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a b s t r a c t 

It is useful to describe the deformation characteristics of long biological macromolecules, 

such as deoxyribonucleic acid (DNA), by means of terms such as “bending”, “stretching”, or 

“twisting”. These terms are borrowed from classical beam theory, a traditional and widely 

known subfield of continuum mechanics, whereas the standard numerical modeling pro- 

cedure for macromolecules, which is molecular dynamics, does not allow for explicit in- 

troduction of the aforementioned deformation modes. This somehow puts some limit to 

the mechanical understanding of biological macromolecules. As a remedy, we here pro- 

pose an upscaling (or homogenization) approach, spanning a new conceptual bridge from 

molecular dynamics to beam theory. Firstly, we apply the principle of virtual power (PVP) 

to classical continuum beams subjected to stretching and twisting, as well as to atomic 

compounds represented as discrete systems of mass points in the framework of molecular 

dynamics. Equating virtual power densities associated with continuum and discrete repre- 

sentations provides homogenization rules from the atomic compounds to the continuum 

beam line elements. Secondly, the forces acting on the aforementioned mass points are 

derived from energy potentials associated with bond stretching, valence and torsion angle 

variations, as well as electrostatic and van der Waals interactions. Application of this strat- 

egy to a specific DNA sequence consisting of 20 base pairs reveals deformation-dependent 

conformational changes, as well as paradox phenomena such as “stretching due to over- 

winding”, in line with known experimental observations. 
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1. Introduction 

For several decades, substantial experimental, theoretical, and computational efforts have been undertaken to decipher

the mechanical properties of double-stranded DNA (i.e. deoxyribonucleic acid). At the so-called flexural persistence length of

around 50 nm and below ( Baumann et al., 1997; Bustamante et al., 2003; Herrero-Galán et al., 2013 ), DNA appears as elastic

rod undergoing stretching, bending, and twisting. In contrast, very long DNA strands, up to lengths of tens of micrometers

and beyond ( Bustamante et al., 20 0 0 ), behave more like ropes which can take a variety of different conformational states

( Bauer et al., 1993; Benham and Mielke, 2005; Boles et al., 1990; Herrero-Galán et al., 2013 ). Notably, these conformational
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states are associated with important biological processes such as replication, folding, packaging, regulation, recombination,

and gene expression, including transcription and translation ( Bustamante et al., 2003; Naserian-Nik et al., 2013; Olson et al.,

1993 ). 

On the experimental side, translational motions of magnetic beads attached to the ends of single- and double-stranded

DNA molecules allowed for controlled uncoiling of the DNA threads, and for recording of respective force-extension relations.

In combination with extensible worm-like chain models, the aforementioned force-extension relations give access to an

elastic stretch modulus of the molecule of around 1 nN, identified for a loading state characterized by an axial force of

around 10 pN ( Baumann et al., 1997; Bustamante et al., 20 0 0; Herrero-Galán et al., 2013; Smith et al., 1992 ). Rotational

movement of magnetic beads, in combination with classical torsional beam theory ( Barkley and Zimm, 1979 ) allowed for

quantification of the torsional stiffness of DNA of around 400 pN nm 

2 ( Bryant et al., 2003 ). However, classical beam theory

ignores characteristic features of DNA rods and ropes, such as the strong coupling between stretching, torsion, and bending

( Gore et al., 2006; Gross et al., 2011; Lionnet et al., 2006 ). This coupling stems from the complex atomic structure of DNA,

which can be modeled in much more detail by means of molecular dynamics simulations ( Cluzel et al., 1996; Galindo-

Murillo et al., 2015; Grindon et al., 2004; Kosikov et al., 1999; Lavery et al., 2002, 2010; Mathew-Fenn et al., 2008; Orozco

et al., 2008; Šponer et al., 2006 ). However, the results of such simulations (i.e., displacements and the potentials of the

involved atoms) have been rarely (if at all) linked to the classical notions of stretching, bending, and torsional stiffnesses, as

introduced in beam mechanics. 

It is the establishment of such a link between the atom-wise behavior of DNA upon mechanical loading and the cor-

responding stiffnesses, which is the key contribution of the present paper. For this purpose, the principle of virtual power

(PVP) ( Germain, 1973; Touratier, 1991 ) is applied to both classical beam theory and to discrete force systems ( Salenccon and

Lyle, 2001 ) representing atomic compounds in molecular dynamics simulations. In this way, we utilize the PVP as a the-

oretical vehicle for “homogenizing” the beam-like atomistic compounds into continuum beams with coupled stretching- 

torsion characteristics. Accordingly, this paper is organized as follows: First, atom-to-beam homogenization rules are derived

from the PVP, providing upscaling relations between the forces acting on the atoms on the one hand, and the DNA-beam-

element-specific normal forces and torsional moments, on the other hand (see Section 2 ). Thereafter, the aforementioned

atom-related forces are derived from energy potentials associated with the stretching of covalent bonds, the bending of

angles between covalent bonds, and torsion of covalent bonds (see Section 3 ), as well as from van der Waals and electro-

static interactions (see Section 4 ). The resulting atomic forces and energies are presented in Section 5 . Numerical solution

procedures for DNA rods made of 10 to 60 adeninethymine base pairs, subjected to different stretching and torsional defor-

mations, are described in Section 6 , followed by the presentation of the gained results (in Section 7 ), and of the respective

conclusions (in Section 8 ). 

2. Twisting and stretching of continuous rods and of rod-like atomic compounds 

2.1. Principle of virtual power applied to continuous rods 

The principle of virtual power (PVP) allows for an elegant development of the continuum mechanical representation of

twisting and stretching rods. Paraphrasing from ( Germain, 1973; Salenccon and Lyle, 2001 ), the underlying principle can be

summarized as follows: “Let a system S [of forces in a general sense] fulfill the fundamental law of dynamics with respect to a

given Galilean frame; then, in any virtual motion, the sum of the virtual powers of the internal forces and of the external forces

are equal to the virtual power of the acceleration forces.”

In a straight beam subjected to stretching and twisting, the virtual motion is fully described through continuous distri-

butions of the axial virtual velocity ˆ v and the axial virtual angular velocity ˆ � along the beam axis; with positions along this

axis being labeled by coordinate X (i.e., the macroscopic location quantity). The virtual power of internal forces is governed

by velocity gradients ( Germain, 1973; Salenccon and Lyle, 2001; Touratier, 1991 ); hence, the expression for straight beams

undergoing stretching and twisting reads as ( Kuttke et al., 2019 ) 

P 

cont 
int = 

∫ X= L 

X=0 

(
−N(X ) 

∂ ̂  V (X ) 

∂X 

− M x (X ) 
∂ ˆ �(X ) 

∂X 

)
d X , (1) 

where L is the length of the beam, N is the axial (or normal) force, and M x is the axial (or torsional) moment. On the other

hand, the virtual power of external forces is associated with the velocity quantities themselves, so that 

P 

cont 
ext = 

[
N(X ) ̂  V (X ) + M x (X ) ˆ �(X ) 

]X= L 
X=0 

+ 

∫ X= L 

X=0 

(
n x (X ) ̂  V (X ) + m x (X ) ˆ �(X ) 

)
d X , (2) 

with n x and m x as the axial line load and the torsional moment per length, respectively. Finally, in the equilibrium (or static)

case of negligibly small accelerations, the PVP mathematically reads as 

P 

cont 
ext + P 

cont 
int = 0 , (3) 

with P 

cont 
int 

and P 

cont 
ext defined in Eqs. (1) and (2) . The integrands in Eqs. (1) and (2) are virtual power densities (of dimensions

power per unit length), and they may be explicitly given as 

p 

cont 
int (X ) = −N(X ) 

∂ ̂  V (X ) − M x (X ) 
∂ ˆ �(X ) 

, (4) 

∂X ∂X 
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and 

p 

cont 
ext (X ) = n x (X ) ̂  V (X ) + m x (X ) ˆ �(X ) . (5)

2.2. Principle of virtual power applied to rod-like atomic compounds 

Next, we consider an atomic compound which resolves a continuum line element d X of DNA into microstructural details.

The line element d X exhibits an actual physical length � RLE , with RLE standing for representative line element , in analogy to

the representative volume element in continuum (material) micromechanics ( Zaoui, 2002 ). At the microstructural level, the

line element appears as a volume hosting a set of mass points, whereby each of them represents one atom. Microstruc-

tural positions within this volume are labeled by location vector x = x e x + y e y + z e z , whereby base vector e x points in the

longitudinal direction of the straight beam, and base vectors e y and e z span the cross sections of the beam. In a molecular

dynamics (MD) setting, the force acting on atom i , considering thereby a conservative force field, is identical to the negative

gradient of the potential energy E pot ( Allen, 2004; Arnol’d et al., 2013; Srivastava, 1997 ), 

F i = −∇ i E pot = −d E pot 

d x i 

. (6)

Hereby, the potential E pot is the sum of energy contributions stemming from covalent bonds subjected to stretching, bending,

and torsion (see Section 3 for further details); from van der Waals forces (see Section 4 for further details); and from

electrostatic interactions (see also Section 4 for further details). The forces appearing in Eq. (6) are then assigned to one of

the following two categories: 

• If all the atoms associated with a bonding, a non-bonding, or an electrostatic interaction are located within the micro-

scopic volume associated with line element d X , then the corresponding forces are called internal forces, and their sum

in position x i results in the internal force of mass point i , called F int 
i 

, F int 
i 

= F int 
i,x 

e x + F int 
i,y 

e y + F int 
i,z 

e z . 

• If one or more of the atoms associated with a bonding, a non-bonding, or an electrostatic interaction are located outside

the microscopic volume associated with line element d X , the remaining members of the bonding, the non-bonding, or

the electrostatic interactions are subjected to external forces, and the sum of these forces in position x i results in the

external force of mass point i , called F ext 
i 

, F ext 
i 

= F ext 
i,x 

e x + F ext 
i,y 

e y + F ext 
i,z 

e z . 

The virtual power densities associated with these internal and external forces read as 

p 

atom 

int = 

1 

� RLE 

N atom ∑ 

i =1 

F int 
i (x i ) · ˆ v int (x i ) , (7)

and 

p 

atom 

ext = 

1 

� RLE 

N atom ∑ 

i =1 

F ext 
i (x i ) · ˆ v ext (x i ) , (8)

with x i = x i e x + y i e y + z i e z as the microscopic location vector of atom i , and with N atom 

being the number of atoms of

the RLE. The microscopic virtual velocity fields ˆ v int and 

ˆ v ext are associated to the continuum beam kinematics defined in

Section 2.1 , via axial translations ˆ V and axial rotations ˆ � of rigid cross sections: 

• According to Eq. (1) , the internal forces are linked to macroscopic virtual velocity gradients. The simplest form of a

corresponding microscopic virtual field reads as 

ˆ v int (x i ) = x i 

(
∂ ̂  V (X ) 

∂X 

e x + 

∂ ˆ �(X ) 

∂X 

(−z i e y + y i e z ) 

)
. (9)

• According to Eq. (2) , the external forces are linked to the macroscopic virtual velocities themselves. The simplest form of

a corresponding microscopic virtual field reads as 

ˆ v ext (x i ) = 

ˆ V (X ) e x + 

ˆ �(X ) (−z i e y + y i e z ) . (10)

Insertion of Eq. (9) into Eq. (7) , and of Eq. (10) into Eq. (8) yields the atom-related virtual power densities as 

p 

atom 

int = 

1 

� RLE 

N atom ∑ 

i =1 

F int 
i (x i ) ·

(
∂ ̂  V (X ) 

∂X 

e x + 

∂ ˆ �(X ) 

∂X 

(−z i e y + y i e z ) 

)
x i , (11)

and 

p 

atom 

ext = 

1 

� 

N atom ∑ 

F ext 
i (x i ) ·

(
ˆ V (X ) e x + 

ˆ �(X ) (−z i e y + y i e z ) 

)
. (12)
RLE 
i =1 
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Fig. 1. Deformations of covalent bonds between atoms, including (a) stretching, and (b) bending; the cartoon was inspired by ( Ilse, 2016; Lengvarsky and 

Bocko, 2015 ). 

 

 

 

 

2.3. Homogenization rules derived from the principle of virtual power 

Setting p 

cont 
int 

according to Eq. (4) equal to p 

atom 

int 
according to Eq. (11) , as well as p 

cont 
ext according to Eq. (5) equal to p 

atom 

ext 

according to Eq. (12) , and requiring these identities to hold for any virtual motions ˆ V (X ) , ∂ ̂  V / ∂X , ˆ �(X ) , ∂ ˆ �/ ∂X , yields the

following atoms-to-beam homogenization (or averaging) rules: 

N(X ) = − 1 

� RLE 

N atom ∑ 

i =1 

x i F 
int 

i,x , (13) 

M x (X ) = − 1 

� RLE 

N atom ∑ 

i =1 

x i 
(
−z F int 

i,y + y F int 
i,z 

)
, (14) 

n x (X ) = 

1 

� RLE 

N atom ∑ 

i =1 

F ext 
i,x , (15) 

and 

m x (X ) = 

1 

� RLE 

N atom ∑ 

i =1 

(
−z F ext 

i,y + y F ext 
i,z 

)
. (16) 

3. Covalent bonding-related potentials and forces 

3.1. Stretching of covalent bonds 

The potential energy associated with the stretching of a covalent bond between two atoms with positions x i and x j is

given through ( Boyd, 1968; Ivani, 2016 ) 

˜ E i j 

bond 
= k i j 

(
r i j − r eq 

)2 = k i j ( �r ) 
2 
, (17) 

with the bond term constant k ij , the equilibrium distance r eq , and the actual distance measure r ij , defined through 

r i j = ‖ r i j ‖ = ‖ x j − x i ‖ . (18) 

The force acting on atom i with position x i , stemming from a covalent bond between atoms i and j reads as ( Monasse

and Boussinot, 2014 ) 

˜ F i, j 

bond 
= −d ̃

 E i j 

bond 

d x i 

= 2 k i j �r 
x j − x i 

‖ x j − x i ‖ 

= 2 k i j �r n i j , (19) 

with n ij as the unit vector pointing from atom i to atom j , see Fig. 1 (a). 

3.2. Bending of angle between two connected covalent bonds 

The potential associated with a changing angle between two covalent bonds, formed between atoms i and j and atoms j

and k (also referred as bending of the angle), is given through ( Allen and Tildesley, 2017; Boyd, 1968 ) 

˜ E i jk 

angle 
= k i jk 

(
θi jk − θeq 

)2 = k i jk ( �θ) 
2 
, (20) 
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Fig. 2. Deformations related to changing dihedral angles, showing in particular proper torsion of covalent bonds; the cartoon was inspired by ( Allen and 

Tildesley, 2017; Boussinot and Monasse, 2013; Case, 2019 ). The bonds in the first-angle projection are illustrated using the standard wedge-dash notation 

( Burrmann and Moore, 2013 ). 

 

 

 

 

 

 

 

 

 

 

 

with the angle force constant k ijk , the equilibrium angle θ eq , and the valence angle θ ijk between three atoms i, j and k ,

defined through θi jk = arccos (n ji · n jk ) . 

The force acting on atom i , with position x i , stemming from a bending potential associated with atoms i, j and k , and

with the angle positioned at atom j , see Fig. 1 (b), reads as ( Allen and Tildesley, 2017; Monasse and Boussinot, 2014 ) 

˜ F i, jk 

angle 
= −

d ̃

 E i jk 

angle 

d x i 

= −
(

2 k i jk �θ
∂θ [ n ji (x i )] 

∂x i 

)
= −

2 k i jk �θ r ji ×
(
r ji × r jk 

)
r i j 

∥∥r ji ×
(
r ji × r jk 

)∥∥ . (21)

On the other hand, the force acting on atom k , with position x k , stemming from a bending potential associated with atoms

i, j and k , is defined analogously, reading as ( Allen and Tildesley, 2017; Monasse and Boussinot, 2014 ) 

˜ F k,i j 

angle 
= −

d ̃

 E i jk 

angle 

d x k 

= −
2 k i jk �θ r k j ×

(
r ji × r jk 

)
r jk 

∥∥r k j ×
(
r ji × r jk 

)∥∥ . (22)

Finally, the force acting on atom j , with position x j , stemming from a bending potential associated with atoms i, j and k ,

follows from straightforward equilibrium considerations and reads as ( Monasse and Boussinot, 2014 ) 

˜ F j,ik 
angle 

= −˜ F i, jk 

angle 
− ˜ F k,i j 

angle 
. (23)

Additionally, it should be noted that Eqs. (21) –(23) ensure moment equilibrium of all forces related to this specific potential

( Monasse and Boussinot, 2014 ), 

˜ M = x i × ˜ F i, jk 

angle 
+ x k × ˜ F k,i j 

angle 
+ x j × ˜ F j,ik 

angle 
= 0 . (24)

3.3. Torsion of covalent bonds 

The potential associated with a changing dihedral angle between two planes, each spanned by three atoms (see Fig. 2 ),

reads as ( Pearlman et al., 1995; Pérez et al., 2007 ) 

˜ E i jkl 

dihedral 
= k i jkl 

[
1 + cos (n φ) cos (ψ) + sin (n φ) sin (ψ) 

]
η , (25)
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with the torsional constant k ijkl , the periodicity n , the phase angle ψ , the torsional (dihedral) angle φ, and the variable η,

being either η = 0 if the dihedral is (almost) linear or η = 1 otherwise. Thereby, both or either of the following two criteria

must be fulfilled for considering a dihedral angle as linear: (‖ n i j × n kl ‖ < 10 −3 ) and (‖ n kl × n k j ‖ < 10 −3 ) . Furthermore, if

η = 1 , φ is defined through ( Case, 2019 ) 

φ = π − sign 

( 

arccos 

( 

( r i j × r k j ) · ( r kl × r k j ) ∥∥r i j × r k j 

∥∥∥∥r kl × r k j 

∥∥
) 

, r k j ·
(
( r kl × r k j ) × ( r i j × r k j ) 

)) 

, (26) 

making use of the following definition: sign (A, B ) = abs (A ) if B ≥ 0, and sign (A, B ) = −abs (A ) otherwise. Notably,

Eq. (25) holds for both proper torsion (as depicted in Fig. 2 ) and improper torsion. The latter represents the case that

one central atom is bonded to all three other atoms, while those four atoms still form a dihedral angle ( Case, 2019 ). The

occurrence of proper and improper torsion depends on the considered force field as well as the studied atoms. 

The force acting on atom i , with position x i , stemming from a dihedral potential between atoms i, j, k and l , reads as 

˜ F i, jkl 

dihedral 
= 

k i jkl n sin (n φ − ψ) r ji × r jk 

r i j 

∥∥r ji × r jk 
∥∥ sin 

(
arccos 

(
r ji · r jk 

r i j r jk 

)) . (27) 

On the other hand, the force acting on atom l , with position x l , stemming from a dihedral potential associated with atoms

i, j, k and l , is defined analogously, reading as 

˜ F l,i jk 

dihedral 
= 

k i jkl n sin (n φ − ψ) r kl × r k j 

r kl 

∥∥r kl × r k j 

∥∥ sin 

(
arccos 

(
r k j · r kl 

r jk r kl 

)) , (28) 

whereas the force acting on atom k , with position x k , stemming from a dihedral potential associated with atoms i, j, k and

l , reads as ( Monasse and Boussinot, 2014 ) 

˜ F k,i jl 

dihedral 
= 

1 

r jk 
2 

(
−r jk × ˜ F l,i jk 

dihedral 
+ r kl × ˜ F l,i jk 

dihedral 
+ r ji × ˜ F i, jkl 

dihedral 

)
× r jk . (29) 

Finally, the force acting on atom j , with position x j , stemming from a dihedral potential associated with atoms i, j, k and l ,

follows again from equilibrium considerations, and reads as ( Monasse and Boussinot, 2014 ) 

˜ F j,ikl 

dihedral 
= −˜ F i, jkl 

dihedral 
− ˜ F l,i jk 

dihedral 
− ˜ F k,i jl 

dihedral 
. (30) 

Analogously to the bending potential presented in Section 3.2 , Eqs. (27) – (30) ensure moment equilibrium of all forces

related to the torsion potential ( Monasse and Boussinot, 2014 ), 

˜ M = x i × ˜ F i, jkl 

dihedral 
+ x l × ˜ F l,i jk 

dihedral 
+ x k × ˜ F k,i jl 

dihedral 
+ x j × ˜ F j,ikl 

dihedral 
= 0 . (31) 

4. Potentials and forces related to non-bonded interactions 

4.1. Van der Waals forces and hydrogen bonds 

So-called non-electrostatic weak chemical bonds (which are sometimes referred to as intermolecular forces), comprising

van der Waals forces and hydrogen bonds, account for interactions between atoms which are not directly linked by any kind

of bonding potential. For quantifying the related potential, the Lennard-Jones (LJ) potential has turned out as reasonable

approximation, reading as ( Ivani, 2016; Swails, 2013 ) 

˜ E i j 
LJ 

= 

a i, j 

| r i j | 12 
− b i, j 

| r i j | 6 , (32) 

where a i,j and b i,j are two parameters which follow from the considered force field. The related force acting on atom i , with

position x i , stemming from the non-electrostatic weak chemical bond interactions between atoms i and j reads as ( Monasse

and Boussinot, 2014 ) 

˜ F i, j 
LJ 

= 

(
12 a i, j 

| r i j | 13 
− 6 b i, j 

| r i j | 7 
)

n ji . (33) 

Furthermore, considering a group of four atoms (denoted by indices i, j, k , and l ) forming together a dihedral angle, the

potential generated through the non-electrostatic weak chemical bond interaction between the first atom i and the last atom

l of such a group is also quantified via the LJ potential, however divided by a scaling factor s 
i jkl 
LJ 

( Swails, 2013; Swails et al.,

2013 ), 

˜ E i jkl 
LJ , 1 −4 

= 

˜ E il LJ 

s i jkl 
LJ 

, (34) 
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where s 
i jkl 
LJ 

follows from the considered force field. Analogously, the corresponding force follows as 

˜ F i,l 
LJ , 1 −4 

= 

˜ F i,l 
LJ 

s i jkl 
LJ 

. (35)

Notably, ˜ E 
i jkl 
LJ , 1 −4 

and ̃

 F i,l 
LJ , 1 −4 

only apply if the interaction between atoms i and l is not already considered by another stretch-

ing, bending, or torsion potential. 

4.2. Electrostatic interactions 

Considering two electrically charged atoms i and j which are not directly linked by any kind of bonding potential with

each other, the Coulomb potential describing the electrostatic potential between these two atoms reads as ( Ivani, 2016;

Swails, 2013; Swails et al., 2013 ) 

˜ E i j 

charge 
= 

1 

r i j 

k C Q i Q j , (36)

where Q i and Q j are the point charges of atoms i and j and k C is the Coulomb constant, k C = 332 . 05 Å kcal/ ( mol q 2 e ) ,

( Case, 2019 ) with q e being the elementary charge q e = 1 . 602 176 634 × 10 −19 C ( von Klitzing, 2019 ). The corresponding force

acting on atom i , with position x i , stemming from the Coulomb force between atoms i and j , reads as 

˜ F i, j 

charge 
= −

d ̃

 E i j 

charge 

d x i 

= 

1 

r 2 
i j 

k C Q i Q j n ji , (37)

Furthermore, considering a group of four atoms (denoted by indices i, j, k , and l ) forming together a dihedral angle, the

potential generated through the electrostatic interaction between the first atom i and the last atom l of such a group is also

quantified via the Coulomb potential, however divided by a scaling factor s 
i jkl 
ES 

( Swails, 2013; Swails et al., 2013 ), 

˜ E i jkl 

charge , 1 −4 
= 

˜ E il 
charge 

s i jkl 
ES 

, (38)

where s 
i jkl 
ES 

follows from the considered force field. Analogously, the corresponding force follows as 

˜ F i,l 
charge , 1 −4 

= 

˜ F i,l 
charge 

s i jkl 
ES 

. (39)

Thereby, the same restriction as formulated at the end of Section 4.1 applies. 

4.3. Generalized Born potential 

In order to approximate the molecular electrostatics in the atoms-surrounding solvent, the Generalized Born (GB) model

( Hawkins et al., 1995; 1996 ) is applied, using the parameters provided in ( Tsui and Case, 2001 ). We specify the GB model

(i) for a neutral concentration of counter-ions in the solution; (ii) for an interior dielectric constant εint = 1 ; and (iii) for

an exterior (solvent) dielectric constant εsolvent = 78 . 5 . Then, the general definition of the GB potential, E GB , simplifies to

( Case, 2019 ) 

˜ E 1 ... N atom 

GB 
= −155 

157 

N atom ∑ 

k =1 

( 

k C Q 

2 
k 

2 R k 

+ 

N atom ∑ 

l= k +1 

k C Q k Q l √ 

r 2 
kl 

+ R k R l ξkl 

) 

, (40)

where R k and R l are the so-called effective Born radii of atoms k and l ( Case, 2019 ). For any atom i , the corresponding

effective Born radius R i is defined as 

R i = 

[ ( 

N atom ∑ 

j=1 

K 

j 

eff ,i 

) 

+ 

1 

r born ,i − r offset 

] −1 

. (41)

In Eq. (41) , r offset denotes the uniform Born radii offset, r offset = 0 . 09 Å, reducing the dielectric radii r born, i to the so-called

“intrinsic radii” ( Case, 2019 ), r int ,i = r born ,i − r offset , whereas the variable K eff, i , computed as described further below, repre-

sents the curvature change of the effective Born radii. Furthermore, Eq. (40) contains variable ξ kl , which represents the

following term: 

ξkl = exp 

(
− r 2 

kl 

4 R k R l 

)
. (42)
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The force acting onto an individual atom i , located at position x i and stemming from the GB model, follows, according

to Eq. (6) , from the derivative of the GB energy, defined in Eq. (40) , with respect to x i : 

˜ F i, 1 ... N atom 

GB 
= −d ̃  E 1 ... N atom 

GB 

d x i 

= −
N atom ∑ 

j=1 

(
d ̃  E 1 ... N atom 

GB 

d r i j 

d r i j 

d x i 

)
= −

N atom ∑ 

j=1 

( [ 

∂ ̃  E 1 ... N atom 

GB 

∂r i j 

+ 

N atom ∑ 

k =1 

{
∂ ̃  E 1 ... N atom 

GB 

∂R k 

∂R k 

∂r i j 

}] 

d r i j 

d x i 

) 

. (43) 

Taking into account that 

∀ k � = { i, j} : ∂R k 

∂r i j 

= 0 , (44) 

and that 

d r i j 

d x i 

= n ji , (45) 

allows for rewriting Eq. (43) , yielding 

˜ F i, j 
GB 

= −d ̃

 E 1 ... N atom 

GB 

d r i j 

· n ji = −
[
∂ ̃  E i j 

GB 

∂r i j 

+ 

∂ ̃  E i, 1 ... N atom 

GB 

∂R i 

∂R i 

∂r i j 

+ 

∂ ̃  E j, 1 ... N atom 

GB 

∂R j 

∂R j 

∂r i j 

]
· n ji . (46) 

The derivative d ̃

 E GB / d r i j , occurring in Eq. (46) , is derived as follows: 

d ̃  E 1 ... N atom 

GB 

dr i j 

= 

155 

314 

{ ( ∑ 

l= { i, j} 

k C Q 

2 
l 

R 

2 
l 

∂R l 

∂r i j 

) 

+ k C Q i Q j 

[
r 2 i j + R i R j ξi j 

]−3 / 2 

[
2 r i j + ξi j 

{
r i j 

2 

+ 

(
1 + 

r 2 
i j 

4 R i R j 

)(
R j 

∂R i 

∂r i j 

+ R i 

∂R j 

∂r i j 

)}]
+ 

∑ 

l= { i, j} 

[ ∑ 

m ∈ M 1 /M 2 

k C Q l Q m 

R m 

ξlm (
r 2 

lm 

+ R l R m 

ξlm 

)3 / 2 

∂R l 

∂r i j 

(
1 + 

r 2 
lm 

4 R l R m 

)] } 

, (47) 

with M 1 = { 1 , . . . , N atom 

} and M 2 = { i, j} . 
For computation of the aforementioned variable K eff, i as well as its derivation with respect to r ij , six case differentiations

based on the geometrical configurations of the involved atoms are required, considering for that purpose r offset , the maxi-

mum distance for calculating the effective Born radii, r max 
GB 

= 25 Å ( Case, 2019 ), and the so-called field screening parameter

f s, j : 

• Case 1: If 
(
r max 

GB 
− f s , j 

)
< r i j ≤

(
r max 

GB 
+ f s , j 

)
, then 

K 

j 

eff ,i 
= − 1 

8 r i j 

( 

1 + 

2 r i j 

r i j − f s , j 

+ 

r 2 
i j 

− 4 r max 
GB r i j − f 2 

s , j (
r max 

GB 

)
2 

+ 2 log 

[
r i j − f s , j 

r max 
GB 

]) 

, (48) 

and 

∂ K 

j 

eff ,i 

∂r i j 

= −
K 

j 

eff ,i 

r i j 

− 1 

8 r i j 

( 

2 

r i j − f s , j 

[
2 − r i j 

r i j − f s , j 

]
+ 

2 r i j − 4 r max 
GB (

r max 
GB 

)
2 

) 

. (49) 

• Case 2: If 
(
4 f s , j 

)
< 

(
r i j ≤ r max 

GB 
− f s , j 

)
, then 

K 

j 

eff ,i 
= −ζ ji f s , j 

r 2 
i j 

(
1 

3 

+ 

2 ζ ji 

5 

+ 

3 ζ 2 
ji 

7 

+ 

4 ζ 3 
ji 

9 

+ 

5 ζ 4 
ji 

11 

)
, (50) 

whereby ζ ji = ( f s , j /r i j ) 
2 , and 

∂K 

j 

eff ,i 

∂r i j 

= 

4 ζ ji f s , j 

r 3 
i j 

(
1 

3 

+ 

3 ζ ji 

5 

+ 

6 ζ 2 
ji 

7 

+ 

10 ζ 3 
ji 

9 

+ 

15 ζ 4 
ji 

11 

)
. (51) 

• Case 3: If 
(
r born ,i − r offset + f s , j 

)
< r i j ≤ min 

[
(r max 

GB 
− f s , j ) , 4 f s , j 

]
, then 

K 

j 

eff ,i 
= −1 

2 

{
f s , j 

r 2 
i j 

− f 2 
s , j 

+ 

1 

2 r i j 

log 

(
r dis ,i j 

r i j + f s , j 

)}
, (52) 
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where r dis, ij is referred to as the discontinuity length, defined as follows: 

r dis ,i j = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

r i j − f s , j if 
(
r int ,i + f s , j 

)
< r i j ≤ 4 f s , j 

r int ,i if | r int ,i − f s , j | < r i j ≤ min 

[
(r int ,i + f s , j ) , 4 f s , j 

]
f s , j − r i j if 

(
r int ,i 

)
< f s , j and r i j ≤ min 

[
r int ,i + f s , j , 4 f s , j , | r int ,i − f s , j | 

]
1 if f s , j ≤

(
r int ,i 

)
and r i j ≤ min 

[
r int ,i + f s , j , 4 f s , j , | r int ,i − f s , j | 

]
. 

(53)

Furthermore, the derivative of K 

j 
eff ,i 

according to Eq. (52) , with respect to r ij reads as 

∂K 

j 

eff ,i 

∂r i j 

= −1 

2 

{ 

−2 r i j f s , j (
r 2 

i j 
− f 2 

s , j 

)2 
− 1 

2 r 2 
i j 

log 

(
r dis ,i j 

r i j + f s , j 

)
+ 

r i j + f s , j 

2 r i j r dis ,i j 

( 

− r dis ,i j (
r i j + f s , j 

)
2 

+ 

∂r dis ,i j 

∂r i j 

1 

r i j + f s , j 

) } 

, (54)

with the derivatives of r dis, ij with respect to r ij following straightforwardly from Eq. (53) , taking the values 1, 0, −1 , and

0, in the sequence of the options as presented in Eq. (53) . 

• Case 4: If | r int ,i − f s , j | < r i j ≤ min 

[
(r max 

GB 
− f s , j ) , 4 f s , j , (r int ,i + f s , j ) 

]
, then 

K 

j 

eff ,i 
= −1 

4 

(
1 

r int ,i 

[
2 −

{
r 2 

i j 
+ r 2 

int ,i 
− f 2 

s , j 

2 r int ,i r i j 

}]
− 1 

r i j + f s , j 

+ 

1 

r i j 

log 

(
r dis ,i j 

r i j + f s , j 

))
, (55)

and 

∂K 

j 

eff ,i 

∂r i j 

= 

1 

8 r 2 
i j 

[ (
f s , j 

r int ,i 

)2 

+ 

2 f s , j r i j (
f s , j + r i j 

)
2 

− ∂r dis ,i j 

∂r i j 

2 r i j 

r dis ,i j 

+ 

(
r i j 

r int ,i 

)2 

+ 2 log 

(
r dis ,i j 

r i j + f s , j 

)
− 1 

] 

. (56)

• Case 5: If r int, i < f s, j and r i j ≤ min 

[
(r max 

GB 
− f s , j ) , 4 f s , j , 

∣∣r int ,i − | f s , j | 
∣∣], then 

K 

j 

eff ,i 
= − f s , j 

2 

(
r 2 

i j 
− f 2 

s , j 

) + 

1 

r int ,i 

+ 

1 

4 r i j 

log 

(
r dis ,i j 

r i j + f s , j 

)
, (57)

and 

∂K 

j 

eff ,i 

∂r i j 

= 

f s , j r i j (
r 2 

i j 
− f 2 

s , j 

)
2 

+ 

1 

4 r i j 

[(
1 

r dis ,i j 

∂r dis ,i j 

∂r i j 

− 1 

r i j + f s , j 

)
− 1 

r i j 

log 

(
r dis ,i j 

r i j + f s , j 

)]
, (58)

• Case 6: If neither of the above-defined five cases applies, then K 

j 
eff ,i 

= 0 and ∂ K 

j 
eff ,i 

/∂ r i j = 0 . 

5. Atom-specific resulting forces and total potential energy of atomic compound 

The resulting force to which a single atom i is subjected results from summing up the contributions presented in

Sections 3 and 4 . To that end, the following summation rule needs to be followed: 

˜ F res 
i = 

N ij ∑ 

j=1 

{ ˜ F i, j 

bond 
+ 

N ijk ∑ 

k =1 

[ ˜ F i, jk 
angle 

+ 

N ijkl ∑ 

l=1 

(̃
 F i, jkl 

dihedral 
+ ̃

 F i,l 
charge , 1 −4 

+ ̃

 F i,l 
LJ , 1 −4 

)] 

+ 

N hij ∑ 

h =1 

[ ˜ F i, hj 

angle 
+ 

N hijg ∑ 

g=1 ̃

 F i, hjg 

dihe dral 

] } 

+ 

∑ N atom 

m =1 

(̃
 F i,m 

charge 
+ ̃

 F i,m 

LJ 

)
+ 

∑ N atom 

n =1 
˜ F i,n 

GB 
. 

(59)

In Eq. (59) , N ij denotes the number of all atoms j which exhibit a covalent bond with atom i; N ijk denotes the number of

all atoms k which form, together with specific atoms i and j , an angle between covalently bonded atoms; N ijkl denotes the

number of all atoms l which form, together with specific atoms i, j , and k a dihedral angle; and indices g and h are defined

analogously to k and l . As for the latter distinction, it should be noted that for atom groups ijk and ijkl , atom i is a corner

atom, bonded (within this particular group) only to atom j , whereas it is an interior atom in groups hij and hijg , bonded to

atoms h and j . Furthermore, the last but one summation in Eq. (59) over index m relates to all atoms in the studied force

field, excluding however all atom interactions which have already been considered by any of the other interaction forces

(relating to stretching, angle, and torsional potentials), whereas the last summation over index n concerns the entirety of

the considered atoms. 

Importantly, reiterating from Section 2 , ˜ F res 
i 

according to Eq. (59) needs to be split up into two contributions, ˜ F int 
i 

and

˜ F ext 
i 

. The underlying principle dictates that a specific force contributes to ˜ F int 
i 

if all atoms h, i, j, k, l, m, n are located inside

the RLE, whereas it contributes to ˜ F ext 
i 

if one or several of the atoms h, i, j, k, l, m, n are located outside the RLE. Finally, it

is important to stress that all forces defined in Sections 3 and 4 relate to one mole of the studied atoms. Hence, in order

to insert the computed atom forces ˜ F int 
i 

and 

˜ F ext 
i 

into the PVP, see Section 2.2 , they need to be divided by the Avogadro

number N = 6 . 02214076 × 10 23 mol 
−1 

( Güttler et al., 2019; Wood and Bettin, 2019 ), yielding 
Av 
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Fig. 3. Molecular dynamics representation of adenine–tyhmine B-DNA, consisting of 20 base pairs. The original configuration is shown in (a), while 

(b) shows a compressed configuration ( λx = 0 . 95 ), (c) shows a stretched configuration ( λx = 1 . 04 ), (d) shows an underwound configuration ( ϑ x = 

−0 . 45 rad / nm ), and (e) shows an overwound configuration ( ϑ x = 0 . 47 rad / nm ), including the macroscopic averaged helical rise H rise and helical twist H twist . 

The images in the second line show (in red color) the initial deformed structure according to the homogeneous displacement field dictated by Eq. (63) , and 

(in blue color) the related energy-minimized structures, whereas the images in the first line show the energy-minimized snapshots of the DNA (with cyan 

indicating carbon atoms, blue indicating nitrogen atoms, red indicating oxygen atoms, white indicating hydrogen atoms, and gold indicating phosphorous 

atoms). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

F int 
i = 

˜ F int 
i 

N Av 

and F ext 
i = 

˜ F ext 
i 

N Av 

. (60) 

The total potential energy of an agglomerate of atoms results from summing up the respective contributions presented

in Sections 3 and 4 , according to that end, the following summation rule needs to be followed: 

˜ E pot = 

N bond ∑ 

i j =1 

˜ E i j 

bond 
+ 

N angle ∑ 

i jk =1 

˜ E i jk 

angle 
+ 

N dihedral ∑ 

i jkl =1 

(
˜ E i jkl 

dihedral 
+ 

˜ E i jkl 

charge , 1 −4 
+ 

˜ E i jkl 
LJ , 1 −4 

)
+ 

N atom ∑ 

i =1 

N atom ∑ 

m =1 

(
˜ E im 

charge + 

˜ E im 

LJ 

)
+ 

˜ E 1 ... N atom 

GB 
. (61) 
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with the number of bonds N bond , the number of angles N angle , the number of dihedrals N dihedral and the energy components

˜ E 
i j 
bond 

, ˜ E 
i jk 
angle 

, ˜ E 
i jkl 
dihedral 

, ˜ E 
i jkl 
charge , 1 −4 

, ˜ E 
i jkl 
LJ , 1 −4 

, ˜ E im 

charge 
, ˜ E im 

LJ 
and 

˜ E 
1 ... N atom 

GB 
according to Eqs. (17) , (20), (25), (38), (34), (36), (32) and

(40) . 

Conversion of ˜ E pot to the potential energy experienced by one single molecule requires, as introduced above for the atom

forces, division of ˜ E pot by N Av , 

E pot = 

˜ E pot 

N Av 

. (62)

6. Molecular dynamics model of DNA 

For demonstrating the application of the new homogenization approach presented in Sections 2 to 5 , poly(dA)-poly(dT)-

B-DNA ( Herrera and Chaires, 1989; Strauss et al., 1981; Yoo et al., 2001 ) is studied, also referred to adenine–thymine. The

corresponding MD model, comprising 20 base pairs (corresponding to two full turns of the helix in the undeformed con-

figuration) was created using the Nucleic Acid Building (NAB) molecular manipulation language ( Macke and Case, 1997 ),

obtaining an initial, helical rise of H rise = 3 . 38 ̊A and an initial helical twist of H twist = π/ 5 for each base pair, see Fig. 3 (a).

Thereby, the helical rise of a DNA-strand corresponds to the axial distance of one base to the next one, whereas its helical

twist corresponds to the axial rotation of the plane of one base with respect to the neighboring one ( Lu and Olson, 2003 ). 

All subsequently described simulations were carried out based on implementing the above-described DNA sequence in

Amber18 ( Case, 2019 ), using for that purpose also several of the included tools, such as AmberTools19, including Sander

( Case, 2019 ), and PMEMD ( Case, 2019 ). Moreover, the Parmbsc1 force field ( Ivani et al., 2016 ) was considered. Based on

LEaP ( Pearlman et al., 1995 ), which is another tool available in the framework of AmberTools19, the force field-dependent

parameters occurring in Sections 3 and 4 were defined. In particular, this concerns the bond term constants k ij , the equi-

librium distances r eq , the angle force constants k ijk , the equilibrium angles θ eq , the torsional constants k ijkl , the periodicities

n ∈ {1, 2, 3}, the phase angles ψ , the LJ parameters pairs a i,j and b i,j , the LJ 1–4 scaling factors s 
i jkl 
LJ 

, the point charges Q i , see

( Modeling, 2016 ); the intrinsic radii r int, i , see ( Swails et al., 2014 ); and the field screening parameters f s, j , see ( Case, 2019 ). 

The studied DNA sequence was subjected, by means of the commercial software Matlab ( The MathWorks, 2019 ), to an

initial displacement field u ( x i ), defining the initial positions of all atoms i before performing the MD simulations. This dis-

placement field allows for introducing constant stretches, and constant twist deformation rates along the longitudinal axis

of the helix. Notably, twist deformation rates are defined as the twist rotation per length ( Sengupta et al., 2008 ). Mathemat-

ically, u ( x i ) is defined as follows: 

u (x i ) = (λx − 1) ︸ ︷︷ ︸ 
E x 

x 0 i e x + 

[
cos 

(
α0 + ϑ x x 

0 
i 

)√ 

(y 0 
i 
) 2 + (z 0 

i 
) 2 − y 0 i 

]
e y + 

[
sin 

(
α0 + ϑ x x 

0 
i 

)√ 

(y 0 
i 
) 2 + (z 0 

i 
) 2 − z 0 i 

]
e z , 

(63)

where α0 = arctan ( z 0 
i 
/ y 0 

i 
) is the undeformed angle, λx = 1 + (∂ u/∂ X ) is the axial stretch ratio, E x = λx − 1 is the stretch, ϑx

the twist deformation rate in axial direction, and the “undeformed” configuration x 0 
i 

= x 0 
i 

e x + y 0 
i 

e y + z 0 
i 

e z as initialized by

means of NAB. Several DNA configurations deviating from the originally initialized one were studied; on the one hand axial

compression and stretching, implemented via the stretch ratio λx , ranging from 0.95, see Fig. 3 (b), to 1.04, see Fig. 3 (c),

while no change of the helical twist was imposed onto the system; and on the other hand axial under- and overwinding,

implemented via the axial twist deformation rate ϑx , ranging from −0 . 45 rad / nm , see Fig. 3 (d), to 0.47 rad/nm, see Fig. 3 (e),

while no change of the helical rise was imposed onto the system. The corresponding average helical rises H rise and average

helical twists H twist are also indicated in Fig. 3 . Furthermore, in all simulations, the first and the last base pair were consid-

ered to be spatially restrained. No periodic boundary conditions have been applied the present simulations, hence we used

an implicit model (see Section 4.3 ), without explicit consideration of surrounding atoms. 

In order to find conformations which are independent of the initial conformation, the system was first heated up to a

temperature of 300 K, using for that purpose a Langevin thermostat ( Uberuaga et al., 2004 ), with different collision frequen-

cies ( 0 . 2 ps −1 , 0 . 5 ps −1 and 1 ps −1 = 10 −12 s ), whereas the time increment in all MD simulations was set to 1 fs = 10 −15 s .

After being heated up, the system was cooled down to < 1 mK – note that reaching a temperature of exactly 0 K is (com-

putationally) not possible ( Palma et al., 2017 ) – applying then local energy minimization (using for that purpose the steepest

gradient method and conjungate gradient search in sequential fashion). This energy minimization procedure was performed

with the aforementioned collision frequencies, and different tem peratures tar geted at heating (30 0 K, 20 0 K, 20 0 K, and 5

times 100 K). The last cooling procedure was split up in three steps, namely (i) cooling from 100 K to 0 K over a time period

of 10 0 0 0 fs using a collision frequency of 1 ps −1 ; (ii) an energy minimization using 50 0 0 steepest gradient iterations, and

(iii) a 30 0 0 0 fs-long MD simulation at < 1 mK using a collision frequency of 0 . 2 ps −1 . Thus, each displacement-controlled

load case required a set of MD simulations consisting overall of 170 0 0 0 time steps, each of which was 1 fs long. This way,

global energy minimization could be achieved in approximated fashion for each of the load cases. 
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Fig. 4. Results of stretching simulations, illustrated in terms of (a) the potential energy E pot according to Eq. (62) , normalized by length L 0 = 67.6 Å, over 

the stretch λ, (b) the normal force N over λ, and (c) the torsional moment M x over λ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Numerical results 

7.1. Simulation of stretching and twisting regimes 

First, we present the results of the in silico stretching and twisting experiments defined in Section 6 , see also Fig. 3 for

some examples of the thereby obtained DNA configurations. Fig. 4 shows the results obtained for the stretching simulations,

while Fig. 5 shows the results obtained for the twisting simulations. 

Fig. 4 (a) shows the potential energy E pot normalized by L 0 , which is the length of the originally initialized DNA sequence

before altering the configuration by means of Eq. (63) , versus the axial stretch λ. Furthermore Figs. 4 (b) and (c) show the

force quantities N and M x over λ, making use of the homogenization relations defined in Section 2.3 . Furthermore, Figs. 4 (b)

and (c) also include the linear regressions (based on standard least squares fitting procedures) of the N -over- λ and the M x -

over- λ relations. These straight lines are, in an approximate sense, indicative of the structural stiffnesses of the studied DNA

sequences. This way, we can deduce from Fig. 4 (b) that the stretching stiffness for a uniaxial stretch amounts to K = d N/ d λ =
2743 pN , whereas Fig. 4 (c) suggests that the stretching-related warping stiffness amounts to W E x = d M x / d λ = 465 pN nm . 

Analogously, Fig. 5 (a) shows E pot /L 0 versus the axial twist ϑx , while Fig. 5 (b) and (c) show N and M x versus ϑx . In-

terestingly, Fig. 5 (a) clearly show three distinctive regimes, which we have termed standard B-DNA conformation (for

−0 . 21 rad / nm ≤ ϑ x ≤ 0 . 16 rad / nm ), underwound conformation (for −0 . 45 rad / nm ≤ ϑ x ≤ −0 . 22 rad / nm ), and overwound

conformation (for 0.12 rad/nm ≤ ϑx ≤ 0.47 rad/nm). Each of these conformations has been subjected to linear fitting, indicat-

ing again respective structural stiffnesses. Namely, Fig. 5 (b) reveals twisting-related warping stiffnesses of W ϑ x = d N/ d ϑ x =
−80 pN nm for the underwound conformation, of W ϑ x = 373 pN nm for the standard conformation, and of W ϑ x = −213 pN nm

for the overwound conformation. Remarkably, this means that for both underwound and overwound conformations, we ob-
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Fig. 5. Results of twisting simulations, illustrated in terms of (a) the potential energy E pot according to Eq. (62) , normalized by length L 0 = 67.6 Å, over the 

twist ϑx , (b) the normal force N over ϑx , and (c) the torsional moment M x over ϑx . 

 

 

 

 

 

 

 

 

 

 

serve stretching due to overwinding, as revealed by experiments ( Gore et al., 2006 ). On the other hand, Fig. 5 (c) gives access

to torsional stiffnesses of T = d M x / d ϑ x = 187 pN nm 

2 for the underwound conformation, of T = 399 pN nm 

2 for the standard

configuration, and of T = 612 pN nm 

2 for the overwound conformation. 

It should be noted that for a more profound, theoretically well-substantiated back-analysis of structural stiffnesses, a rig-

orous introduction of small- or large-strain kinematics is indispensable. However, this goes beyond the scope of the present

paper. 

7.2. Comparison with experiments 

The simulations presented in this paper were either based on a uniform stretch boundary condition (while ϑ x = 0 ) or a

uniform twist boundary condition (while λ = 0 ). However, experiments accessible in literature usually use boundary condi-

tions involving constant normal forces or constant torsional moments. Hence, in order to compare the results presented in

Section 7.1 to those experimental results, a reinterpretation of the computed structural stiffnesses is necessary. To that end,

we make use of the following relation, which we deem valid only if the DNA exhibits its standard conformation: (
d N 

d M x 

)
= 

[
d N 
d λ

d N 
d ϑ x 

d M x 

d λ
d M x 

d ϑ x 

](
d E x 
d ϑ x 

)
= 

[
K W ϑ x 

W E x T 

](
d E x 
d ϑ x 

)
. (64)

Inverting the expression given in Eq. (64) yields (
d E x 
d ϑ x 

)
= 

1 

K T − W ϑ x W E x 

[
T −W ϑ x 

−W E x K 

](
d N 

d M x 

)
. (65)
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Fig. 6. Dependence of (a) the stretching stiffness K and (b) the stretching-related warping stiffness W E x on the length of the simulated DNA sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specifying the first row of Eq. (65) for d M x = 0 (which relates to an experiment where the DNA is subjected to a normal

force, while the torsional moment is equal to zero) leads to 

d N = 

(
K − W E x W ϑ x 

T 

)
d E x , (66) 

whereby the term in brackets can be interpreted as the related stretching stiffness S . Evaluating this relation for the struc-

tural stiffness derived in Section 7.1 yields S = 2308 pN . This value slightly exceeds the corresponding values typically sug-

gested in literature, ranging from 476 pN to 2120 pN ( Baumann et al., 1997; Ouldridge et al., 2011; Podgornik et al., 20 0 0;

Wang et al., 1997; Wu et al., 2015 ). This discrepancy may be due to the fact that the experimentally studied DNA sequences

were 30 to 100 times longer than the ones studied computationally in this paper. It is well known that shorter structures

tend to appear stiffer than longer structures made of the same material. 

Specifying the second row of Eq. (65) for d N = 0 yields 

d M x = 

(
T − W E x W ϑ x 

K 

)
d ϑ x , (67) 

whereby the term in brackets can be interpreted as the related torsional stiffness C . Evaluating this relation again for the

structural stiffnesses derived in Section 7.1 yields C = 336 pN nm 

2 . This value agrees well with the torsional stiffnesses of

DNA provided by literature, ranging from 61 pN nm 

2 to 480 pN nm 

2 ( Bryant et al., 2003; Crothers et al., 1992; Kim and Kim,

2016; Moroz and Nelson, 1997; Peters et al., 2013 ). 

7.3. Structural size effect 

Finally, we study the effect of the DNA length on the resulting structural stiffnesses, considering for that purpose DNA

lengths ranging from 10 base pairs (relating to one full helical turn) to 60 base pairs (relating to six full helical turns),

see Fig. 6 . Both the ratio d N /d λ (which is again interpreted as stretching stiffness) and the ratio d M x /d λ (which is again

interpreted as stretching-related warping stiffness) decrease with increasing DNA length, and it seems that both ratios have

somewhat converged at a length of 20 base pairs, corroborating the significance of the simulations presented in Section 7.1 .

This effect is well known as structural size effect ( Bažant, 20 0 0; Bažant and Sun, 1987 ). 

In this context, we choose to mention the well-known separation of scales-requirement, on the basis of which the con-

cept of continuum micromechanics has been established ( Hill, 1963; 1965; Zaoui, 2002 ). This requirement clarifies the dis-

tinction between the characteristic length of a representative volume element (RVE), � , and the characteristic lengths of the

microheterogeneities within this RVE, d ; namely, d 	 � . It has been shown ( Drugan and Willis, 1996 ) that this requirement

is already sufficiently well fulfilled if the factor between d and � amounts to approximately 2. Considering that the charac-

teristic length of the microheterogeneity within the DNA structure relates to one full turn of the helix, the above-discussed

outcome, namely that convergence of the structural size effect is already reached at a length of two full turns of the helix,

confirms that the principle of scale separation is also valid for DNA-type structures. 



J. Kalliauer, G. Kahl and S. Scheiner et al. / Journal of the Mechanics and Physics of Solids 143 (2020) 104040 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Conclusions and perspectives 

The atom-to-beam homogenization approach proposed in this paper is the first documented attempt of directly in-

terpreting results from molecular dynamics simulations within a principle of virtual power-based theoretical framework.

In this sense, we further extend the large application range of the PVP, beyond structural mechanics derived from 3D

continuum mechanics ( Höller et al., 2019; Touratier, 1991 ), homogenization of eigenstressed microheterogeneous materi-

als ( Königsberger et al., 2020 ), or virtual fields used for elastic parameter identification ( Grüdiac et al., 2006 ). This way,

we were able to compute well-established structural stiffness properties of the studied DNA structures, such as stretching,

torsional, and warping stiffnesses. We regard this as a valuable conceptual extension of the state of the art in the field of

bio-macromolecular MD, defined by landmark papers such as ( Buehler, 2006; Keten et al., 2010 ). 

Remarkably, once the coupled force-deformation characteristics at the beam level are quantified, they can be upscaled

further, not only to naturally occurring configurations, but also to man-made origami structures ( Bai et al., 2012; Castro et

al., 2011; Rothemund, 2006 ). In the long run, this research holds the promise to effectively target (epi-) genetic pathologies

stemming from conformational restrictions of the DNA ( Champoux, 2001; Garcia-Diaz and Kunkel, 2006; Poli et al., 2005;

Portella et al., 2013 ). This is fully consistent with the ongoing scientific discussion on the “mechanobiome” ( Kothari et al.,

2019 ); in more detail, the present results constitute the first step towards defining key nuclear structural elements of this

very mechanobiome. 
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Appendix A List of symbols 
a i, j L 14 M T −2 N 

−1 Parameter of the Lennard-Jones potential according to the force field, introduced in Eq. (32) 

b i, j L 8 M T −2 N 

−1 Parameter of the Lennard-Jones potential according to the force field, introduced in Eq. (32) 

C L 3 M T −2 Torsional stiffness for N = 0 -restrainment, defined in Eq. (67) 

e x , e y , e z - Base vectors of a Cartesian coordinate system, were e x points into the longitudinal direction and e y and e z 
span the cross section, introduced in Eq. (9) 

˜ E i jk 

angle 
L 2 M T −2 N 

−1 Angle potential, defined in Eq. (20) 

˜ E i j 

bond 
L 2 M T −2 N 

−1 Bond potential, defined in Eq. (17) 
˜ E i j 

charge 
L 2 M T −2 N 

−1 Electrostatic potential, defined in Eq. (36) 

˜ E i j 
LJ 

L 2 M T −2 N 

−1 Lennard-Jones potential, defined in Eq. (32) 

E pot L 2 M T −2 Potential energy, defined in Eq. (62) 
˜ E pot L 2 M T −2 N 

−1 Potential energy, defined in Eq. (61) 
˜ E dihedral L 2 M T −2 N 

−1 Dihedral energy, defined in Eq. (25) 
˜ E i j 

GB 
L 2 M T −2 N 

−1 Electrostatic generalized Born energy coefficient relating mainly to atom i and atom j, defined in Eq. (40) 
˜ E 1 ... N atom 

GB 
L 2 M T −2 N 

−1 Electrostatic generalized Born energy, defined in Eq. (40) 

˜ E i jkl 

charge , 1 −4 
L 2 M T −2 N 

−1 1-4 electrostatic potential, defined in Eq. (38) 

˜ E i jkl 
LJ , 1 −4 

L 2 M T −2 N 

−1 1-4 Lennard-Jones potential, defined in Eq. (34) 

E x - Stretch in axial direction; defined in Eq. (63) 

f s,i L Field screening parameter of atom i, according to the force field, introduced in Eqs. (48) –(58) 

F int 
i 

L M T −2 Internal forces per atom, defined in Eq. (60) 
˜ F int 

i 
L M T −2 N 

−1 Internal forces per mol of ˜ F res 
i 

if all atoms h, i, j, k, l, m, n are located inside the RLE. 
˜ F i, 1 ... N atom 

GB 
L M T −2 N 

−1 Generalized Born force acting on atom i, defined in Eq. (43) 
˜ F i, j 

GB 
L M T −2 N 

−1 Generalized Born force acting between atom i and atom j, involving to all atoms, defined in Eq. (46) 
˜ F i, j 

bond 
L M T −2 N 

−1 Force acting on atom i, due to a stretch potential between atoms i and j, defined in Eq. (19) 
˜ F i, j 

charge 
L M T −2 N 

−1 Coulomb force action on atom i, due to interaction with atom j, defined in Eq. (37) 

˜ F i,l 
charge , 1 −4 

L M T −2 N 

−1 Reduced Coulomb-force acting on atom i, due to atom l, defined in Eq. (39) 

˜ F i, j 
LJ 

L M T −2 N 

−1 Lennard-Jones force acting on atom i, from interaction with atom j, defined in Eq. (33) 

˜ F i,l 
LJ , 1 −4 

L M T −2 N 

−1 Reduced Lennard-Jones force acting on atom i, from interaction with atom l, defined in Eq. (35) 

˜ F i, jk 

angle 
L M T −2 N 

−1 Force acting on atom i, due to an angle potential of atoms i, j and k, defined in Eqs. (21) –(23) 

˜ F i, jkl 

dihedral 
L M T −2 N 

−1 Force in atom i due to an dihedral potential of atoms i, j, k and l, defined in Eqs. (27) –(30) 

F ext 
i 

L M T −2 External forces per atom, defined in Eq. (60) 
˜ F ext 

i 
L M T −2 N 

−1 External forces of ˜ F res 
i 

if one or several of the atoms h, i, j, k, l, m, n 

( continued on next page ) 
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˜ F res 
i 

L M T −2 N 

−1 Resulting force of a single atom i, defined in Eq. (59) 

K L M T −2 Stretching stiffness of dsDNA for ϑ = 0 -restrainment, defined in Eq. (64) 

k c L 3 M T 3 N 

−1 I −1 Coulomb constant 

K eff ,i L −1 Reciprocal Born radius change, defined in Eqs. (48) –(57) 

k i j M T −2 N 

−1 Bond force constant, introduced in Eq. (17) 

k i jk M T −2 N 

−1 Bending force constant, introduced in Eq. (20) 

k i jkl M T −2 N 

−1 Dihedral force constant, introduced in Eq. (25) 

L L Length of the DNA, introduced in Eq. (1) 

� RLE L Length of representative line element, introduced in Eq. (7) 

n - Periodicity of the dihedral potential, according to the force field. 

n i j L Unit vector from atom i to atom j, defined in Eq. (19) 

n x M T −2 Axial line load, introduced in Eq. (2) 

N L M T −2 Normal force, defined in Eq. (13) 

N Av N 

−1 Avogadro constant. 

N atom - Number of atoms in the RLE, introduced in Eq. (7) 

m x M T −2 Torsional moment per length, introduced in Eq. (2) 

M x L 2 M T −2 Torsional moment, defined in Eq. (14) 

p atom 
int 

L M T −3 Integrand of the virtual power of internal forces for atomic system, defined in Eq. (7) 

p cont 
int 

L M T −3 Integrand of the virtual power of internal forces for continuum beam, defined in Eq. (4) 

p atom 
ext L M T −3 Integrand of the virtual power of external forces for atomic system, defined in Eq. (8) 

p cont 
ext L M T −3 Integrand of the virtual power of external forces for continuum beam, defined in Eq. (5) 

P cont 
int 

L 2 M T −3 Virtual power of internal forces, defined in Eq. (1) 

P cont 
ext L 2 M T −3 Virtual power of external forces, defined in Eq. (2) 

q i L 
3 
2 M 

1 
2 T −1 N 

− 1 
2 Partial charge Q i multiplied by the square root of the Coulomb constant, defined in Eq. (36) 

Q i T I Partial charge, used in Eq. (36) 

r dis ,i j L Discontinuity length, see Eqs. (53) 

r eq L Equilibrium distance according to the force field, defined in Eq. (17) 

r i j L Distance between atom i and j, defined in Eq. (18) 

r int ,i L Intrinsic radius of atom i 

r i j L Vector from atom i to j, defined in Eq. (18) 

r born ,i L Intrinsic radii of atom i 

r max 
GB L Maximum distance for calculating the effective Born radii. 

r offset L Uniform Born radii offset 

R i L Depended effective Born radii of atom i, defined in Eq. (41) 

S L M T −2 Stretching stiffness of dsDNA for M x = 0 -restrainment, defined in Eq. (66) 

s i jkl 
ES 

- Scaling factor for the electrostatic potential, according to the force field, introduced in Eq. (38) 

s i jkl 
LJ 

- Scaling factor for the LJ Potential, according to the force field, introduced in Eq. (34) 

T L 3 M T −2 Torsional stiffness for E x = 0 -restrainment, defined in Eq. (64) 

u L M T −2 Initial displacement field, defined in Eq. (63) 

ˆ v int L T −1 Virtual velocity vector of atom i for the internal forces, defined in Eq. (9) 

ˆ v ext L T −1 Virtual velocity vector of atom i for the external forces, defined in Eq. (10) 
ˆ V L T −1 Axial virtual velocity in the center of the cross section, introduced in Eq. (1) 

W L 2 M T −2 Warping stiffness, defined in Eqs. (64) 

x i , y i , z i L Cartesian components of the location vector of atom i, introduced in Eq. (9) 

x i L Location vector of atom i x i = x i · e x + y i · e y + z i · e z , introduced in Eq. (7) 

X, Y, Z L Cartesian components of the location vector of a beam-point, introduced in Eq. (1) 

X L Location vector of a beam-point, X = X · e x + Y · e y + Z · e z , introduced in Eq. (1) 

�r L Relative distance to the equilibrium distance, defined in Eq. (17) 

�θ - Relative angle to the equilibrium angle, defined in Eq. (20) 

εint - Interior dielectric constant 

εsolvent - Solvent dielectric constant 

ζ ji - Square ratio between the field screening parameter f s, j and the distance r ij 
η - Variable, determinating if dihedral is linear 

θeq - Equilibrium angle between two bonds, according to the force field, introduced in Eq. (20) 

θi jk - Angle between two bounds, defined in Eq. (20) 

ϑ x L −1 Twist in axial direction, defined in Eq. (63) 

λ - Stretch ratio, defined in Eq. (63) 

ξkl - Exponential variable, defined in Eq. (42) 

ψ Equilibrium torsional angle 

φ - Current torsional angle 
ˆ � T −1 Virtual axial rotational velocity vector, introduced in Eq. (9) 
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