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1.  Introduction

When cooled at sufficiently low temperatures, particles whose 
interactions are given by a repulsive core region with an adja-
cent tail, composed of a short-range attraction and a long-
range repulsion, are able to form so-called mesophases. While 
in two dimensions these phases comprise clusters, stripes and 
bubbles, they are considerably more complex in three dimen-
sions, where the emergence of spherical clusters, ordered 
arrangements of cylinders or layers have been reported. The 
formation of such complex phases is quite surprising as it 
occurs for systems with spherically symmetric interactions [1].

Indeed, a considerable amount of effort has been dedicated 
to the theoretical study of such phases [2–14]. Most of these 
investigations were based on a standard interaction model 

that mimics the two aforementioned, specified features via a 
simple functional form. Originally introduced by Sear et  al 
[15], this interaction potential consists of a hard core region 
plus a linear combination of two exponential functions: as the 
prefactors of these contributions have opposite signs, they 
represent the two characteristic parts of the interactions (see 
equation  (1)). Experimental evidence for the formation of 
these microphases has also been given, for both two [16–20] 
and three [21–24] dimensional systems.

The overwhelming majority of the theoretical invest
igations on these systems was dedicated to the static prop-
erties. In this contribution, we present a systematic study of 
the dynamic properties of a system where particles interact 
via a short-range attractive, long-range repulsive potential; to 
be more specific, we focus on the cluster phase of the two 
dimensional model studied in [2, 3, 5, 15], in the regime of 
small and intermediate densities and at low temperatures. Our 
investigations are based on extensive Monte Carlo simulations 
along three selected isochores. We gradually decrease the 
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temperature and characterize the dynamic slowing down of 
the fluid. By using a suitable cluster identification algorithm 
we are able to calculate the static and the dynamic proper-
ties of both the individual particles as well as of the clusters 
(specified by their centers-of-mass).

With the help of the static properties, we analyse how the 
ordering of the system sets in as we decrease the temperature. 
On one side, we observe formation of an ordered, hexagonal 
cluster pattern; on the other side, we observe the emergence 
of local close-packed arrangements of the particles within the 
clusters. Our data indicate that these ordering processes are 
independent of one another and have subtle signatures in both 
the thermodynamic (i.e. specific heat) and dynamic properties 
of the system.

The dynamic properties, calculated separately for the 
cluster and for the individual particles, comprise the respective 
mean squared displacements, the diffusion coefficients, and 
the intermediate scattering functions. We observe that both for 
the individual particles as well as for the clusters a subdiffu-
sive behaviour can be observed, which occurs at length scales 
that correspond to the average cluster size. The intermediate 
scatting functions provide evidence of a two step relaxation of 
the dynamics of the individual particles, with typical relaxa-
tion times that increase mildly as the temperature is lowered. 
The cluster intermediate scattering functions display instead a 
simple, single-step relaxation mechanism.

We also observe qualitative variations of the dynamics as 
a function of density. At intermediate densities, particles can 
diffuse at low temperature by migrating from cluster to cluster, 
even when the cluster structure is essentially frozen. At low 
density, by contrast, the system assembles into relatively rigid 
clusters, which diffuse slowly and do not show signatures of 
global ordering on our observation time scale. Our results thus 
suggests that, at low density, the system may form a ‘cluster 
glass’ [39] when cooled to even lower temperature.

The manuscript is organized as follows: in the subsequent 
sections  2 and 3 we present our model and provide details 
about the Monte Carlo simulation and our cluster identifica-
tion analysis. Section  4 is dedicated to the results: we start 
with an overview over the general properties of the clusters (in 
terms of size and their size distribution), we then proceed to 
the static structural properties of the clusters and then discuss 
the thermal properties of the aggregates (in terms of the spe-
cific heat); the last section is dedicated to the dynamic prop-
erties of the individual particles and of the clusters and their 
interrelation. The manuscript is closed with a summary.

2.  Model

In our two dimensional system the particles are assumed to 
interact via the following spherically symmetric potential 

( )Φ r , first introduced by Sear et al [15]:
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This interaction, which can be viewed as an effective 
potential of a realistic colloidal system, is characterized by a 
hard core region (specified via the diameter σ); for distances 
larger than σ the interaction is given by a linear combination 
of a short-range attraction, quantified via the range Ra and 
strength εa, and a long-range repulsion, specified via the range 
Rr and strength εr.

The system is characterized by a temperature T, with 
( )β = −k TB

1, kB being the Boltzmann constant; for the 
reduced temperature units we use the arbitrary scale intro-
duced in [2], i.e. for /σ σ= =R 2r a  and for /= =ε εE 1r a  
we set ( )β σΦ = −1. The density of the system is given 
by ρ (with its reduced counterpart ρ ρσ=∗ 2); further we 
use the following reduced units /σ=∗r r  and σ=∗k k . For 
the sake of a simplified notation, we will drop the asterisk 
henceforward.

Throughout this work we use σ=Ra , σ=R 2r , and =ε εa r. 
Figure  1 depicts the interaction potential ( )Φ r  for this part
icular set of parameters.

3.  Methods

3.1.  Monte Carlo simulations

The static and dynamic properties of the system are investi-
gated by means of extensive Monte Carlo (MC) simulations 
[25, 26], which we perform in the two-dimensional NVT 
ensemble. We simulate N  =4000 particles in a quadratic sim-
ulation cell with periodic boundary conditions. In an effort to 
enhance the efficiency of our simulations, we limit the posi-
tions of the particles to discrete lattice sites: this is achieved by 
dividing our square-shaped simulation box (with box lengths 
L ranging—depending on the densities considered—from  
141.42 to 200.00) into ×4096 4096 equally sized squares  
[27, 28]. The efficiency of our simulations is further improved 
by the use of cell lists. The maximum spatial displacement, ∆, 
is set to  ±0.15 and the cutoff radius of the potential is chosen 
to be =r 17.2cut .

Figure 1.  Interaction potential Φ r( ) as a function of r (see 
equation (1)) as used in the present work for numerical parameters 
specified in the text.
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Note that the choice of a relatively small particle displace-
ment ∆ enables us to interpret the MC dynamics as mimicking 
qualitatively the Brownian motion of colloidal particles in a 
solvent (overdamped dynamics). We point out, however, 
that establishing a precise correspondence between MC and 
Brownian dynamics is a delicate issue [29, 31] and that dif-
ferent mapping schemes between Monte Carlo and molecular 
dynamics type of simulations are available in literature (see, 
e.g. [30]).

We simulated systems at three different densities, namely 
ρ = 0.10, ρ = 0.15 and ρ = 0.20. For each of these three 
cases, we performed a first set of MC simulations at a temper
ature of T  =1.30. Then we progressively lowered the temper
ature of the system according to the following quenching 
protocol: the final configuration of the higher temperature 
run is used as an initial particle arrangement of the subse-
quent simulation at a lower temperature. The equilibration 
run is then followed by a production run during which we 
measure static and dynamic observables. An overview of the 
state points we investigated by repeated application of this 
procedure is shown in figure 2.

For each of the three densities, ten independent quenches 
are performed: each of them is started at T  =  1.30 from a 
random initial configuration. The duration of the simulation 
is increased progressively with decreasing temperature, i.e. 
from 5000 MC-sweeps at T  =  1.30 to 42 500 000 MC-sweeps 
for the lowest investigated temperatures (i.e. for T  =  0.15 
and ρ = 0.10), where a MC-sweep consists of N attempted 
MC-moves. For each production run, 5000 particle configu-
rations were collected. To investigate dynamic processes on 
short time-scales, additional, shorter simulations were per-
formed, during which the particle properties were stored in 
much shorter time intervals.

3.2.  Cluster

We identify clusters in the system using the following prox-
imity criterion: a particle is considered to belong to a particular 
cluster if its distance d to another particle within the same 
cluster is smaller than the so-called cluster-distance para
meter, dcl, for which we have assumed the value =d 1.85cl . In 
the present work we consider a set of particles that fulfill the 
cluster criterion as a cluster, if it consists of at least five par-
ticles. Smaller sets of particles are not considered as clusters 
and are categorized instead as ‘free’ particles.

Once all clusters have been identified for a given particle 
configuration, we calculate their static and dynamic properties 
from their center-of-mass positions. The computation of the 
dynamic properties of the clusters is done by tracking the evol
ution of individual clusters over several MC sweeps. Here, we 
assume that the distance over which a cluster can propagate 
during one MC sweep is smaller than half the typical distance 
between two clusters; this assumption has been verified in our 
study. During the simulation, clusters may (i) split, (ii) merge, 
(iii) dissolve into free particles, or (iv) emerge from isolated 
particles; these events delimit the time window over which 
a cluster retains its identity, see [32] for more details. Time-
dependent correlation functions of individual clusters, such 
as the mean squared displacement or the self intermediate 
scattering functions (see section 4.4), are evaluated over time 
windows during which individual clusters retain their identity.

4.  Results

In the presentation of our results we first focus on some gen-
eral properties of the clusters; we then proceed to their static 
structure and compare these data with the corresponding 

Figure 2.  Overview over states investigated in this study via MC simulations in the ( )ρT ,  plane (note the logarithmic scale along the 
temperature axis). State points for which static or static and dynamic cluster properties have been investigated are specified via an 
additional green/yellow colour code (as specified).
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results of the individual particles. Next, we analyze the 
thermal properties of the system and eventually we discuss 
the dynamic properties of the clusters along with those the 
isolated particles.

4.1.  General properties of the clusters

We start our discussion by analyzing the distribution of the 
size of the clusters in the system and how it varies with temper
ature. The size of a cluster is defined here as the number n of 
particles that belong to it.

In figure 3 we show representative results for the cluster 
size distribution at a density ρ = 0.20. At high temperature, 
the distribution is strongly peaked at n  =  0 and decays mono-
tonically with n. Thus most particles in the system are free 
and large clusters are only formed occasionally. Below a 
certain threshold temperature ≈T 0.5cl , however, the distribu-
tion becomes bimodal and develops an additional maximum, 
which indicates the formation of stable, well-defined clusters. 
This feature provides us with a first criterion to identify the 
transition to a cluster phase. The behavior at the two other 
densities we investigated (i.e. ρ = 0.10 and ρ = 0.15) is quali-
tatively similar. We found that the clustering temperature 
increases with increasing density and is ≈T 0.6cl  at ρ = 0.15 
and ≈T 0.7cl  at ρ = 0.2.

Figure 4 displays the average cluster size as a function 
of the temperature T. We observe that the cluster size shifts 
to larger values with increasing density and increases by 
decreasing temperature. At temperatures well below the 
clustering temperature, however, the cluster size eventually 
becomes constant. This suggests that the internal cluster struc-
ture freezes at sufficiently low temperature.

As an additional measure of the typical extent of a cluster, 
we introduce the radius of gyration [3]

∑=
>

R
n

d
1

,
i j

n

ijg 2
2� (2)

with n being the number of particles pertaining to a given 
cluster, and dij being the distance between particles i and j of 
this cluster. Figure 5 shows Rg as a function of the temperature 
and for all three values of density investigated.

For a fixed density, Rg first increases with decreasing 
temperature and attains its maximum value close to the 
clustering temperature. From the coincidence of these two 
temperature values we conclude that the above introduced 
criterion based on the cluster-size distribution is appropriate. 
As we further decrease the temperature below this threshold 
value, Rg decays monotonously. In this regime, the cluster 
occupation number is either constant or slowly increasing (see 
figure 4), but the typical spatial extent of a clusters decreases 
due to the reduced thermal motion of the particles.

Finally, we show in figure 6 the percentage of free parti-
cles, i.e. single particles and/or clusters with a size less than 
five particles, as a function of T. As expected, this number 
shows a pronounced increase at T-values close to the clus-
tering temperature. Interestingly clusters start to dissolve 
when the amount of free particles reaches a value of  ∼12%, 
irrespective of the density ρ.

4.2.  Structural properties of the clusters

In this section we discuss the static structure of the clusters 
and compare it with the corresponding results for the indi-
vidual particles.

As the temperature is lowered at a fixed density, we find 
clear signatures of ordering in the system, both at the level of 
individual particles and of the clusters. To illustrate these fea-
tures, we show in figure 7 the radial distribution function g(r) of 
the particles and of the clusters, as obtained from their centers-
of-mass, for the state point ρ = 0.20, T  =  0.35. The two panels 
of the figure show data for either the small- (top panel) or the 
large-distance (bottom panel) range. Results for other combina-
tions of density and temperature can be found in [32].

Figure 3.  Distribution of the cluster size (in terms of number of 
particles) for our system calculated at a density ρ = 0.20 at various 
temperatures (as labeled).

0

5

10

15

5 10 15 20 25 30 35 40 45 50

%

cluster size (# of particles)

T = 0.50
T = 0.60
T = 0.70
T = 0.90

Figure 4.  Cluster size (in terms of number of particles pertaining 
to a cluster) as a function of T for the three investigated densities 
(ρ = 0.10, ρ = 0.15 and ρ = 0.20; as labeled). For temperatures 
below the clustering temperature (see table 1) the symbols are 
connected by a continuous line, while above this temperature a 
broken line is used as a guide for the eyes.

5

10

15

20

25

30

0.2 0.4 0.6 0.8 1.0 1.2 1.4

cl
us

te
r 

si
ze

 (
# 

of
 p

ar
tic

le
s)

T

ρ = 0.10
ρ = 0.15
ρ = 0.20

J. Phys.: Condens. Matter 28 (2016) 414015



D F Schwanzer et al

5

For small distances (i.e. up to ∼r 4) the radial distribu-
tion function of the particles shows a characteristic pattern 
of peaks, reflecting the close-packed, internal structure that 
the particles form within the clusters. This packing originates 
from the balance between the short-range attraction between 
the particles and the repulsion that each cluster experiences 
from the neighbouring clusters. The data for this specific state 
point display a pronounced splitting of the second peak at 
∼r 2 and an additional shoulder at ∼r 3, which provides evi-

dence for regular arrangements within the cluster: these two 
peaks, along with the position of the main peak, are consistent 
with the formation of an internal hexagonal structure, which 
becomes also evident from visual inspection of simulation 
snapshots [32]. The splitting was considered in [3] as a pre-
cursor of freezing within the clusters.

By contrast, the cluster-based g(r) vanishes in this range of 
distances: due to the accumulated long-range repulsion of the 

particles that form these aggregates, the clusters repel each 
other on these length scales. The radial distribution function 
between the clusters shows its first peak only at a distance 
∼r 12 (see bottom panel of figure 7), followed by two peaks 

at ∼ ×r 2 12 and ∼ ×r 3 12. These two peaks do not only 
have the same relative positions with respect to the location of 
the main maximum; they also display similar splitting as the 
corresponding maxima in the particle g(r). We therefore con-
clude that, at least for this state point, also the clusters them-
selves arrange in a regular, hexagonal lattice, as confirmed by 
visual inspection of simulation generated snapshots. Similar 
observations were made for the other densities investigated 
and for T-values up to the respective clustering temperatures.

In the following we will use the emergence of this charac-
teristic peak pattern as an estimate of the freezing temperature 

of the particles, T pt
freeze, and of the clusters, T cl

freeze, respectively. 

The corresponding values (where available) are collected in 

table 1. We observe that the values of T pt
freeze depend only weakly 

of ρ. By contrast, the freezing temperature of the clusters, 
T cl

freeze, displays a strong density-dependence. For ρ = 0.10, an 
estimate for this temperature value is rather difficult to obtain: 
at this density, we could not observe the characteristic features 

Figure 5.  Radius of gyration, Rg, as a function of temperature for 
the three densities investigated (ρ = 0.10, ρ = 0.15 and ρ = 0.20; 
as labeled). For temperatures below the clustering temperature 
(see table 1) the symbols are connected by a continuous line, while 
above this temperature a broken line is used as a guide for the eyes.
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of the first three main peaks in the cluster g(r) in the investi-
gated temperature range. Thus we conclude that for ρ= 0.10 
clusters do not freeze, at least in the temperature range that 
was accessible to our simulations. Despite the relatively large 
error bars, our data suggest that clusters may, depending on 
temperature, first arrange into an hexagonal lattice, with their 
internal structure being still disordered, or freeze internally 
while remaining in a fluid state. This, in turn, indicates that 
freezing of the clusters and freezing within the cluster are as 
two independent physical processes.

In an effort to assess on a quantitative level the degree of 
ordering of the clusters, we use here two measures based on 
the conventional hexagonal bond order parameter Ψ6 [33–36]. 
In this way we will be able to quantify the transition of the 
system in to an hexagonally ordered cluster phase with more 
precision.

The hexagonal bond order parameter of a single cluster in 
the surrounding of its neighboring clusters, [ ]Ψ6

1 , can be com-
puted via

( )[ ] ∑Ψ = Φ
=M

1
exp 6i

m

M

m6
1

1
� (3)

with M being the number of the nearest neighbors and Φm 
being the angle between the (arbitrarily chosen) x-axis and the 
vector from the center cluster to the nearest neighbor cluster 
m. [ ]Ψ6

1  is 1 for a perfect hexagonal cluster arrangement, while 
it vanishes in the case of random arrangements.

The average hexagonal bond order parameter, Ψ6, is 
obtained by averaging both over all clusters of the system and 
along the simulation run; it is calculated via

( )∑∑ ∑Ψ =
∑

Φ
= = = =N M

1 1
exp 6i ;

j
J

j j

J

n

N

j n m

M

j n m6
1 1 1 , 1

, ,

j j n,

� (4)

here J is the number of configurations retained for the average, 
Nj the number of clusters identified in simulation snapshot j 
and Mj, n is the number of nearest neighbors of cluster n in 
snapshot j. Φj n m, ,  in equation (4) denotes the angle between the 
(arbitrarily chosen) x-axis and the vector connecting the cen-
ters of mass of the central cluster n with its nearest neighbor 
m in simulation snapshot j.

The results of Ψ6 are shown in figure  8 as function of 
temperature for the three densities investigated in this study. 
For ρ = 0.20 and ρ = 0.15 the hexagonal bond order para
meter Ψ6 increased significantly with decreasing temperature: 
eventually, for the lowest temperatures investigated, Ψ6 attains 
values of up to  ∼0.7–0.8 for these two ρ-values. This abrupt 

change in Ψ6 occurs, however, already at a temperature that is 
higher than the freezing temperature of the clusters, predicted 
via the radial distribution functions, see table 1. By contrast, 
for ρ = 0.1, Ψ6 attains values that hardly exceed 0.2. These 
observations support the previous claim that the clusters do 
not freeze for densities ⩽ρ 0.10, at least in the investigated 
temperature range.

In figure  9 we show typical snapshots of the clusters as 
obtained in the simulation. Circles represent the clusters’ 
centers-of-mass (symbols are not drawn to scale) and are color 
coded by the respective hexagonal bond order parameter [ ]Ψ6

1 . 
Results are shown for ρ = 0.15 at four different temperatures.

At the highest temperature, T  =  0.50, we observe mainly 
clusters with low hexagonal bond-order parameter [ ]Ψ6

1 . Only 
a small fraction of clusters form perfect hexagonal local struc-
tures. As we decrease the temperature, hexagonal clusters tend 
to aggregate forming ‘islands’ that grow rapidly by decreasing 
T, see panels corresponding to T  =  0.40 and T  =  0.35. At this 
latter temperature, already about half of the clusters are char-
acterized by an hexagonal bond order parameter that exceeds 
0.7. Finally, at the lowest temperature T  =  0.30 most of the 
clusters are characterized by a perfect hexagonal surrounding; 
these cluster crystalline regions, where the order parameter 
assumes values within the range ⩽ ⩽[ ]Ψ0.3 0.706

1 , are inter-
sparsed with mobile defects, which we tentatively associate to 
the size dispersity of the clusters.

At a density ρ = 0.20 we found a similar behavior but the 
growth of the high- [ ]Ψ6

1  cluster islands sets in at a consider-
ably higher temperature. By contrast, at ρ = 0.10, less than 
half of the clusters are characterized by order parameters with 

⩾[ ]Ψ 0.76
1 , even at the lowest investigated temperature.

4.3. Thermal properties of the clusters

We now inspect the thermal properties of the system for sig-
natures of the various structural transitions (or crossovers) 
identified in the previous section. To this end, we calculate the 
excess specific heat, CV

ex via

Table 1.  Clustering temperatures Tcl, ordering temperatures of the 
individual particles and of the clusters, T pt

freeze and T cl
freeze (see text for 

definition) for the three studied densities.

ρ Tcl T pt
freeze T cl

freeze

0.10 ≈0.5 ⩽ ⩽T0.33 0.34 —
0.15 ≈0.6 ⩽ ⩽T0.35 0.36 ≈T 0.30
0.20 ≈0.7 ⩽ ⩽T0.36 0.38 ⩽ ⩽T0.38 0.40

Note: No estimate for T cl
freeze could be obtained for ρ = 0.10.

Figure 8.  Hexagonal bond order parameter, Ψ6, as defined 
in equation (4) as a function of the temperature for the three 
investigated densities (ρ = 0.10, ρ = 0.15 and ρ = 0.20; as labeled).
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=C
U

T

d

dV
ex

ex

� (5)

with U ex being the excess energy of the system. The above 
derivative is approximated by the centered difference formula.

In figure 10 we show the excess specific heat per particle, 
/C NV

ex , as a function of temperature for the three investigated 
densities. For reference, we also display for the data obtained 
by Imperio and Reatto [3] at a density ρ = 0.10. The two sets 
of data are found to be in good agreement.

As already argued in [3], the main peak in the excess spe-
cific heat (for ρ = 0.10 at a temperature ≈T 0.5) is due to the 
latent heat involved in the formation of the microphases (i.e. 
the clusters) from the homogeneous fluid phase. Similar peaks, 
albeit smaller in their amplitude can be observed for the other two 
densities (i.e. ρ = 0.15 and ρ = 0.20). The position of the main 
peaks shifts to higher temperature with increasing density. The 
temperatures at which these peaks occur peaks are in good agree-
ment with the clustering temperatures determined in section 4.1.

For all investigated densities, the specific heat curves 
show an additional small local maximum/shoulder for 
� �T0.25 0.34. Even though these features are difficult to 

resolve, their positions coincide within reasonable accuracy 
with the temperatures where the particles inside the clusters 
freeze into a hexagonally close packed structure (see table 1). 
Imperio and Reatto [3] gave a similar interpretation to a sim-
ilar secondary peak peak observed in this system at ρ = 0.40. 
We point out, however, that it is difficult to clearly identify the 
origin of these low temperature features.

4.4.  Dynamic properties

We now discuss the dynamic properties of the clusters and 
establish a connection with the dynamics of individual par-
ticles. We recall that we use a MC sweep as a time unit.

4.4.1.  Mean squared displacement.  We start off with the 
mean squared displacement (MSD), ( )δr t2 , defined either for 
particles and clusters as

( ) ( ) ( )δ = −r rr t t 0 ;2 2� (6)

( )r t  denotes the particle (or cluster center-of-mass) position 
at time t. The thermal average ⟨ ⟩…  is carried out over initial 
times t  =  0. Additionally, it is convenient to calculate the log-
arithmic derivative of ( )δr t2  with respect to time

( ) [ ( )]
[ ]
δ

=z t
r t

t

d log

d log
.

2

� (7)

This quantity helps us to identify the type of motion that par-
ticles or clusters realize. For a ballistic motion, z(t)  =  2, while 

Figure 9.  Hexagonal bond order parameter, [ ]Ψ6
1 , as defined in equation (3) for the individual clusters observed in simulation snapshots; 

these were taken for a system of density ρ = 0.15 and for different temperatures (from top left to bottom right: T  =  0.50, T  =  0.40, 
T  =  0.35 and T  =  0.30). The colour codes are shown on the right hand sides of the panels. The symbols representing the clusters are not 
drawn to scale of the actual cluster.

Figure 10.  Excess specific heat per particle, /C NV
ex , as a function 

of the temperature for the three investigated densities (ρ = 0.10, 
ρ = 0.15 and ρ = 0.20; as labeled). For reference, the corresponding 
ρ = 0.10-data as obtained by Imperio and Reatto [3] are shown.
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for a diffusive particle propagation z(t)  =  1. Values between 0 
and 1 indicate subdiffusive behavior.

In the top panel of figure 11 we display the MSD of the 
individual particles for a system of density ρ = 0.1 at three 
temperatures below the clustering temperature. In the bottom 
panel, we show the corresponding z(t)-curves. Since the 
microscopic dynamics is stochastic, the motion of the parti-
cles at short times is purely diffusive. At intermediate times, 
however, we observe relatively strong deviations from the dif-
fusive behaviour, as witnessed by two pronounced minima 
in z(t). These deviations become stronger with decreasing 
temperature, with z(t) attaining values as small as 0.5 at the 
lowest temperatures. Thus, in these intermediate time ranges 
the dynamics of the system is considerably slowed down. 
Diffusive motion is eventually recovered at long times, except 
for the lowest investigated temperature, at which the particles’ 
motion is very slow on the simulation time scale.

By projecting the respective positions of the minima in z(t) 
to the top panel we can identify the typical length-scales asso-
ciated to the slowing down of the particles’ dynamics. The 
first set of minima corresponds to MSD values in the range 

  ⩽ ( ) ⩽  δ− −r t1.3 10 1.3 102 2 1, thus to displacements that are 
small compared to the typical interparticle separation. By 
contrast, the second set of minima, whose locations cover 
three decades in time, corresponds to MSD-values of about 
20 and which are essentially temperature-independent. This 
corresponds to an average displacement of δ ≈r 4, which is 

of the order of the radius of gyration, Rg. Thus we attribute 
the second minimum in z(t) and the ensuing slowing down 
of the dynamics to the attractive forces preventing particles 
from leaving the cluster and which ultimately hold the cluster 
together.

Analysis of the MSD at higher density shows the length 
scales associated to the cluster slowing down grows only 
weakly with increasing density, see table 2. By increasing the 
density at constant temperature, however, the position of the 
second minimum in z(t) shifts to larger t-values; this effect 
is due to the increase in cluster size with increasing density: 
the increasingly larger surrounding clusters exert a stronger 
repulsion on the particles of a tagged cluster, reducing thereby 
their MSD [32].

To corroborate our analysis, we now evaluate the MSD 
from the clusters’ center-of-mass positions. The corresponding 
data and related local exponents z(t) are shown in figure 12 
for ρ = 0.1 at temperatures below the clustering temperature 
(i.e. for �T 0.5). For all these temperatures, the cluster-based 
z(t)-curves display a relatively pronounced first minimum, 
whose position lies in the range of up to 100 time units. As the 
corresponding cluster-MSD values are well below 10−2, these 
effects are not of particular relevance. The second minima in 
the cluster-z(t) are located in the range  ≈ +t 4.8 10 4 (T  =  0.45) 
to  ≈ +t 7.1 10 6 (T  =  0.15), spanning thus more than two dec-
ades in time. Again, if we trace back from the positions of 
these minima the corresponding values of the cluster-MSD 
(ranging—essentially independent of the temperature—in 
the narrow interval ⩽ ( ) ⩽δr t8.1 11.02 ), we observe that these 
MSD-values correspond to an average cluster displacement of 
about δ ∼r 3.

To conclude this section, we briefly proceed to the other 
densities, i.e. ρ = 0.15 and ρ = 0.20, focusing on the posi-
tions of the second minima in z(t). The temperature-dependent 
time-range of their occurrence and the corresponding range in 
the cluster-MSDs are compiled for all three densities investi-
gated in table 2. In contrast to the corresponding individual 
particle level (see table 2), we observe that the range of MSDs 
where the dynamic slowing down of the clusters occurs shows 
a pronounced density-dependence. We observe a shift to 
larger MSD-values as the density decreases: for high densities 
the clusters are considerably larger, restricting thereby to a 
larger extent the mobility of the neighbouring cluster than this 
is the case at low densities.

4.4.2.  Diffusion coefficients.  The diffusion coefficient, D, 
can be extracted from the MSD via the Einstein relation at 
sufficiently long times,

( )
→

δ
=

∞
D

r t

t

1

2
lim .
t

2

� (8)

In figure 13 we present the diffusion coefficients of the clus-
ters, Dcl, and the diffusion coefficient of the individual par-
ticles, Dpt, as functions of the temperature for the densities 
ρ = 0.10 (top panel) and ρ = 0.15 (bottom panel). We choose 
an Arrhenius representation ( Dlog  versus 1/T) to account for 
the broad dynamic range covered in our simulations. Note 
that we only calculate the cluster diffusion coefficient for 

Figure 11.  MSD (top panel) and z(t) (bottom panel) as functions of 
t of the individual particles for a system with ρ = 0.10 and at three 
different temperatures below the clustering temperature (as labeled).
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temperatures below the clustering temperature Tcl, at which 
clusters become well-defined.

The motion of the particles slows down progressively as the 
system is cooled down from high temperature. For all studied 
densities, the temperature dependence of the diffusion coef-
ficients shows a first broad crossover around the clustering 
temperature Tcl, below which D slows down considerably and 
roughly follows the Arrhenius law ( ) /∼−D E Tln , where E is 
an ‘effective’ activation energy. Note that, at the temperatures 
at which stable clusters first appear, their diffusion coefficient 
is about two orders of magnitude smaller than the one of the 
particles, irrespective of density.

As the temperature is decreased further, however, the data 
at low and high densities show different patterns. For ρ = 0.10, 
the diffusion coefficients of the particles and for the clusters 
tend to converge and become identical for temperatures below 
∼T 0.20. This indicates that for temperatures below this 

threshold value, clusters behave as ‘rigid’ objects and the 

diffusion of the particles is dictated by the slow diffusion of 
the clusters. We note that in this low temperature regime, the 
temperature dependence of the diffusion coefficients is milder 
than Arrhenius, which suggests that the relaxation of the clus-
ters proceeds through mechanisms different from the ones 
usually encountered in conventional glassy systems [38], e.g. 
activated dynamics.

For ρ = 0.15 instead, both diffusion coefficients decrease 
with decreasing temperature, but their ratios remain nearly 
constant below Tcl. In this regime, the temperature depend
ence of both Dcl and Dpt is well described by the Arrhenius 
laws with very similar effective activation energies. We specu-
late that the clusters’ diffusion at low temperature is related 

Table 2.  Time-range, δt, of the occurrence of the second minima in z(t) and corresponding range in the MSDs, ( )δr t2 , for the individual 
particles (index ‘pt’; columns two and three) and for the clusters (index ‘cl’; columns four and five) for the three densities investigated; the 
indicated ranges reflect the temperature-dependence of these quantities.

ρ ( )δt pt ( ( ))δr t2
pt ( )δt cl ( ( ))δr t2

cl

0.10 1.0 104–8.0 106 1.5 101–1.9 101 4.8 104– 7.1 106 8.1 100–1.1 101

0.15 1.4 104–1.8 105 1.4 101–2.0 101 5.9 104– 1.3 106 5.8 100– 7.6 100

0.20 2.2 104–1.3 105 1.6 101– 2.1 101 2.2 105– 6.0 105 3.8 100–6.4 100

Figure 12.  MSD (top panel) and z(t) (bottom panel) as functions 
of t of the clusters for a system with ρ = 0.10 and at three different 
temperatures below the clustering temperature (as labeled).
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to the motion of ‘defects’ in a nearly frozen cluster crystal-
line structure, see figure 8. At the lowest investigated temper
atures, at which the motion of the clusters appears essentially 
arrested on the simulation time scale, the particles still display 
a residual diffusion, which we tentatively attribute to migra-
tion from cluster to cluster. Similar considerations hold for 
ρ = 0.20 (data not shown).

In figure 14 we show Dcl as a function of 1/T for all investi-
gated densities. We see that density exerts a strong effect on the 
cluster dynamics: Dcl drops faster as density increases, even 
when the temperature is rescaled by the density dependent T cl. 
These observations are consistent with the structural analysis 
presented in section  4.2, where we concluded that local 
ordering was much less pronounced in the low density system. 
In this latter case, the dynamics of the system can be char-
acterized as a fluid of slowly diffusing and ‘rigid’ clusters. 
Note, however, that the particle diffusion depends strongly on 
density only at low temperature [32].

4.4.3. The intermediate scattering functions.  To characterize 
the relaxation of density fluctuations at intermediate length 
scales, we evaluate the total intermediate scattering function 
(ISF), ( )kf t, . This is defined as the time correlation function 
of the Fourier transform of the particle at a given wave-vector 
k [37]

( )
( ) ( )
( ) ( )
ρ ρ

ρ ρ
= −

−

kf t
t

,
0

0 0
k k

k k
total� (9)

where ( )ρ tk  denotes the Fourier-transform of the microscopic 
density

( ) [ ( )]∑ρ = − ⋅k rt texp i ;k
j

j� (10)

the sum over j runs either on the particles or on the clusters. 
In the latter case, ( )r tj  denotes the center-of-mass position of 
cluster j at time t.

While ( )kf t,total  provides information on collective relaxa-
tion, the self part of the intermediate scattering function 

characterizes the dynamics of individual particles (or clusters) 
at a wave-vector k and time t; this function is calculated via

( )
( ) ( )

( ) ( )

[ ] [ ]

[ ] [ ]

ρ ρ

ρ ρ
=

−

−

kf t
t

,
0

0 0
,

k k

k k

self

1 1

1 1
� (11)

where the Fourier-transform of the single particle density is 
given by

( ) [ ( )][ ]ρ = − ⋅k rt texp i ;k j
1� (12)

again, ( )r tj  denote the positions of either the particles or the 
clusters at time t. The averaging in equation  (11) includes 
implicitly an average over all particles (or clusters) in the 
system. In the following, we show correlation functions 
evaluated at a wave-vector k close to the position of the main 
peak in the static structure factor of the clusters, S(k), i.e. 

 | | = =k k 0.573  [3, 7, 14].
The analysis of the ISF allows us to get some insight into 

the dynamics of the clusters at low temperature. In figure 15 
we show the time dependence of the cluster ISFs (self and 
total) computed at a density ρ = 0.10 for several temper
atures. The relaxation of both total and self parts of the 
clusters ISF slows down considerably as T decreases, with 
a characteristic relaxation time that increases by about 2–3 

Figure 14.  Diffusion coefficients of the clusters, Dcl, as functions of 
the inverse temperature (scale in the bottom ) and of the temperature 
(scale at the top), calculated for different densities (as labeled).
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as functions of time t, computed for a density ρ = 0.10 and for 
selected temperatures various temperatures (as labeled). Note the 
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orders of magnitude over the accessible T-range. In contrast to 
what is found in conventional glassy systems [38] as well as in 
related cluster-forming systems [39], we observe a single step 
decay of the total ISF. We note in passing that the total ISF 
evaluated from the particles’ positions perfectly matches their 
cluster counterparts. This shows that the collective relaxation 
of the fluid at large length scales is governed by the clusters’ 
motion. We also note that at the lowest available temperature, 
the cluster total ISF does not completely decay to zero within 
our simulation time scale, which indicates that our simula-
tions are not perfectly ergodic at this temperature.

To see how the dynamics of individual particles is affected 
by the slowing down of the clusters, we turn our attention to 
the self parts of the ISF, shown in figure 16. In contrast to their 
cluster counterparts, the single-particle ISFs are characterized 
by two regimes: after a first initial decay, which occurs on 
a time-scale shorter than the typical cluster relaxation time, 
the self ISF shows a secondary, slower relaxation. We found 
that at this density the relaxation time associated to this pro-
cess matches the one of the cluster self ISF. Thus we tenta-
tively attribute this secondary, slow relaxation to the motion 
of the clusters as a whole. By contrast, the data at the higher 
densities show that the cluster ISF relaxes much slower than 

the particle-based correlation functions, consistent with our 
analysis of the diffusion coefficients. Thus at higher density, 
the clusters arrest at low temperature, but individual particles 
may still diffuse around by leaving the clusters and joining 
new ones.

5.  Conclusions

We have studied the static and dynamic properties of the cluster 
mesophase formed by a two-dimensional system of particles 
that interact via a short-range attractive, long-range repulsive 
potential. Investigations are based on extensive Monte Carlo 
simulations that mimic qualitatively the Brownian motion of 
the particles. Restricting ourselves to the low- and interme-
diate density regime (i.e. densities up to ρ = 0.20) we have 
systematically decreased the temperature via a well-defined 
protocol down to very low values and calculated a represen-
tative set of static and dynamic correlation functions of the 
individual particles and of the clusters.

For ρ = 0.10 we found that the clusters form a fluid meso-
phase down to the lowest investigated temperature range. By 
contrast, we confirm that for intermediate densities (ρ = 0.15 
and ρ = 0.20) the system forms regular, hexagonal arrange-
ments of clusters. With decreasing temperature, also ordering 
within the clusters sets in, as indicated by characteristic fea-
tures in the specific heat: at least for ρ = 0.15 we find unam-
biguously that the particles form within the clusters a densely 
packed hexagonal arrangement well before the clusters, 
themselves, arrange in a hexagonal lattice. Our data thus indi-
cate that ordering of the clusters and within the clusters are 
decoupled.

The dynamics of both clusters and individual particles 
is characterized by a subdiffusive behaviour that occurs at 
lengths scales comparable to the radius of gyration of the clus-
ters. We tentatively attribute this particular dynamic behav-
iour to the short-range attractive interaction component of the 
potential, which prevents particles from leaving the cluster. At 
low temperature, the dynamic behavior of the system depends 
markedly on density. At ρ = 0.10, the diffusion coefficients of 
the individual particles and of the clusters follow each other 
very closely and display a temperature dependence milder 
than the one expected from the Arrhenius law. This shows that 
at low temperature the single particle motion is dictated by the 
slow diffusion of ‘rigid’ clusters. By contrast, at the higher 
densities we investigated both diffusion coefficients follow the 
Arrhenius law, with very similar values for the activation ener-
gies. In this latter case, the collective cluster structure freezes 
at the lowest available temperatures, but the individual par-
ticle motion can proceed via migration from cluster to cluster. 
Analysis of the intermediate scattering functions confirm this 
scenario.

The above results thus suggest that the system may form, 
at low density, a cluster glass [39] when cooled at even lower 
temperatures than studied here. This would be rather remark-
able since the system is mono-atomic, in contrast to the systems 
studied in [39], which were characterized by some size dispersity.  
We speculate that the degree of effective polydispersity of 

Figure 16.  Self ISFs of the individual particles (top panel) and of 
the clusters (bottom panel) as functions of time t, computed for a 
density ρ = 0.15 and for selected temperatures various temperatures 
(as labeled). Note the logarithmic time-scale.
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cluster sizes may play an important role in the formation of 
arrested phases of the studied system. It would be interesting 
to explore these issues in future studies.
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