
PHYSICAL REVIEW A 96, 043837 (2017)

Optimal control of non-Markovian dynamics in a single-mode cavity strongly coupled
to an inhomogeneously broadened spin ensemble
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Ensembles of quantum-mechanical spins offer a promising platform for quantum memories, but proper
functionality requires accurate control of unavoidable system imperfections. We present an efficient control
scheme for a spin ensemble strongly coupled to a single-mode cavity based on a set of Volterra equations
relying solely on weak classical control pulses. The viability of our approach is demonstrated in terms of explicit
storage and readout sequences that will serve as a starting point towards the realization of more demanding full
quantum-mechanical optimal control schemes.
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I. INTRODUCTION

In the past decade we have witnessed tremendous progress
in the implementation of elementary operations for quantum
information processing. Single-qubit gates can be realized
with fidelities reaching 1–10−6 [1] and also two-qubit gates
can be implemented in a variety of systems [2,3]. With all
these elements at hand, it is nowadays possible to implement
quantum algorithms on architectures with a few qubits (on
the order of five) [4] and to engineer quantum metamaterials
based on an ensemble of superconducting qubits coupled
to a microwave cavity [5,6]. Implementing quantum logics
on larger architectures, however, will most likely require a
separation between quantum processing units and quantum
memory units, where qubits in the former units admit fast
gate operations and the qubits in the latter units offer long
coherence times.

Since extended coherence times naturally imply weak
interactions with other degrees of freedom, the sufficiently
fast swapping of quantum information between processing
and memory units is a challenging task. The most promising
route to overcome slow swapping is the encoding of quantum
information as a collective excitation in a large ensemble
composed of many (N ) constituents, since this increases
the swapping speed by a factor of

√
N . Among promising

realizations of such ensembles, those based on spins, atoms,
ions, or molecules are of particular interest [7–13]. In many
cases, however, system imperfections result in broadening
effects giving rise to rapid dephasing of ensemble constituents,
a restriction that limits the coherence times of such collective
quantum memories.

As a result, various protocols to ensure the controlled
and reversible temporal dynamics in the presence of inho-
mogeneous broadening were recently the subject of many
studies. One of the proposed techniques in this context is
the so-called controlled reversible inhomogeneous broadening
approach [14–16], which is based on a rather subtle preparation
method and on the inversion of atomic detunings during the
temporal evolution. Most of the techniques developed for
this purpose are based on photon-echo-type approaches in
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cavity or cavityless setups, such as those dealing with spin
refocusing [17,18], with atomic frequency combs [19–24],
or with electromagnetically induced transparency [25]. Tra-
ditionally, these architectures operate in the optical region and
require additional high-intensity control fields. The resulting
large number of excitations is prone to spoil the delicate
quantum information that is encoded in states with extremely
low numbers of excitations. It would therefore be much better
to work with low-intensity control fields, which, however,
have the other problem to become easily correlated with the
quantum memory. For the identification of control strategies,
this implies that one may no longer treat the many different
memory spins as independent objects, but that the (macroscop-
ically) large ensemble needs to be described by a quantum
many-body state. This makes any description of dynamics and
an identification of control strategies a seemingly hopeless
task.

In this paper we develop a very efficient semiclassical
optimization technique based on a set of Volterra integral
equations, which allows us to write information into a
large, inhomogeneously broadened spin ensemble coupled
to a single-cavity mode by means of optimized classical
microwave pulses and to retrieve it at some later time in
the form of well-separated cavity responses. In contrast to
established echo techniques, our scheme only involves low-
intensity signals and therefore diminishes the influence of
noise caused by writing and reading pulses. The applicability
of our approach is also demonstrated in conjunction with
a spectral hole-burning technique [26–28] that allows us to
reach storage times going far beyond the dephasing time
of the inhomogeneously broadened ensemble. Importantly,
the Volterra equation exactly governs the resulting linear
non-Markovian dynamics not only in the semiclassical but also
in the pure quantum case for the particular situation without
external drive, when all spins are initially in the ground state
and the cavity contains initially a single photon [26,28,29].
Furthermore, the system’s density function or nonequilibirum
Green’s functions, which show up in the framework of a full
quantum-mechanical description, also satisfy mathematically
similar integro-differential Volterra equations [30,31]. Hence,
although the problem is treated semiclassically in what
follows, we believe that our approach can be generalized to
pure quantum regimes as well in which case the inclusion of the
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FIG. 1. Schematics of a single-mode cavity characterized by
a frequency ωc and a loss rate κ , coupled to an ensemble of
two-level atoms (spheres) with transition frequencies ωk and a loss
rate γ � κ . Curves designate optimized input and (nonoverlapping)
output signals.

transient two-time correlation function of the cavity operator
between the write and the readout may be needed, an issue that
will be postponed for future studies.

II. THEORETICAL MODEL

To be specific, we consider an ensemble of spins strongly
coupled to a single-mode cavity via magnetic or electric dipole
interaction as sketched in Fig. 1. All typical parameter values
are chosen here in accordance with the recent experiment [29],
the dynamics of which can be excellently described by the
Tavis-Cummings Hamiltonian [32] (in units of h̄)

H = ωca
†a + 1

2

∑N

j
ωjσ

z
j + i

∑N

j
[gjσ

−
j a† − g∗

j σ
+
j a]

− i[η(t)a†e−iωpt − η(t)∗aeiωpt ]. (1)

Here σ±
j and σ z

j are the Pauli operators associated with
each individual spin of frequency ωj and a† and a are
creation and annihilation operators of the single cavity mode
with frequency ωc. An incoming signal is characterized by
the carrier frequency ωp and by the envelope η(t). The
interaction part of H is written in the dipole and rotating-wave
approximation (terms proportional to aσ−

j and a†σ+
j are

neglected), where gj is the coupling strength of the j th spin.
The distance between spins is assumed to be large enough such
that the direct dipole-dipole interactions between spins can
be neglected. Furthermore, the large number of spins allows
us to enter the strong-coupling regime of cavity QED with
the collective coupling strength � = (

∑N
j g2

j )1/2 [33], which
leads to the enhancement of a single coupling strength gj by a
factor of

√
N (N ≈ 1012 in [29]).

We are aiming at the transfer of information from the cavity
to the spin ensemble, its storage over a well-defined period of
time, and its transfer back to the cavity. Our control scheme
thus consists of a write and readout section, with a variable
delay section in between. Starting from a polarized state with
all spins in their ground state, we construct (i) two write pulses
η

(W )
|0〉 (t) and η

(W )
|1〉 (t) that encode the respective logical states |0〉

and |1〉 in the spin ensemble. During the delay section (ii) the
information is subject to dephasing by the inhomogeneous
ensemble broadening and the external drive is optimized here

to reduce the cavity amplitude A(t) ≡ 〈a(t)〉 (to prevent the
information in the spin ensemble from leaking back to the
cavity prematurely). In the readout section (iii) we switch on
the readout pulse η(R)(t) [with substantially lower power than
η

(W )
|0/1〉(t)] that maps the two logical states of the spin ensemble

on two mutually orthogonal states of the cavity field, expressed
by the cavity amplitude A

(R)
|0〉 (t) or A

(R)
|1〉 (t), respectively. Note

that the write pulses (i) are specific for the input states |0〉 and
|1〉, but pulses (ii) and (iii) are generic as they are designed
without prior knowledge of the information stored in the
ensemble. [For the sake of simplicity we formally absorb the
delay pulse into η(R)(t).] The goal of our work is to find optimal
time-dependent choices for η

(W )
|0〉 (t), η

(W )
|1〉 (t), and η(R)(t) such

that A
(R)
|0〉 (t) and A

(R)
|1〉 (t) have minimal temporal overlap in

analogy to time-binned qubits where information is stored in
the occupation amplitudes of two well-distinguishable time
bins [20,34].

We describe the dynamics by deriving the equations for the
spin and cavity expectation values 〈σ−

k (t)〉 and A(t) under the
Holstein-Primakoff-approximation [35] (〈σ (z)

k 〉 ≈ −1) valid in
the regime of weak driving powers (the number of the excited
spins is always small compared to the ensemble size). This
allows us to formally express 〈σ−

k (t)〉 as a time integral with
respect to A(t) and to develop an efficient framework in terms
of Volterra equations that relate cavity amplitudes A(t) and
pump profiles η(t) [36],

A(t) =
∫ t

0
dτ K(t − τ )A(τ ) + D(t), (2)

where D(t) depends on the time integral of the driving signal
and on the initial conditions for the cavity amplitude as well as
of the spin ensemble. The memory kernel function K(t − τ ),
which is responsible for the non-Markovian feedback of
the spin ensemble on the cavity, is proportional to the
collective coupling strength �2 and explicitly depends on a
spectral spin distribution characterized by a function ρ(ω)
(see Appendix A). When switching on a constant drive, the
system exhibits damped oscillations characterized by the Rabi
frequency �R ≈ 2� and the total decoherence rate 
 mostly
determined by the dephasing caused by the inhomogeneous
broadening of the spin ensemble [36].

A consequence of the linearity of the governing Volterra
equations is that for two pump profiles η1/2(t), resulting in the
two cavity amplitudes A1/2(t), any coherent superposition of
these pulses c1η1(t) + c2η2(t) will result in the corresponding
cavity amplitudes c1A1(t) + c2A2(t).

The Volterra equation for the cavity amplitude is physically
the classical correspondence of the Heisenberg cavity spin
equations on the level of expectation averages after elimination
of the spin ensemble variables (see Appendix A). However, as
was demonstrated in [26,29,37], the Volterra equation also
governs quantum spin–cavity dynamics for the particular case
when all spins are initially in the ground state and the cavity
contains initially a single photon. Therefore, we take the
amplitude of the write pulses η

(W )
|0/1〉(t) such that the net power

injected into the cavity corresponds to the power of a coherent
driving signal with an amplitude equal to the cavity decay
rate κ . The latter prepares on average a single photon in
the empty cavity for stationary transmission experiments (see
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Appendix D for details). Due to the linearity of the Volterra
equations, also rescaling their solutions by a global prefactor
leaves them perfectly valid.

III. OPTIMAL CONTROL SCHEME

As a first step we need to find optimal write and readout
pulses that prepare the logical spin ensemble configurations
|0〉 and |1〉 and map them onto well-distinguishable cavity
responses. We do this through the optimization of a func-
tional, which ensures the minimal overlap between the cavity
amplitudes A

(R)
|0〉 (t) and A

(R)
|1〉 (t) of the logical states |0〉 and |1〉

in the readout section by exploring various temporal shapes of
both the write pulses η

(W )
|0/1〉(t) and of the readout pulse η(R)(t).

In practice we expand all involved driving pulses in a basis of
trial functions sin(nωf t) (n = 1,2, . . .) with the fundamental
frequency ωf defined as the inverse of the time duration of
the write or readout section counted in multiples of half the
Rabi period π/�R . Next we construct the functional defined
as the time-overlap integral between A

(R)
|0〉 (t) and A

(R)
|1〉 (t) in the

readout section. We then search the functional’s minima under
several constraints considering the expansion coefficients as
unknown variables using the standard method of Lagrange
multipliers (see Appendixes A and B). Due to the linearity
of governing equations with respect to the control pulses this
procedure, as shown in Appendix B, is numerically highly
efficient since the time integration of the Volterra equations can
be performed independently of the subsequent optimization of
the expansion coefficients of the control pulses.

A typical result of this optimization (first without a delay
section) is depicted in Fig. 2 (left column), where the
amplitudes of all optimized pulses as well as those of the
resulting cavity responses are depicted. One can indeed see that
the two different configurations stored in the spin ensemble,
|0〉 and |1〉, are retrieved by the same readout pulse in the form
of two well-separated cavity responses. The storage efficiency
can be quantified in terms of the ratio of integrated cavity
amplitudes during the readout and write section, which turns
out to be ≈40% for the configurations |0〉 and |1〉 shown in
Fig. 2 (left column).

The bottleneck for extended information storage times in
the ensemble is its inhomogeneous broadening, as determined
by the continuous spectral density ρ(ω) appearing in our
theoretical description. Specifically, the total decoherence
rate in the limit of strong coupling (when � > 
) can be
estimated as 
 ≈ κ + π�2ρ(ωs ± �) [36,37], indicating that
the dominant contribution to 
 stems from the spectral density
ρ(ω) at frequencies close to the maxima of the two polaritonic
peaks ω = ωs ± �. To suppress this decoherence rate 
 it
is thus advisable to work with spin ensembles having a
spectral density that falls off faster than 1/�2 in its tails
such that 
 → κ for large �. The corresponding cavity
protection effect [36–38] has meanwhile been demonstrated
also experimentally [29], but has the drawback of requiring
prohibitively large coupling strengths to take full effect.
Alternatively, one can burn two narrow spectral holes at
frequencies close to ωs ± �, during a preparatory step for
t � 0. This technique [26–28] was recently shown to be
both easily implementable and very efficient in suppressing
the decoherence rate 
 even below the bare cavity decay

rate κ [27]. Incorporating this hole-burning protocol in the
present analysis allows us to increase the dephasing time
from 1/
 ∼ 75 ns [the case shown in Fig. 2 (left column)] to
microsecond time scales [see Fig. 2 (right column)] for which
we can now meaningfully introduce a delay section in between
the write and the readout section. In Fig. 2 (right column) we
show that with parameters taken from recent experiments [27]
we can extend the storage time and thereby our method’s
temporal range of control beyond 1 μs. Evidently, such an
extension of the storage time comes with a reduced efficiency,
which is here as large as 5%.

With these long coherence times we can now proceed
to the main goal of storing coherent superpositions of the
two spin configurations |0/1〉. Those can be created by the
corresponding superposition η(W )(t) = αη

(W )
|0〉 (t) + βη

(W )
|1〉 (t) of

the respective write pulses and, ideally, the corresponding
superposition of time-binned cavity responses would be ob-
served under the application of the readout pulse η(R)(t). Since
the cavity response is of the form A(R)(t ; α,β) = αÃ

(R)
|0〉 (t) +

βÃ
(R)
|1〉 (t) + Ã(R)(t), where the two cavity responses Ã

(R)
|0/1〉(t)

only depend on the stored spin configurations |0/1〉 and Ã(R)(t)
is the response induced by the readout pulse, the desired
superposition of cavity outputs is obtained if the readout
pulse satisfies (α + β)η(R)(t) = η(R)(t) (see Appendix B).
Together with the normalization |α|2 + |β|2 = 1, this implies
that for the amplitudes αx = 1 − x ± i

√
x(1 − x) and βx =

x ∓ i
√

x(1 − x) with x ∈ [0,1] the desired cavity response
will be obtained. As a result, the proposed storage sequence
works not only for the two logical basis states |0/1〉, but, indeed
for a one-dimensional set of coherent superpositions, such as
for a rebit [34,39].

Note that when being only interested in reading out the
parameters α and β (and not in further processing the re-
sulting cavity response) one is not restricted by the above
rebit parametrization, but has the full qubit parameter space
at one’s disposal. As we show in Appendix B, α and
β can be unambiguously determined through the time-
overlap integrals defined only in the readout section [τa,τc]
as O0/1 = ∫ τc

τa
dt A(R)(t ; α,β)A(R)∗

|0/1〉(t), where A
(R)
|0/1〉(t) =

Ã
(R)
|0/1〉(t) + Ã(R)(t).
In principle, this information retrieval is exact, but noise

(which is not included in the previous theoretical modeling)
affects the readout if it reaches values comparable to the
cavity amplitudes. Therefore, in the next line of our study we
examine the robustness of our optimal control scheme against
possible noise. For that purpose, we subject the previously
established optimized pulses η

(W )
|0/1〉(t) and η(R)(t) to a small

perturbation by adding Gaussian white noise as an additional
driving term in our Volterra equations (see Appendix C). We
treat the problem numerically using well-established methods
for integrating stochastic differential equations (see, e.g., [40])
and accumulate statistics by evaluating many trajectories for
different noise realizations. We then average the resulting
retrieved values with respect to noise realizations and calculate
the absolute retrieval errors as the deviation from the input
configuration, εα = |α − 〈αR〉| and εβ = |β − 〈βR〉|. The
typical results of our calculations are displayed in Fig. 3. It
turns out that εα and εβ scale approximately linearly with
the noise amplitude and, e.g., the maximal absolute error
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FIG. 2. Preparation of the spin ensemble configurations |0〉 and |1〉 for a spin density ρ(ω) = C[1 − (1 − q)(ω − ωs)2/�2]1/(1−q)

following a q-Gaussian distribution with q = 1.39 centered around the cavity frequency ωs = ωc and a full width at half maximum
γq = 2�

√
(2q − 2)/(2q − 2) = 2π × 9.4 MHz. This form for ρ(ω) was established in our previous studies by a careful comparison with

the experiment [29,36]. The right column shows that two holes were burnt into ρ(ω) at frequencies ωs ± � (two arrows in the inset) to suppress
decoherence [26,27] and to make room for a delay section (white area) between the write [green area (light gray)] and readout (gray area)
sections. [In the inset ρ(ω) is plotted in units of ω−1

s .] The top and middle rows show real [blue (dark gray) and orange (light gray), respectively]
and imaginary parts [cyan (light gray) and brown (dark gray), respectively] of the optimized write pulse η

(W )
|0/1〉(t) for state |0/1〉 and of the generic

readout pulse η(R)(t) (black and gray). The bottom row shows the cavity probability amplitude squared |A(t)|2 for the resulting nonoverlapping
cavity responses A

(R)
|0〉 (t) [blue (dark gray)] and A

(R)
|1〉 (t) [orange (light gray)]. The carrier frequency of all pulses ωp = ωc = 2π × 2.6915 GHz

and the coupling strength �/2π = 12.5 MHz. The ratio of the powers between the readout and write pulses is 0.068 (0.013) for the case
without (with) hole burning. The amplitudes of all pulses (top and middle rows) are presented in units of κ/2π = 0.4 MHz.

of retrieval shown in Fig. 3 is at most 0.02 for 200 noise
realizations when taking the noise amplitude to be 5% of the
incoming amplitude of the write pulse. These results confirm
the robustness of our approach with respect to possible noise
in a real physical system.

IV. CONCLUSION AND OUTLOOK

We have presented a very efficient optimization technique
applicable to different experimental realizations based on
an inhomogeneously broadened spin ensemble coupled to
a single cavity mode. Generalizing this scheme to the full
quantum-mechanical level is the obvious next step to make
our protocol an essential building block for the development
of future optimal control schemes with the perspective of
advancing the storage capabilities for quantum information.
Given the extremely unfavorable scaling properties of com-
posite quantum systems with particle number, any theoretical
description of a quantum many-body system is an extremely
challenging task. Since the identification of optimal control
strategies is much harder than the mere description of a
system’s dynamics (the latter is naturally required for the
former), optimal control is typically a viable option for rather
small systems only. With our highly efficient semiclassical
control technique for the non-Markovian dynamics of large
hybrid quantum systems in the presence of inhomogeneous
broadening, we demonstrate the capabilities and limitations of
these systems for potential information storage.
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APPENDIX A: VOLTERRA EQUATION FOR
THE CAVITY AMPLITUDE

Our starting point is the Hamiltonian (1) of the main
text from which we derive the Heisenberg equations for
the cavity and spin operators ȧ(t) = i[H,a(t)] − κa(t) and
σ̇−

k (t) = i[H,σ̇−
k (t)] − γ σ−

k (t), respectively. Here a stands for
the cavity annihilation operator and σ−

k are standard downward
Pauli operators associated with the kth spin; κ and γ are the
dissipative cavity and individual spin losses, respectively. (All
notation is consistent with that introduced in the main text.)
During the derivations we use the following simplifications and
approximations valid for various experimental realizations: (i)
kBT � h̄ωc (the energy of photons of the external bath kBT

is substantially smaller than that of cavity photons h̄ωc); (ii)
the number of microwave photons in the cavity remains small
as compared to the total number of spins participating in the
coupling (limit of low input powers of an incoming signal),
so the Holstein-Primakoff-approximation 〈σ (z)

k 〉 ≈ −1 always
holds; (iii) the effective collective coupling strength of the spin
ensemble �2 = ∑N

k=1 g2
k (gk stands for the coupling strength

of the kth spin) satisfies the inequality � � ωc, justifying the
rotating-wave approximation; (iv) the spatial size of the spin
ensemble is sufficiently smaller than the wavelength of a cavity
mode. Having introduced all these assumptions, we derive
the following system of coupled first-order linear ordinary
differential equations for the cavity and spin amplitudes in the
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FIG. 3. (a) Retrieved cavity amplitude in the readout section,
resulting from a superposition of write pulses αxA

(R)
|0〉 (t) + βxA

(R)
|1〉 (t)

(normalized to a maximum value of 1) in the absence of noise with
the write amplitude η0 = κ . We used the rebit parametrization αx and
βx (see the text) from x = 0 to 1 in steps of 0.25 (with the same
parameters as in Fig. 2, left column). Also shown are the retrieved
average values (b) 〈αR〉 and (c) 〈βR〉 (only real parts are shown)
from the resulting solution A(R)(t ; α,β) in the presence of noise.
The averaging is performed with respect to 200 noise realizations
for a noise amplitude δη/η0 = 0.05. The input configurations are
parametrized as α = cos(ϑ/2) and β = sin(ϑ/2)eiϕ with ϑ ∈ [0,π ]
and ϕ ∈ [0,2π ]. (d) Reconstructed Bloch sphere with spatial compo-
nents ri = (〈αR〉∗,〈βR〉∗)σi(〈αR〉,〈βR〉) for i = x,y,z, evaluated from
the retrieved averaged parameters taken from (b) and (c), where
σi is the ith Pauli matrix. The symbols in (b)–(d) emphasize the
rebit encoding from (a). The reference configurations |0/1〉 are
taken from the left column of Fig. 2. (e) Maximum of the absolute
errors εα = |α − 〈αR〉| and εβ = |β − 〈βR〉| in retrieval of the input
configurations for different noise amplitudes δη. Vertical dashed line
shows the noise level of the calculations in (b)–(d).

ωp-rotating frame:

Ȧ(t) = −[κ + i�c]A(t) +
N∑

k=1

gkBk(t) − η(t), (A1)

Ḃk(t) = −[γ + i�k]Bk(t) − gkA(t), (A2)

where A(t) ≡ 〈a(t)〉 and Bk(t) ≡ 〈σ−
k (t)〉. In addition, �c =

ωc − ωp and �k = ωk − ωp are the detunings with respect to
the probe frequency ωp.

By formally integrating Eq. (A2) with respect to time for
the spin operators and inserting them into Eq. (A1) for the
cavity operator, we get

Ȧ(t) = −[κ + i�c]A(t) +
N∑

k=1

gkBk(T1) e−[γ+i�k ](t−T1)

−�2
∫ ∞

0
dω ρ(ω)

∫ t

T1

dτ A(τ )e−[γ+i�ω](t−τ ) − η(t),

(A3)

FIG. 4. Schematics of the time divisions of the cavity amplitude
A(n)(t). The input field η(n)(t) is applied to the system in the time in-
terval [Tn,Tn+1] and drives the corresponding cavity amplitude A(n)(t)
(indicated by vertical arrows). The non-Markovian contributions
from previous time intervals [Tn−1,Tn] are indicated by horizontal
arrows.

where �ω = ω − ωp, Bk(T1) is the initial spin amplitude
at t = T1, and ρ(ω) = ∑N

k=1 g2
k δ(ω − ωk)/�2 stands for the

continuous spectral spin distribution. As in our previous
studies [29,36], we take into account the effect of an inho-
mogeneous broadening by modeling the spin density with a q-
Gaussian shape ρ(ω) = C[1 − (1 − q)(ω − ωs)2/�2]1/(1−q),
distributed around the mean frequency ωs/2π = 2.6915 GHz
with the parameter q = 1.39 and a full width at half maximum
γq/2π = 9.4 MHz, where γq = 2�

√
(2q − 2)/(2q − 2).

Next we formally integrate Eq. (A3) in time and simplify
the resulting double integral on the right-hand side by partial
integration. We also consider the case when the cavity is
initially empty A(T1) = 0 and all spins are in the ground
state Bk(T1) = 0. To speed up our numerical calculations and
to separate different time sections from each other (see the
main text and Appendix B for details), we divide the whole
time integration into successive subintervals Tn � t � Tn+1,
with n = 1,2, . . . (see Fig. 4). This allows us to derive the
recurrence relation for the cavity amplitude for the nth time
interval A(n)(t), which depends on all previous events at t < Tn.
Finally, we end up with the expression for A(n)(t),

A(n)(t) =
∫ t

Tn

dτ K(t − τ )A(n)(τ ) + D(n)(t) + F (n)(t), (A4)

where the non-Markovian feedback within the nth time interval
is provided by the kernel function K(t − τ ),

K(t − τ ) = �2
∫ ∞

0
dω ρ(ω)

e−[γ+i�ω](t−τ ) − e[κ+i�c](t−τ )

[γ + i�ω] − [κ + i�c]
.

(A5)

The driving term D(n)(t) in Eq. (A4),

D(n)(t) = −
∫ t

Tn

dτη(n)(τ )e−[κ+i�c](t−τ ), (A6)

includes an arbitrarily shaped, weak incoming pulse η(n)(t),
defined in the time interval [Tn,Tn+1]. The memory contribu-
tions from all previous time intervals for t < Tn are given both
through the amplitude A(n−1)(Tn) and through the memory
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integral I (n)(ω), which are contained in the function

F (n)(t) =
{
A(n−1)(Tn)e−[κ+i�c](t−Tn) + �2

∫ ∞

0
dω ρ(ω)

e−[γ+i�(ω)](t−Tn) − e−[κ+i�c](t−Tn)

[γ + i�ω] − [κ + i�c]
I (n)(ω)

}
, (A7)

where

I (n)(ω) = I (n−1)(ω)e−[γ+i�ω](Tn−Tn−1) +
∫ Tn

Tn−1

dτ A(n−1)(τ )e−[γ+i�ω](Tn−τ ). (A8)

In accordance with the initial conditions introduced above at
t = T1, A(0)(T1) = 0 and I (1)(ω) = 0, so F (1)(t) vanishes in
the first time interval F (1)(t) = 0 (T1 � t � T2).

APPENDIX B: OPTIMAL CONTROL BASED ON THE
VOLTERRA EQUATION

In the main text we split our time interval into two parts,
a write and readout section, with a variable delay section
in between. In the write section, two independent optimized
write pulses η(W )(t) prepare two different configurations of
the spin ensemble, which are referred to as logical states
|0〉 and |1〉 of the spin ensemble. It is followed by the delay
section characterized by almost completely suppressed cavity
responses and finally by the readout section where two logical
states of the spin ensemble are retrieved and mapped on two
mutually orthogonal states of the cavity field by means of the
readout pulse η(R)(t) (see Fig. 5). Note that the optimized
readout pulse is generic, being the same for both |0〉 and
|1〉 states. For the sake of simplicity, we do not explicitly
specify the delay pulse but impose on the readout pulse η(R)(t)
a constraint such that the cavity responses are maximally
suppressed in the delay section [T2,τa] (see Fig. 5). Thus, the
write and readout pulses are defined within the time intervals
[T1,T2] and [T2,T3], respectively, in terms of the notations
introduced in Appendix A and the delay section is formally
absorbed into the readout section.

We then expand η(W )(t) and η(R)(t) in terms of sine
functions

η(W )(t) =
N1∑
k=1

ξk sin[kωf (t − T1)], (B1)

η(R)(t) =
N2∑
l=1

ζl sin[lωf (t − T2)], (B2)

FIG. 5. Time divisions for the optimization scheme of the cavity
responses A

(R)
|0〉 (t) and A

(R)
|1〉 (t). The write section [T1,T2] is followed

by the variable delay section [T2,τa] and the readout section [τa,τc].
The cavity responses A

(R)
|0〉 (t) and A

(R)
|1〉 (t) reside in the first half [τa,τb]

and the second half [τb,τc] of the readout section, respectively.

where ξk and ζl are the expansion coefficients and ωf is the
fundamental frequency. The linear property of the Volterra
equation (A4) allows us to expand the cavity amplitude in the
write section A(W )(t) in a series of time-dependent functions
with the same expansion coefficients ξk as in Eq. (B1),

A(W )(t) =
N1∑
k=1

ξka
(W )
k (t). (B3)

Here a
(W )
k (t) are solutions of the Volterra equation

a
(W )
k (t) =

∫ t

T1

dτ K(t − τ )a(W )
k (τ )

−
∫ t

T1

dτ sin[kωf (τ − T1)]e−[κ+i�c](t−τ ), (B4)

where the kernel function K(t − τ ) is given by Eq. (A5).
The solution in the readout section A(R)(t) in turn consists

of two contributions

A(R)(t) =
N2∑
l=1

ζla
(R)
l (t) +

N1∑
k=1

ξkψ
(R)
k (t). (B5)

Similar to the ansatz for the write section, the first term in
Eq. (B5) also contains the same expansion coefficients ζl as
the corresponding driving signal in the readout section [see
Eq. (B2)] with the time-dependent functions a

(R)
l (t) obeying

the Volterra equation (T2 � t � T3)

a
(R)
l (t) =

∫ t

T2

dτ K(t − τ )a(R)
l (τ )

−
∫ t

T2

dτ sin[lωf (τ − T2)]e−[κ+i�c](t−τ ). (B6)

Additionally, the second term in Eq. (B5) describes the non-
Markovian memory and appears in the readout section due to
the energy stored in both the cavity and spin ensemble during
the time interval T1 � t � T2 (write section). Therefore, it
depends only on the coefficients ξk of the write pulse (B1) and
the time-dependent functions ψ

(R)
k (t), which can be found by

substituting the expressions (B3) and (B5) into Eqs. (A4)–(A8)
for n = 2. It can be shown that these functions satisfy the
Volterra equation

ψ
(R)
k (t) =

∫ t

T2

dτ K(t − τ )ψ (R)
k (τ ) + f

(R)
k (t), (B7)
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with the feedback from the previous write section defined by

f
(R)
k (t) = a

(W )
k (T2)e−[κ+i�c](t−T2) + �2

∫ ∞

0
dω ρ(ω)

e−[γ+i�ω](t−T2) − e−[κ+i�c](t−T2)

[γ + i�ω] − [κ + i�c]

∫ T2

T1

dτ a
(W )
k (τ )e−[γ+i�ω](T2−τ ). (B8)

Note that the a
(W )
k (t) in Eq. (B8) are defined in the write section

only and are known solutions of Eq. (B4).
In the main text we use two different pulses

η
(W )
|0〉 (t) = ∑N1

k=1 ξ
|0〉
k sin[kωf (t − T1)] and η

(W )
|1〉 (t) =∑N1

k=1 ξ
|1〉
k sin[kωf (t − T1)] in the write section, which

are characterized by two sets of expansion coefficients from
Eq. (B1). As a result, the cavity amplitudes in the write section
are also represented by these sets of expansion coefficients
and are given by Eq. (B3), namely,

A
(W )
|0〉 (t) =

N1∑
k=1

ξ
|0〉
k a

(W )
k (t),

A
(W )
|1〉 (t) =

N1∑
k=1

ξ
|1〉
k a

(W )
k (t). (B9)

Note that by injecting these pulses into the cavity, we create
two independent configurations (denoted by |0〉 and |1〉) of
the spin-cavity system at the beginning of the readout interval
t = T2.

Next we perform a readout by applying a single optimized
readout pulse (B2), which is the same for the states |0〉 and
|1〉. The cavity amplitudes in the readout section in turn are
governed by Eq. (B5) as

A
(R)
|0〉 (t) =

N2∑
l=1

ζla
(R)
l (t)

︸ ︷︷ ︸
Ã(R)(t)

+
N1∑
k=1

ξ
|0〉
k ψ

(R)
k (t)

︸ ︷︷ ︸
Ã

(R)
|0〉 (t)

,

A
(R)
|1〉 (t) =

N2∑
l=1

ζla
(R)
l (t)

︸ ︷︷ ︸
Ã(R)(t)

+
N1∑
k=1

ξ
|1〉
k ψ

(R)
k (t)

︸ ︷︷ ︸
Ã

(R)
|1〉 (t)

, (B10)

where Ã(R)(t) describes the contribution from the readout pulse
only, which is the same for both cavity responses and the two
other terms Ã

(R)
|i〉 (t) (i = 0,1) explicitly depend on the states |0〉

and |1〉 created in the write section. Thus, the cavity amplitude
is determined at every moment of time by Eqs. (B3)–(B8) (and,
as a consequence, all spin configurations), if all expansion
coefficients ξ

|0〉
k , ξ

|1〉
k , and ζl are provided.

As the next step we develop an optimization scheme aiming
at achieving two well-resolved cavity responses in the readout
section, A

(R)
|0〉 (t) and A

(R)
|1〉 (t), as is sketched in Fig. 5. (The

results of numerical calculations are presented in Fig. 2.)
For this purpose we use the standard method of Lagrange
multipliers by introducing the functionalF(ξ |0〉

k ,ξ
|1〉
k ,ζl) subject

to several constraints listed below and search for its minima
with respect to the expansion coefficients of all three pulses.

Namely, we write the expression for the functional

F(ξ |0〉
k ,ξ

|1〉
k ,ζl) =

∫ τc

τb

dt |A(R)
|0〉 (t)|2 +

∫ τb

τa

dt |A(R)
|1〉 (t)|2

+
∣∣∣∣
∫ τc

τa

dtA
(R)�
|0〉 (t)A(R)

|1〉 (t)

∣∣∣∣
− λ

|0〉
delay

∫ τa

T2

dt |A(R)
|0〉 (t)|2 − λ

|1〉
delay

×
∫ τa

T2

dt |A(R)
|1〉 (t)|2 − λ

|0〉
T |A(R)

|0〉 (τa)|2

− λ
|1〉
T

∣∣A(R)
|1〉 (τa)

∣∣2 − λ
|0〉
�T

×
(∫ τb

τa

dt
∣∣A(R)

|0〉 (t)
∣∣2 − S

)

−λ
|1〉
�T

(∫ τc

τb

dt
∣∣A(R)

|1〉 (t)
∣∣2 − S

)

− λ
|0〉
P

(∑
k

∣∣ξ |0〉
k

∣∣2 − P
)

− λ
|1〉
P

(∑
k

∣∣ξ |1〉
k

∣∣2 − P
)

, (B11)

where the λ are the Lagrange multipliers. The first three terms
in Eq. (B11) are the functions to be minimized, which ensure
that the overlap between the time-binned states in the readout
section is negligibly small. The rest of the terms are constraints,
which additionally guarantee the following conditions to be
simultaneously fulfilled: (i) The cavity responses within the
delay section are maximally suppressed; (ii) the cavity at the
beginning of the readout section is almost empty for both
states; (iii) the integral taken with respect to the time-binned
cavity amplitudes squared within the readout section has the
same value S; (iv) a net power P of the write pulses per
fundamental period 2π/ωf is the same. In our numerical
calculations we used the sequential least-squares programming
minimization method [41] embedded in the internal python
library SCIPY.OPTIMIZE to find the minima of the functional
F(ξ |0〉

k ,ξ
|1〉
k ,ζl).

In the main text we created an arbitrary superposition of
write pulses (each of which separately prepares the logical
state |0〉 or |1〉) by applying the superimposed write pulse

η(W )(t) = αη
(W )
|0〉 (t) + βη

(W )
|1〉 (t), (B12)

aiming to extract the encoded information (given by complex
numbers α and β) from the solution for the cavity amplitude in
the readout section designated in Fig. 5. [Note that the reading
pulse η(R)(t) is always kept the same.] The solution in the
readout section can be written as

A(R)(t ; α,β) = αÃ
(R)
|0〉 (t) + βÃ

(R)
|1〉 (t) + Ã(R)(t), (B13)
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with all three previously established well-known amplitudes
Ã

(R)
|0〉 (t), Ã

(R)
|1〉 (t), and Ã(R)(t) introduced in Eq. (B10). We then

project our resulting solution (B13) onto the functions A
(R)
|0〉 (t)

and A
(R)
|1〉 (t) from Eq. (B10), namely, we write

Oi =
∫ τc

τa

dt A(R)(t ; α,β)A(R)∗
|i〉 (t)

= αFi,0 + βFi,1 + Fi,R, (B14)

where the overlap integrals Fi,q = ∫ τc

τa
dt Ã

(R)
|q〉 (t)A(R)∗

|i〉 (t) with

i,q = 0,1 and Fi,R = ∫ τc

τa
dt Ã(R)(t)A(R)∗

|i〉 (t). Since Fi,q and
Fi,R are known we finally end up with the set of two algebraic
equations

O0 = αF0,0 + βF0,1 + F0,R, (B15)

O1 = αF1,0 + βF1,1 + F1,R, (B16)

from which the retrieved values αR and βR can be evaluated.

APPENDIX C: RETRIEVAL OF ENCODED PARAMETERS
IN THE PRESENCE OF NOISE

Here we study the influence of noise on the quality of our
optimization scheme presented in the main text and introduced
in Appendix B. For that purpose, we subject the previously
established optimal driving amplitudes η

(W )
|0〉 (t), η

(W )
|1〉 (t), and

η(R)(t) (see Appendix B) to a small perturbation represented by
the driving term δηnoise(t) = δηυ(t), where δη is the amplitude
of perturbation and υ(t) stands for a Gaussian white noise
of mean and correlations given by, respectively, 〈υ(t)〉 = 0
and 〈υ(t ′)υ(t)〉 = δ(t − t ′). We then numerically integrate the
Volterra equation (A3) from Appendix A with respect to time
by adding the perturbation δηnoise(t) to the corresponding
deterministic optimal driving amplitudes η(t), which in our
specific case are represented by the known writing and readout
amplitudes η

(W )
|0〉 (t), η

(W )
|1〉 (t), and η(R)(t). We treat the problem

numerically using well-established numerical methods for
integrating stochastic differential equations (see, e.g., [40]).
Concisely, the stochastic contribution to the cavity amplitude is
taken into account after each time step of numerical integration
in the following way: A(tm+1) → A(tm+1) + √

dtδηnoise(tm),
where A(tm+1) after the arrow corresponds to the deterministic
part of the cavity amplitude at t = tm+1 obtained using the
standard Runge-Kutta method and δηnoise(tm) is the stochastic
drive taken from the previous time step. We then accumulate
statistics by integrating many trajectories for different noise

realizations. Next we extract the encoded parameters αR and
βR in the presence of noise replacing the overlap integrals
in Eqs. (B15) and (B16) for the case without noise by
the corresponding overlap integrals evaluated for different
noise realizations. The result of calculations for the average
retrieval values of 〈αR〉 and 〈βR〉 and their absolute errors
εα = |α − 〈αR〉| and εβ = |β − 〈βR〉| with respect to the
encoded values are depicted in Fig. 3.

APPENDIX D: NUMERICAL VALUES FOR THE
OPTIMIZED READOUT PULSE COEFFICIENTS

Here we present numerical values of the coefficients ξ
|0〉
k ,

ξ
|1〉
k , and ζl of the optimal readout pulses η

(W )
|0〉 (t), η

(W )
|1〉 (t),

and η(R)(t) defined by Eqs. (B1) and (B2), which are
presented in the main text. We take the amplitude of the
write pulses such that the net power injected into the cavity
P (W )

|i〉 = 1
Tf

∫ Tf

0 dt |η(W )
|i〉 (t)|2 = κ2, with i = 0,1, such that it

corresponds to the power provided by a coherent driving
signal with the amplitude equal to the cavity decay rate η = κ .
Specifically, using the expansion (B1) for the write pulses
η(W )(t), we obtain the following expression for the power of
the write pulses per fundamental period Tf :

P (W )
|i〉 = η(W )2 1

2

N1∑
k=1

|ξ |i〉
k /η(W )|2 = κ2, (D1)

where η(W ) = κ and 1
2

∑N1
k=1 |ξ |i〉

k /κ|2 = 1 due to the constraint
imposed on the expansion coefficients. On the other hand, the
power of the readout pulse is substantially smaller than that of
the write pulses and for the case without hole burning (see left
column of Fig. 2) we obtain

P (R) = η(R)2 1

2

N2∑
k=1

|ζl/η
(R)|2 = 0.068κ2, (D2)

where η(R) = 0.26κ and again we use as the constraint
1
2

∑N2
l=1 |ζl/η

(R)|2 = 1.
The coefficients for all optimal readout pulses shown in

the left column of Fig. 2 are listed in Table I. For the sake of
convenience, the coefficients of the write and readout pulses
are normalized to η(W ) and η(R), respectively. We use N1 = 5
coefficients for the write pulse and N2 = 10 for the readout
pulse (notation is consistent with that used in Appendices A
and B). The fundamental frequency for the write pulses is
given by ωf = π/(T2 − T1) = �R and for the readout pulse
we use ωf = π/(T3 − T2) = �R/2. Here the Rabi frequency
�R = 2π × 13.62 MHz and the time divisions shown in Fig. 5

TABLE I. Normalized expansion coefficients ξ
|i〉
k=1,...,5 (for i = 0,1) and ζk=1,...,10 defined by Eqs. (B1) and (B2), which correspond to the

optimal readout pulses η
(W )
|0〉 (t), η

(W )
|1〉 (t), and η(R)(t) depicted in the left column of Fig. 2. The coefficients for the write pulses are normalized to

η(W ) = κ and for the readout pulse to η(R) = 0.26κ .

ξ
|0〉
k=1,...,5 ξ

|1〉
k=1,...,5 ζl=1,...,5 ζl=6,...,10

0.434 + 0.103i −0.043 − 0.013i −1.003 − 0.250i 0.229 + 0.054i

0.303 + 0.067i −0.231 − 0.055i 0.820 + 0.195i 0.037 + 0.007i

1.060 + 0.259i −1.127 − 0.273i −0.017 − 0.007i −0.096 − 0.025i

−0.152 − 0.023i 0.200 + 0.044i −0.213 − 0.054i −0.174 − 0.043i

0.682 + 0.161i −0.723 − 0.175i −0.243 − 0.061i 0.105 + 0.024i
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TABLE II. Normalized expansion coefficients ξ
|i〉
k=1,...,4 (for i = 0,1) and ζk=1,...,60 defined by Eqs. (B1) and (B2), which correspond to the

optimal readout pulses η
(W )
|0〉 (t), η

(W )
|1〉 (t), and η(R)(t) depicted in the right column of Fig. 2. The coefficients for the write pulses are normalized

to η(W ) = κ and for the readout pulse to η(R) = 0.11κ .

ξ
|0〉
k=1,...,4 ξ

|1〉
k=1,...,4 ζl=1,...,15 ζl=16,...,30 ζl=31,...,45 ζl=46,...,60

−0.227 + 0.108i 1.252 − 0.161i 0.066 − 0.028i −0.239 − 0.024i 0.054 − 0.032i −0.036 − 0.010i

0.017 + 0.046i 0.074 + 0.050i −0.121 − 0.022i 0.228 − 0.088i −0.041 − 0.014i 0.059 − 0.021i

1.014 − 0.161i −0.243 + 0.083i 0.190 − 0.128i −0.170 − 0.013i 0.044 − 0.029i −0.069 − 0.011i

0.938 − 0.032i 0.574 + 0.040i −0.230 + 0.010i 0.161 − 0.080i −0.027 − 0.014i 0.090 − 0.026i

0.292 − 0.151i −0.109 − 0.019i 0.027 − 0.025i −0.096 − 0.007i

−0.313 + 0.033i 0.107 − 0.059i −0.007 − 0.015i 0.112 − 0.040i

0.365 − 0.155i −0.066 − 0.020i 0.006 − 0.020i −0.112 + 0.016i

−0.363 + 0.028i 0.073 − 0.051i 0.012 − 0.020i 0.122 − 0.051i

0.398 − 0.160i −0.042 − 0.021i −0.009 − 0.017i −0.118 + 0.004i

−0.377 − 0.001i 0.058 − 0.044i 0.021 − 0.022i 0.122 − 0.033i

0.395 − 0.136i −0.032 − 0.021i −0.012 − 0.009i −0.115 + 0.011i

−0.355 − 0.009i 0.025 − 0.040i 0.016 − 0.021i 0.117 − 0.031i

0.358 − 0.097i −0.085 − 0.017i 0.000 − 0.014i −0.108 + 0.001i

−0.305 − 0.001i 0.049 − 0.033i −0.004 − 0.018i 0.107 − 0.032i

0.298 − 0.093i −0.047 − 0.015i 0.026 − 0.023i −0.095 + 0.020i

are T1 = 0, T2 = 36.72 ns, and T3 = 110.15 ns. The readout
section [τa,τc] coincides with the whole readout interval
[T2,T3].

For the case with hole burning, depicted in the right column
of Fig. 2, we use N1 = 4 and N2 = 60. All coefficients are sum-
marized in Table II. Here we choose the fundamental frequency
for the write pulses as ωf = π/(T2 − T1) = �R/2, whereas

ωf = π/(T3 − T2) = �R/30 for the readout pulse. The time
divisions are T1 = 0, T2 = 73.4 ns, and T3 = 1174.9 ns and the
Rabi frequency �R = 2π × 13.62 MHz. The readout section
defined by τa = 1114.3 ns and τc = 1153.6 ns is delayed by
approximately 1 μs with respect to the write section [T1,T2].
The power ratio of the readout pulse to the write pulse turns
out to be P (R)/P (W ) = 0.013.
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