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ABSTRACT
Utilizing molecular dynamics simulations, we report a nonmonotonic dependence of the shear stress on the strength of a continuously
increasing (i.e., time-varying) external magnetic field (H) in a liquid-crystalline mixture of magnetic and nonmagnetic anisotropic particles.
We relate the origin of this nonmonotonicity of the transient dynamics to the competing effects of particle alignment along the shear-
induced direction, on the one hand, and the magnetic field direction, on the other hand. To isolate the role of these competing effects,
we consider a two-component mixture composed of particles with effectively identical steric interactions, where the orientations of a small
fraction, i.e., the magnetic ones, are coupled to the external magnetic field. By increasing H from zero, the orientations of the magnetic
particles show a Fréederickz-like transition and eventually start deviating from the shear-induced orientation, leading to an increase in
shear stress. Upon further increase of H, a demixing of the magnetic particles from the nonmagnetic ones occurs, which leads to a drop
in shear stress, hence creating a nonmonotonic response to H. Unlike the equilibrium demixing phenomena reported in previous stud-
ies, the demixing observed here is neither due to size-polydispersity nor due to a wall-induced nematic transition. Based on a simplified
Onsager analysis, we rather argue that it occurs solely due to packing entropy of particles with different shear- or magnetic-field-induced
orientations.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5126398., s

I. INTRODUCTION

As proposed in a seminal work1 by Brochard and de Gennes,
doping liquid crystals (LC) with magnetic nanoparticles (MNP)
leads to remarkable hybrid materials whose properties can be con-
trolled by an external magnetic field. These stimuli-responsive mate-
rials exhibit rich self-assembly in equilibrium and show marked
effects under external fields.2–7 A key factor in determining these
emergent properties is the shape of the MNP:7–9 Commonly, the
MNP are either spherical (and hence different from the LC), or
they are anisotropic with a large size disparity between the MNP
and LC particles.6,7,10,11 In this paper, we investigate, on a compu-
tational basis, mixtures where the MNP are identical to LC in their
anisotropy and size. This is a timely issue due to recent advances

in experimental realizations of such anisotropic magnetic parti-
cles,3,12–14 which has motivated also a number of analytical and
numerical studies.15–18

The aforementioned studies15–18 focus on the effect of the mag-
netic field on the structural and optical properties. Here, we focus
on a different aspect of the response to the external field, that is, the
mechanical response of the mixture. A key difference between opti-
cal and mechanical responses is that, unlike in the optical case where
light is transmitted through the sample without changing the struc-
ture, a mechanical perturbation itself can lead to structural changes.
In particular, when the system is sheared, this leads to shear-induced
changes of the structure.19–23 We show that these shear-induced
effects combined with the magnetic field induced effects lead to an
intriguing mechanical response and structural changes.
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The focus of the present study is to isolate the role of the mag-
netic field-induced orientation of the MNP on the structure and
rheology of such mixtures. To achieve this goal, we consider a mix-
ture where not only the shape and size of the MNP and LC are
identical, but also they interact via the same interparticular potential.
Only the directions of the MNP are coupled to the external magnetic
field, and this coupling distinguishes the MNP from the LC. The
assumed monodispersity in size and uniformity in interparticular
interaction has several consequences: (i) there is no specific anchor-
ing between the LC and MNP beyond anchoring among LC and
MNP; (ii) polydispersity-induced phenomena, which are by them-
selves subject of intensive research,24–29 are absent here; and (iii)
unlike Refs. 30–35, there is no structure formation due to the direct
magnetic dipole–dipole interaction between the MNP. These prop-
erties of our model enable us to isolate the role of the selectively
controlled direction of particles and study its effect on the structure
and rheology of the whole system.

In pure ferrofluids, the interplay of an external magnetic field
and shear leads to the well-known magnetoviscous effects (see
Ref. 36 and references therein): By applying the magnetic field, the
viscosity of the system strongly and monotonically increases. This
monotonic increase appears even for very dilute systems, where
the dipole–dipole interactions are negligible.37–39 However, for mix-
tures containing anisotropic MNP, such effects are not studied, to
the best of our knowledge. As a first step towards an understand-
ing of the magnetorheological properties of this mixture, we study
the response of the mixture to a monotonically increasing mag-
netic field. Due to the variation with time we do not have direct
access to the steady-state behavior of the system. The advantage of
our protocol, however, is that it enables us to scan a large range of
field strengths (at different system parameters like temperature) and
simultaneously avoid large computational costs. Our results show
that the shear stress, and thus, the viscosity, displays an intrigu-
ing nonmonotonic dependence on the strength of the magnetic
field. We analyze this shear-stress behavior by investigating its cor-
relation to the structure of the mixture at different magnetic field
values.

From methodological point of view, we use extensive nonequi-
librium molecular dynamics (NEMD) simulations. Although
NEMD simulations, in practice, have restrictions regarding acces-
sible time and length scales, they nevertheless enable us to study
the mixture in the presence of both shear and external magnetic
field, where an analytical approach is missing. Furthermore, in
NEMD simulations, no assumption on the spatial distribution of
the particles is imposed, contrary to studies,15,16 which are based
on continuum theories. In these continuum models, a homoge-
neous distribution of MNP is assumed. Our results show that such
an assumption is, in fact, not fulfilled. Indeed, we find clear evi-
dence for the formation of an inhomogeneous spatial distribution
with pronounced consequences for the mechanical response of the
system.

In resemblance to the geometry of a rheometer, we shear the
mixture by relative motion of two walls, and obtain the shear stress
directly measuring the exerted forces on the walls. To analyze the
structure of the sample, we use well-established quantities charac-
terizing the orientational order, and also introduce a new quantity
to characterize the positional distribution of MNP across the system.
Using these quantities, we argue that the nonmonotonic behavior of

the stress emerges as a delicate interplay between (i) an increase in
stress due to orientational deviations of the MNP from the shear-
induced orientation, and (ii) a decrease in stress due to an entropic
demixing, which is caused by differences of the orientations of the
LC and MNP.

II. SIMULATION SETUP
The simulation setup consists of ellipsoidal uniaxial Gay-Berne

(GB) particles,40 where a fraction of them have a permanent mag-
netic point dipole embedded in the particle center and pointing
along the long axis. The system is subjected to (i) shear flow, which
is realized via a relative motion of two walls between which the parti-
cles are confined, and (ii) an external magnetic field. In this section,
after briefly introducing the GB parameters, the protocols for cre-
ating independent samples, shearing, and applying the external field
are explained. Furthermore, the observables and the relevant dimen-
sionless parameters are introduced. A snapshot of the system, in the
isotropic state, and in the absence of the shear flow and magnetic
field, is shown in Fig. 1.

For the GB potential, we adopt the notation and parameter val-
ues used in Ref. 35. Similar to Ref. 35, the simulation units are set
such that the characteristic length and energy of the GB interaction,
as well as particle mass are σ0 = 1, ε0 = 1, and m = 1, respectively.
In these units, the lengths associated with semiaxes of the ellip-
soids are σs = 1 and σ l = 3, for the short and the long axes of the
ellipsoid, respectively. In addition to the GB interaction, the mag-
netic ellipsoids also interact via magnetic dipole–dipole potential.
In the present work, however, we are primarily interested in the
effect of the interaction of the magnetic dipoles with the external
field. Therefore, the dipole–dipole interaction is set to a negligible

FIG. 1. A snapshot of the simulation setup in the absence of the shear and the
external magnetic field: red, gray, and blue ellipsoidal particles represent magnetic,
nonmagnetic, and wall particles, respectively. The sample is in an isotropic state
(T = 5), the state from which the walls are created.
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value compared to the thermal energy. Thus, under the present con-
ditions, thermal fluctuations are dominant in the sense that they
prevent formation of structures due to the magnetic dipole–dipole
interaction.

The protocol to create systems similar to Fig. 1 consists of two
steps: (i) independent three-dimensional configurations are created
by sampling from a molecular dynamics simulation with periodic
boundary conditions at high temperature, (ii) walls are created via
sudden freezing of two slabs of particles. These two steps are now
explained in detail.

As a first step, independent samples are created. For this pur-
pose, an equilibrium molecular dynamics (EMD) simulation is per-
formed with a constant number of particles, N = 4000, at a constant
volume (a cubic box with the spatial extension L ≃ 23), and at a con-
stant temperature, T. This simulation is performed with the Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)41

package, where a new fix is introduced for embedding the point
dipole moments along the longest axes of the magnetic particles.
This fix can be found in the supplementary material for further
use. We set the number of magnetic particles to NMNP = 200. New-
ton’s equations of motion for both rotational and positional degrees
of freedom are integrated using the velocity-Verlet algorithm42,43

with the time-step δt = 5 × 10−3. The temperature is kept con-
stant using a Langevin thermostat with the same parameters as in
Ref. 35.

For the present choice of GB parameters and the number den-
sity, the equilibrium system exhibits isotropic, nematic, and smectic
phases.44,45 For the purpose of creating independent samples, we
consider the case that the equilibrium system (in the absence of
shear and the magnetic field) is deep in the isotropic state. We thus
set the temperature to T = 5, which is significantly larger than the
isotropic–nematic transition temperature, TIN ≃ 1.5.44,45 To assure
the independence of the configurations, the time interval between
each two consecutive samplings is chosen to be large enough such
that, on average, particles move almost 10 length units in that time
interval.

In the second step, we create walls for each sample for the later
implementation of shear flow (see Refs. 46–48 for a similar strategy).
To this end, the sampling at high temperature is followed by a sud-
den quench of the upper and lower slabs of particles (relative to the
z-direction), as depicted in Fig. 1 by blue-colored ellipsoids. As the
walls are formed at high temperature, the distributions of the LC and
MNP are uniform throughout the system. Therefore, the effective
concentration of MNP in the walls and the remaining liquid slab is
equal to the overall concentration of MNP. The MNP frozen in the
walls are replaced with the LC, such that the walls are solely com-
posed of nonmagnetic particles. The thickness of the walls is chosen
to be larger than the GB potential cutoff in our simulation setup.
These frozen slabs serve as solid, impenetrable, and rough walls. Fur-
thermore, as shown in Appendix A in Fig. 9, the roughness is large
enough that the velocity profile obtained under shear does not show
slip.

After creating walls, the system is quenched to the desired tem-
perature and sheared by a relative motion of the walls along the
x-direction with a constant velocity, yielding a time-independent
global shear rate, Γ̇ = ΔVw/L, where ΔVw is the difference in the
velocities of the two walls. One should note that the Langevin ther-
mostat is decoupled from particle’s x-coordinate to avoid the flow

induced effects caused by shearing along this direction.49 This is a
common practice to employ thermostating algorithms for sheared
systems.50–56

We now turn to the main physical quantities of interest in
our study. Most important for the mechanical response is the shear
stress. We calculate this quantity directly via summation of the
x-component of the forces exerted by the liquid particles on the
upper or lower wall particles, respectively,

σxz =
1
L2 ∑

i∈wall
∑

j∈fluid
fij,x. (1)

In Eq. (1), fij ,x is the x-component of the force on particle i due to
particle j, the summation over i is restricted to particles composing
the upper or lower wall, and the j index runs over all fluid parti-
cles. We note that by using this method of σxz calculation, we are
not relying on the assumptions behind the virial expression for pres-
sure tensor calculation such as homogeneity (as discussed in Refs. 57
and 58), or being in equilibrium.59 Knowing the shear stress, we can
calculate the apparent viscosity60 via ηa ∶= σxz/Γ̇. In this study, as we
keep the shear rate constant, the qualitative behaviors of the shear
stress and the apparent viscosity are identical. The ensemble aver-
ages of the stress and other quantities presented here are obtained
by averaging over 15 to 50 independent samples.

To characterize the orientational structure of the system, we
measure the tensorial order parameter,

Qα =
1
Nα

Nα

∑
i=1

1
2
(3ûα,i ⊗ ûα,i − I), (2)

where α ∈ {LC, MNP} denotes the type of the particles, Nα is the
corresponding number of particles, ûα,i is the unit vector along the
longest axis of the ith particle of type α, and I denotes the second-
rank unit tensor. The nematic order parameter, Sα, and the direction
associated with the nematic order director, n̂α, are obtained as the
largest eigenvalue and the corresponding eigenvector of Qα. The
nematic director n̂α only determines the orientation of the parti-
cles alignment (i.e., n̂α is equivalent to −n̂α). Nevertheless, in this
study, we always choose n̂α, which has a positive x-component. The
nematic order parameter is equal to 0 at a completely random and
isotropic state, and 1 for a perfect alignment of all particles. Based on
the Maier-Saupe mean-field theory,61–63 we consider Sc ≃ 0.43 as an
approximate criterion for identifying the isotropic-to-nematic phase
transition.

We also measure the (particle) averaged polar order parameter,
P, whose instantaneous value is given by

P =
1

NMNP
∣

NMNP

∑
i

ûMNP,i. n̂MNP∣, (3)

where the summation is limited only to the MNP, and μ is the dipole
moment of each MNP.

In order to obtain quantitative information on the instanta-
neous spatial distribution of MNP and LC, we measure the number
density profile ρα(z0) ∶= nα(z0 − δz/2, z0 + δz/2)/(L2δz) of parti-
cle type α, where nα is the instantaneous number of those particles
between planes z = z0 − δz/2 and z = z0 + δz/2, and δz = 0.25 is the
discretization resolution along the z-axis.
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The studied system is characterized by the following dimen-
sionless parameters, whose (range of) values are mentioned in the
brackets: the particle anisotropy, κ = σ l/σs {=3}, the total reduced
density of ρ⋆ = Nσ3

s /L3
{= 0.34}, the GB energy scaled by the

thermal energy, βε0 {=0.67} where β = 1/(kBT), the wall-to-wall dis-
tance scaled by the particle size, L̃ = Lc/σs {= 14}, where Lc is
the channel width, the fraction of magnetic ellipsoids, x = NMNP/N
{=0.05}, the energy of dipolar coupling scaled by the thermal energy,
λ = βμ2

/σ3
s {= 10−4

}, the dipole-external field energy scaled by
the thermal energy, H̃ = βμH {∈ [0, 35]}, and the shear-induced
time scaled by a structural relaxation time, Γ̇τσ {= 0.05}, where
Γ̇ = 5 × 10−2 is the imposed shear rate, and τσ ≃ 1 is the time asso-
ciated with decay of the stress autocorrelation in equilibrium (see
Fig. 12 in Appendix C).

The above-mentioned choices of κ, ρ⋆, and βε0 are such that
the corresponding pure GB system exhibits isotropic, nematic, and
smectic phases over a feasible temperature range.44,45 The value of L̃
is chosen to be large enough that the wall-induced effects are negli-
gible, based on the following two tests, which are presented in more
detail in Appendix A. First, we checked that for the confined system
at equilibrium, S is close to the nematic order parameter of the same
system without walls, as shown in Fig. 8 of Appendix A. Second, we
checked that in the presence of shear, based on density and shear rate
profiles, the wall effects are not dominating the system, as depicted
in Fig. 9.

Finally, the magnetic field is introduced as follows: We first let
the system reach its steady state under shear in the absence of the
magnetic field. We denote this point as the beginning of measure-
ment time, i.e., t = 0. From thereon, the magnetic field is switched
on and slowly increased up to a saturation value, Hmax, with a con-
stant rate over the simulation time tmax, i.e., H(t) = Hmax (t/tmax)Ĥ,
where Ĥ denotes the time-independent direction of the uniformly
applied field. The value of Hmax is chosen such that it allows
for complete alignment of the magnetic particles with Ĥ (here,
μHmax = 50). For all the simulations in this work, except those dis-
cussed in Appendix B where the effect of the rate of change, dH/dt,
is examined, tmax is set to 7500 in reduced units. This corresponds
to μdH/dt = 6.6 × 10−3 (in simulation units of energy per time)
and βμdH/dt = 4.4 × 10−3 (in simulation units of inverse time) for
T = 1.5.

III. RESULTS AND DISCUSSION
In discussing our results, we first report our main result, that is,

the nonmonotonic behavior of the stress as a function of the applied
external field, where the magnetic field increases with a constant rate.
Subsequently, we correlate this mechanical behavior with the struc-
ture formation of the particles in the system. The main temperature
that we consider is T = 1.5. We deliberately chose this temperature,
which is very close to the isotropic–nematic transition, to ensure
high sensitivity to the applied shear and magnetic field.

To start with, we present in Fig. 2, the response of the stress
to the field strength for three different directions of Ĥ: (i) along
n(0), (ii) perpendicular to n(0) in the yz-plane (vorticity direction),
and (iii) perpendicular to n(0) in the xz-plane (shear plane) with
a positive z-component. Here, n(0) indicates the nematic director
of the entire system in the absence of the magnetic field (which is
close to the direction of the shear flow, as discussed later). We note

FIG. 2. Shear stress as a function of the strength of a magnetic field with three
different directions: (i) the direction parallel to n(0), (ii) the vorticity direction, which
is parallel to the y-axis, and (iii) the direction perpendicular to n(0) in the xz-plane.
The left vertical axis of the graph shows the shear stress, while the right vertical
axis indicates the apparent viscosity, ηa = σxz/Γ̇ with Γ̇ = 5 × 10−2. Note that,
due to our protocol, a variation of H (and consequently βμH) corresponds to a
change in time according to Δt = ΔH( dHdt )

−1. For all the cases, the tempera-
ture is set to T = 1.5, and the rate of the magnetic field increase is set such that
βμdH/dt = 4.4 × 10−3.

that the orientation of the magnetic field is fixed and remains con-
stant during simulation. However, as the magnetic field is increased,
the nematic director of the system (n̂) changes as a result of a
competition between the shear-induced and magnetic field-induced
effects [thus, n(0) deviates from the magnetic field orientation Ĥ,
which remains along n(0)]. In our simulations, we do not fix the
nematic orientation of the particles, and therefore, the obtained
stress (and hence the viscosity) corresponds to the so-called appar-
ent stress60 (to be distinguished from common anisotropic stresses
obtained by fixing the nematic director64). As shown in Fig. 2, the
most pronounced effect of the magnetic field occurs in case (iii),
where we observe, remarkably, a nonmonotonic behavior. In con-
trast, there are no marked field-induced changes of σxz in the parallel
case. We speculate that this is because a magnetic field parallel to
n(0) does not reorient the MNP. In the present study, we restrict
ourselves to case (iii) and investigate the origins of the observed
nonmonotonicity as a function of the magnetic field strength
H ∶= |H|.

The aforementioned nonmonotonic behavior is persistent, as
depicted in the upper panel of Fig. 3, at the lower temperatures
T = 1.0 and T = 0.75, where the corresponding equilibrium system
at H = 0 is deep in the nematic state.44,45 Moreover, on a qualitative
level, we find the same nonmonotonic behavior also for slower and
faster rates of changing H, as shown in Fig. 10 of Appendix B. Never-
theless, quantitatively, the extent of the observed nonmonotonicity
is dependent on dH/dt. This suggests an interesting interplay of
timescales. In the present section, we show that the two relevant
processes for the nonmonotonic behavior are the orientational and
positional rearrangements of the MNP. The time scales associated
with these processes are estimated in Appendix B, where we also
discuss their relevance for the observed behavior.

To shed light on the origin of the nonmonotonic behavior for
the specific rate considered in Fig. 2, we now investigate the struc-
ture formation of the magnetic and nonmagnetic particles at dif-
ferent values of the magnetic field and T = 1.5. The corresponding
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FIG. 3. Upper panel: Shear stress as a function of the magnetic field strength
at three different temperatures. For visualization purposes, each curve is shifted
upward vertically by 0.02 with respect to the curve with the next higher tempera-
ture. Lower panel: Representative configurations associated with the four values
of the field, which are indicated by bullets and the Roman numbers on the T = 1.5
curve in the upper panel. For all simulations, Γ̇ is kept fixed at 5 × 10−2.

snapshots are shown in the lower panel of Fig. 3. They reveal a signif-
icant dependence of the orientational and translational structure on
the external field. To quantify these magnetic field induced effects,
we study, first, the structure of the system at H = 0, which represents
our reference system. Then we show that by increasing the magnetic
field to zero, the deviation of the orientations of the MNP from the
shear-induced direction leads to an increase of the shear stress. By
further increase of H, the aforementioned deviation increases and
eventually causes demixing of the MNP and LC. Finally, we show
that this demixing is correlated with the decrease of the stress at large
H values.

Upon shearing the system in the absence of the magnetic field,
we observe an increase in the order parameter SLC(MNP) of parti-
cles, a phenomenon known as shear-induced ordering (see Ref. 65
and references therein). In Fig. 4, the evolution of the nematic order
parameter of the system as a function of the applied strain, Γ (or,
equivalently, the time interval the system is sheared), is depicted for
the temperature T = 1.5 and shear rate Γ̇ = 5×10−2. The results show
that the system evolves from a state close to isotropic–nematic tran-
sition (S ≃ 0.45) to a nematic state (S = 0.65). We recall that at H = 0,
the LC and the MNP are essentially indistinguishable, and therefore,
we report only one S for the whole system.

FIG. 4. Plots of the nematic order parameter, S, and the angle between the nematic
order director and x-axis, θ, as functions of the strain, Γ (in the absence of the
magnetic field). Shear leads to an increase in the nematic order parameter and
it also changes the orientation of the director. In the absence of shear, i.e., at
Γ = 0, the director is aligned parallel to the walls and upon shearing, it starts devi-
ating from that. In the steady state, we find θ ≃ 20○, which is close to the value
reported in an earlier study.66

Applying shear not only increases the nematic order parameter,
but also changes the orientation of the nematic director. In Fig. 4,
the angle between the nematic director and the shear direction (i.e.,
x-direction) is shown: the angle θ evolves from zero to its steady state
value as the strain is increased. This steady state θ value, which is also
known as the Leslie angle, is θ ≃ 20○ in our system for the previously
specified parameters. The obtained value, although system specific,
is close to the reported value by a previous GB study.66

Upon increasing the magnetic field strength from zero at the
finite shear (Γ̇ = 5 × 10−2), the MNP tend to align with Ĥ, induc-
ing a competition with the shear-induced ordering along n(0). As
an illustration, we plot in Fig. 5, the nematic order parameters of
each component, as well as the angles between the director of each
component, n̂α, and the shear direction (x-direction). The nematic
order parameter of the MNP, SMNP, decreases for small values of H.
This is since the MNP now tend to align with Ĥ, which is perpen-
dicular to the nematic director in the absence of the field, i.e., n(0),
see Fig. 5(a). Interestingly, in the same range of H-values, the ori-
entation of the nematic director is still same as for H = 0, as seen
from the behavior of θMNP in Fig. 5(b). Indeed, the behavior of the
angle between the MNP director and the shear direction is reminis-
cent of a Fréederickz transition:67,68 Up to a threshold value of the
external field, in this case Hth ≃ 5, the director of magnetic particles
is not deviating from n(0). Upon further increase of the magnetic
field, it suddenly starts deviating from n(0), until it is fully aligned
with the field direction, Ĥ. In this regime, increasing the magnetic
field leads to an increase of SMNP along the new director, as can be
seen from Fig. 5(a). We note that, unlike the conventional Fréed-
erickz transition, which is an equilibrium phenomenon, here, the
system is out of equilibrium. Also, in a conventional Fréederickz
transition, the unperturbed direction is induced by the confine-
ment, whereas here, the unperturbed direction is the shear-induced
direction.

The field-dependence of the ordering of magnetic particles is
also reflected by the dipolar order parameter, P [see Eq. (3)], which
increases from zero by applying the magnetic field. As shown in
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FIG. 5. (a) Nematic order parameter for LC and MNP as a function of μH. The
results show that, unlike SMNP, SLC is not affected dramatically by the external
field. The inset shows that P has a weak dependence on μH before μH ≃ 5, in
contrast to its strong dependence for larger μH values. (b) The left vertical axis of
the graph shows the angles between the nematic directors, i.e., n̂LC and n̂MNP,
with the shear direction (x-direction). The value of the these angles coincide at
H = 0 where the LC and MNP are essentially indistinguishable. The right vertical
axis of the graph shows the stress as a function of the external magnetic field
strength. Similar to Fréderickz transition, up to a threshold value of the magnetic
field (here, μHth ≃ 5) the nematic director remains undistorted, and beyond that
it starts deviating from the H = 0 direction, and eventually fully aligns with the
direction of the magnetic field.

Fig. 5(a), a significant increase of P occurs as the magnetic field
exceeds μHth, although a slight increase is observed before this
threshold. Here, we present a qualitative explanation of this slight
increase. First, consider the case that the magnetic field is zero.
Due to the elongated shape of particles, the applied shear effectively
enhances the clockwise rotation of the particles (a situation simi-
lar to Ref. 69). This so-called Jeffery motion is hydrodynamic in its
nature and it occurs for all MNP irrespective of the direction of their
magnetic moments relative to n(0). We note that these rotations, in
zero field, cannot lead to a finite value for P. This is not anymore the
case if the magnetic field is turned on: if û is antiparallel to n(0), the
torque exerted by the field on the MNP tends to rotate the particle
clockwise (and thus, enhancing the aforementioned shear-induced
rotations). On the contrary, the shear-induced rotations are disfa-
vored by the field for the MNP, which point parallel to n(0). This
leads to an increase of the population of the MNP, which are par-
allel to n(0), and consequently, to an increase of P. This is, indeed,

quite remarkable in view of the fact that the field is perpendicular
to n(0).

As is visible from Fig. 5, not only the orientational order of
the MNP, but also that of the LC is affected by the magnetic field,
although the LC themselves are not susceptible to the magnetic field.
This is an indirect effect: The magnetic field reorients the MNP,
which in turn, affects the orientation of the neighboring LC due
to the anisotropic steric interactions between the MNP and LC.
However, considering that the MNP form only a small fraction,
the effect of the field on the LC is small at the present condition,
see Fig. 5. This indirect effect gets weaker at stronger fields, which
can be understood by considering the demixing between the MNP
and LC, which occur for these magnetic field values. This demix-
ing, which can be seen in snapshots presented in Fig. 6, is discussed
later.

In view of the competing effects of magnetic field and shear,
we are now in a position to interpret the marked nonmonotonic
behavior of the shear stress, σxz . Indeed, as seen from Fig. 5(b),
there is a clear correlation between the increase of σxz and the mis-
alignment of the MNP at small to moderate values of H. This can
be qualitatively understood by considering that σ is proportional
to τ, where τ is the relaxation time of the system. We argue that
τ increases by applying H, as applying magnetic field reduces ori-
entational freedom of the MNP, and hence making the relaxation
process less likely. Here, by the relaxation process, we refer to the
atomistic mechanism behind the stress relaxation, i.e., going from a
configuration with high stress to another configuration with a lower
stress.70–78 It has been argued79–81 that the probability of such transi-
tion is proportional to the configurational entropy of the system;79–81

roughly speaking, it is more likely for a system to make a transition,
if more states are available. In the studied system here, by confining
the orientation of a fraction of particles in a particular direction via
magnetic field, the configurational entropy is reduced, which leads
to an increase in τ and σ.

So far, we have focused on the correlation between the field-
induced orientational ordering of the magnetic particles and the
shear stress. Upon further increase of the magnetic field to the point,
where the misalignment between MNP and LC is close to its maxi-
mum, the shear stress shows a decrease. Interestingly, this decrease
occurs simultaneously with a significant qualitative change in the

FIG. 6. The density profiles of the MNP at different magnetic field values. The
roman numbers refer to the same numbers in Fig. 3. For small fields, a relatively
uniform spatial distribution is obtained, in contrast to strong fields where a double-
peaked profile emerges.
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spatial distribution of the MNP. This qualitative change is illus-
trated by the four representative configurations at different values
of μH, see Fig. 3: Starting from a relatively homogeneous distribu-
tion of MNP at small H, further increase of H leads to a demixing
between MNP and LC. We quantify these structural transforma-
tions by measuring the averaged number density profile of MNP
as a function of the external field. The results are plotted in Fig. 6:
At large field strengths (state points III and IV) one observes a pro-
nounced double-peak structure of the MNP density profile, reflect-
ing the assembly of the MNP at the walls. This is in a qualitative
contrast with the uniform spatial distribution of the MNP (and thus,
also the LC) at small μH values.

To better relate the field-induced changes of the spatial distri-
bution and the stress behavior, we introduce an entropylike mea-
sure, which quantifies the degree of inhomogeneity of the density
distribution of MNP. Specifically, we consider the quantity

I[ρ̃] ∶= ∫ ρ̃(z) ln(ρ̃(z))dz, (4)

where ρ̃(z) is the MNP density, ρMNP, with normalization
∫
Lc
0 ρ̃(z)dz = 1.

The obtained I as a function of the magnetic field is shown in
Fig. 7. For comparison, we have also indicated the values of I for two
extreme cases: Imax, which corresponds to an absolutely uniform dis-
tribution of MNP, and Imin, which refers to the case where all MNP
are concentrated close to the walls in a region of width σ l = 3, the
length corresponding to the large axis of the particles.

For small values of H, I remains essentially equal to its value
at H = 0, which is close to Imax (reflecting a nearly homogeneous
distribution). Only when H becomes larger than the threshold value
μH ≃ 15, I starts to decrease, indicating the onset of demixing. More-
over, the overlay of the H dependence of I and σxy in Fig. 7 shows
that for larger field strengths, the stress decreases along with the
I decrease. These results confirm the correlation between onset of
inhomogeneity and reduction of stress.

Having established the correlation between the demixing and
the decrease of the shear stress, there remains the question for the
underlying physical mechanism. Our interpretation is as follows: the
“misalignment” of the MNP at small fields leads to restrictions of

FIG. 7. The entropylike quantity of Eq. (4) as a measure of homogeneous distri-
bution of the MNP for different values of the external magnetic field strength. The
data clearly show that there is a transition from homogeneous spatial distribution
of the MNP to an inhomogeneous one.

the flow-induced motion of the nonmagnetic ones, and hence, to an
increase of the stress. However, this is true only if the MNP are dis-
persed between the LC. As soon as the system demixes (see Figs. 6
and 7), that is, at large values of μH, the MNP are concentrated close
to the walls. This provides a channel for the LC, in which they can
flow without (orientational and positional) disturbances from the
MNP.

Clearly, a key ingredient in this line of argumentation is the
field-induced orientational mismatch between the MNP and LC.
Our numerical results indicate that this mismatch alone leads to
a demixing-like transition: We emphasize that the interactions
between all the particles are identical, so the demixing cannot
be attributed to different shapes or interactions between the two
species, such as the demixing transitions reported in Refs. 27
and 82–91. In fact, a segregation of MNP has been predicted ear-
lier,1 on the basis of free-energy arguments, which relies on having
a distribution of nematic directors of the LC and migration of the
MNP to regions where the magnetic dipoles are aligned with both,
the nematic director and the external field. Our system is different
from the aforementioned one, as the MNP are not “locked” to the
LC nematic director (as in Ref. 1) and their orientations can actu-
ally deviate strongly [as shown in Fig. 5(b)]. We further note that the
demixing also occurs in bulk simulations (where the shear is induced
via the Lees-Edward boundary condition92), which emphasizes that
the demixing is not due to the existence of the walls.

We propose that the observed demixing between particles of
different orientations can be understood as a competition between
mixing entropy and packing entropy. Qualitatively speaking, on the
one hand, it is preferable for the system if particles with the same
orientations stay close to each other as this leads to larger (orien-
tational) free volumes for each particle. On the other hand, more
(positional) configurations are available to the system if the particles
are uniformly distributed in the system irrespective of their orien-
tations. In other words, an increase in packing entropy is obtained
when particles of similar orientations are neighbors, whereas higher
mixing entropy is reached when particles are uniformly distributed
over the whole system. In our system, at small fields, where the mis-
alignment is not yet pronounced, the mixing entropy dominates and
the MNP are uniformly distributed between the LC. In contrast,
at large fields, where the misalignments are large, the system gains
entropy by bringing particles of similar orientation close to each
other (and hence demixing).

In Appendix D, by using a simplified Onsager analysis93 for
binary mixtures,94 we argue that particle misalignments are, indeed,
sufficient to cause demixing. We show that the free energy differ-
ence between the demixed state and the fully mixed state of long,
hard ellipsoids can be written as

ΔF = (1 − x) ln(1 − x) + x ln(x) + 2cb⊥x(1 − x)∣ sin(Θ)∣, (5)

where c is the number density, b� is the excluded volume of two
ellipsoids in perpendicular configuration,93 and Θ is the angle mea-
suring the degree of misalignment. In the present case, Θ is essen-
tially determined by the magnetic field. We find from Eq. (5) that,
there is a critical density below which mixing is favored, whereas
above it, depending on the misalignment between the directions
(Θ) and composition (x), demixing is favored. Although the afore-
mentioned Onsager analysis relies on equilibrium arguments, it
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does suggest that demixing in the present nonequilibrium system is
possible.

Experimentally, a similar demixing has been realized in a sys-
tem of nanorods,95 where a certain degree of polydispersity is
required to induce particle misalignments. In contrast to that, in our
study, the demixing occurs between monodisperse particles. This
isolates the role of orientational misalignments. Moreover, we want
to emphasize that, in contrast to Ref. 95, being out-of-equilibrium
is essential for the observed demixing in our system as one of the
favored orientations is the shear-induced orientation.

IV. CONCLUSION AND OUTLOOK
In this study, we performed a NEMD study of a mixture of

anisotropic magnetic and nonmagnetic particles confined between
two rough solid walls, focusing on the shear stress in the presence of
a continuously increasing external magnetic field. In our model, the
interactions between both types of particles are the same. The only
difference between the magnetic and nonmagnetic particles is that
the field acts solely on the direction of the magnetic particles. Our
simulation results indicate that, for a fixed shear rate and a fixed rate
of increasing the magnetic field, the obtained shear stress depends
on the strength and direction of the external field. More specifi-
cally, for a field direction within shear-plane and perpendicular to
the shear-induced nematic director, we observe a nonmonotonic
dependence of shear stress, and thus, the viscosity, on the applied
field strength. By analyzing the nematic director of the LC and MNP,
we have found that the increase in the shear stress is correlated with
the misalignment of the MNP director relative to the shear-induced
director of the majority of particles, i.e., the LC particles. The shear
stress increases up to the point that the misalignment is sufficient to
cause an entropic demixing between the MNP and LC. The occur-
rence of demixing is also (qualitatively) predicted by a simplified
Onsager analysis. Unlike previously analyzed systems where the
effective entropic interaction is due to size-polydispersity27,82–84 or
shape-polydispersity,85–91 in our system the underlying mechanism
is due to (competing) orientations. This is an interesting case of
an effective interaction where there is no difference in shape and
interparticle interaction between the particles constituting different
species. This extends the notion of the directional entropic forces,
introduced in Refs. 96 and 97, to a system where the particles are
much simpler in their shapes.

Given the complex response observed in the present study, one
would expect even more diverse behavior when dipole–dipole inter-
action between the MNP are included. The rheology of the MNP/LC
mixture in the external magnetic field over a range of dipole–dipole
couplings will be the subject of further studies. Indeed, as it is known
for systems of pure anisotropic MNP, the dipole–dipole interac-
tion can lead to self-assembled structures, which can be signifi-
cantly different from the chain formation observed31 in systems of
spherical MNP. In particular, for MNP with large enough aspect
ratios, the neighboring particles prefer formations with antiparallel
configurations.30,98 We speculate that such formation of a struc-
tured phase within the liquid phase has important consequences
for the rheological properties of the mixture, similar to the effect
of including crystalline microstructures in amorphous bulk metallic
glasses.99–101 We also expect that the external field has an impor-
tant effect on the rheology. As the external field disfavors the

antiparallel dipoles, the stability of the assembled structures of MNP
is reduced,30 which can lead to dissolving these structures in the
liquid phase.

In this study, we only focused on the case where the dipoles
are aligned with the longest axis of the ellipsoid. The anisotropic
shape of the MNP also offers the possibility of aligning the mag-
netic dipole along different axes of the particles. For further studies,
one can consider embedding the magnetic dipoles along the shortest
axis, as done in recent experiments,13 or include an offset from the
center as done for spherical particles.102–107 Depending on different
embeddings, by increasing the dipole–dipole interaction strength,
we speculate to find intriguing structures where an external mag-
netic field can play an important role in stabilizing or destabilizing
them.

SUPPLEMENTARY MATERIAL

See the supplementary material for C++ files to integrate the
equation of motion of the magnetic ellipsoidal particles. In these
routines, it is assumed that the magnetic dipoles are embedded along
their longest axis.
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APPENDIX A: EFFECTS OF WALLS
Strong confinement can lead to structural and dynamical prop-

erties, which are significantly different from bulk properties.108,109

Nevertheless, if the confinement is not severe, one would expect the
sample to behave similarly to the bulk. In this appendix, we argue
that although the system studied here has walls and is therefore
confined, the wall effects are negligible at the current wall-to-wall
separation.

Prior to studying the effect of walls, it is useful to compare our
bulk results with the literature results; here, we use Refs. 44 and 45.
The comparison shows quantitative agreement between the nematic
order parameter as a function of density (see the inset of Fig. 8). The
data presented in Refs. 44 and 45 are calculated for a system with
N = 256, and therefore, we also use a smaller system compared to
the system described in Sec. II (only for the data presented in this
inset). The temperature range for the coexistence of the isotropic and
nematic phases at our main working density (ρ⋆ = 0.34) is indicated
by a shaded area in Fig. 8. This temperature range, which is estimated
in Refs. 44 and 45, coincides with the temperature range above which
the nematic ordering occurs partially in our simulations (i.e., S is
larger than zero, and yet not as large as one).

To investigate the effect of confinement, we first compare the
nematic order (in the absence of the magnetic field and shear) as a
function of temperature for two systems: the system without walls
(i.e., the system with the periodic boundary conditions in all direc-
tions), and the same system after creating walls by freezing the wall
particles, as explained in the main text (see Sec. II). In Fig. 8, the
nematic order of the system in the presence of wall is shown over a
range of temperatures. Also indicated is the value of S at the main
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FIG. 8. Nematic order parameter as a function of temperature. The gray line per-
tains to the system with the full periodic boundary conditions, and the orange dot
presents the value of S for the same system at T = 1.5, after creation of the
walls, as explained in Sec. II. The horizontal dashed line represent the approxi-
mate critical nematic order parameter,61–63 Sc ≃ 0.43, above which the system is
considered to be in the nematic phase. The temperature range of coexistence of
isotropic and nematic states44,45 is also depicted by the dashed area. The main
working temperature is chosen such that the system is very close to isotopic to
nematic state transition (S ≃ 0.45). The inset compares the dependence of S on
ρ⋆ with the data reprinted from Ref. 44. The inset shows that our simulation results
(presented by points connected via a dashed-line) match quantitatively with the
data from Ref. 44 (which is depicted by points).

working temperature, i.e., T = 1.5, in the presence of walls. It is seen
that the change in S, as a result of introducing walls, is negligible.
One should note that, as the system at T = 1.5 is very close to its
isotropic-to-nematic transition, one would expect a relatively high
sensitivity of S on the ambient changes, including introducing walls.
Even under these conditions, introducing walls does not change S,
which is an indication that the walls do not dominate the behavior
of the system.

As a second point, we check the effect of the walls in the
presence of shear flow by measuring the density and shear rate

FIG. 9. The velocity profile, vx (z), which is the average velocity along x-direction
as a function of z at T = 1.5 and four different values of μH. The local shear-rate,
γ̇(z) = d

dz vx(z), and the local particle density (including both MNP and LC parti-
cles) are shown in the insets. In all the above figures, z < 4 and z > 4 correspond
to the wall regions. There is no indication of slip as there is no discontinuity of the
shear rate across the boundary. The condition at the boundary can be approxi-
mated with no slip boundary condition, where the boundary effects are present up
to 3σ0.

profiles across the channel (along z-direction) at different strengths
of the external field. The local density is obtained as described in
Sec. II, and the local shear rate is obtained by γ̇(z) ∶= d

dz vx(z),
where vx(z0) is the average x-component of velocities of all par-
ticles between planes z = z0 − δz/2 and z = z0 + δz/2, and
δz = 0.25 is the descritization resolution along the z-axis. The
obtained velocity, shear rate, and density profiles are shown in Fig. 9,
for T = 1.5 and Γ̇ = 5× 10−2. The velocity profile shows that the flow
is almost independent of the magnetic field strength. This is remark-
able, given that the composition profile and also the average orienta-
tions strongly depend on the magnetic field strength. The shear rate
profile, plotted in the inset of Fig. 9, shows that there is no slip close
to the walls, and that the wall effects on the dynamics (here, the local
shear rate) reach from the wall into the bulk of the system over a
length of about ≃3σ0. The same is valid for the local density of all
particles.

APPENDIX B: DEPENDENCE OF THE SHEAR STRESS
ON THE FIELD PROTOCOL

In this study, as mentioned in Sec. II, the magnetic field is
increased gradually from zero to Hmax over the time interval tmax,
i.e., with the rate of dH/dt = Hmax/tmax. Here, we check whether the
nonmonotonic behavior, which is the subject of this study, is affected
by changing the values of dH/dt. The magnetic field dependence of
the shear stress is shown in Fig. 10, for a range of dH/dt values.
The rates are chosen to be both larger and smaller than the rate
used primarily in this work, which corresponds to μdH/dt = 0.033.
Similar to the temperature dependence of shear stress (see Fig. 3),
the results in Fig. 10 show that the nonmonotonic behavior is not
affected at a qualitative level for the examined values of dH/dt. Nev-
ertheless, the σxz–H curve changes quantitatively for different values
of dH/dt: by increasing the aforementioned rate, the peak becomes
more pronounced and the H value corresponding to the peak also
increases.

Given this sensitivity, it is interesting to analyze the rele-
vant timescales. For this purpose, we consider the two phenomena,

FIG. 10. Shear stress as a function of the magnetic field strength for dif-
ferent values of βμdH/dt at T = 1.5 (the rate used in the main text is
βμdH/dt = 4.4 × 10−3). For visualization purposes, the results of each βμdH/dt
are shifted along y-axis by 0.025 with respect to the results of the higher βμdH/dt
value. The results show that despite quantitative differences, the qualitative depen-
dence of the shear stress on H does not depend on the dH/dt value (within the
considered range of values).
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which play important roles in the observed nonmonotonic behav-
ior of the shear stress (see Sec. III), namely, (i) the reorientation
of the MNP away from the direction of n̂0, which leads to the
increase of the shear-stress, and (ii) the translational diffusion of
the MNP, which is crucial for the demixing and hence the decrease
of the shear stress. We denote these timescales by τθ and τD,
respectively.

For a given system, the rate μdH/dt is considered to be large
if τθ ≪ τD, i.e., the magnetic field reorients the particles faster than
they can diffuse (and obtain their steady state spatial distribution),
while being reoriented. On the contrary, μdH/dt is considered to
be small if τθ is orders of magnitude larger than τD, such that the
particles can diffuse over the width of the channel (a process neces-
sary for demixing). In the following, we estimate these timescales for
μdH/dt = 6.6 × 10−3 (in simulation units of energy per time) to find
out which of the above-mentioned scenarios occurs for this rate. We
note that both τθ and τD are also affected by the shear rate. Here,
we measure them for the shear rate used throughout this study, i.e.,
Γ̇ = 5 × 10−2.

We estimate τθ via measuring the time required for n̂MNP to
change its orientation from n̂0 to Ĥ. For the rate which is primarily
used in the main text (i.e., μdH/dt = 6.6 × 10−3), one can obtain τθ
from Fig. 5(b). The data suggest that n̂MNP changes significantly as
βμH changes from 3 to 13, which corresponds to a time interval of
τθ ≃ 2 × 103 (in simulation time units).

To estimate the translational diffusion timescale, τD, we mea-
sure the mean square displacement (MSD) along the z-direction
(i.e., the direction of confinement) as a function of time. We
measured this quantity for both species, i.e., α ∈ {MNP, LC}, via
MSDα,z(t) ∶= 1/Nα∑

Nα
i=1(zα,i(t) − zα,i(0))2, where zα ,i(t) is the

z-component of the position of the ith particle of type α at time t.
The z-component of MSD is particularly interesting for our pur-
pose as the demixing occurs along this direction (see the lower panel
of Figs. 3 and 6). One should note that the MSD calculations are
performed at H = 0 in the steady state under shear. We estimated
τD as the time that particles move (on average) with their own
size along the z-direction, i.e., MSDα ,z(t) = 1. As indicated by the
dashed lines in Fig. 11, the time associated with this displacement is
τD ≃ 100.

FIG. 11. The mean square displacement along the z-direction for particles of type α
∈ {MNP, LC} as a function of time. The horizontal dashed line (and its correspond-
ing vertical line) indicates where the particle moves over the distance of σs (and
the corresponding time, τD). The displacements are calculated in the presence of
shear and in the absence of the magnetic field.

The obtained τD is neither much smaller nor significantly larger
than τθ, i.e., the particles can diffuse over τθ but they cover a dis-
tance of ≃3σ, which is smaller than the channel width. This sim-
ilarity of timescales suggest that for the chosen value of μdH/dt,
both of the aforementioned phenomena are relevant in our system
and the behavior of the system emerges as an interplay between
them.

To find out if the nonmonotonic behavior survives in the limit
dH/dt → 0, i.e., in the steady state, a more systematic study is
required. Due to the complexity of the system, the investigation of
the steady-state behavior for a wide range of field strength would,
indeed, imply very large computational time. Nevertheless, we spec-
ulate that the nonmonotonic behavior persists in the steady state.
Based on the equilibrium Onsager analysis presented in Appendix D,
the demixing occurs beyond a certain misalignment; up to the field
strength corresponding to that misalignment, the stress increases.
By further increase of the field strength, the stress decreases
which is due to the demixing. Hence, a nonmonotonic behavior is
anticipated.

APPENDIX C: STRESS AUTOCORRELATION FUNCTION
Applying shear as an external perturbation leads to the

response of the system in the form of an increase of the shear
stress. In the liquid phase, there is a finite characteristic time, usu-
ally referred to as the relaxation time, which the system needs to
adapt to the induced stress (i.e., to reduce it to zero). This relax-
ation time is used to distinguish between high and low shear rates:
if the inverse shear rate is much larger than the relaxation time,
the applied shear rate is considered to be slow compared to the
relaxation of the system and one would expect a linear response of
the system. Here, we calculate the relaxation time associated with
stress, τσ . In order to calculate such a relaxation time, we ana-
lyze the stress autocorrelation, Cσ(t) ∶= ⟨σxz(t)σxz(0)⟩/⟨σ2

xz(0)⟩,
which is calculated in the absence of shear. Here, ⟨⋅⟩ refers
to an ensemble average. As shown in Fig. 12, the stress auto-
correlation decays to zero and one can assign an approximate
time to this decay. For T = 1.5, the obtained relaxation time is
τσ ≃ 1.

FIG. 12. The shear stress autocorrelation function, measured at T = 1.5 and in
the absence of shear, which shows that after time t ≃ 1, the stress autocorrelation
decays to zero.
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APPENDIX D: SIMPLIFIED ONSAGER ANALYSIS
In this appendix, by using a simplified version of the Onsager

analysis presented in Refs. 93 and 94, we show that for a system
composed of hard ellipsoids of identical shapes, an orientational
misalignment between the particles is sufficient to cause a demix-
ing. More specifically, we consider a system composed of two parti-
cle species A and B, and the corresponding one-particle orientation
distribution functions, f A and f B. We show that under certain con-
strains, the free-energy of the system is minimized if the two particle
species are spatially demixed.

For simplicity and without loss of generality, we assume that f A
and f B are given by the Dirac delta distribution located at n̂A and
n̂B, i.e., the average nematic directions. We also assume a canoni-
cal ensemble with total fixed particle number N = NA + NB, volume
V, and temperature T, where NA and NB are the numbers of parti-
cles in species A and B. We are interested in the free energy of the
system when (i) both particle species are homogeneously distributed
(Fhom.), and (ii) particles of different species are separated from each
other completely (Finh.).

Following Ref. 94, the reduced free energy per particle for a
spatially homogeneous distribution, i.e., Fhom. = Fhom./(NkBT),
reads

Fhom. = 1 + ln(c) + (1 − x) ln(1 − x) + x ln(x) + (1 − x)σ[ fA]

+ xσ[ fB] + cb∥(1 − x)
2ρ[ fA, fA] + cb∥x

2ρ[ fB, fB]
+ 2cb⊥x(1 − x)ρ[ fA, fB], (D1)

where x is the fraction of B particles, c = N/V is the overall number
density, b∥ = π/L2D, and b�≃ L2D, with b∥ and b� being the excluded
volumes of two long ellipsoids of length L and diameter D in parallel
and perpendicular configurations.93 In the above equation, the func-
tional σ[ f ] measures the entropy associated with the distribution f
itself, and ρ[ f, f ′] measures the entropy associated with the volume
available to neighboring particles with two distributions f and f ′

(the exact expressions can be found in Onsager’s work93). Assuming
L≫ D, that is, a needlelike shape, Fhom. can be approximated by

Fhom. = 1 + ln(c) + (1 − x) ln(1 − x) + x ln(x)
+ 2cb⊥x(1 − x)∣ sin(Θ)∣, (D2)

where Θ is the angle between n̂A and n̂B. Similarly, we obtain a
reduced free energy for the case where the species A and B are spa-
tially separated. In this case, the free energy per particle for each of
the species is obtained by setting x to zero, as each phase is purely
composed of one species. This leads to

Finh. = 1 + ln(c), (D3)

where the free-energy associated with the boundary between the two
species is neglected. The difference between the free energies in the
demixed state and that in the mixed state, ΔF = Finh. −Fhom., is
given by

ΔF = (1 − x) ln(1 − x) + x ln(x) + 2cb⊥x(1 − x)∣ sin(Θ)∣. (D4)

The first two terms on the right side of Eq. (D4) are always nega-
tive, and thus, favor a mixed system, while the third term is always

positive, and thus, favors demixing. The magnitude of the third term
increases by increasing Θ, which might eventually lead to a sign
change for ΔF. It is straightforward to show that, depending on the
values of Θ and x, ΔF can become positive. In particular, one can
show that there is a critical density ccr [with ccrb� = 2 ln(2)], below
which mixing is always favored.
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