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We generalize the inverse patchy colloid model that was originally developed for heterogeneously
charged particles with two identical polar patches and an oppositely charged equator to a model
that can have a considerably richer surface pattern. Based on a Debye-Hückel framework, we
propose a coarse-grained description of the effective pair interactions that is applicable to particles
with an arbitrary patch decoration. We demonstrate the versatility of this approach by applying it
to models with (i) two differently charged and/or sized patches, and (ii) three, possibly different
patches. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4930600]

I. INTRODUCTION

Colloids with patterned surfaces (commonly referred to
as patchy particles) are considered as very versatile build-
ing entities whose shape and surface decoration can be de-
signed such that they support the self-assembly of target struc-
tures with desired properties.1,2 The self-organizing behavior
of these units is based on their ability to form directional
and highly selective bonds via the specific interaction features
of the different surface areas. The versatility of this class of
particles can be even enhanced if their surface decoration is
characterized by charged regions, since in this case different
surface areas can either be mutually attractive or mutually
repulsive according to their respective charges. Many natu-
rally occurring units at the nanoscale, such as proteins, virus
capsids, and spotted vesicles, are characterized by differently
charged moieties;3–7 in simple model systems, a heteroge-
neously charged surface can be realized in the so-called inverse
patchy colloids (IPCs).8

IPCs are charged spherical colloids decorated by oppo-
sitely charged regions, realized, for instance, by polyelectrolyte
stars adsorbed onto the particle surface.9,10 Based on the fea-
tures of the complex units presented in Ref. 9, a related model
has been developed,8 where two identical, charged patches
are located on the poles of an oppositely charged colloid.
Closed expressions for the single particle potential and for the
pair potential of two interacting IPCs can be written using a
standard formalism of electrostatics within the Debye-Hückel
approach: the resulting analytical description of the pair inter-
actions is based on approximating the ratio between spherical
Bessel functions of consecutive orders with a Yukawa-like term
that represents the asymptotic behavior of the spherical Bessel
functions; the validity of this approach under high screen-
ing conditions has been shown in the Appendix of Ref. 8.
The advantage of such an approximation consists in providing
an analytic expression that is immediately recognizable as a

a)Electronic address: gerhard.kahl@tuwien.ac.at
b)Electronic address: emanuela.bianchi@tuwien.ac.at

generalized Derjaguin-Landau-Verwey-Overbeek potential. In
order to make IPC systems amenable to theoretical approaches
and/or computer simulations, a coarse-grained description was
also introduced, leading to considerably simplified expressions
for the pair interaction between IPCs with two symmetric
patches.8 These interactions, that depend on both the relative
distance and the relative orientation of the two IPCs, are able
to form bonds in a highly selective manner, leading to complex
self-assembly scenarios.11–16

The rapid progress in synthesizing heterogeneously pat-
terned colloids with desired patch decorations17–23 urges to
push forward the described IPC model towards a more sophis-
ticated framework where particles can have an arbitrary patch
decoration. The present contribution is dedicated to present a
general formalism that allows to calculate the effective poten-
tial between two arbitrarily decorated IPCs. Similar to the
original derivation for two identical patches,8 we replace the
differently charged regions of the particle by point charges
that are located in their respective centers of charge. For the
ensuing charge distribution, we solve the electrostatic equa-
tions, along with the boundary conditions at the surface, and
obtain the potential created by a single IPC: expanding both
the charge density and the ansatz for the potential in terms of
spherical harmonics, we can derive for a particular patch deco-
ration a set of equations for the expansion coefficients. Based
on this potential, we can then calculate the effective interac-
tion between two IPCs. The algorithm, although amenable to
an arbitrary patch decoration, becomes rapidly involved with
an increasing number of patches and/or the complexity of
the patch decoration. In this contribution, we demonstrate the
versatility of our approach by considering in detail the two-
patch case with a size and/or charge disparity in the patches;
moreover, we extend the present approach to IPCs with a
symmetric patch decoration of three identical patches.

The manuscript is organized as follows. In Section II, we
provide the theoretical description of the effective interactions
between two IPCs with polar patches that are characterized
by two possibly different sets of parameters. Following the
Debye-Hückel approach, we first — analytically — calculate

0021-9606/2015/143(11)/114905/12/$30.00 143, 114905-1 © 2015 AIP Publishing LLC
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the electrostatic potential around a single two-patch IPC (see
Subsection II A) and then we — numerically — determine
the effective potential between two IPCs (see Subsection II B).
In Section III, we introduce the coarse-grained model and we
motivate the choice of its parameters with the mapping proce-
dure that links the analytical to the coarse-grained descrip-
tion. In Section IV, we consider a broad selection of IPC
systems and we show results for the Debye-Hückel potential
(see Subsection IV A) and for the coarse-grained potential
(see Subsection IV B). In Subsection IV A, we distinguish
three cases: IPCs with identical (i.e., symmetric) patches as in
Refs. 11 and 12, IPCs with patches carrying different charges,
and IPCs with patches having different surface extensions;
results for the case of symmetric patches are compared to
those obtained with the Yukawa approximation (YA) used in
Ref. 8. In Subsection IV B, we consider the case of patches
that are asymmetric in charge. Our conclusions are outlined in
Section V. Finally, in the Appendix, we demonstrate how to
extend our approach to IPCs with three identical patches.

II. THE DEBYE-HÜCKEL DESCRIPTION

We consider an IPC of radius σ surrounded by a dielec-
tric solvent. According to Gauss’ law the electrostatic field
outside a sphere with a homogeneously distributed surface
charge is identical to the field generated by a point charge
positioned in the center of the dielectric colloidal particle.
When a colloid has a heterogeneously charged surface, the
charge of the different areas (either the patches or the bare
colloid) can be replaced by a discrete distribution of point
charges positioned at the respective centers of charge inside
the particle: while the center of charge of the colloid coincides
with the center of the colloidal sphere, the centers of charge
of the patches are located inside the particle in a well-defined
geometry (that exactly reflects the patch decoration), each at
a specific distance from the particle center. The inside of the
colloid is inaccessible to both the co- and counter-ions of the
electrolyte solution, while outside the particle these ions are
part of the surrounding medium. For sake of simplicity, we
assume that the dielectric permittivity, ε, has the same value

both inside and outside the colloid. Nonetheless, we checked
that with different permittivities inside and outside the colloid,
the potential is changed by less than 5%.

In Subsection II A, we derive the screened electrostatic
potential generated by a single particle with a discrete distri-
bution of charges: the potential is calculated both inside and
outside the colloid by expanding it in terms of spherical har-
monics; then, by imposing electrostatic boundary conditions,
a set of linear equations for the expansion coefficients is ob-
tained. The system of equations can be numerically solved,
leading eventually to the single particle potential. Based on this
information, we numerically calculate in Subsection II B the
pair potential between two identical particles.

The present approach can be applied to a colloidal particle
decorated by an arbitrary number of patches, np, at well-
defined positions. As the algorithm becomes rapidly involved
with increasing np, we focus here on IPCs with two differently
charged or sized patches. To demonstrate the versatility of the
concept, we briefly outline the case of IPCs with three patches
in the Appendix.

A. The electrostatic potential around a single
two-patch IPC

1. Calculation of the potential inside the colloid

We describe the heterogeneously charged colloid as a
dielectric sphere with a discrete charge distribution ρ(r, θ, ϕ)
located in its interior. For sake of simplicity, we set the elemen-
tary charge qe to unity. The potential generated by the distri-
bution of the charges inside the particle satisfies Poisson’s
equation (Gaussian units are used in the following),

∆Φ
(1)(r, θ, ϕ) = 4π

ε
ρ(r, θ, ϕ); (1)

here, the charge density, ρ(r, θ, ϕ), is the result of the central
charge of the colloid, Zc, and the two out-of-center charges
of the patches, Zp1 and Zp2, respectively; the latter ones are
assumed to be positioned at distances a1 and a2 from the
particle center, in directions opposite to each other. In spherical
coordinates, the charge density is thus

ρ(r, θ, ϕ) = −Zcδ(r) − Zp1

1
a2

1

δ(r − a1)δ(θ − π

2
)δ(ϕ) − Zp2

1
a2

2

δ(r − a2)δ(θ − π

2
)δ(ϕ − π). (2)

The general solution of Equation (1) is the sum of the general solution of the corresponding homogeneous equation (also
known as Laplace’s equation) and a particular solution of the inhomogeneous equation. The first contribution, Φ(1)

hom(r, θ, ϕ),
is

Φ
(1)
hom(r, θ, ϕ) =

∞
ℓ=0

+ℓ
m=−ℓ

�
Bℓmrℓ + Cℓmr−ℓ−1�Yℓm(θ,ϕ), (3)

the Yℓm(θ,ϕ) being the spherical harmonics. Since the potential inside the colloidal sphere should be well-behaved at r = 0, the
coefficients Cℓm are set to zero.

A particular solution of Equation (1), Φ(1)
part(r, θ, ϕ), depends on the specific charge distribution ρ(r, θ, ϕ). In our case —

Equation (2) — we end up with the following expression:

Φ
(1)
part(r, θ, ϕ) =

4π
ε

∞
ℓ=0

+ℓ
m=−ℓ

1
2ℓ + 1



Zp1 aℓ
1

rℓ+1 Y ∗ℓm
(
π

2
,0

)
+

Zp2 aℓ
2

rℓ+1 Y ∗ℓm
(
π

2
, π

) Yℓm(θ,ϕ) + 4π
ε

Zc
1
r

Y ∗00Y00, (4)
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where the star denotes complex conjugation. We note that for
two identical patches, the expansion of the potential in terms of
spherical harmonics can be replaced by an expansion in terms
of Legendre polynomials.8 Here, the coordinate system is fixed
such that one patch is located at ϕ = 0 and θ = π

2 . This system
is used in all following steps.

The solution inside the colloid,Φ(1)(r, θ, ϕ), is finally given
by

Φ
(1)(r, θ, ϕ) = Φ(1)

hom(r, θ, ϕ) + Φ(1)
part(r, θ, ϕ). (5)

2. Calculation of the potential outside the colloid

Outside the colloid the dielectric solvent has to be taken
into account: it consists of a large number of co- and counter-
ions which will be treated within a mean field approach such
that Boltzmann statistics apply. The characteristic features of
the dielectric solvent enter only via the inverse Debye screen-
ing length κ.24 At low ion densities, a linearization of the
Poisson-Boltzmann equation leads to the Helmholtz equation
for the potential outside the colloid, Φ(2)(r, θ, ϕ),

∆Φ
(2)(r, θ, ϕ) = κ2

Φ
(2)(r, θ, ϕ). (6)

In its most common form this equation has a different sign
and is solved by an expansion in terms of the modified
spherical Bessel functions jℓ(x) and yℓ(x). Using the
substitution κ → iκ in the expression for the standard
solution, we arrive at the following solution for Equa-
tion (6):

Φ
(2)(r, θ, ϕ) =

∞
ℓ=0

+ℓ
m=−ℓ

[Aℓm jℓ(iκr) + Bℓmyℓ(iκr)] Yℓm(θ,ϕ),

(7)

where i is the complex unit and

jn(iκr) = (i)n(κr)n
(

1
κr

d
d(κr)

)n sinh κr
κr

, (8)

yn(iκr) = −(i)n(κr)n
(

1
κr

d
d(κr)

)n cosh κr
κr

, (9)

with n = 0,1,2,3, . . .. Since Φ(2)(r, θ, ϕ) has to be regular for
r → ∞, while jn(iκr) and yn(iκr) both diverge at large dis-
tances, we introduce — following standard procedures —
suitable linear combinations of the two sets of functions,
namely,

h(1)
n (iκr) = jn(iκr) + iyn(iκr) = −(i)n(κr)n

(
1
κr

d
d(κr)

)n e−κr

κr
, (10)

h(2)
n (iκr) = jn(iκr) − iyn(iκr) = (i)n(κr)n

(
1
κr

d
d(κr)

)n eκr

κr
, (11)

which are commonly known as Hankel function of the first kind
and second kind, respectively. Since the Hankel functions of
the second kind do not decay exponentially with the distance,
only the Hankel functions of the first kind are retained in the
following.

Thus the potential outside the colloid can be written as

Φ
(2)(r, θ, ϕ) =

∞
ℓ=0

+ℓ
m=−ℓ

Cℓmh(1)
ℓ (iκr)Yℓm(θ,ϕ). (12)

3. Linking the two potentials via boundary conditions

To solve the system of differential equations, we need to
consider the proper boundary conditions. First, the potential
must vanish at infinity and has to be continuous at r = σ.
Second, the normal component of the displacement field must
be continuous. Since the relative permittivity ε is taken to be
the same inside and outside of the colloid, these boundary
conditions can be written as

Φ
(1)(r, θ, ϕ)|r=σ = Φ(2)(r, θ, ϕ)|r=σ,

∂rΦ
(1)(r, θ, ϕ)|r=σ = ∂rΦ

(2)(r, θ, ϕ)|r=σ .
(13)

We now insert the expansions of Φ(1)(r, θ, ϕ) — see Equa-
tions (3) and (4) — and of Φ(2)(r, θ, ϕ) — see Equation
(12) — into these relations. Since the spherical harmonics are
linearly independent, we obtain for each index combination
(ℓ,m) an equation for the corresponding, yet unknown coeffi-
cient that has to be solved numerically; the series expansions
are truncated at a suitable upper limit, ℓmax. Once these coeffi-
cients are known, the resulting electrostatic potential around
a single IPC is thus available. Being interested only in the
potential outside the colloid, we will omit in the following the
superscript 2 and refer to the screened electrostatic potential in
the region of interest as Φ(r, θ, ϕ).

Since in our particular case the patches are arranged on the
(θ = π

2 )-plane, the θ-symmetry is conserved and only spherical
harmonics with an even sum (ℓ + m) contribute to the expan-
sion. If, in addition, the patches are symmetric in size and
charge, a further symmetry can be exploited; as a consequence,
only functions with m mod np = 0 need to be considered,8

where np denotes the number of patches in the system.
In Figure 1 we show the single particle potentialΦ(r, θ, ϕ)

generated by an IPC carrying two identical patches as a func-
tion of θ, keeping r fixed to either r = σ (left panel) or r
= σ + 4/κ (right panel). The system parameters used for the
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FIG. 1. Single particle potential Φ(r, θ,ϕ) for an IPC
with two identical patches; the potential is represented
as a function of the angle θ at a fixed distance: r =σ
(left panel) and r =σ+ 4

κ (right panel); for two identical
patches, the single particle potential does not depend
on ϕ due to the azimuthal symmetry. The following set
of parameters is chosen: Zc=−180, Zp1= Zp2= Zp= 90,
a1= a2= a = 0.6σ, κσ = 5, and ϵ = 80 (dielectric per-
mittivity of water at room temperature). In both panels,
the continuous red line corresponds to the numerical ap-
proach (NA) developed here — with cut-off lmax= 80 for
the number of spherical harmonics — while the dotted
green line reproduces the data obtained via the Yukawa
approximation (YA) used in Ref. 8.

comparison are specified in the figure caption. In these panels,
we compare results calculated via the analytic route (presented
here) and data obtained via the approximate approach put
forward in Ref. 8; the two different routes will be labeled
henceforward as “numerical approach” (NA) and YA, respec-
tively.

B. The effective potential between two IPCs

Once the single particle potential is known, the effective
interaction energy between two identical colloids can be calcu-
lated using the same procedure as put forward in Ref. 8: we first
determine the potential energy due to the presence of an IPC in
the screened electrostatic field generated by another IPC (see
Equations (5) and (6) of Ref. 8) and then we symmetrize it;
finally, the total interaction energy for a given particle-particle
configuration is obtained as the average value over the two
contributions divided by the absolute value of the minimum
of the attraction. The resulting pair potential is thus given by
the sum of the screened Coulomb potentials generated by the
source sphere and centered at the positions of the three effective
charges inside the probe sphere; in the sum, each contribution
is multiplied by the magnitude of the corresponding effective
charge at that point.

The described procedure is analytically applied in Ref. 8
due to the Yukawa approximation operated on the single parti-
cle potential; however, in the present contribution we calculate
the pair potential via a numerical route, thus retaining higher-
order spherical harmonics.

The radial and angular dependences of the resulting pair
potential are investigated in Sec. IV on changing the micro-
scopic parameters of the model; in particular, we focus on the
effect of varying either the surface charges, i.e., Zc, Zp1, and
Zp2, or the patch positions, i.e., a1 and a2, while keeping the
screening conditions, imposed by κσ, constant.

III. THE COARSE-GRAINED DESCRIPTION

We consider the coarse-grained description introduced in
Ref. 8 for IPCs characterized by two identical patches and

we extend this model to the case of two different patches.
The coarse-grained description is designed to reproduce the
same symmetries as the underlying microscopic system and
is characterized by three independent sets of parameters: the
interaction ranges of the different surface regions, their inter-
action strengths, and their surface extents.

The model features a hard spherical particle of size σ
carrying two interaction sites placed in opposite directions
at distances a1 and a2 from the particle center; both dis-
tances are smaller than σ so that the two sites are always
located inside the colloid. As a consequence, the corresponding
site interaction spheres (with radii ρ1 and ρ2) extend only
partially outside the hard core particle, defining in this way
the polar patches; the respective surface extensions of the
patches are characterized by the half-opening angles γ1 and
γ2.

Since the characteristic interaction distances in the micro-
scopic system are determined by the electrostatic screening of
the surrounding solvent, all entities of the colloid are assumed
to have the same interaction range, δ, irrespective of the surface
regions involved in the interaction. The interaction sphere of
the bare colloid has thus radius σ + δ/2. We note that δ solely
comprises the screened electrostatic interaction, while σ de-
fines the excluded volume interaction.

By construction, the following relations between the geo-
metric parameters of the model hold:

δ

2
= ai + ρi − σ, (14)

cos γi =
σ2 + a2

i − ρ2
i

2σai
, (15)

where i = 1,2; these relations are the generalizations of Equa-
tions (10) and (11) in Ref. 8, where only the special cases a1
≡ a2 and ρ1 ≡ ρ2 were studied. By virtue of these constraints,
the model is characterized only by two sets of geometric
parameters: the particle interaction range δ and the patch sizes
γ1 and γ2. Indeed, once the independent parameters of the
model, a1,2 and ρ1,2, are defined, the physical parameters, δ
and γ1,2, are also fixed.
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In contrast, the energy parameters of the model are related
to the charges involved in the interactions. While the center
of the particle carries a charge Zc, the two sites carry charges
Zp1 and Zp2, respectively. These charges are responsible for the
ratio between the attractive and repulsive contributions to the
pair energy associated to the different (patch/patch, patch/bare,
and bare/bare) interactions.

The specific form of the pair potential is based on the
postulate that each of the aforementioned contributions can be
factorized into an energy strength and a geometrical weight
factor, the latter one being given by the distance dependent
overlap volume of the involved interaction spheres. More
specifically, beyond the hard core repulsion, the pair potential
between two IPCs at distance r is given by Ref. 8 (omitting the
arguments for brevity),

U =



3
4πσ3


i j

ui jwi j if 2σ < r < 2σ + δ

0 if r ≥ 2σ + δ,
; (16)

here i ( j) specifies either a site or the center of the first (second)
IPC, wi j is the overlap volume of the corresponding interaction
spheres, and ui j is the energy strength of the i j interaction.
We note that, while the ui j are constants fixed by the mapping
procedure, the wi j — as well as the potential U — depends on
both the inter-particle distance and the relative orientation of
the two IPCs. Even though the wi j are complicated functions of
the relative distance and relative orientation of two interacting
particles, these quantities can easily be written down once the
site-site, the site-center, and the center-center distances are
known (as reported in Ref. 8).

Both the length and the energy scales involved in the
coarse-grained model are imposed by the mapping schemes
outlined in Ref. 8. For what concerns the length scales, we
assume that the coarse-grained interaction range is propor-
tional to the Debye screening length according to the following
relation: κδ = n, where κ is determined by the screening condi-
tions κσ = m; thus δ = n

m
σ, where m and n are not necessarily

integer numbers. For a given δ, the angular patch extents γ1,2
are defined by the choice of either a1,2 or ρ1,2. The overlap

volumes wi j for a given configuration are fixed by the choice of
the geometric parameters. On the other hand, the energy scales
are imposed by the mapping scheme referred to as “max”
in Ref. 8: the energy strengths ui j are fixed by considering
characteristic reference configurations of two IPCs at contact
and then imposing that the contact values of the Debye-Hückel
and the coarse-grained potentials are equal. More specifically,
since both potentials are different from zero only when the
distance between two particles is such that 2σ ≤ r ≤ 2σ + δ,
the mapping scheme used can be explicitly written as

urc =
3

4πσ3


i j

ωrc
ij uij, (17)

where urc is the Debye-Hückel interaction energy of the refer-
ence configuration (labelled rc), the ωrc

ij are the weight factors
evaluated for the reference configuration, and the uij are the
energy constants to be fixed via the mapping. We note that
for two identical patches the number of i j interactions is three
(center-center, center-site, and site-site) and thus the number
of reference configurations to be considered must be three. Of
course, for differently charged or sized patches a larger system
of equations for the yet unknown ui j must be solved. For a
given set of geometric parameters, the overall particle charge
Ztot = Zc + Zp1 + Zp2 determines the set of ui j values for the
chosen reference configurations.

For IPCs with two symmetric patches the three configura-
tions depicted on the right hand side of Figure 2, namely, the
polar-polar (PP), the equatorial-polar (EP), and the equatorial-
equatorial (EE) configurations, are enough to fully describe
the inter-particle potential. In this case, the pair interaction
energy is normalized with the value corresponding to the EP
configuration.11,12 For the full description of IPCs with asym-
metric patches (either in size or in charge), six characteristic
particle configurations are needed: in particular, in the PP and
EP configurations the existence of two different patches must
be taken into account. In the following we denote differently
charged or sized patches as patch 1 and 2, and we thus distin-
guish six characteristic configurations, i.e., PP(11), PP(12),

FIG. 2. Radial (left) and angular (right) dependences
of the interaction energy V (in units of kBT ) of two
overall neutral IPCs with two identical patches. The
specific choice of the parameter set guarantees that data
obtained within the YA correspond to the model referred
to as 45n in Ref. 11: Zc=−180, Zp1= Zp2= Zp= 90,
a1= a2= a = 0.44σ, κσ = 5, and ϵ = 80 (dielectric per-
mittivity of water at room temperature). Results obtained
within the NA are represented by continuous lines, while
YA-based data are depicted by dotted lines. In the left
panel, the potentials are shown as functions of the inter-
particle distance r between two IPCs in three different
mutual orientations (as labeled): the polar-polar (PP),
the equatorial-polar (EP), and the equatorial-equatorial
(EE) configurations, depicted schematically in the right
panel; in the right panel, the potentials are represented
for two IPCs at contact, i.e., at a distance r = 2σ, as
functions of the rotation angleω of one colloid around an
axis perpendicular to the plane of the figure and passing
through its center, while holding the other colloid fixed:
after a rotation of 90◦ one particle-particle configuration
transforms into one of the other particle arrangements.
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PP(22), EP(1), EP(2), and EE. In this case, the interaction
energies are normalized by the most attractive interaction,
corresponding either to the EP(1) or the EP(2) configuration.

IV. RESULTS

In the following we evaluate the effective potentials be-
tween different pairs of two-patch IPCs in characteristic par-
ticle-particle configurations. More specifically, we investigate
in Subsection IV A the radial and angular dependences of the
Debye-Hückel potential, while we discuss the coarse-grained
counterpart in Subsection IV B.

A. The Debye-Hückel potential

In the following, we first consider the case of IPCs with
symmetric patches and compare the Debye-Hückel potential
obtained with the NA developed here to the results calculated
within the YA proposed in Ref. 8 (see Subsection IV A 1);
this comparison shows that the two approaches provide essen-
tially the same results for the effective pair potential, thus
constituting a unified framework for IPCs with two identical
patches that can then be used as a benchmark to estimate the
effects of a possible asymmetry in the charge distribution on
the pair interactions. Subsequently, we discuss the NA-based
potentials for IPCs with asymmetric patches, either in charge
(see Subsection IV A 2) or in size (see Subsection IV A 3).

1. Symmetric patches

We first consider overall neutral IPCs with two identical
patches, i.e., we set Ztot = 0, Zp = Zp1 = Zp2, and a = a1 = a2.
For this case we compare the radial and angular dependences
of the pair potentials obtained within the NA developed in this
contribution and within the YA put forward in Ref. 8. To this
end we consider a selected set of parameters: in particular,
we fix the screening conditions κσ, the charges Zc and Zp,
and the patch-center distance a such that we recover the same
set of model parameters referred to as 45n in Ref. 11; this
label identifies the selected model by the patch size of the
related coarse-grained description, i.e., γ1 = γ2 = 45◦, and by
the overall particle charge, where “n” stands for neutral. In
the following, we continue to use this labeling scheme. As
shown in Fig. 2, the results obtained within the two approaches
are sufficiently close to each other: only in the case of the PP
repulsion we observe that it is slightly stronger within the NA;
for the chosen set of parameters (specified in the caption of
Fig. 2), the NA contact energy of the PP configuration is by a
factor ≈1.15 bigger than the corresponding YA-value.

As the contact energy, V2σ, for the different particle-
particle configurations characterizes the pair potential, we
calculate such a value on varying the charge imbalance be-
tween the patches and the bare colloid, starting from the
45n model and increasing the colloid charge Zc; the charge
imbalance is thus quantified by the overall particle charge Ztot.
The corresponding data, labeled with 45, are reported in Fig. 3:
in the main panel we show the NA-data, while in the inset
YA-results are displayed. Since for the EP configuration V2σ is

FIG. 3. Contact energies V2σ (in units of kBT ) of two IPCs at contact in the
EE and PP configurations (as labeled) as functions of the charge imbalance
Ztot/Zp; the contact energy between two IPCs in the EP configuration is by
construction equal to −1 and is thus not displayed. The main panel reports the
NA-results, while the inset shows the corresponding data obtained within the
YA. For fixed screening conditions and particle charges, three patch-center
distances (corresponding to three different patch sizes in the related coarse-
grained models) are chosen such that the overall neutral systems studied in
Refs. 11 and 12 are recovered. For overall neutral IPCs, the following set of
parameters is chosen: Zc=−180, Zp1= Zp2= Zp= 90, a1= a2= a = 0.64σ
(labeled 30 to specify the coarse-grained patch size γ = 30◦), 0.44σ (labeled
45 to highlight the coarse-grained patch size γ = 45◦), and 0.32σ (labeled
60 to specify the coarse-grained patch size γ = 60◦), κσ = 5, and ϵ = 80
(dielectric permittivity of water at room temperature); for overall charged
IPCs, the patch charges are fixed to Zp= 90, while the colloid charge is
changed from Zc=−180 by Ztot.

always equal to unity by construction, only the contact values
for the repulsive contributions are reported. Both approaches
show the same trend on increasing Ztot: while in the overall
neutral system, the PP repulsion is much stronger than the
EE repulsion, in overall charged systems the PP repulsion
decreases, whereas the EE one increases up to the point where
the EE interaction becomes more repulsive than the PP one.
The comparison between the NA and the YA reveals that even
though this trend is present in both sets of data, the values of Ztot
at which the PP and the EE repulsions are equal differ between
the two approaches: for the chosen set of parameters (specified
in the caption of Fig. 3), Ztot/Zp ≃ −1.11 within the NA, while
this value is approximately −0.44 within the YA, indicating
that the described trend of the characteristic repulsions is more
pronounced in the latter potential description.

We also studied the behavior of the contact energy as
a function of the charge imbalance for other IPC models,
specified by a different choice of the parameter a. We note
that at fixed interaction range, the choice of a uniquely deter-
mines the patch size γ of the related coarse-grained model.
In Fig. 3, we report V2σ-values for IPCs that are labeled by
30 (with a patch-center distance bigger than the one of the
45 model and such that γ = 30◦) and 60 (with a patch-center
distance smaller than the one of the 45 model and such that
γ = 60◦), assuming EE and PP configurations. The choice of
the parameters (specified in the caption of Fig. 3) is such that
for Ztot = 0 the YA reproduces the interactions of the overall
neutral models studied in Ref. 11 (referred to as 30n) and in
Ref. 12 (referred to as 60n); accordingly, their overall charged
counterparts investigated in Refs. 11 and 12 are reproduced
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FIG. 4. Radial (left) and angular (right) dependences of the interaction energy V (in units of kBT ) between two overall charged IPCs with two identical patches.
The specific choice of the parameter set guarantees that data obtained within the YA correspond to the model referred to as 45c in Ref. 11: Zc=−280 (for the
NA) or −220 (for the YA), Zp1= Zp2= Zp= 90, a1= a2= a = 0.44σ, κσ = 5, and ϵ = 80 (dielectric permittivity of water at room temperature). Results for the
NA are represented by continuous lines, while data obtained with the YA approach are depicted by dotted lines. In the left panel, the potentials are reported as
functions of the inter-particle distance r between two IPCs in the PP, EP, and EE configurations (as labeled); in the right panel, the potentials are represented for
two IPCs at contact, i.e., at a distance r = 2σ, as functions of the rotation angle ω around an axis perpendicular to the plane of the figure: after a rotation of 90◦

one particle-particle configuration transforms into one of the other particle arrangements.

by the YA potentials for Ztot/Zp = −1.11 (model referred to as
30c) and −0.22 (model referred to as 60c). Despite a scaling
factor, the NA and YA provide very similar trends for the
repulsive contact energies in the PP and the EE configurations
as functions of the charge imbalance.

Finally, in Fig. 4 we show the radial and angular depen-
dences of the pair potential between charged IPCs at the same
characteristic point: irrespective of the theoretical approach
used, the selected IPCs are characterized by almost identical
EE and PP contact energies. For the chosen set of parameters
(specified in the caption of Fig. 4), we fix in our NA and
YA calculations Ztot/Zp = −1.11 and Ztot/Zp = −0.44, respec-
tively; the latter system corresponds to the set of model param-
eters that is referred to as 45c in Ref. 11; again, such a label
identifies the selected model via the patch size of the related
coarse-grained description, i.e., γ1 = γ2 = 45◦, and by the over-
all particle charge, where “c” stays for charged. As in the
neutral case, the trends in the radial and angular dependences
of the potentials are the same for both approaches, the NA
providing data that are only slightly more repulsive than the
YA-based results (for both the EE and the PP configurations).

We note that also for models 30 and 60 the full radial and
angular dependencies of the corresponding potentials do not
show significant differences between the two approaches, as
demonstrated for model 45. We can conclude that both the NA
and the YA provide consistent results for the description of the
inter-particle interaction between IPCs.

2. Asymmetric patches in charge

We now consider IPCs with two polar patches of equal
size but different charges within the NA approach. In particular,

we focus on the 45n model investigated in Subsection IV A 1
and we change the charges of the two patches, while keeping
the central charge of the colloid fixed. In order to maintain a
vanishing overall charge of the particle, the charge of one patch
(say Zp1) is increased from Zp to Zp(1 + q), while the charge of
the other patch (say Zp2) is decreased from Zp to Zp(1 − q). In
Fig. 5 we report the resulting contact energy values as functions

FIG. 5. Contact energies V2σ (in units of kBT ) between two overall neutral
IPCs in six different mutual orientations (as labeled) as functions of the
charge asymmetry parameter q (defined in the text). When q = 0, the model
corresponds to the 45n model whose parameters are given in the caption of
Fig. 2. The models with differently charged patches (q > 0) are obtained in the
following way: the central charge is kept constant to Zc=−180 and the two
patch charges, initially set to the same value Zp1= Zp2= Zp= 90, are either
increased or decreased by a factor q, i.e., Zp1= Zp(1+q) and Zp2= Zp(1−q);
Zp sets the charge unit. The vertical black line highlights the value of q = 0.22
for which the radial and angular dependences of the pair potentials is shown
in Figure 6.
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of q for the six characteristic particle-particle configurations
specified in Sec. III. As expected the three PP energies, as
well as the two EP energies, are identical for q = 0 and they
deviate from each other as soon as q increases. We note that
since the V2σ-value for IPCs in the EP(1) configuration is used
to normalize the pair potential, the corresponding curve in the
(V2σ,q)-plane is of course a horizontal line; on the other hand,
the EP(2) value for V2σ increases from −1 to slightly positive
values as the charge of the second patch decreases, i.e., on
increasing q. We also note that the contact value of the EE
repulsive interaction is almost constant — it changes from
slightly positive to slightly negative values — as the patch-
free zones are unaffected by the change of the patch charges,
at least as long as the IPC is overall neutral. Finally, as Zp2
increases and Zp1 decreases, the PP(11) and PP(22) contact
values rapidly increase and decrease, respectively; in contrast,
the PP(12) contact value, being given by the overlap of one
decreasing and one increasing patch charge, features a much
slower decrease. In Fig. 5, there is a narrow q-range where the
curves of the PP(12), PP(22), EE, and EP(2) contact energies
intersect (i.e., at q∗ ≈ 0.66 for the particular set of parameters
chosen). Beyond this point the PP(22) interaction becomes
attractive although the patches still have the same sign. This
value depends on the system parameters: at fixed interaction
range, the q-value at which all the interactions — except the
reference EP(1) one — have very similar contact energies
increases as the patch size decreases. Nonetheless, since at this
point the charge asymmetry is already quite large, the potential
description must be considered unreliable.

In Fig. 6, we show the full radial and angular dependencies
of the inter-particle potential for an IPC model with asym-
metrically charged polar patches, specified by q = 0.22. An
interesting effect of the asymmetry is that the positions of the
various minima and maxima in the angular dependence of the
potentials are slightly shifted to larger or smaller angles with
respect to the symmetric case. A detailed view of the potentials
forω ≃ 90◦ in the right panel of Fig. 6 shows that, for example,
the minimum of the EP(1) attraction is not located at ω = 90◦

but rather at 83◦ for the chosen set of parameters. The optimal
particle-particle configuration is thus such that the less charged
patch of one IPC is closer to the more charged patch of the
other IPC: for the specific set of parameters, the former is
shifted by 7◦ closer to the latter with respect to the perfect
EP configuration; as a consequence the distance between the
centers of the more charged patches on the two different IPCs
is bigger than their distance in the perfect EP configuration.
We observe that, since different shifting angles are found for
different fashions of rotational freedom, the optimal relative
orientation may not be covered by the rotations studied here.
This asymmetry effect is more pronounced as the charge asym-
metry parameter q increases, so that only a small q-range can
be studied with a reasonable accuracy within our framework.

Investigations on models 30n and 60n (not shown here)
have highlighted that for a given q-value, the shift of the
minima and maxima inω is more pronounced as the patch size
increases.

3. Asymmetric patches in size

Finally, we consider IPCs with two polar patches of equal
charge but of different size within the NA approach. We start
again from the 45n model and now change both the interaction
range of one polar site, e.g., the site corresponding to patch 2,
and its distance from the particle center in such a way that the
quantity a2 + ρ2 remains constant. This procedure guarantees
that in the corresponding coarse-grained system, the interac-
tion range of patch 2 is the same as the interaction range of
the whole particle, i.e., δ is fixed. For a specific interaction
range, there is thus only one choice for a2 for a given ρ2, and
vice versa; as a consequence there is only one the patch size
γ2 associated to the choice of ρ2 and a2 or, equivalently, of ρ2
and δ.

In Fig. 7 we report the behavior of the contact energy
values V2σ of the selected IPCs as functions of ρ2. The vertical
line in the figure marks the size of patch 1 as well as the size of
patch 2 in the 45n model: when ρ1 = ρ2 the three different PP

FIG. 6. Radial (left) and angular (right)
dependences of the interaction energy
V (in units of kBT ) between two over-
all neutral IPCs at contact carrying two
differently charged patches. The asym-
metry between the two patch charges
is specified by q = 0.22 (highlighted by
the black vertical line in Fig. 5). In the
left panel, the potentials are reported as
functions of the inter-particle distance r
between two IPCs in six characteristic
particle-particle configurations (as la-
beled); in the right panel, the potentials
are represented for two IPCs at contact,
i.e., at a distance r = 2σ, as functions
of the rotation angle ω around an axis
perpendicular to the plane of the figure:
after a rotation of 180◦ one particle-
particle configuration transforms into
another. In the inset of the right panel a
magnified view of the potentials around
ω = 90◦ is shown.
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FIG. 7. Contact energies V2σ (in units of kBT ) between two overall neutral
IPCs in six different mutual orientations (as labeled) as a function of the radius
of one patch, ρ2, while the radius of the other patch is fixed to ρ1= 0.38 (in
units of 2σ). The charges of the patches are equal. The black vertical line
marks the set of parameters that corresponds to the 45n model; left to the line
the size of patch 2 decreases, while right to the line its extent increases.

repulsions coincide, while both EP attractions are equal to −1.
When ρ2 decreases (i.e., when γ2 decreases), both repulsions
PP(22) and PP(12) increase, the first one faster than the latter
one: when ρ2 is decreased by about 20%, the PP(22) repulsion
has increased its value by a factor of three, while the PP(12)
repulsion has only doubled. In both cases the increase of the
repulsion is due to the increase of charge per area related to
the decrease of patch size for a fixed patch charge. We also
note that the corresponding PP(11) value is slightly affected
by a change in the size of patch 2, but its increase amounts to
less than 10% of its initial value; thus it can be considered to
be essentially constant. The same consideration applies for the
EE repulsion, which changes with the increase of the size of
patch 2 by less than 20%. Since the surface charge increases on
decreasing the patch size, also the EP(2) attraction increases:
it has more than doubled when ρ2 is decreased by about 20%;
of course, the EP(1) attraction is constant by construction. The

opposite trends are observed when ρ2 increases (i.e., when γ2
increases); however, the changes in the contact energy values
are in this case less pronounced.

B. The coarse-grained potential

Finally, we compare the potentials obtained via the Debye-
Hückel description (within the NA approach) and via the
coarse-graining procedure for the 45n system with a charge
asymmetry parameter q = 0.22; data are reported in Fig. 8
and show a good quantitative agreement between the Debye-
Hückel description and the coarse-grained approach. The
radial dependence of the potentials is displayed in the left
panel of the figure, while their angular dependence is shown
in the right panel of the same figure. By definition, at r
= 2σ and ω = 0◦ (i.e., when the two IPCs form the refer-
ence configurations) the coarse-grained data coincide with
the results obtained in the analytical calculations since the
contact energy values are fixed by the mapping procedure. For
larger distances (left panel) or angles (right panel) the coarse-
grained data follow the analytical ones quite well; however,
it must be noted that the angular dependence of the coarse-
grained potential around ω = 90◦ shows small differences
with respect to the Debye-Hückel data. Around the minima
and maxima obtained via the analytical approach, the coarse-
grained potential forms plateaus that are due to the saturation
of the overlap volume between the interaction spheres. The
effects described in Subsection IV A 2 are thus not reproduced
by the coarse-grained model: while in the analytical calcula-
tions there is an optimal bonding angle, in the coarse-grained
description there is a range of angles around the optimal one.
As long as this range is reasonably narrow, Monte Carlo
simulations based on the coarse-grained potential will give
accurate results at finite temperatures. Indeed, when studying
ensembles of IPCs in simulations under these conditions small
deviations from the analytical pair energy will affect the system
behavior only to a minor extent, due to the role played by
entropy.

FIG. 8. Theoretical and coarse-grained
pair potentials V (in units of kBT ) for
overall neutral IPCs with patches of size
45◦ and charge asymmetry q = 0.22.
Results for the Debye-Hückel potential
are represented by dotted lines, while
those for the coarse-grained interaction
(for κδ = 2) are depicted by continuous
lines. In the left panel, the potentials
are reported as functions of the inter-
particle distance r between two IPCs in
six different mutual orientations (as la-
beled); in the right panel, the potentials
are represented for two IPCs at contact,
i.e., at a distance r = 2σ, as functions
of the rotation angle ω around an axis
perpendicular to the plane of the figure:
after a rotation of 180◦ one particle-
particle configuration transforms into
another. In the inset of the right panel a
magnified view of the potentials around
ω = 90◦ is shown.
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V. CONCLUSION

Our work contributes to the library of works on effective
interactions between charged colloids or macromolecules in
electrolytic solutions.25–33 In the present contribution, we have
proposed a nearly analytic method to calculate the effective
interaction potential between IPCs with rich surface patterns.
Our description follows the Debye-Hückel approach to deter-
mine the potential generated by one single colloid dispersed in
a liquid solvent: the potentials inside and outside the colloid
are calculated separately as expansions in terms of spherical
harmonics and are then linked together by electrostatic bound-
ary conditions; the resulting set of linear equations for the
yet undetermined expansion coefficients is solved numerically.
Once the single particle potential is known, the effective inter-
action energy between two IPCs is determined as in Ref. 8.
The main advantage of not solving the equations analytically
is that they can be kept as general as possible so that they can
be easily applied to a wide range of different IPCs. The Debye-
Hückel potential is subsequently used to provide a suitably de-
signed coarse-grained model with parameters that are directly
related to the physical quantities of the underlying microscopic
system, such as the screening conditions, the surface charges
and the extent of the different surface regions on the colloids.
The coarse-grained description is advantageous in many body
simulations because the model pair energy between two parti-
cles is the sum over simple products of geometric (orientation-
and distance-dependent) factors and energy factors, associ-
ated to the different ways of interaction that characterize the
IPC.

In this contribution, the pair potentials for neutral as well
as overall charged colloids with two symmetric or asymmetric
patches in size or/and charge are calculated. A comparison be-
tween the characteristic energies of the Debye-Hückel descrip-
tion and of the coarse grained model shows good agreement.
In an effort to demonstrate the versatility of our approach, the
framework is also applied to the case of three possibly different
patches.

The proposed method will allow future studies on the self-
assembly of heterogeneously charged colloidal systems that
are expected to be observed in experiments.
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APPENDIX: IPCS WITH 3 PATCHES

To demonstrate the versatility of our approach, we
consider a particle of charge Zc and diameter 2σ, which is
decorated by three patches of charges Zp1, Zp2, and Zp3. The
patches are located on the equatorial plane of the colloid, their
respective centers-of-charges being separated by the distances
a1, a2, and a3 from the center of the colloid; connecting
lines between a patch center and the particle center enclose
throughout 120◦.

The source term of Equation (1) is given by

ρ(r, θ, ϕ) = −Zcδ(r) − Zp1
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leading to the following particular solution of the differential equation inside the colloid:
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Combining expression (A2) with the homogeneous solution
given by expression (3), we obtain the potential inside the
colloid Φ(1)(r, θ, φ).

Outside the colloids, the solution of Helmholtz equa-
tion (6), Φ(2)(r, θ, φ), is given by expression (12).

Imposing on Φ(1)(r, θ, φ) and Φ(2)(r, θ, φ), boundary con-
ditions (13) at r = σ leads to a set of linear equations for the
unknown expansion coefficients that is solved numerically. In
this way, we obtain the potential created by one three-patch
IPC,Φ(r, θ, φ). It is worth noticing that for this patch decoration
the axial rotational symmetry is lost.

In Figure 9, we displayΦ(r, θ, φ) for IPCs with three iden-
tical patches (left panel) or three differently charged patches
(right panel) at r = σ.

The pair potential of two interacting IPCs is obtained by
following the same procedure applied in the two patch case; the
resulting interaction potential depends in a complex way on the
center-to-center distance of the colloids and on their relative
respective orientations.

In parallel to the derivation of the Debye-Hückel potential,
we design the coarse-grained model along the same lines traced
in the body of the paper for the two patch case: we make

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.131.48.66 On: Tue, 22 Sep 2015 15:04:25



114905-11 Stipsitz, Kahl, and Bianchi J. Chem. Phys. 143, 114905 (2015)

FIG. 9. The single particle potential, Φ(r, θ,φ), for an IPC with three identical (left panel) or differently charged (right panel) patches is reported at distance
r =σ from the particle center as a function of θ and φ. For identical patches, the chosen parameters are: Zc=−180, Zp1= Zp2= Zp3= 90, a1= a2= a3= 0.44σ,
κσ = 5, and ϵ = 80 (dielectric permittivity of water at room temperature). In the asymmetric case, the charges of the patches are chosen to be Zp1= 110, Zp2= 70,
and Zp3= 90, while the other parameters are unchanged.

an ansatz for U, similar to the one in Equation (16), where
the sum is now extended over all the possible pairings of
the four interaction spheres. The evaluation of the overlap
volumes wi j is straightforward given the relative position
and orientation of the two IPCs, while the yet undetermined
energy parameters ui j are again fixed by considering well-
defined reference configurations. When the three patches are
identical (in size and charge), then three ui j-values must be
determined, corresponding to the pure bare/bare, bare/patch,
and patch/patch interactions. The most characteristic configu-
rations needed to evaluate these pure interactions are depicted
in Figure 10 (labeled again EE, EP, and PP, respectively). As
the choice of the reference configurations is to some extent
arbitrary, it is equally valid to consider rotations of one of the
two IPCs that preserve the pure overlap between the selected
interaction spheres. The rotation axis for the chosen configu-
rations is depicted in Figure 10. The average value of the an-
alytic contact energies of all equivalent configurations is then
used as the reference for the mapping to the coarse-grained

FIG. 10. Reference configurations for the mapping between the analytic
and the coarse-grained pair potential of IPCs with three identical patches:
characteristic configurations for the pure EE, EP, and PP interactions are
reported from top to bottom, as labeled; side views on the left, top views on
the right. The second IPC can rotate with respect to the first one — preserving
pure EE, EP, and PP interactions — around an axis depicted as a black arrow
in the side view or as a black dot in the top view.

contact energies. So a higher number of configurations might
be considered according to the geometric features of the
specific IPC particles under investigation.

It must be noted that the mapping procedure can be per-
formed also when the three patches are different. In this case,
the ui j-values to be evaluated add up to ten and thus ten
reference configurations with the pure EE, EP, and PP inter-
actions must be considered: one EE configuration, three EP
configurations, and six PP configurations. Due to the reduced
symmetry as compared to the identical patch case, averaging
over all possible rotations of one IPC with respect to the other
is advisable. The same rotation axis shown in Figure 10 can be
used.
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30A. L. Božič and R. Podgornik, J. Chem. Phys. 138, 074902 (2013).
31J. Faraudo and F. Bresme, Phys. Rev. Lett. 94, 077802 (2005).
32A. A. Kornyshev and S. Leikin, Proc. Natl. Acad. Sci. U. S. A. 95, 13579

(1998).
33A. A. Kornyshev, D. J. Lee, S. Leikin, and A. Wynveen, Rev. Mod. Phys. 79,

943 (2007).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.131.48.66 On: Tue, 22 Sep 2015 15:04:25

http://dx.doi.org/10.1080/15421406.2014.967651
http://dx.doi.org/10.1080/15421406.2014.967651
http://dx.doi.org/10.1039/C4PY00370E
http://dx.doi.org/10.1103/PhysRevE.62.R1465
http://dx.doi.org/10.1103/PhysRevLett.89.248301
http://dx.doi.org/10.1016/j.physa.2010.01.024
http://dx.doi.org/10.1063/1.4751482
http://dx.doi.org/10.1063/1.468810
http://dx.doi.org/10.1063/1.4790576
http://dx.doi.org/10.1103/PhysRevLett.94.077802
http://dx.doi.org/10.1073/pnas.95.23.13579
http://dx.doi.org/10.1103/RevModPhys.79.943

