + 2Zp = 0. In contrast to Ref. 1,
the coarse-grained pair potential is further normalized such
that the minimum of the equatorial-polar attraction (ϵm) sets
the energy unit. The final expression for the pair potential
acting between particles is given by

U00(r00) =UHS(r00) + 4ϵ00

ϵmD3

(
2R0 +

1
2

r00

)
×

(
R0 −

1
2

r00

)2

Θ(2R0 − r00), (41)

U01(r01) = 2ϵ01

ϵmD3

 
2R0 +

1
2r01

�
R+R− + r2

01

�

×

R0 −

1
2r01

�
R+R− + r2

01

�2

+


2R1 +

1
2r01

�
R+R− − r2

01

�

×

R1 −

1
2r01

�
R+R− − r2

01

�2


×Θ(R+ − r)Θ(r − R−), (42)

U11(r11) = 4ϵ11

ϵmD3

(
2R1 +

1
2

r11

) (
R1 −

1
2

r11

)2

Θ(2R1 − r11).
(43)

Here, r00,r01, and r11 are the distances between the particles
centers, between the center and an attractive site, and between
the sites, respectively; UHS(r00) is the hard-sphere potential,
ϵ00, ϵ01, and ϵ11 are the corresponding energy strength param-
eters, Θ(x) is the Heaviside step function, R0 = (D + δ)/2,
R1 = R0 − e, R+ = R0 + R1, R− = R0 − R1; δ and e have been
defined above (see also Figure 2).

FIG. 2. Schematic representation of a two-particle IPC model. The dark gray
sphere features the colloidal particle and the small yellow points, located
inside the colloid, represent the two interaction sites. The yellow caps corre-
spond to the interaction areas, while the interaction sphere of the bare colloid
is delimited by the black outermost circle. The relevant parameters of the
system are the particle diameter, D, the interaction range, δ, the distance
between the interaction sites and the colloid center, e, and the half-opening
angle, γ, which defines the patch extension on the particle surface.

B. Multi-density OZ equation for the IPC model with ns
equivalent patches. Ideal network approximation

Expressions obtained in Subsection II C are general and
thus applicable to a number of different versions of the model.
Here, our goal is to apply this formalism to study the structure
and thermodynamics of the IPC model proposed in Ref. 1,
having ns equivalent attractive sites. We note that in absence
of double bonding, FKL(1,2) is zero. We assume that double
bonding does not occur in the IPC models considered here.

A straightforward application of expression (15) and of
the corresponding OZ equation (28) to our particular model
will turn the correlation functions into matrices with 2ns × 2ns

elements; taking into account the equivalence of the sites
(i.e., patches), this dimensionality can be reduced to (ns + 1)
× (ns + 1). An additional reduction of the dimensionality
of the problem can be achieved by introducing certain
approximations. We will follow here earlier studies,26–30 that
were carried out for different versions of models with site-
site bonding, and utilize the analogue of the so-called “ideal
network approximation” (INA) combined with the orienta-
tionally averaged version of the multi-density OZ equation.
According to these approximations, it is assumed that

cα(1) = 0 and εα(1) = 0, for |α| > 1, (44)

where |α| denotes the cardinality of set α. Further, the OZ
equation (28) and the closure relations are expressed in terms
of the orientationally averaged partial correlation functions
hαβ(r) and cαβ(r). We will henceforward drop the ubiquitous
explicit argument “1,” since we consider a uniform system.
Within the INA and taking into account the equivalence of the
ns sites, the dimensionality of the OZ equation can finally be
reduced to 2 × 2.

As a consequence of the INA (44), all correlation func-
tions which involve particles with more than one bonded site
are neglected. However, this does not mean that correlations
between particles in all possible bonded states are neglected.
Instead, they are accounted for via the convolution terms in the
right-hand side of the OZ equation due to the appearance of
the density parameters σ̂ introduced in Eq. (18). In a certain
sense, this approximation is similar (but not equivalent) to
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the approximation utilized in the thermodynamic perturbation
theory of Wertheim.16,31

In the following, boldfaced symbols collect partial corre-
lation functions. Replacing the angular dependent correlation
functions h(1,2) and c(1,2) in the OZ equation (28) by their
orientationally averaged counterparts, h(r) and c(r), we arrive
at

h(r12) = c(r12) +


c(r13)σh(r32) dr3, (45)

where

h(r) = *
,

h00(r) h01(r)
h10(r) h11(r)

+
-
, c(r) = *

,

c00(r) c01(r)
c10(r) c11(r)

+
-
,

σ = *
,

ρ nsσns−1

nsσns−1 ns(ns − 1)σns−2

+
-
.

(46)

In Eq. (46), the following notation is used:

h0K(r) ≡ h01(r), hKL(r) ≡ h11(r),
σΓ−K ≡ σns−1, σΓ−K−L ≡ σns−2.

The AHNC closure (37) with Ê(1,2) = 0 takes the form

c00(r)= g00(r) − t00(r) − 1,
c01(r)= g00(r) [t01(r) + f01(r)] − t01(r),
c10(r)= g00(r) [t10(r) + f10(r)] − t10(r),
c11(r)= g00(r) [t11(r) + t01(r)t10(r)

+ f01(r)t10(r) + f10(r)t01(r)] − t11(r),

(47)

while the APY closure (40) reads as

c00(r)= f (0)ref (r) {t00(r) + 1},
c01(r)= e(0)ref(r) {t01(r) + [t00(r) + 1] f01(r)} − t01(r),
c10(r)= e(0)ref(r) {t10(r) + [t00(r) + 1] f10(r)} − t10(r),
c11(r)= e(0)ref(r) {t11(r) + t01(r) f10(r) + t10(r) f01(r)} − t11(r),

(48)

where

e(0)ref(r) = exp [−βU00(r)] , f (0)ref (r) = e(0)ref(r) − 1,

g00(r) = e(0)ref(r) exp [t00(r)] ,
and

ti j(r) = hi j(r) − ci j(r).
Note that in the expressions (47) and (48), the term

F11(1,2) = eref(1,2) f01(1,2) f10(1,2), which takes into account
contributions due to double bonding, has been dropped and
that the Boltzmann factor for the reference potential, eref(1,2),
has been approximated by the Boltzmann factor e(0)ref(r) for the
potential U00(r), which is acting between the centers of the
colloidal particles.

Finally, in order to obtain a closed set of equations, the
relations between the density parameters σi, introduced in
Eq. (46), and the pair distribution functions gi j(r) have to be
specified. This can be achieved by combining Eqs. (17), (19),
(29), and (44). One obtains the following relations:

nsρX2


e(0)ref(r) f10(r)y01(r)dr

+ X

ρ


e(0)ref(r) f10(r)y00(r)dr + 1


− 1 = 0, (49)

σns−2 = ρX2 with X = XΓ−K = σns−1/ρ, (50)

where X is the fraction of particles where the patch (site) K is
not bonded.

For the partial cavity correlation functions, yi j(r), defined
in Eqs. (35) and (31), we find within the AHNC approximation

y00(r) = exp [t00(r)] ,
y01(r) = y00(r)t01(r),
y10(r) = y00(r)t10(r),
y11(r) = y00(r) [t01(r)t10(r) + t11(r)] ,

(51)

and within the APY approximation,

yi j(r) = ti j(r) + δi0δ j0. (52)

The use of the orientationally averaged version of the OZ
relation, specified in Eq. (45), introduces an additional approx-
imation. The orientational averaging, originally proposed in
Refs. 26–30 might seem to be a crude approximation since the
correlation functions entering the OZ equation (45) and the
closure relations (47) and (48) do not display an explicit depen-
dence on the orientational degrees of freedom. Nevertheless,
we note that, even though APY does not account directly for
the repulsion between patches, it correctly takes into account
the major effect due to the patch-patch repulsion, i.e., restrict-
ing the appearance of the double bonds between the particles.
According to previous studies,22,23,28,30 the orientationally
averaged theory is able to provide accurate results for both
the structural and the thermodynamic data of related systems.

Together with either the AHNC (47) or the APY (48)
closure relations, Eqs. (45) and (50) form a closed set of
equations that has to be solved.

Finally, the total pair distribution function g(r) is obtained
from the partial distribution functions gi j(r) via the following
relation:

g(r) = g00(r) + nsXg01(r) + nsXg10(r) + n2
sX2g11(r). (53)

Now, we derive the expressions needed to calculate
thermodynamic properties; they are based on the solution
of the OZ equation (45). In our derivation of the expressions
for the internal energy E and for the (virial) pressure pv of
the IPC model in terms of the partial distribution functions
gi j(r), we used a scheme that was developed for a model with
one attractive site.18,22,23 We start from the following general
expressions:

E
V
=

1
2


ρ(1,2)U(1,2)dr12dω1dω2

= −1
2


ρ(1,2)
e(1,2)

∂e(1,2)
∂ β

dr12dω1dω2 (54)

and
βpv

ρ
= 1 − β

6ρ


ρ(1,2)r12∇2U(1,2)dr12dω1dω2

= 1 +
1

6ρ


ρ(1,2)
e(1,2) r12∇2e(1,2)dr12dω1dω2, (55)
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where r12 = r1 − r2 and ρ(1,2) = ρ(1)g(1,2)ρ(2) is the pair
density.

The derivatives in the above relations can be rewritten as

∂e(1,2)
∂ β

=
∂eref(1,2)

∂ β
+


K


∂FK,0(1,2)

∂ β
+
∂F0K(1,2)

∂ β



(56)

and

∇2e(1,2) = ∇2eref(1,2) +

K

(∇2FK0(1,2) + ∇2F0K(1,2)) .
(57)

We now substitute these expressions into Eqs. (54) and
(55), and perform a resummation of the diagrams representing
ρ(1,2)/e(1,2) in terms of the activity z. Within the INA,
and with a subsequent replacement of the orientationally
dependent quantities by their averaged counterparts, we find
the following expression:

βE
N
= 2π βρ


g(r)U00(r)r2dr − 2π βnsρX

×


e(0)ref(r)
 

y00(r) + nsX y01(r)
 ∂ f10(r)

∂ β

+

y00(r) + nsX y10(r)

 ∂ f01(r)
∂ β


r2dr (58)

and

βpv

ρ
= 1 − 2π

3
βρ


g(r)∂U00(r)

∂r
r2dr +

2π
3

ρnsX

×


e(0)ref(r)
 

y00(r) + nsX y01(r)
 ∂ f10(r)

∂r

+

y00(r) + nsX y10(r)

 ∂ f01(r)
∂r


r3dr. (59)

These expressions are valid for ns equivalent patches and can
be used in combination with any approximate closure relation.

In addition, we also present the expression for the pressure
calculated via the compressibility route, pc; it can be obtained
using the APY closure relation (48) and following a scheme
developed by Wertheim16,22

βpc

ρ
= 1 − 2π

ρ

 ∞

0
[σ̃C(r)σ̃]00r

2dr (60)

+
1

2π2ρ

ns
ℓ=0

 ∞

0




λ̂2
ℓ(k)

2(1 − λ̂ℓ(k))
+ λ̂ℓ(k)

+ ln

1 − λ̂ℓ(k)


k2dk . (61)

Here, σ̃ and C(r) are matrices with the following elements
(i, j = 1, . . . ,ns):

[σ̃]00 = ρ, [σ̃]0i = [σ̃]i0 = σns−1,

[σ̃]i j = (1 − δi j)σns−2,
(62)

[C(r)]00 = c00(r), [C(r)]0i = c01(r),
[C(r)]i0 = c10(r), [C(r)]i j = c11(r); (63)

the λ̂i(k) denote the eigenvalues of the matrix Ĉ(k)σ̃, with the
elements of the matrix Ĉ(k) being the Fourier transforms of
the corresponding elements of the matrix C(r).

Note that in the above expressions, the reference potential
Uref(1,2) has been approximated by the potential U00(r) acting
between the colloidal centers.

C. The reference hypernetted-chain approach

This approach is based on the OZ equation for orienta-
tionally dependent correlation functions19

h(1,2) = c(1,2) + ρ

4π


c(1,3)h(3,2)d3, (64)

where h(1,2) = g(1,2) − 1 is the total correlation function and
c(1,2) the direct correlation function.

This relation is complemented by the RHNC closure

g(1,2) = exp [−βU(1,2) + N(1,2) + E(1,2)] , (65)

where U(1,2) is the potential, E(1,2) is the bridge function,
and N(1,2) = h(1,2) − c(1,2) is the indirect correlation func-
tion. The above relations are formally exact; however, since
E(1,2) is known only in terms of a complex diagrammatic
representation, one has to resort to the approximate schemes
introduced below.

A route to solve Eqs. (64) and (65) was originally pro-
posed by Lado;24 ever since this method was steadily
extended and improved. Specific details of its last version are
summarized in Ref. 20. For this contribution, we have adapted
the most recent version of the code to our system of IPCs. In
the following, we briefly sketch the algorithm.

In Lado’s approach, Eq. (64) is solved by projecting
the correlation functions onto spherical harmonics, e.g., for
a generic function f (1,2),

f (1,2) = f (r, θ1, θ2, ϕ)
= 4π

∞
ℓ1=0

∞
ℓ2=0

M
m=−M

fℓ1ℓ2m(r)Ym
ℓ1
(θ1, ϕ1)Y−mℓ1

(θ2, ϕ2),

(66)

where M = min(ℓ1, ℓ2), θi is the angle between r12, the vector
joining the two particle centers, and ωi, the orientational unit
vector of particle i, and ϕ = ϕ2 − ϕ1 is the angle between ω1
and ω2 in the plane orthogonal to r12. Via a Fourier transform
with respect to r , we can transform Eq. (64) into a linear
system of equations involving the respective coefficients.
In contrast, all functions involved in the non-linear closure
relation (65) have to be treated as full functions of their spatial
and orientational variables.

The numerical program follows an iterative procedure that
can be divided into two steps. In the first one, we start from
an initial guess for N(1,2), and so the closure relation (65) is
solved for c(1,2). The bridge function we used is EHS(r; D∗),
i.e., the bridge of a HS fluid calculated via the parametrization
proposed in Ref. 32; the parameter D∗ is an effective HS
diameter that differs from the diameter of the IPC particles, and
for which at the beginning of the iterative procedure a suitable
guess is assumed. In the second step, c(1,2) is expanded in
terms of the cℓ1ℓ2m(r), which are given by a transformation
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that is inverse to the one specified in Eq. (66), namely,

fℓ1ℓ2m(r) =
1

(4π)2


[Ym
ℓ1
(θ1, ϕ1)Y−mℓ2

(θ2, ϕ2)]∗

× f (r, θ1, θ2, ϕ) sin θ1dθ1 sin θ2dθ2dϕ1dϕ2;
(67)

here, the star denotes complex conjugation and the angular
integrals are carried out using Gaussian quadratures. These
coefficients are then Fourier transformed so that Eq. (64) can
be solved for Ñℓ1ℓ2m(k) = h̃ℓ1ℓ2m(k) − c̃ℓ1ℓ2m(k). Finally, the
new Nℓ1ℓ2m(r) and the old gℓ1ℓ2m(r) are used to calculate the
new c(1,2) via its coefficient functions

cℓ1ℓ2m(r) = gℓ1ℓ2m(r) − δℓ10δℓ20δm0 − Nℓ1ℓ2m(r). (68)

These two steps constitute an iteration loop.
When convergence is achieved (i.e., the difference in the

correlation functions of two subsequent steps differs less than
a small threshold value, in our case typically 10−5) for a
particular value of D∗, then this parameter is modified and the
iterative scheme is repeated, until the free energy of the system,
which is convex with respect to D∗, has been minimized.

The initial guess for g(1,2) and N(1,2) stems, whenever
possible, from a previous solution of the problem for a
neighboring state point; otherwise the program can resort to
the parametrization of the isotropic HS counterparts of g(1,2)
and N(1,2), proposed in Ref. 32.

Once the algorithm has converged, the internal energy and
the pressure are obtained from the following equations:20

E
N
=

ρ

2


dr12⟨g(1,2)U(1,2)⟩ω1ω2

(69)

and

p = ρkBT − ρ2

6


dr12


g(1,2)r12

∂

∂r12
U(1,2)


ω1ω2

, (70)

where ⟨. . . ⟩ωi
= 1

4π


. . . dωi denotes an angular average over

the orientation of the two particles.

D. The Barker-Henderson thermodynamic
perturbation theory

In recent work,21 the original BH-TPT33 was extended to
systems with anisotropic potentials. Within this framework,
the Helmholtz free energy, A, is calculated as a truncated
series expansion, starting from the free energy of the reference
system, which in our case is the HS one, namely,

βA
N
=

βAHS

N
+


i

βAi

N
. (71)

For the hard-sphere contribution, AHS, we use the Carnahan-
Starling equation of state.34 The first two terms of the above
series expansion are given by21

βA1

N
= 2πρ

 D+δ

D

gHS(r)⟨βU(r,ω1ω2)⟩ω1ω2
dr (72)

and

βA2

N
= −

(
πρ

χ̃

)  D+δ

D

gHS(r)⟨[βU(r,ω1ω2)]2⟩ω1ω2
dr. (73)

For the quantity χ̃, defined as

χ̃ =
6
π

∂

∂ρ

(
βp
ρ

)
HS
, (74)

we use again the Carnahan-Starling equation of state, while
for the HS radial distribution function, gHS(r), we rely on the
Verlet-Weis parametrization.32

Having computed the free energy up to second order via
Eq. (71), we obtain the pressure according to

βp
ρ
= ρ

∂

∂ρ

(
βA
N

)
. (75)

E. Monte Carlo simulations

We perform Monte Carlo (MC) simulations both in the
NVT and in the NpT ensemble.35 In the canonical ensemble,
each MC step consists of N trial particle moves, where the
acceptance rule is imposed via the Metropolis algorithm.
A particle move is defined as both a particle displacement
in each of the Cartesian directions by a random quantity,
uniformly distributed within [−δr,+δr], and a rotation of the
particle around a random spatial axis by a random angle,
uniformly distributed within [−δϑ,+δϑ] with δϑ = 2δr/D.
In the isobaric-isothermal ensemble, each MC move consists
of N trial particle moves as defined above and one trial change
in the volume; the latter one is an attempt to change the volume
of the cubic box by a random quantity, uniformly distributed
within [−δV,+δV ], see Ref. 35. During the equilibration
runs, the values of δr and δV are allowed to change in
order to guarantee an acceptance ratio of the corresponding
moves between 30% and 50%. Successive sampling runs with
constant values of δr and δV extend over 106 MC steps in the
NVT ensemble and 3 × 106 MC steps in the NpT ensemble.

In the NVT ensemble, we evaluate the structural prop-
erties of the system at hand. We consider ensembles of
N = 1000 particles in a cubic volume with edge lengths
L ≈ 17D and L ≈ 13D; the corresponding number densities
are ρD3 = 0.20, and 0.45, respectively. For each system, we
choose four temperatures, namely, T∗ = 0.5, 0.32, 0.23, 0.18
(in units of kBT/ϵm, where ϵm is the minimum of the pair
interaction energy, see Table I). For each state point, we
determine the radial distribution function, g(r), the average
number of bonds per particle, Q, and the average number
of particles that form nb bonds with other particles in the
system, N(nb). All these quantities are averaged over 2000
independent configurations.

In the NpT ensemble, we consider systems of N = 1000
particles at the same four temperatures specified above and
we consider eleven pressure values, ranging from p∗ = 0.01 to
0.50 (in units of pD3/ϵm). At each state point, we determine
the thermodynamic properties of these systems, namely, the
internal energy per particle E/N and the equilibrium number
density, ρ. Both quantities are averaged over 2000 independent
configurations.

IV. RESULTS AND DISCUSSION

We have studied the properties of two selected systems
of IPCs, denoted as M1 and M2 and specified in Table I via

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.131.48.66 On: Tue, 17 Mar 2015 13:16:32



114108-10 Kalyuzhnyi et al. J. Chem. Phys. 142, 114108 (2015)

TABLE I. Model parameters that specify the two different IPC systems
investigated in this contribution; they are denoted by M1 and M2. Values
of δ and e are given in units of the hard-sphere diameter, D, while energy
parameters are given in units of kBT .1

Model δ e ϵ00 ϵ01 ϵ11 ϵm

M1 0.1 0.3 2.8628 −74.612 660.92 −0.6683
M2 0.3 0.3 0.2827 −6.857 57.12 −0.6683

their model parameters. The corresponding pair interactions
are shown in Figure 3 for three characteristic particle
configurations. The difference between the two models lies
in both the interaction range and the patch size. In model M1,
we have δ = 20% of D/2 and γ ≃ 22◦, while in model M2, we
have δ = 60% of D/2 and γ ≃ 43◦.

In the following, we show and discuss structural and
thermodynamic data obtained for the two model systems in
MC simulations (obtained in the NVT or NpT ensembles) and
via the APY approach; where applicable (i.e., if convergence
could be achieved) results from RHNC and BH-TPT are added.
The AHNC results are not shown in the following since they
were found to be very similar to the APY ones; further, the
APY closure was found to converge in a broader region of the
phase diagram.

A. Structural properties

We start our discussion with a comparison of the results
obtained for the pair distribution function, g(r); MC data were
obtained in NVT simulation runs. A thorough check of g(r)
is of particular relevance as this function forms the basis
of the subsequent calculation of thermodynamic quantities,
such as energy and pressure. In addition, we have analysed
and compared results for the average number of bonds per
particle, Q, as obtained from the simulations and from the
APY approach; while in simulations this quantity is obtained
by simple counting of bonds, in the theoretical approach, it is
calculated assuming that Q is equal to the number of bonded

patches per particle, i.e.,

Q = ns (1 − X) . (76)

One has to keep in mind, however, that a comparison of
the theoretical and of the computer simulation results for Q
has a limited range of validity. The densities ρα introduced
in Eq. (12), as well as the corresponding densities of the
Wertheim’s associating fluid theory,13–16 are not identical
to the densities of the particles in a given bonded state as
calculated from computer simulation. However, they approach
each other as the strength of the attraction increases and its
width decreases.36

In Figure 4, we show results for g(r) of system M1. In
the left column, we display data of state points characterized
by a low density (ρD3 = 0.2), while the panels in the right
column show data at high density (ρD3 = 0.45); temperature
decreases as we proceed from the top to the bottom panels.

In the low-density, high-temperature state point (upper-
left panel), g(r) shows a main peak of relative moderate
height and a very flat, hardly visible maximum at the second
nearest neighbour distance (r ∼ 2D); simulations and all
theoretical data are in excellent agreement. As we decrease
the temperature from T∗ = 0.50 to T∗ = 0.23, the contact value
of g(r) increases substantially; the agreement between the
different data sets is still very good, only small discrepancies
are observed at contact (i.e., at r = D).

As we proceed to the higher density, we observe a
substantial change in the shape of g(r): while we still observe
the pronounced peak at contact, a distinctive, characteristic
maximum at the second nearest neighbour distance emerges
(see insets of the panels). For both high density state points,
these features are reproduced on a qualitative level by all
approaches; on a more quantitative level, we observe that
differences between APY data and simulation results are only
found in the immediate vicinity of the second peak in g(r).

In Figure 5, we display the average number of bonds
per particle, Q, as a function of temperature for model M1.
Along the low-density branch, the agreement between the
different sets of data is very satisfactory; in contrast, at

FIG. 3. The main panels show the normalized interac-
tion energy U (r ) in units of kBT between two IPCs as
a function of their distance r ; left panel—model M1,
right panel—model M2. Three particular particle config-
urations have been considered, referred to as polar-polar
(PP; dark and light green), equatorial-equatorial (EE;
dark and light blue), and equatorial-polar (EP; dark and
right red). The insets display the non-normalized pair
energy U∗(r )=U (r )ϵm, which correspond to the pair
potentials shown in panels (a) and (c) of Figure 7 in
Ref. 1. In all the graphs, continuous and dashed lines
correspond to the two different coarse-graining proce-
dures put forward in Ref. 1 and termed there “tot”-
and “max”-schemes, respectively. It is worth noting that,
once normalized, potentials obtained via both the “tot”
and the “max” routes coincide. Schematic representa-
tions of the two models are shown, where particle size
and patch extent are drawn to scale.
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FIG. 4. Pair correlation functions g (r ) for model M1 at selected state points
(as labeled); note the logarithmic scale of the vertical axis. Symbols cor-
respond to MC simulation data, while lines represent either APY (red) or
RHNC (green) results. Insets show enlarged views around the second peak of
the g (r ) when appropriate.

ρD3 = 0.45, discrepancies become substantial at intermediate
and higher temperatures. This behavior is a consequence of
the reduced accuracy of the theoretical expression for Q (76)
at higher temperatures. In the inset of this figure, we display
simulation results for the average number of particles that
form nb bonds, N(nb), for the high density state at different
temperatures. These data confirm the expected trend: while
at higher temperature particles are preferentially isolated, at
lower temperature most of them are in bonded states.

In Figure 6, we show results for g(r) of model M2.
Again, density increases from left to right while temperature
decreases from top to bottom. The fact that the interaction
range is now substantially broader than in model M1 represents
a severe and thus very stringent test for the reliability of
the theoretical approaches: except for the high-density, low-
temperature state, both APY and RHNC provide converged
results. In contrast to model M1, discrepancies between
the different approaches (simulation, APY, and RHNC) are

FIG. 5. Average number of bonds per particle Q versus temperature for
system M1 at two different densities (as labeled); for the definition of Q,
see text. Symbols correspond to MC data while lines represent APY results.
The inset displays simulation data for the average number of particles with
nb bonds, N (nb), versus the number of bonds for selected temperatures at
density ρD3= 0.45 (as labeled).

FIG. 6. Pair correlation functions g (r ) for model M2 at selected state points
(as labeled); note the logarithmic scale of the vertical axis. Symbols cor-
respond to MC simulation data, while lines represent either APY (red) or
RHNC (green) results. Insets show enlarged views around the second peak of
the g (r ) when appropriate.

now visible; still, the characteristic features of g(r), i.e., the
pronounced peak at contact and the emergence of a maximum
at the second nearest neighbour distance are reproduced
throughout at a qualitative level. We observe that in particular,
the contact values and the features of the second maximum are
very sensitive to the respective approaches (see, in particular,
the insets).

The values of Q for model M2 are reported in Figure 7.
While the trend in temperature for the agreement between
simulation and APY data is similar to model M1, we observe
a significantly different behaviour for the N(nb)-values as
functions of T : as a consequence of the larger interaction
range, the number of unbonded particles is now throughout
substantially lower (by about a factor of two), while the
number of particles forming more than two bonds is now
significantly larger. Probably due to the formation of more than
one bond per patch, we observe that the agreement between
simulation and theoretical data is not as good as in model M1.

FIG. 7. Average number of bonds per particle Q versus temperature for
system M2 at two different densities (as labeled); for the definition of Q,
see text. Symbols correspond to MC data while lines represent APY results.
The inset displays simulation data for the average number of particles with
nb bonds, N (nb), versus the number of bonds for selected temperatures at
density ρD3= 0.45 (as labeled).
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B. Thermodynamic properties

Our analysis of the thermodynamic properties (in terms
of the pressure, p, and of the internal energy per particle, E/N)
is based on both NpT simulations and theoretical results. Both
APY and RHNC data are reported, while BH-TPT data are
added only for system M1.

The pressure has been calculated for our two models
along four isotherms (T∗ = 0.5,0.32,0.23, and 0.18), the
corresponding results are shown in the two panels of Figure 8.
APY allows to calculate the pressure via the compressibility
[cf. Eq. (61)] and via the virial route [cf. Eq. (60)]; since the
latter results are considerably less accurate than the former
ones, we have not included them in Figure 8.

Starting with model M1, we see from the top panel of
Figure 8 that the results obtained via the different methods
essentially coincide on a single curve for the highest temper-
ature (T∗ = 0.5). However, as the temperature decreases,
this agreement deteriorates: only the APY-data agree nicely
with the simulation results over the entire temperature range
considered. Further, we observe that—as compared to the
simulation results—BH-TPT overestimates these data, while
RHNC predicts systematically smaller values; for the lowest
temperature value considered, the latter approach badly fails
for ρD3 ≥ 0.1, leading to negative pressures that are not
showed in the picture.

For the pressure data of model M2, we observe already for
the highest temperature differences between the different ap-
proaches which become more pronounced as the temperature

FIG. 8. Pressure p∗ versus density for system M1 (top panel) and system M2
(bottom panel) for selected temperatures (as specified by the different col-
ors). Open circles—MC data, continuous lines—APY data, crosses—RHNC
results, and dotted lines—BH-TPT results (if applicable).

FIG. 9. Internal energy E/N ϵm versus density for system M1 (top panel)
and system M2 (bottom panel) for selected temperatures (as specified by
the different colors). Open circles—MC data, continuous lines—APY data,
crosses—RHNC results.

decreases. These discrepancies are related to the increased
bonding volume, due to the longer interaction range and larg-
er patch angle of model M2. Also for this model, APY seems
to be the most reliable theoretical approach, even though the
agreement with MC data is slightly worse than for the pre-
vious model. RHNC works reasonably good, better than for
model M1, but it does not converge for the lowest temper-
ature; instead, BH-TPT results turned out to differ by an entire
order of magnitude, showing that this very simple theory is
totally inappropriate to describe systems where the potential
differs so substantially from the reference interactions.

In the two panels of Figure 9, we show the results for
the internal energy per particle E/N for the two models
considered as a function of density along the same four
isotherms considered above. Again, good agreement between
the different data sets is observed for model M1 at high and
intermediate temperatures, while differences of up to 15%
occur along the (T∗ = 0.18)-isotherm. The agreement for the
results obtained for model M2, shown in the bottom panel of
Figure 9, is less satisfactory. Throughout, APY data are closer
to the simulation results.

V. CONCLUSIONS

In this contribution, we have put forward an extension
of the multi-density integral equation formalism proposed
by Wertheim15,16,22,23 to describe the properties in the fluid
phase of IPCs, a new class of particles with heterogeneously
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patterned surfaces. These particles consist of mutually repell-
ing, spherical colloids whose surfaces are decorated by well-
defined regions (so-called patches or interaction sites); the
patches repel each other while they are attracted by the
bare surface of the colloidal particle. Applying Wertheim’s
formalism, all relevant structural and thermodynamic quan-
tities can be expanded in terms of partial correlation functions,
each of them specified by the number of bonds formed
by the patches. These functions are obtained from an OZ
type integral equation, complemented by closure relations
similar to the ones used in standard liquid state theory;19 the
ensuing schemes are called associative liquid state theories.
In this contribution, we have focused on the APY approach.
The introduction of the ideal network approximation in
combination with the orientationally averaged version of the
multi-density OZ equation leads to convenient simplifications:
in the case of ns equivalent patches (in our case, we have
considered two-patch IPCs), only ns × ns partial correlation
functions have to be taken into account. In this associative
framework, substantially less expansion coefficients have to be
considered as compared to standard expansions of structural
and thermodynamic quantities in terms of spherical harmonics
in systems with directional interactions.

We have applied the associative approach to two different
types of two-patch IPCs, that differ substantially in their
interaction properties. We have compared the ensuing results
with data obtained via MC simulations and via standard liquid
state theories, that have been adapted to our model: a standard
integral equation based approach—RHNC—and a thermo-
dynamic perturbation theory—the BH-TPT. On varying the
temperature and the density over a broad range of values,
we observe a remarkable agreement between MC data and
both APY and RHNC results for the structural properties; this
concerns, in particular, the contact value and the characteristic
shape of the second peak of the pair distribution functions.
It worth noting that the APY scheme has a wider range of
convergence than RHNC and its agreement with MC data
can be followed down to rather low temperatures with the
same level of accuracy. Agreement for the thermodynamic
data (i.e., for the energy per particle and the pressure at
different state points) is satisfactory for high temperatures but
deteriorates on lowering the temperature.

In general, the APY approach proved to be the most
stable and reliable theoretical description among the ones
considered here. The quality of the APY results was found
to be better for IPC systems with relatively small patches
and a short interaction range, these features being important
in defining the bonding volume of an IPC. In fact, the APY
description neglects the possibility of more than one bond
per patch. We mention that our APY approach has been
recently used to describe also the static properties of an IPC
system characterized by a short interaction range—the one
used here for the short ranged model—and a small patch size—
intermediate between the ones of the two models studied in
this paper.10 For this system, the APY results proved to be very
accurate also in the regime where the dynamics of the system
slows down.

The APY theory can also be extended to describe IPC
systems with non-identical patches. In fact, an analytical as

well as a coarse-grained description of IPCs with different
patches in either size or charge has been recently proposed37

and could offer an additional application for our associative
description.
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