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1. Introduction

As a consequence of their hollow internal structure, certain 
classes of polymeric macromolecules can fully overlap their 
centres of mass without violating particle overlap at the mono-
meric level: such systems are classified as ultrasoft. Statistical 
mechanics based coarse-graining procedures, which average 
over the huge number of internal degrees of freedom of the 
monomeric units, lead in these systems to effective potentials 
which are bounded and repulsive at small or even vanishing 
particle separations. Examples of ultrasoft systems are den-
drimers [1–4], linear chains [5], or polymer rings [6, 7].

If the Fourier transform of an ultrasoft, effective potential 
has negative components at some finite k-value, the system 
shows clustering due to a Kirkwood instability [8], where 
stable clusters of overlapping particles are formed: at low 
and intermediate densities these aggregates, which are (in 
terms of occupation number) still strongly polydisperse in 
size, form a disordered fluid phase [9]. Increasing the den-
sity at fixed temperature, the system undergoes a first order 
phase transition and forms a bcc cluster crystal, i.e. a regular 
bcc lattice that is populated by clusters of overlapping par-
ticles; upon further increasing the density, this lattice trans-
forms (again via a first order phase transition) into an fcc 
cluster crystal; now the size distribution of the clusters has 
become narrower, i.e. the clusters are essentially monodis-
perse in their size [8–13].

Studies of the properties of cluster forming systems have 
been mainly carried out at the coarse-grained level, using a 
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Abstract
By compressing a (two-dimensional) system of ultrasoft, cluster-forming particles via 
a combined thermo- and barostat, a cluster crystal is created that is obviously not in its 
equilibrium: launching from such a configuration expansion and compression runs leads to 
systems that differ in their density distinctively from the one of the initial state. With our 
analysis we can discard dynamic lag as the origin of these discrepancies and can confirm 
that they occur due to the complex interplay between the two mechanisms which accompany 
any change in volume of a cluster crystal, namely the variation of the lattice spacing and of 
the number of lattice sites. In our investigations we show that only combined melting and 
annealing runs are able to transform the system in its equilibrium. This is evidenced by the 
fact that the density of this state remains unchanged even after the application of combined 
compression- and expansion-experiments as well as combined melting- and annealing-runs; 
furthermore, the cluster crystal shows an essentially perfect hexagonal arrangement.
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simple analytic form for the effective interaction, the so-called 
generalised exponential model (GEM potential; see section 2) 
[8–18]. In contrast, simulations of cluster forming systems at 
a monomeric level are considerably more challenging than 
at a coarse-grained level and are thus rather rare. Apart from 
the intrinsic challenges of monomer resolved simulations for 
a condensed phase (requiring a huge number of monomers) 
one has to deal with many-body effects, which are usually 
ignored when computing effective potentials of complex mol-
ecules. At intermediate and high densities many-body effects 
do become sizable: however, their role in cluster forming phe-
nomena has not been investigated so far. Still, Lenz et al. suc-
ceeded in carrying out simulations of amphiphilic dendrimers 
at the monomeric level; in these investigations it was shown 
(i) that these dendrimers are indeed able to form aggregates of 
overlapping particles in the disordered, fluid phase [3] and (ii) 
that the ordered cluster phases formed by these dendrimers are 
indeed mechanically stable [4].

In strong contrast to their hard matter counterparts, cluster 
crystals show remarkable features, among which a density-
independent lattice constant ranges undoubtedly among the 
most surprising ones: equilibrium states at different densi-
ties have the same distance between neighbouring clusters; 
instead, the cluster occupancy increases in a linear fashion. 
This feature can be explained on a mean-field level via density 
functional theory [8] and has been confirmed in simulations at 
a coarse-grained level of different density sates [9].

In the present work we focus on this highly unusual 
response of a system of ultrasoft particles to a change in 
volume: we consider a (finite) ordered system of GEM par-
ticles and perform a series of compression, expansion and 
annealing experiments on this ensemble; for computational 
reasons we restrict ourselves to the two-dimensional case, 
where the cluster crystal has hexagonal symmetry. Pressure 
and temperature are imposed on the ultrasoft particles by a 
surrounding ensemble of ideal gas particles, which act as a 
combined thermo- and barostat of our system [19, 20].

In a previous contribution [18] we reported about com-
pression experiments on ultrasoft particles using the same 
setup: we demonstrated that the spacing of the lattice 
remains essentially unchanged upon increasing the density; 
the reduction in the available volume is compensated by a 
complex interplay of particle hopping, cluster merging and 
spatial cluster rearrangement processes. In this contribution 
we could show that—irrespective of the temperature and 
the compression rate—the system first reacts on compres-
sion with an increased hopping activity [14, 15, 17], which 
immediately leads to a heterogeneous cluster size distribu-
tion within the system; then smaller clusters (i.e. aggregates 
that have typically ∼70% of the average cluster size) are 
forced to merge by the strong repulsion exerted by bigger 
neighbours. In the final equilibration process, particles 
evaporate from over-sized clusters and join smaller clusters. 
This process is characterised by an initially mild shrinking 
of the lattice spacing; eventually, i.e. when the cluster 
size distribution has become homogeneous over the entire 
system, the lattice constant has regained its initial value. 
However, from these investigations we could not draw any 

conclusion as to whether these compression experiments 
lead to metastable states, or if the system is indeed able to 
reach its equilibrium.

This very question is addressed in the present manuscript, 
where we complement our previous compression experi-
ments by expansion and annealing processes, using the same 
combined thermo- and barostat as in [18]. We provide a 
complete overview on how a clustering system reacts to a 
change in volume by studying more thoroughly the inter-
play between the two key mechanisms that allow the cluster 
crystal to accommodate to a change in volume: shrinkage of 
the lattice constant and deletion or creation of lattice posi-
tions. We observe that the two reaction mechanisms of the 
system to a change in volume can be disentangled: upon 
compression/expansion (i) the spacing a of the lattice first 
contracts/expands within a range of typically up to 10% 
of its equilibrium value, while keeping the cluster occupa-
tion unchanged; (ii) once a certain threshold value of a has 
been reached, the volume in the crystal further decreases/
increases at constant a by deleting/generating lattice posi-
tions via cluster merging/splitting processes. We further 
elaborate on our observation that an alternating applica-
tion of compression and expansion running at some given 
temperature obviously leads to different (metastable) states, 
characterised by disparate pressure values. To overcome this 
problem, we have performed annealing experiments with 
our system, i.e. we have increased at some fixed pressure 
value the temperature (until the ordered configuration has 
essentially molten) and have then cooled the system down 
to the desired temperature. We could demonstrate that we 
could recover—irrespective of the starting configuration—
via these annealing processes the same final state, which 
we argue to be the equilibrium state for this particular tem-
perature and pressure; repeating this procedure for different 
temperature- and pressure-values leads eventually to the 
equation of state of the system.

This paper is organised as follows: in section 2 we present 
our system and the methods we have applied. Section 3, which 
is divided into two subsections, is dedicated to the results: in 
section  3.1 we disentangle the interplay between change in 
the lattice constant and the cluster occupation upon compres-
sion, and in section 3.2 we present routes of how to obtain 
equilibrium states of our system. The manuscript closes with 
concluding remarks and an outlook.

2. System and methods

We use the same system setup as for our computer experiments 
presented in [18]: we consider a two-dimensional ensemble of 
N   =   6144 ultrasoft, cluster-forming particles which interact 
via the generalised exponential interaction of index 4 (GEM-
4), given by

ϕ ϵ σ( ) = [−( ) ]r rexp / ;4 (1)

here σ and ϵ are the length- and energy-parameters, respec-
tively, which are used as respective units. Other quantities are 
expressed in reduced units: the number-density ρ ρσ* = 3, the 
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temperature ϵ* =T k T /B  (kB being the Boltzmann constant), 
the pressure ϵ σ* = ( )P P k/ B

2  and the time unit ϵ σ* =t m/  (m 
being the mass of the particles). For simplicity the stars are 
dropped in what follows.

The GEM-4 particles are surrounded by a system of ideal 
(i.e. non-interacting) gas particles which interact with the 
cluster forming particles via an inverse power law:

⎜ ⎟
⎛
⎝

⎞
⎠

σΦ( ) =r
r

.b
12

 (2)

A cut-off radius of σ=R 2c b is used for this interaction, 
beyond which Φ( )r  is set to zero; in our investigations we have 
chosen σ σ=b , thereby guaranteeing that the ideal gas parti-
cles do not penetrate into the region occupied by the GEM-4 
particles. The ideal gas reservoir acts as a thermo- and barostat 
for the GEM-4 system: via the number of ideal gas particles 
and the distribution of their velocities a target pressure, Pt, and 
a target temperature, Tt, are imposed onto the cluster forming 
system.

The entire system is studied via molecular dynamics 
simulations: we integrate the equations of motion of all the 
particles using the velocity-Verlet integration scheme with 
a time-increment δ =t t0.002 . A detailed description of the 
implementation of the method, and how it can be used to com-
press the GEM-4 system is given in [18–20]. For a typical 
snapshot of the system we refer the reader to figure 1 of [18]. 
Every 1000 time steps (i.e. after 2t) the coordinates of the 
GEM-4 particles are saved; they form the basis for the evalu-
ation of system properties, such as the density, the pressure or 
the temperature.

We evaluate the measured (instantaneous) temperature, Tm, 
via the kinetic energy of the GEM-4 system and the measured 
(instantaneous) pressure, Pm, via the virial [19]. Furthermore, 
we define the temperature δT  and pressure δP deviations from 
the respective target values via

δ δ= − = −
T

T T

T
P

P P

P
, ;m t

t

m t

t
 (3)

these quantities specify how far the measured quantities of 
the GEM-4 particles differ from their target values. For the 
different types of runs (compression, expansion or annealing 
experiments) we apply changes in the pressure or in the tem-
perature, quantified via ΔP and ΔT; both can assume posi-
tive or negative values. Once the pressure or the temperature 
have been changed by ΔP or ΔT , we continue our simulations 
until δT  and δP have become less than a pre-defined toler-
ance parameter, which we have chosen to be 0.02. As soon 
as the pressure or the temperature of the system lies within 
that window, the simulation of the system is extended over an 
observation time window, =t 500wait , during which the prop-
erties of the system are recorded; only then is the next change 
in pressure or temperature step applied.

3. Results

3.1. The interplay between the lattice constant and cluster 
occupation

In what follows we concentrate at a fixed target temperature 
=T 0.4t  and present data obtained for three different kinds of 

computer experiments: (i) a compression run, using a pressure 
increment of Δ =P 1, starting from a random (fluid) configu-
ration at =P 5t ; (ii) three expansion runs, applying a pressure 
increment of Δ = −P 1, starting from a particle arrangement 
during the preceding compression run and assuming initial 
pressure values of =P 50m , 80 and 95, respectively; and (iii) 
two ‘new’ compression runs, applying a compression rate of 
Δ =P 1, starting from an initial configuration obtained during 
the expansion runs with an initial pressure value of ∼P 45m . In 
these experiments we used a rather small value for the pres-
sure increment ΔP, which ensured a better sampling along the 
Pm-axis and consequently to better statistics of the data dis-
played in the following in the ρ( )P, m -plane.

In figure 1 we display the measured data for the density of 
the system as a function of Pm along the aforementioned com-
pression, expansion and ‘new’ compression runs. The main 
panel shows the data of the compression (red) and of the three 
expansions runs (blue); the initial pressure values for the latter 
ones are marked by big black circles. From a visual inspection 
we identify the transition between the liquid and the ordered 
phase to be located at ∼P 15m ; we note that in the liquid phase 
(i.e. for ≲P 15m ) the density data obtained along compression 
and expansion runs coincide, i.e. ρ ρ( ) = ( )P Pcomp exp . This is 
definitely not the case for the ordered phase, as can be seen 
by comparing the different sets of data shown in figure  1: 
starting from different Pm-values, the density data along the 
expansion curves first follow for ≳P 30m  parallel trajectories 
in the (ρ P, m)-plane, which differ distinctively from the density 

Figure 1. Measured data of the density, ρ, as a function of the 
pressure Pm during compression (red symbols) and expansion (blue 
symbols) runs in a two-dimensional GEM-4 system of cluster 
forming particles at a target temperature of =T 0.4t ; the pressure 
increment was assumed to be Δ = ±P 1, respectively. The big black 
circles mark those state points from where expansion runs were 
launched. The inset shows an enlarged view of the ρ( )P, m -regime, 
demarcated in the main panel by a grey rectangle. There the data 
obtained in the initial compression run are shown by light-red 
symbols while the results extracted from the expansions runs 
are shown via light-blue symbols. ‘New’ compression runs are 
launched from state points that are marked in the inset by big black 
triangles; the corresponding data obtained via these processes are 
represented by red symbols.
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data accumulated along the compression curve. As the pres-
sure is further decreased, a second regime can be identified 
for ≲ ≲P15 30m , where the three density curves become as 
functions of Pm steeper and eventually merge: they finally 
join for ≲P 15m  the aforementioned branch of data for the 
liquid phase. The diverging data along the different expan-
sion runs provide unambiguous evidence that the system is 
not in equilibrium, neither during during the compression nor 
during the expansion runs. Thus, the measured data for the 
density, i.e. ρ ρ= ( = )P T, 0.4m t  do not correspond to data that 
one would obtain from the as yet unknown equation-of-state 
of the system. This issue will be addressed in the subsequent 
subsection.

Before we focus on this aspect, we try to shed some light 
onto those processes that are characteristic when compressing 
and expanding our system. From the results discussed in 
the previous paragraph one might suspect that the system 
is suffering from dynamic lag and that—because the meas-
ured values for the density differ along the compression and 
the expansion runs—our observations are related to a rate-
dependent hysteresis effect. To put these hypotheses to a 
thorough test we select two particle configurations that were 
realised along two of the expansion runs and start to compress 
them again from a particular pressure value onwards (using 
Δ = +P 1). The results for ρ( )Pm  as measured during these new 
compression runs are shown in the inset of figure 1, where the 
initial pressure values are marked by big black triangles. If, 
according to our assumption, the system indeed suffers from 
rate-dependent hysteresis effects, then we would expect that 
the expansion runs contribute to healing those lattice defects 
that are created during the first compression run; as a conse-
quence, we would expect that the density data obtained during 
the new compression runs would be located along a trajectory 
that is parallel to the data obtained during the first compres-
sion run, but shifted to higher density values. On the contrary, 
the curve of the new compression run follows the trajectory of 
the expansion run, and when the point where the data of the 
expansion and the initial compression run meet is reached, i.e. 
the ρ( )Pm -value at which the expansion run was launched, the 
slope of the new compression curve changes and it follows the 
initial compression one.

In an effort to definitely exclude the occurrence of dynamic 
lags during the compression runs we compare in figure 2 the 
measured data for ρ( )P T,m m  with =T 0.4t , obtained during 
compression runs applying different pressure increments: 
Δ =P 1, 5, 10 and 25. Different symbols are used for the dif-
ferent ΔP-values (as labeled in the figure  caption), in addi-
tion each symbol is colour coded according to the respective 
Tm-value (see equation  (3)). In panel (a) of this figure  we 
display results for ρ( )P T,m m , retaining only those data with 
δ <T 0.02. We observe that, even though the measured den-
sity values are roughly located on the same curve, there is 
a considerable scattering of the data. This spreading of the 
results can be decreased by reducing the tolerance parameter 
δT: the corresponding data are shown in the other two panels, 
where we have imposed via a smaller δT-value a harder cri-
terion on the data: δ <T 0.002 (panel (b)) and δ <T 0.0002 
(panel (c)). The results presented in these two panels provide 

unambiguous evidence that—provided we have chosen a suf-
ficiently small δT-parameter—the measured data for the den-
sity of the system are independent of the actual value of ΔP; 
thus we can definitely exclude the occurrence of dynamic lag 
effects in our computer experiments.

We come back to figure  1 and focus now on the obser-
vation that curves in the (ρ P, m)-plane that collect data along 
different runs have different slopes. In an effort to provide a 
deeper insight into the mechanisms behind those processes 

Figure 2. Measured data of the density, ρ, as a function of the 
pressure Pm during a compression run in a two-dimensional GEM-
4 system of cluster forming particles at a target temperature of 

=T 0.4t  for different values of ΔP, as specified in the legend. The 
symbols are colored according to the instantaneous temperature 
of the system (see colour code on the right-hand side). Panels (a), 
(b) and (c) show only those data for which δT  is smaller than 0.02, 
0.002 and 0.0002, respectively.
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that occur along these branches, we recapitulate the two prin-
ciple mechanisms of how a cluster crystal reacts to a change in 
volume: (i) shrinkage/growth of the lattice constant, a, which 
is accompanied by a shift of the position of the main peak of 
the radial distribution function, dnn, of the system towards a 
lower/higher r-value; (ii) deletion/creation of new lattice posi-
tions, reflected by an increase/decrease of the average cluster 
occupation, ⟨ ⟩nocc ; this quantity is obtained via a cluster anal-
ysis of the particle configurations, as specified in the appendix 
of [18].

We have displayed the data for ⟨ ⟩nocc  as a function of ρ 
along the compression, the expansion and the ‘new’ compres-
sion runs in figure  3 in two different representations: (i) in 
the main panel the ⟨ ⟩nocc -data are colour coded according to 
their corresponding dnn-value; (ii) ⟨ ⟩nocc -results in the inset are 
coloured according to the type of runs, i.e. data from com-
pression and ‘new’ compression runs are displayed as red 
symbols, while the results from expansion runs are coloured 
in blue, thereby allowing the reader to establish a connection 
from these data to those in figure 1.

Surprisingly, the reactions of ⟨ ⟩nocc  and of dnn on a compres-
sion or an expansion of the system help us to classify the dif-
ferent branches of data as functions of ρ into three categories:

 1. Compression branches (dashed line): along these 
branches ⟨ ⟩nocc  increases linearly with the density. After 
an initial decrease for small densities, dnn assumes an 
essentially constant value of ∼d 1.28nn  up to high densi-
ties. This value corresponds to the minimum value that 

was observed in [18] in the compression experiments 
presented there;

 2. Expansion branches (dash–dotted line): these data were 
extracted during the final parts of the expansion runs, 
i.e. ( ≳P 30m ). Along these branches ⟨ ⟩nocc  shows again a 
linear dependence on the density, although with a larger 
slope than along the compression branches. Similar to 
along the latter branches, we observe a small variation 
of dnn at small densities; a similar observation is made at 
rather high densities; however, over a large density range 
dnn assumes a constant value of ∼ =d d1.48nn nn

max;
 3. Intermediate branches (solid lines) data along these 

branches stem either from the ‘new’ compression runs or 
from the initial part of the expansion runs (i.e. ≳P 30m ). 
As ⟨ ⟩nocc  remains constant along these branches no cluster 
merging or splitting events occur. These sets of data con-
nect the compression and the expansion branches, thus 
dnn varies between =d 1.28nn

max  and =d 1.48nn
min .

We summarise our observations as follows: if an ordered 
system of GEM-4 particles is compressed or expanded, the 
two fundamental reaction mechanisms of the system are com-
pletely decoupled and they obey the following scheme: (i) as 
an immediate reaction on compression/expansion the lattice 
spacing a of a cluster crystal is reduced/enhanced; it varies 
within a range [ ]d d,nn

max
nn
min  while ⟨ ⟩nocc  remains constant; 

according to our above nomenclature, the system ‘moves’ 
along an intermediate branch; (ii) once the system has reached 
a state where =a dnn

min, further compression will induce 
cluster merging processes [18]: the required volume reduction 
is effectuated by deleting lattice positions via cluster merging 
events (i.e. ⟨ ⟩nocc  increases), while keeping the lattice spacing 
constant fixed at =a dnn

min; for this part of the compression 
process the system ‘moves’ along a compression branch; (iii) 
alternatively, if the system—once it has reached a state where 

=a dnn
max—is further expanded, the considerably increased 

inter-cluster distance will reduce the repulsion among the 
clusters, and consequently the aggregates will start to split: the 
larger available volume will be filled by an increased number 
of newly created, but smaller clusters (i.e. ⟨ ⟩nocc  decreases), 
while keeping the lattice spacing constant; for this part of the 
expansion process the system ‘moves’ along an expansion 
branch.

3.2. The quest for the equilibrium state

We now return to the question of how we can obtain in our 
experiments the density value that corresponds at a given 
pressure to the density that one would obtain from the equa-
tion-of-state of the system (i.e. the equilibrium state). So far, 
we can summarise our observations as follows: we obtain—
depending on the protocol of our compression and expansion 
processes—different results for ρ, a and ⟨ ⟩nocc  for a given 
Pm-value; thus, we can conclude that the system is driven by 
the different processes into metastable states that are sepa-
rated from the equilibrium state by large energetic barriers. 
To surmount these, we launch several annealing processes at 

Figure 3. Average cluster occupation, ⟨ ⟩nocc , as a function of the 
density in a two-dimensional GEM-4 system at a target temperature 
of =T 0.4t  during compression and expansion runs, imposing 
Δ = +P 1 (compression runs) and Δ = −P 1 (expansion runs). The 
symbols are coloured according to the dnn value (see colour code 
on the right-hand side). The dotted, solid and dash-dotted lines 
specify the compression, the intermediate (lower, middle and 
upper), and the expansion branches, respectively. In the inset we 
display the same data, now results originating from compression 
runs are marked by red symbols, while the data stemming from the 
expansion runs are shown as blue symbols. The black circles mark 
the starting points of the expansion and of the new compression 
runs, the arrows indicate whether it is a compression (arrow 
pointing to the right) or an expansion (arrow pointing to the left).

 4

 6

 8

 10

 12

 14

 3  4  5  6  7  8  9

〈n
oc

c〉

ρ

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

compression
expansion

J. Phys.: Condens. Matter 27 (2015) 325102



M Montes-Saralegui and G Kahl 

6

constant Pm, hoping we will recover in this manner an equi-
librium state in the system. The starting configurations for the 
different annealing runs are selected from state points along 
the compression, expansion and intermediate branches.

During the annealing processes we keep the target pressure 
constant and increase the temperature until the system melts; 
then we cool the system down to the desired target tempera-
ture =T 0.4t . We hope that the energy that is introduced into 
the particles via the heating process allows the system to over-
come the energetic barrier that separates the metastable states 
from the equilibrium state. If these annealing runs indeed lead 
to the equilibrium state, we expect all these processes (that 
start for a given Pm-value from different ρ-values) to end up at 
the same density, which we identify as the equilibrium density 
at this pressure value, i.e. ρ ( )Pequ m . In total we have performed 
annealing runs at =P 30, 40, 53, 60m  and 80.

In figure 4 we show the data for the measured density as 
functions of Tm for three annealing processes: they have been 
launched from state points that are characterised by =P 70m  
and are located (i) at the compression branch (red symbols, 
initial density value of ρ ∼ 6.4init ), (ii) the middle intermediate 
branch (green symbols, ρ ∼ 6.6init ) and (iii) the upper interme-
diate branch (blue symbols, ρ ∼ 7.25init ). The ρinit-values are 
marked by grey rectangles and the final value of the density 
after the annealing process ρfinal is marked as a purple circle.

During the initial heating, the sets of data of the compres-
sion branch and of the middle intermediate branch merge at 

=T 0.6m  and follow for the rest of the annealing process the 
same ρ( )Tm -curve. The results from the upper intermediate 
branch merge with the other sets of data at =T 1.1m ; by a 
visual inspection of the particle configurations we can con-
clude that at this temperature the nanocrystal begins to melt. 
These annealing processes are stopped as the system reaches 
a temperature of =T 1.2m , a typical snapshot of a particle con-
figuration taken at that instant is shown in the right panel of 
figure 4, providing evidence that the system has completely 
lost its ordered structure. Now the increment in temperature, 

ΔT , is reversed from Δ =T 0.1 to Δ = −T 0.05 and the three 
sets of data follow during the subsequent cooling run essen-
tially the same curve; eventually they reach a final, common 
state whose density is marked in figure 4 as a violet circle; 
obviously this value corresponds to the density of the equilib-
rium state, ρ ρ= ( = )P 70final equ m .

This protocol of annealing processes was repeated for dif-
ferent pressure values, namely for =P 30, 40, 53, 60m  and 80; 
the corresponding sets of data, displayed in the (ρ T, m)-plane 
are similar to those obtained for =P 70m  (and shown in 
figure 4). Each of these annealing runs carried out for a given 
Pm leads to the desired ρ ( )Pequ m -value. These density data (cor-
responding to ρ ( )Pequ m , shown in purple) are summarised in 
figure 5, where, in addition, the original data for the density, 
ρ( )Pm , as obtained from the compression (light-red symbols) 
and from the expansion (light-blue symbols) runs are shown 
(see figure 1). The respective ρinit-values are plotted with dark-
grey asterisks. The curve that connects as a function of Pm the 
ρ ( )Pequ m -data represents at =T 0.4t  the equation-of-state, i.e. 
ρ ( = )P T, 0.4equ m t .

Of course, the final answer if the obtained state indeed 
corresponds to an equilibrium state can only be given via 
additional free energy calculations. However, due to the high 
numerical costs for our different types of compression, heating 
and annealing runs we postponed additional free energy cal-
culations (which themselves would have been rather time con-
suming) to future investigations on this system.

Our conclusions are supported by a structural analysis of 
the systems, putting again focus on =T 0.4t : we have inves-
tigated the correlation between the average distance of two 
neighouring clusters, dnn, and the hexagonal order parameters, 
Ψ6. The latter one is defined as (see [21])

Figure 4. Left panel: measured data of the density as a function 
of the temperature ρ( )Tm  for different types of annealing processes 
of a two-dimensional GEM-4 system of cluster forming particles, 
launched at =P 70t ; these runs have been launched from the 
compression run (symbols in red), and from the middle (symbols in 
green) and from the upper (symbols in blue) intermediate branches 
(see text). The starting points of the respective runs are indicated by 
a rectangle. At =T 1.2m , ΔT  is switched Δ =T 0.1 to Δ = −T 0.05. 
The density values measured at the end of the respective runs are 
marked by a violet circle. Right panel: snapshot of the system at 

=T 1.2m .
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 (4)

where nj denotes the number of nearest neighbours of cluster j, 
and Θjk the angle between the line connecting cluster j and its 
nearest neighbour k with a fixed axis. By definition, Ψ6 attains 
a value of 1 for a perfect hexagonal arrangement, while we 
typically found Ψ ≈ 0.46  for the disordered liquid state.

In figure  6 we show this correlation between dnn and 
Ψ6, considering all the expansion (red symbols), compression 
(blue symbols) and annealing (violet symbols) runs, as well 
as all pressure values Prmm. We observe that during the com-
pression and the expansion runs the maximum value of the 
order parameter obtains values of Ψ ∼ 0.9756  while after the 
annealing processes we obtain Ψ ∼ 0.9856 : thus, we conclude 
that annealing is able to heal out lattice defects in the cluster 
crystal. The maximum value obtained for Ψ6 corresponds to a 
nearest neighbour distance of ∼d 1.37nn  which we thus con-
sider the lattice spacing of the equilibrated state. This result 
differs from the corresponding value predicted density func-
tional theory calculations (i.e. =d 1.42nn ); we attribute this 
difference to the fact that we are investigating a nanodroplet 
of finite size and not a bulk system.

4. Conclusions

In this contribution we have investigated a two-dimensional 
nanodroplet of ultrasoft, cluster forming particles that is 
surrounded by a layer of ideal gas particles. By varying the 
number of particles in this reservoir and by changing their 
velocities we can impose a target pressure and a target tem-
perature on our nanodroplet.

Straightforward applications of compression runs on the 
system (i.e. keeping the temperature fixed at a target value Tt 
while systematically increasing the pressure by an increment 

ΔP) transform an originally disordered system into a cluster 
crystal, i.e. a hexagonal arrangement of clusters of overlap-
ping particles. This system is obviously not in an equilibrated 
state: this fact becomes evident in subsequent expansion runs 
(i.e. keeping Tt fixed and applying now a negative pressure 
increment ΔP) that lead—in dependence on the respective ini-
tial particle configurations—to states that differ in their densi-
ties, ρ, from the corresponding ρ-values that the system had 
assumed during the preceding compression run.

By systematically launching alternating sequences of 
compression and expansion runs in different sections of the 
investigated pressure range we provide evidence that these 
differences in the densities are not related to a dynamic lag. 
By analysing the evolution of the cluster occupancy and of 
the lattice constant of the cluster crystal along these processes 
we extract the following typical reaction scheme on com-
pression and expansion of systems of ultrasoft particles: (i) 
immediately after compression/expansion the lattice spacing 
is reduced/enhanced until it assumes a characteristic, limiting 
value; (ii) once this value is reached, the averaged cluster 
occupancy (which remained constant so far), compensates 
for this spatial rearrangement by an decrease/increase in the 
cluster size.

In an effort to provide a route of how to reach the equili-
brated state of the system with our setup we have introduced 
additional heating and annealing runs, i.e. keeping now the 
target pressure, Pt, fixed and varying the temperature via a 
positive or negative temperature increment ΔT , respectively. 
Selecting different starting configurations (each being char-
acterised by its respective density value) at a fixed pressure, 
we could show that heating runs (until the system completely 
melts) and subsequent annealing processes lead to final states 
that have—irrespective of the density of the starting configu-
ration—the same ρ-value; we identify this density as the equi-
librium density, ρequ, for this particular target pressure and 
target temperature.

Of course a complete analysis if the obtained states do rep-
resent equilibrium states would require additional free energy 
calculations, which would provide a final, unambiguous 
answer on this issue; due to the high numerical cost of the 
required, additional investigations we have refrained from this 
type of analysis. On this occasion we should also state that the 
strategy we used for our investigation takes benefit from the 
(presumably) continuous nature of the phase transition in the 
two-dimensional version of the system [22].
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Figure 6. Correlation between the average distance of two 
neighouring clusters, dnn, and the hexagonal order parameters, Ψ6 
during compression runs (symbols in light-red) and expansion runs 
(symbols in light-blue) a two-dimensional GEM-4 system of cluster 
forming particles at a target temperature =T 0.4t . The symbols 
shown in violet denote results as obtained at the end of the different 
annealing runs.
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