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Prof. Agrégé Dr. Martial Mazars
Laboratoire de Physique Théorique (UMR 8626)
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Kurzfassung

Sogenannte Metamaterialien bieten einen vielversprechenden Ansatz für die Her-

stellung von neuartigen funktionalen Materialien. Das ihnen zugrundeliegende

Konzept besagt, dass die Eigenschaften eines Materials in gewissen Fällen

stärker von der geometrischen Anordnung seiner Bestandteile abhängen als von

deren Beschaffenheit. Solche wohlgeordneten Teilchenstrukturen können sich wie

akustische, elastische, oder elektromagnetische Wellenleiter verhalten, was eine

Vielzahl von interessanten Anwendungen ermöglicht. Das zentrale Problem der

Herstellung dieser Strukturen, beispielsweise durch self-assembly, ist in den letzten

Jahren auf reges experimentelles und theoretisches Interesse gestoßen.

Die Wechselwirkungen zwischen Teilchen werden in theoretischen Studien durch

Potentialfunktionen ausgedrückt, deren Form einen erheblichen Einfluss auf die

gebildeten Strukturen hat. Häufig werden hierfür Potentiale verwendet, die mit

dem Abstand schnell abfallen. In dieser Dissertation beschäftigen wir uns mit

sogenannten langreichweitigen Wechselwirkungen, bei denen Teilchen über viele

mittlere Teilchenabstände miteinander wechselwirken. Typische Beispiele für solche

Potentiale sind Wechselwirkungen zwischen elektrischen Ladungen oder Multipolen.

Unsere Vorgangsweise besteht zunächst darin, die Grundzustandsstruktur des Sys-

tems bei verschwindender Temperatur zu studieren, indem wir das relevante ther-

modynamische Potential – in diesem Fall die Energie – minimieren. Wir beobachten

eine Vielzahl von Strukturen und neuartige Szenarien für Phasenübergänge. In

einem weiteren Schritt verwenden wir Monte Carlo-Simulationen, um die Stabilität

dieser Strukturen bei niedrigen Temperaturen zu untersuchen.





Abstract

The central paradigm in the emerging field of metamaterials is that the proper-

ties of a material are in certain cases governed rather by the well-ordered spatial

arrangement of its constituent particles than by the properties of those particles

themselves. Since such highly ordered patterns can act as waveguides for acoustic,

elastic, or electromagnetic waves, they can give rise to novel material properties,

opening up new avenues in materials design. The central problem of how to pro-

duce the required ordered particle arrangements, e.g., via self-assembly, has received

significant attention both from the experimental and theoretical sides.

In theoretical studies, the interactions between particles are modeled via potential

functions, whose shape and range have a profound impact on the formed structures.

These potentials are often short-ranged, i.e., they are characterized by a rapid decay

with distance. In this thesis, we focus on systems featuring long-range interactions,

where particles interact over significantly larger distances than the mean inter-

particle separation. Typical examples for such potentials are charged or multipolar

interactions.

In our approach, we first determine the ordered structures formed by the particles

at vanishing temperature by minimizing the relevant thermodynamic potential. We

observe a surprising plethora of different structural archetypes as well as novel phase

transition scenarios. Then, we investigate the stability of these structures at low

temperatures using Monte Carlo simulations.





Résumé

L’un des concepts fondamentaux dans l’étude des métamatériaux est que, dans

certains cas, les propriétés du milieu sont déterminés par l’arrangement structurel

de ses composants plutôt que par les propriétés intrinsèques des particules. De telles

structures hautement ordonnées peuvent servir de guide d’onde en acoustique, ainsi

que pour des ondes élastiques ou électromagnétiques ; elles peuvent aussi induire

de nouvelles propriétés, ouvrant ainsi de nouvelles perspectives dans la conception

des matériaux. Dans ce champ de recherche, la question centrale est de trouver

comment produire ces arrangements ordonnés de particules et de molécules ; par

exemple, un grand nombre d’études expérimentales et théoriques s’appuient sur des

mécanismes d’auto-assemblage.

Dans les études théoriques, ainsi que dans les simulations numériques, les

interactions entre les constituants sont déterminées par des potentiels modèles

ou effectifs dont la portée et la forme déterminent les structures collectives.

Les potentiels utilisés sont souvent à courte portée, c’est-à-dire qu’ils ont une

décroissance très rapide avec la distance ; typiquement, des molécules séparées de

quelques diamètres moléculaires n’interagissent pas directement. Dans cette thèse,

nous nous intéressons à ces structures ordonnées qu’il est possible d’obtenir, non

pas avec des interactions à courte portée, mais avec des interactions à très longue

portée (Coulomb, etc.).

Notre démarche consiste dans un premier temps à déterminer les structures

optimales à température nulle (états fondamentaux) en minimisant le potentiel

thermodynamique adéquat ; puis, nous étudions la stabilité thermique de ces

structures à basse température à l’aide de simulations numériques de Monte-Carlo.

Nous observons une pléthore de structures prototypes, ainsi que des transitions de

phases entre elles.
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1. Introduction

In recent years, materials design has attracted a considerable amount of attention. As

suggested by its name, the focus in this field lies in designing materials with unconventional

desired properties. A few examples for such properties are self-healing materials [1], which

can repair damage over time, or photonic crystals [2, 3], which have unusual optical properties

useful in a variety of applications.

Photonic crystals are part of the wider category known as metamaterials [4], which – al-

though manufactured from conventional materials – exhibit novel properties due to their

highly ordered structure. Metamaterials act as waveguides for acoustic [5], elastic [6], or

electromagnetic waves; features on length-scales smaller than the wavelength result in uncon-

ventional or even exotic properties. Particularly illustrative examples are given by materials

with negative refractive index [7] and by a proposed design for a metamaterial acting as a

black hole for microwave radiation [8].

Especially for optical metamaterials – such as the photonic crystals mentioned above – the

length-scale of interesting features ranges in the meso-scale, i.e., ∼ 100 − 1000 nm. The

traditional approach for synthesizing materials with features of this size is the top-down

approach, i.e., controlling parameters on a larger length-scale; this can be done, e.g., with

lithographic processes.

In the past few years, a diametrically different strategy – the so-called bottom-up approach

– has gained rapidly increasing significance; in this approach, particles in a system that

at first is disordered assemble into a well-ordered structure without any external guidance.

This assembly process is thus governed by the interactions of particles with each other. The

main challenge in this approach then lies in designing adequate ”building blocks” that will

self-assembly into a specific structure. Many different systems exhibit such a self-assembling

behavior. In the following, we give just a few examples:

• A very elegant way of producing self-assembling particles is to exploit the selective binding

mechanism of DNA-strands. By suitably designing a sequence of bases, strands self-

assemble into complex structures such as scaffolds [9]. DNA can also be used to decorate

the surface of colloids, making them self-assemble into a target lattice [10].

• Strongly directional interactions between particles are also found in anorganic systems. An

example are so-called patchy particles [11–13], where the surface of colloids is decorated

in such a way as to form attractive patches. Depending on the location of patches on the

colloidal surface, particles then self-assemble into different lattices.

• Another example are magnetic particles, e.g., iron nanoparticles [14]. These are able to

form intricate chain- and ring-like structures [15–18]. In addition to this self-assembling

behavior, some properties of the particles can be tuned by applying an external magnetic
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CHAPTER 1. INTRODUCTION

field, allowing for a guided formation of complex structures [19].

Some of the experimental systems listed above have also been studied extensively in sim-

ulations. The interaction potentials used in studies on DNA-functionalized particles [10],

patchy particles [13, 20, 21], and magnetic particles [22–26] are often simplified – not only

to make them computationally manageable, but also to gain further insight in the processes

causing and governing self-assembly.

Self-assembly can also be observed in systems that are proposed in the literature and that

are not directly related to experiments. In the following, we will list some examples of such

systems:

• A very simple system forming intricate structures are particles interacting via the square-

shoulder potential [27], which consists of a hard core and a soft shell. Depending on

the ratio between core- and shell-diameter, a multitude of structures – and even cases of

quasicrystals – have been observed [28, 29].

• Other theoretical studies have focussed more on optimizing the potential such that parti-

cles self-assemble into a desired structure [30, 31].

• Another interesting approach is based on the packing of hard polyhedra [32]; depending

on the shape of the particles, a large variety of different structures can be observed.

A characteristic feature shared between many of the potentials employed in these theoretical

studies are their anisotropy and their relatively short (spatial) range, i.e., particles only

interact with other particles in their close proximity.

In this work, we focus on the formation of ordered structures in systems featuring long-range

interactions, where particles interact over large distances, extending far beyond nearest-

neighbor distances. As particle arrangements beyond nearest neighbors gain importance,

such interactions may result in interesting lattices. Long-range interactions, as they typically

occur between charged or dipolar particles, are very common in nature: charged systems such

as dusty plasmas [33, 34] are not only important in astrophysics [35], but also for industrial

applications. Examples for dipolar systems are given by magnetic nanoparticles [36] and

even peculiarities such as magnetotactic bacteria [37].

In fact, almost all particles in experimental systems feature an internal charge distribution,

which can be expanded in terms of multipole moments: the higher the order of the multipole,

the shorter the range of the interaction.

In the following, we will give a short overview of commonly studied models that carry

multipole moments, featuring terms up to the second order:

• The monopole term specifies the interaction between the net charges of particles. In three

dimensions, this interaction is given by the Coulomb potential, which is proportional to

the inverse distance between the particles.

The simplest model featuring the Coulomb interaction is the one-component plasma (OCP)

[38–40], which consists of a set of point charges immersed in a uniform neutralizing back-
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CHAPTER 1. INTRODUCTION

ground. This system can be described by a single coupling constant Γ and crystallizes –

for sufficiently strong coupling – in the BCC lattice [41].

Another common charged model is the restricted primitive model of electrolytes (RPM)

[42, 43], where charges are embedded in hard spheres, preventing them from approaching

too close to each other.

• The dipole term is anisotropic and decays as ∼ r−3, r being the distance between the

particles.

The simplest model featuring dipolar interactions is the dipolar hard sphere (DHS) model

[22, 44, 45], where point dipole moments are embedded in hard spheres. At low densities,

these particles form (branched) chains or rings.

In recent years, a variation of the DHS model has also received a significant amount

of attention, where the point dipole moment is shifted slightly from the center of the

sphere [46, 47]. Apart from the structural mechnisms observed in the DHS model, more

complicated cluster geometries have been observed.

Another common model is the Stockmayer potential [48], where point dipole moments

are embedded in spheres interacting via the Lennard-Jones potential; it is repulsive at

short distances and attractive at intermediate distances. This system crystallizes for suf-

ficiently low temperature in either the body-centered orthorhombic (BCO) lattice, the

body-centered tetragonal (BCT) lattice, or a hexagonally close-packed (HCP) lattice [49].

• The quadrupole term is anisotropic and decays as ∼ r−5. It is common to study spe-

cial cases of quadrupole moments, such as linear or square quadrupoles [50], where the

two inverted dipoles making up the quadrupole are aligned head-to-head or side-by-side,

respectively. An additional short-range repulsive potential, e.g., the Lennard-Jones-type

potential, is necessary to prevent point quadrupole moments from overlapping.

In this work, we will search for ordered equilibrium structures in systems featuring some of the

interactions described above. In the following, we outline our general strategy for identifying

equilibrium structures. The particular models studied in this work will be discussed later.

A given system is governed by the related thermodynamic potential, which assumes its

minimum value when the system is in equilibrium. For a system under NV T -conditions

(where particle number N , volume V , and temperature T are kept constant), the relevant

thermodynamic potential, i.e., the Helmholtz free energy F , is given by

F (N, V, T ) = E − TS, (1.1)

where E is the energy and S is the entropy. Under NPT -conditions (where N , external

pressure P , and T are kept constant), the relevant thermodynamic potential is the Gibbs

free energy

G(N,P, T ) = E + PV − TS. (1.2)

While the energy E can be computed analytically with high accuracy, the entropy S can
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CHAPTER 1. INTRODUCTION

only be obtained with more elaborate (and less accurate) approaches such as thermodynamic

integration [51].

Our approach for finding ordered equilibrium structures is based on two steps:

(i) We first study the systems at vanishing temperature, where the free energy reduces

to the energy E or to the enthalpy H = E + PV , respectively, thereby avoiding the

calculation of the entropy, which is required at finite temperature. Still, obtaining the

configurations with the lowest energy or enthalpy is not trivial either, as it represents a

global minimization problem in a high-dimensional search space.

In order to solve this global minimization problem, we present and employ an optimization

tool based on ideas of evolutionary algorithms (EAs).

Often, knowledge of the ground state configurations is of importance as it can give an

overview of relevant regions in the parameter space; the set of observed configurations can

also help with the construction of phase diagrams [52].

(ii) In the second step of our investigations we perform simulations at low temperature in

order to study the mechanical and thermodynamic stability of the obtained structures.

Here, we use either Monte Carlo (MC) or Molecular Dynamics (MD) simulations.

The structures observed at T = 0 are not only useful for initializing simulations carried

out at finite temperature, but can also serve as reference points for the interpretation

of snapshots and order parameters, i.e., comparison to the defect-free ground state can

help us understand the underlying structure at finite temperature. For methods trying to

directly calculate the free energy, e.g., the multi-histogram reweighting approach [53, 54],

having an independent reference value for the energy can also be very useful.

In addition, having an independent reference value can be very useful for methods trying to

directly calculate the free energy, e.g., the Multi-Histogram Reweighting approach [53, 54].

In this work, we will investigate four different systems featuring long-range interactions:

(i) The first system is based on classical point charges confined to a planar geometry. These

charges interact via the 1/r-Coulomb potential; electro-neutrality is guaranteed via a

uniform, planar, neutralizing background. We will investigate an equimolar binary mixture

of charges of the same sign, leading to non-trivial particle arrangements.

(ii) For the second system, we will investigate how a monolayer system of charges interacting

via the Coulomb potential transforms into a dilute bilayer; electro-neutrality is again

guaranteed via a uniform, planar, neutralizing background. We will study the structural

changes the particle arrangement in the remaining monolayer undergoes as a single charge

is vertically displaced.

(iii) The third system is based on classical point charges in a bilayer geometry. In the

simplest case, the neutralizing background is the same for both layers and the formed

structure depends solely on the distance separating the two plates. We will then study the

effects of introducing an asymmetry in the background charges – making the background

on one plate stronger than on the other – on the particle arrangements in both layers. The

interplay of the separation distance between the plates and the charge asymmetry between

the neutralizing background densities results in a remarkably complex phase diagram.
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(iv) For the fourth system, we will investigate a system of ellipsoidal particles with an

embedded linear quadrupole moment 1. The ellipsoidal shape of the particles is modelled

via a soft repulsive potential with short spatial range. The formed structures are governed

by the competition between the relatively long-range and the short-range interactions.

This work is organized as follows:

• In Chapter 2, we give an overview of the methods we use in this work.

• In Chapter 3, we present the different systems studied in this thesis: once each system

has been introduced, we develop a suitable theoretical model and define quantities that

can help us characterize the properties of the system. We then present and interpret the

obtained results.

• In Chapter 4, we conclude and provide an outlook on possible future investigations.

• Supplementary information is given in Appendix A.

1. A linear quadrupole moment is a special case wherein two dipole moments of opposite orientation are
superimposed such that their positive ”charges” overlap.
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2. Methods

In this chapter, we present the methods used to obtain the results presented in the subsequent

chapter. We first discuss issues with the calculation of the potential energy arising from the

long-ranged nature of the interactions (see Section 2.1). Then, we focus on the two main

components of our approach presented in the preceding section:

(i) We are first interested in obtaining the ground state configuration for a given system; we

thus have to globally minimize its energy at vanishing temperature (see Section 2.2).

(ii) In a second step, we perform Monte Carlo simulations at low temperatures (see Section

2.3) to verify the results obtained at zero temperature.

We then proceed to the presentation of supplementary methods that help us in obtaining

further information on the system. We start with an overview of bond-orientational order

parameters that can be used to quantify and classify ordered structures (see Section 2.4); we

also provide some details on how these quantities can be calculated accurately. Finally, we

also present the nudged elastic band method (see Section 2.5), i.e., an approach to studying

transition paths in rugged energy landscapes.

2.1. Long-range interactions: Ewald summation

In this section, we specify the term ”long-ranged interactions” and discuss what difficulties

they entail (see Subsections 2.1.1 and 2.1.2). We then proceed to present the formalism

of Ewald summation (see Subsection 2.1.3), which allows us to accurately and efficiently

calculate the potential energy of long-ranged systems. In an effort to provide a better un-

derstanding of this method, we derive its basic expressions for the simple system of Coulomb

interactions in two dimensions. In addition, we discuss important aspects of the implemen-

tation of Ewald sums and their convergence (see Subsection 2.1.4).

2.1.1. Long-ranged interactions: definition and problems

When calculating the potential energy of a system in computational physics, we always

have to carefully put into relation expectations in numerical accuracy, computational cost,

and difficulties related to the implementation of the method. Often, interactions between

particles decay rather quickly with increasing distance, i.e., particles either do not interact

with distant particles, or these interactions are negligible compared to those between close-by

particles.
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2.1. EWALD SUMMATION CHAPTER 2. METHODS

In the following we study the interaction energy of a particle (located at the origin) with

(N − 1) other particles in a macroscopic volume V . The number particle density is given by

ρ(r) = δ(r) +
N∑
i=2

δ(r − ri), (2.1)

where ri denotes the position of particle i. Particles i and j interact with a potential

V (ri − rj), thus the energy of the entire system is given by

E =
1

2

∫
V

dr

∫
V

dr′ρ(r)V (r − r′)ρ(r′)

=
1

2

∫
V

dr

∫
V

dr′
[
δ(r) +

N∑
i=2

δ(r − ri)
]
V (r − r′)

[
δ(r′) +

N∑
j=2

δ(r′ − rj)
]
. (2.2)

The integrals are carried out over the macroscopic volume of the sample.

The expression for the energy can be split into three contributions. We are at the moment

only interested in the interaction of particle 1 with the other particles. We obtain this

interaction by considering the terms (i = 1, j 6= 1) and (i 6= 1, j = 1)

E1 =
2

2

∫
V

dr

∫
V

dr′
N∑
i=2

δ(r − ri)V (r − r′)δ(r′). (2.3)

We disregard the self-interaction obtained for i = j

Eself =
1

2

∫
V

dr

∫
V

dr′
N∑
i=1

δ(r − ri)V (r − r′)δ(r′ − ri) (2.4)

and the interactions of the other particles with each other

Eother =
1

2

∫
V

dr

∫
V

dr′
N∑
i=2

δ(r − ri)V (r − r′)
N∑
j=2

δ(r′ − rj). (2.5)

We carry out the integration over r′ for the first term of E1 in Equation 2.3 and obtain

E1 =

∫
V

dr
N∑
i=2

δ(r − ri)V (r). (2.6)

The volume in the integration (which we may consider equivalent to the sample size in

experimental systems) may be macroscopically small, but can be considered microscopically

large. The same is true for the number of particles N in the system, which is on the order

of magnitude of the Avogadro constant NA ≈ 6 × 1023mol−1. For computational purposes,

we approximate the finite (macroscopic) system by an infinite system (characterized by a
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microscopic unit cell), which we usually presume to be periodic. We justify this by the huge

discrepancy between macroscopic sample size and microscopic distances between particles.

For simplicity, we further assume an isotropic potential

V (r) = V (r). (2.7)

We can transform the integral in Equation 2.6 and obtain

E1 =

∫ ∞
0

4πr2drρ(r)V (r), (2.8)

where we define the radial number particle density of the system ρ(r) as

ρ(r) =
1

4πr2

∫ 2π

0

dφ

∫ π

0

sin θdθρ(r)

=
N∑
i=2

1

4πr2
i

δ(ri). (2.9)

In practice, the infinite integral in Equation 2.8 is numerically evaluated by including con-

tributions only up to a certain cutoff radius Rcut

E1 ≈
∫ Rcut

0

4πr2drρ(r)V (r). (2.10)

The above approximation causes a relative error δ in the energy evaluation, which we can

estimate for a monotonic interaction potential via

δ =

∫∞
Rcut

4πr2ρ(r)V (r)dr∫∞
0

4πr2ρ(r)V (r)dr
. (2.11)

If V (r) decays sufficiently fast with distance, we can use this relation to fix Rcut such that

we can achieve any desired accuracy δ. This is a common practice in computational physics.

Problems start to arise when V (r) does not decay sufficiently quickly with distance; in this

case the cutoff radius Rcut can become very large and the computational cost to calculate

E1 can be very high, making high-accuracy studies prohibitively time-consuming. This issue

becomes a serious problem if the energy differences between competing structures are very

small compared to the total interaction energy.

Finally, there are interactions where the above relations (see Equations 2.8 and 2.11) are no

longer applicable, i.e., where the involved integrals do not converge. A simple example is

the Coulomb interaction

VCoulomb(r) ∼ 1

r
. (2.12)
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This problem can also occur for inverse-power law (IPL) interactions with an exponent n

VIPL(r) ∼ 1

rn
; (2.13)

if the dimension of the system d fulfills the relation n ≤ d, the interaction doesn’t decay

sufficiently fast for the potential energy to converge. Interactions with such a behavior at

r →∞ are considered long-ranged. Apart from the non-convergence of the total interaction

energy (see Equation 2.6), we also make an inestimable relative error when using a cutoff

radius (see Equation 2.11).

2.1.2. Long-ranged interactions: background and boundary conditions

Returning to the example of Coulomb interactions introduced in Subsection 2.1.1, we know

that basic laws of electrostatics suggest that an infinitely large system needs to be electro-

neutral as a whole, guaranteeing that the energy per particle is finite. For a system of point

charges Qi, this electro-neutrality can either be achieved via charges of opposite sign∑
i

Qi = 0, (2.14)

or by adding a neutralizing background to the system, such that the total charge contained

in the system is zero ∫
r

σ(r)dr +
∑
i

Qi = 0; (2.15)

here, σ(r) is a neutralizing background charge density, which may sometimes even be uni-

form. A similar concept can be applied to non-electrostatic interactions: we consider the

particle ”charge” density ρ(r) a sum of delta peaks and the background ”charge” density

σ(r) a continuous function.

The integral in the energy calculation (see Equation 2.6) is conditionally convergent as some

of the terms depend on the chosen macroscopic boundary conditions [55–61], such as the

shape of the sample and the surrounding medium (see Figure 2.1). Defining the macroscopic

system alone is, however, still insufficient: only after adding a neutralizing background does

the integral converge. Nevertheless, we still cannot calculate the system’s energy by using a

simple direct lattice sum.

At this points we want to emphasize that for dipolar systems, the properties of the medium

surrounding the macroscopic system can have particularly illustrative effects: they can favor

or suppress ferromagnetism [56, 60]. In addition, the macroscopic shape may also influence

the energy calculation and proper treatment starting from the Maxwell equations would be

necessary [62].
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lattice constant

macroscopic size

surrounding medium

1

Figure 2.1.: Schematic view of the lattice constant of a crystal (related to its microscopic
periodicity) and the macroscopic size of the sample. The two length scales are
not drawn to size as they differ by many orders of magnitude. In systems with
electrostatic interactions, the medium surrounding the macroscopic object and
even the shape of the boundary may have a profound effect on the microscopic
behavior.

In this work, we assume metallic boundary conditions, i.e., that the macroscopic system is

surrounded by a medium with a dielectric constant εr = ∞. This choice is useful as some

energy terms introduced by the macroscopic boundary disappear [63] 1.

2.1.3. Ewald summation: basic idea and derivation

We now turn our attention to the actual energy calculation of a system with long-ranged

interactions. As mentioned in Subsection 2.1.2, we cannot calculate the energy per particle

of such a system via a simple lattice sum. However, in order to cope with this problem,

several mathematical methods have been proposed: among these are modified sums in real

and reciprocal space, such as Ewald summations [65] and Lekner sums [66]; adaptations

of these based on discretization and Fast Fourier Transforms have also been developed to

efficiently deal with large systems, e.g., the particle-mesh Ewald method [67, 68] or the

particle-particle-particle-mesh Ewald method [69–72]. Other approaches try to directly solve

the Laplace equation on the surface of a hypersphere [73, 74]. Additional methods, such as

the Nijboer-de Wette and the fast multipole approaches, are discussed in [75]. In this work,

we exclusively use the method of Ewald summation.

1. The stress tensor, however, retains its dependence on the macroscopic sample shape even for metallic
boundary conditions [64].
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The formalism behind Ewald summation was originally developed for computing the Madelung

constant in ionic systems [65, 76]. It can mathematically be described by the Poisson-Jacobi

formula, which allows us to split an infinite real space summation into infinite summations

in real and reciprocal space. It can be shown that both of these sums converge and do so

quickly; we can thus calculate the system’s potential energy. This procedure can be inter-

preted as splitting the interaction into a short-range part, computed in real space (see left

panel of Figure 2.2), and a long-range part, computed in reciprocal space (see right panel of

Figure 2.2). Small k-vectors in reciprocal space correspond to large distances in real space;

the two sums are thus to some extent complementary.

∼ 1/α
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1

Figure 2.2.: Schematic view of the mathematical interpretation of Ewald summation. Left
panel: summation in real space. Particle positions are indicated by circles. For
long-ranged interactions, we are required to carry out the infinite sum in order
to obtain an estimable accuracy. In the formalism of Ewald summation, the real
space interaction decays at a length scale proportional to ∼ 1/α (α being an
arbitrary parameter of the summation introduced in Equation 2.22). This allows
us to neglect terms for large distances (large r-vectors). If the minimum image
convention is used, this cutoff should be on the order of the box size. For small
cells, we need to sum over several periodic images. Right panel: summation in
reciprocal space. Position of reciprocal lattice vectors is indicated by asterisks.
The reciprocal space interaction decays at a length scale proportional to ∼ α.
Small k-vectors correspond to large real space distances.

Some textbooks also offer an easily accessible physical interpretation of Ewald summation:

first the interaction range in real space is reduced by adding a screening background of

convenient shape; then the background is subtracted again (see Figure 2.3). The screened

interaction is treated in real space while the background is subtracted in reciprocal space,

where it is easily manageable due to its convenient shape.

We now present the mathematically rigorous derivation of the Ewald summation technique

[75] based on the Poisson-Jacobi formula. For this, we choose a simple long-ranged system,

12
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&=

1

Figure 2.3.: Schematic view of the physical interpretation of Ewald summation used in some
textbooks. Left panel: actual physical system, which consists of an infinite
arrangement of point-like interaction sites, i.e., the distribution is delta-like.
Right panel: introduction and consequent subtraction of a screening distribu-
tion, which makes the interaction manageable. The interactions in the top panel
are calculated in real space while those in the bottom panel is treated in recip-
rocal space. This may be significantly easier to accomplish if the shape of the
screening distribution is convenient, e.g., if its Fourier transform decays quickly
with increasing k.
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namely the 1/r-Coulomb interaction in two dimensions 2 using a uniform neutralizing back-

ground. We note that the formalism is only defined for periodic systems. We thus assume

that the system can be characterized by a unit cell containing N particles. The shape of the

unit cell is defined by the lattice vectors a and b, such that the origin of any of its periodic

images is located at

R = naa+ nbb, (2.16)

where na and nb are integers. We can write the interaction energy per particle as the sum

of three terms, i.e., particle-particle (”pp”), particle-background (”pb”), and background-

background (”bb”), leading to

E

N
=

1

N
(Epp + Epb + Ebb) (2.17)

Epp =
1

2

N∑
i=1

N∑
j=1

∑
R

′ QiQj

|ri − rj +R| (2.18)

Epb =
N∑
i=1

∫
L

∑
R

Qiσ(r)dr

|ri − r +R| (2.19)

Ebb =
1

2

∑
R

∫
L

∫
L

σ(r)σ(r′)drdr′

|r − r′ +R| . (2.20)

The primed sum indicates the omission of the term i = j for R = 0 and L indicates an

integral over the entire unit cell.

We now use a mathematical identity to transform these terms, namely an integral represen-

tation of the Γ-function [77]

1

r
=

1√
π

∫ ∞
0

dt√
t

exp(−r2t). (2.21)

2. Note that in a truly two-dimensional systems, point charges interact with a logarithmic potential
V2D(r) = log(r), which is the solution to the two-dimensional Poisson equation. The system we assume is
implicitly three-dimensional, though all charges are confined to the plane z = 0.
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With this relation, we obtain

Epp =
1

2
√
π

N∑
i=1

Qi

N∑
j=1

Qj

∑
R

′
lim
ε→0

∫ ∞
ε

dt√
t

exp
(
− |ri − rj +R|2 t

)
=

1

2
√
π

N∑
i=1

Qi

N∑
j=1

Qj

∑
R

′

[
lim
ε→0

∫ α2

ε

dt√
t

exp
(
− |ri − rj +R|2 t

)
(2.22)

+

∫ ∞
α2

dt√
t

exp
(
− |ri − rj +R|2 t

)]
Epb =

σ√
π

N∑
i=1

Qi

∫
L

∑
R

lim
ε→0

∫ ∞
ε

dt√
t

exp
(
−r2t

)
=

σ√
π

N∑
i=1

Qi

∫ ∞
0

2πrdr lim
ε→0

∫ ∞
ε

dt√
t

exp
(
−r2t

)
(2.23)

Ebb =
σ2

2
√
π

∫
L

∫
L

∑
R

lim
ε→0

∫ ∞
ε

dt√
t

exp
(
−r2t

)
=

σ2

2
√
π

∫
L

∫ ∞
0

2πrdr lim
ε→0

∫ ∞
ε

dt√
t

exp
(
−r2t

)
, (2.24)

introducing α > 0 as an arbitrary parameter of the summation, i.e., the result is independent

of α when the infinite sums are carried out. We can carry out the integration over r in the

expressions for Epb and Ebb:

Epb =
σ√
π

[
N∑
i=1

Qi

]
lim
ε→0

∫ ∞
ε

dt√
t

∫ ∞
0

2πr exp
(
−r2t

)
= σ

√
π

[
N∑
i=1

Qi

]
lim
ε→0

∫ ∞
ε

dt

t3/2

= 2
√
π

[
N∑
i=1

Qi

]
σ lim
ε→0

1√
ε

(2.25)

Ebb =
σ2

2
√
π

∫
L

lim
ε→0

∫ ∞
ε

dt√
t

∫ ∞
0

2πr exp
(
−r2t

)
dr

=
σ2
√
π

2
S0 lim

ε→0

∫ ∞
ε

dt

t3/2

=
√
πσ2S0 lim

ε→0

1√
ε
, (2.26)

where S0 is the area of the unit cell.

We can see that the terms for Epb and Ebb are divergent, so they have to cancel out with

other terms obtained from Epp. Since we can only carry out the second integral in the
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expression for Epp (see Equation 2.22), we use the Poisson-Jacobi formula

∑
R

exp
(
− |ri − rj +R|2 t

)
=

1

S0

π

t

∑
G

exp

(
−G

2

4t

)
exp [ıG · (ri − rj)] , (2.27)

where G represents the reciprocal lattice vectors, including the vector 0. We now use this

expression for the first integral (by completing the primed sum) and carry out the second

integral

Epp =
1

2
√
π

N∑
i=1

Qi

N∑
j=1

Qj lim
ε→0

∫ α2

ε

dt√
t

∑
R

exp
(
− |ri − rj +R|2 t

)
−

N∑
i=j

Q2
i lim
ε→0

∫ α2

ε

dt√
t

+
1

2

N∑
i=1

Qi

N∑
j=1

Qj

∑
R

′ 1

r
erfc (αr)

=
1

2
√
π

N∑
i=1

Qi

N∑
j=1

Qj lim
ε→0

∫ α2

ε

dt√
t

π

S0t

∑
G

exp

(
−G

2

4t

)
exp [ıG · (ri − rj)]

− α√
π

[
N∑
i=1

Q2
i

]
+

1

2

N∑
i=1

Qi

N∑
j=1

Qj

∑
R

′ 1

r
erfc (αr)

=

√
π

2S0

[
N∑
i=1

Qi

][
N∑
j=1

Qj

]
lim
ε→0

∫ α2

ε

dt

t3/2

+

√
π

2S0

∑
G 6=0

[
N∑
i=1

Qi exp (ıG · ri)
][

N∑
j=1

Qj exp (−ıG · rj)
]

lim
ε→0

∫ α2

ε

dt

t3/2
exp

(
−G

2

4t

)

− α√
π

[
N∑
i=1

Q2
i

]
+

1

2

N∑
i=1

Qi

N∑
j=1

Qj

∑
R

′ 1

r
erfc (αr)

= −
√
π

αS0

[
N∑
i=1

Qi

]2

+

√
π

S0

[
N∑
i=1

Qi

]2

lim
ε→0

1√
ε

(2.28)

+
π

S0

∑
G 6=0

wwwww
N∑
i=1

Qi exp (ıG · ri)
wwwww

2

1

G
erfc

(
G

2α

)

− α√
π

[∑
i=1

Q2
i

]
+

1

2

N∑
i=1

Qi

N∑
j=1

Qj

∑
R

′ 1

r
erfc (αr) .

We can now reorganize the obtained expressions into four contributions: a real space sum-

mation E(r), a reciprocal space summation E(k), constant terms E(c) that are independent

of the positions of particles or the lattice periodicity, and divergent terms E(div). The real
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space summation is simply given by

E(r) =
1

2

N∑
i=1

Qi

N∑
j=1

Qj

∑
R

′ 1

r
erfc (αr) . (2.29)

The function to be summed over decays much faster than the original 1/r-dependent term

in VCoulomb such that the sum converges quickly and unconditionally. Note that in the

limit α → 0, we recover the original expression for the Coulomb interaction, i.e., the entire

summation is carried out in real space.

The reciprocal space summation is given by

E(k) =
π

S0

∑
G 6=0

wwwww
N∑
i=1

Qi exp (ıG · ri)
wwwww

2

1

G
erfc

(
G

2α

)
. (2.30)

Again, this summation converges rapidly and can thus be handled numerically. The constant

terms are given by

E(c) = −
√
π

αS0

[
N∑
i=1

Qi

]2

− α√
π

[
N∑
i=1

Q2
i

]
. (2.31)

Even though these terms are independent of the lattice, they are very important, since they

often represent the main contribution to the total energy of the system. Finally, the divergent

terms add up to

E(div) = 2
√
πσ

[
N∑
i=1

Qi

]
lim
ε→0

1√
ε

+
√
πσ2S0 lim

ε→0

1√
ε

+

√
π

S0

[
N∑
i=1

Qi

]2

lim
ε→0

1√
ε

=
1

S0

(
σS0 +

[
N∑
i=1

Qi

])2√
π lim
ε→0

1√
ε

= (0) lim
ε→0

1√
ε
, (2.32)

i.e., the divergent terms cancel as long as global electro-neutrality (σS0 +
[∑N

i=1Qi

]
= 0) is

satisfied.

In principle, the derivation of Ewald summation presented above can be performed for any

form of the interaction potential. However, the success of this method critically depends on

the knowledge of certain integrals such as Equation 2.21.
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2.1.4. Ewald summation: implementation and convergence

Even though the particular form of an Ewald summation varies with the considered inter-

action potential, its basic features remain the same as presented in Subsection 2.1.3: there

are terms related to the real space summation, to the reciprocal space summation, constant

terms, and divergent terms; the latter have to cancel in order for the summation to converge.

As mentioned before, the summations still contain an infinite number of terms, since the

expression is mathematically exact. However, the Ewald summation formalism is much more

manageable numerically since the sums converge quickly.

Thus, we can introduce cutoff distances in real and reciprocal space, Rcut and Gcut, respec-

tively, beyond which we neglect all contributions in E(r) (see Equation 2.29) and E(k) (see

Equation 2.30). In our effort to obtain a desired numerical accuracy δ, we need to optimize

these cutoff distances, as well as the Ewald summation parameter α introduced above. On

its own, α does not have a direct physical meaning. It can to some extent be considered

the inverse length scale at which we switch from the real space summation to the reciprocal

space summation (see Figure 2.2). Small values of α shift most of the summation to real

space, while large values do so for reciprocal space (see Figure 2.2). During the derivation

presented above, we have not considered any specific numerical value of α. While the result

is independent of this value if the infinite sums are carried out, this is no longer true for

the truncated summation we use (for an example, see left panel of Figure 2.4). Obviously,

such an effect has to be avoided. Therefore, we have to carefully choose compatible values of

Rcut, Gcut, and α, such that the total energy calculation is independent of α (at least within

a reasonably large range of α). Such a plateau region in the energy calculation indeed exists

if the cutoff distances are sufficiently large and increases in width as the cutoff distances

increase. In order to obtain numerically accurate results for the potential energy, we thus

have to test our summation for several different configurations and check that α is chosen

from an interval where the final result does not depend on α, i.e., where dE/dα ≈ 0 (see

right panel of Figure 2.4).

Depending on the interaction potential and on the geometry of the system, the actual numer-

ical cost of Ewald sums can be substantial. Note that in Equation 2.30 we have factorized

the double sum into two separate single sums. While this may only offer a moderate im-

provement for a small number N of particles per cell, it is essential for the simulation of large

boxes, e.g. in Monte Carlo simulations. Certain geometries, e.g., a quasi-2D slab system,

do not permit the factorization of double sums in the reciprocal space contribution and the

associated numerical cost thus becomes prohibitively large (see also Appendix A.1.3).

18



CHAPTER 2. METHODS 2.1. EWALD SUMMATION

α = 0.4

0 2 4 6 8 10
α

-100

-80

-60

-40

-20

0

E
∗ /
N

1

0.01 0.1 1 10
α

10−10

10−8

10−6

10−4

0.01

1

100

|E
∗ /
N
−
c m
|

1

Figure 2.4.: α-dependence of the Ewald summation for the hexagonal Wigner monolayer, i.e.,
a hexagonal (equilateral triangular) arrangement of point charges on a uniform
neutralizing background (see text). The exact energy is known to be E∗hex/N =
cm = −1.960515789. Left panel: the energy calculation E∗/N diverges for small
and large values of α (indicated by red line color). If α is chosen in a plateau
region (shaded blue), E∗/N is constant for a certain interval. The correct energy
cm is indicated by a dotted line. The size of the interval increases with increasing
cutoff distances Rcut and Gcut. Right panel: double-logarithmic plot of the error
|E∗/N − cm| giving an estimate of the attainable accuracy. The desired accuracy
δ ≈ 10−6 is indicated by a dotted line.
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2.2. Global energy minimization: evolutionary algorithms

In this section, we introduce the term ”energy landscapes” and discuss the problems we face

in our search for global minima (see Subsection 2.2.1). We present an overview over possible

strategies to approach this particular problem (see Subsection 2.2.2) and then focus on the

specific method we employ in this work for solving it, namely evolutionary algorithms (see

Subsection 2.2.3). After explaining their underlying concepts, we describe our implementa-

tion of these algorithms and modifications we have introduced to satisfy our requirements

(see Subsection 2.2.4). Finally, we discuss in detail the different relevant operators of our

evolutionary algorithm implementation (see Subsection 2.2.5).

2.2.1. Complex energy landscapes

In this work, we are interested in – possibly complicated – crystal lattices formed by particles

interacting via long-ranged potentials. As mentioned in Chapter ??, we first intend to

determine the ground state – the structure formed at vanishing temperature – of such a

system. A three-dimensional periodic lattice can be parametrized by its lattice vectors –

a, b, and c – and the positions ri and orientations ui (i = 1, ..., N) of the N particles

populating the unit cell. Due to symmetry considerations, not all of these parameters are

independent, but even for a moderately large value of N , the number of parameters that

need to be considered might reach up to several hundred.

The target function we seek to optimize – the enthalpy per particle, H/N , or the energy

per particle, E/N , in the NV T or in the NPT ensembles, respectively – are complicated,

though analytic, functions of these parameters

H

N
=

H

N
(a, b, c; r1, ..., rN ;u1, ...,uN)→ min (2.33)

or

E

N
=

E

N
(a, b, c; r1, ..., rN ;u1, ...,uN)→ min. (2.34)

These target functions are functions in the high-dimensional space of the parameters; their

overall shape is called the energy landscape. Figure 2.5 shows two different examples for a

simplistic one-dimensional energy landscape. In some very simple cases, the energy landscape

exhibits only a single minimum over the entire parameter space (being then by default the

global minimum), which makes the minimization problem easily solvable (see left panel of

Figure 2.5). However, most energy landscapes have several – more or less pronounced –

local minima, complicating thus the solution of the optimization problem (see right panel of

Figure 2.5). As long as the number of local minima is relatively small, it is still rather easy

to find the global minimum. However, we cannot assume this for the systems we plan to

investigate in this work. In addition, these systems are characterized by a large number of
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parameters, resulting in a so-called rough energy landscape, which can be exceedingly hard

to deal with.

E

x

E

x

1

Figure 2.5.: Simple examples of one-dimensional energy landscapes within a limited parame-
ter range. The target function E depends on the parameter x. Local minima are
marked by empty circles, the global minimum by a filled circle. The attraction
basin for each minimum is shaded in its respective color. Left panel: the global
optimization problem is easily solvable if there is only a single (or very few)
minima. Right panel: rough energy landscapes have a large number of local
minima, a fact which complicates the search for the global minimum.

In addition, some systems investigated in this work show a competition between two different

interactions. This competition can lead to frustration in the ground state configuration, i.e.,

minimizing the contribution to the total energy stemming from one interaction may increase

the contribution from another interaction.

2.2.2. Global minimization strategies

Complex energy landscapes emerge in a large variety of scientific fields, such as protein

folding [78–80], chemical engineering [81, 82], and many others. Not surprisingly, an equally

large number of approaches has been developed over the years to solve the associated global

optimization problems. These approaches can roughly be classified into three categories:

deterministic, stochastic, and heuristic.

Deterministic minimization strategies try to solve the optimization problem in an exact and

reproducible manner. They are based on mathematical treatment of the solution space and

analytical determination of possible solutions [83–85]. In some cases, an educated guess for

the general shape and symmetry of the solution can be made, considering inner symmetries

of the problem. If the general shape of the solution is known, it is sometimes possible to

calculate the global energy minimum by locally optimizing this candidate solution with a

suitable gradient descent algorithm. The region surrounding a local minimum is denoted

the attraction basin and following the gradient from any point in the basin leads to the local

minimum.
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Stochastic minimization strategies are based on a sampling of the parameter space via ran-

dom events. For example, the energy landscape can be explored using a simple direct Monte

Carlo simulation at a suitably low temperature. While on the one hand such a simulation

may get stuck in local minima, it is on the other hand also able to cross energy barriers

due to the finite temperature. However, careful attention has to be paid to the barrier

heights, to the relative energy depths of local minima and to the temperature of the system.

This general approach can be improved upon by introducing mechanisms to better sam-

ple the parameter space, e.g., by stochastic tunneling [86, 87]. This method improves the

sampling rate by transforming the parameter space in a non-linear way, allowing for easier

movement between different local minima. Other Monte Carlo-based approaches include

simulated annealing [88, 89], where simulations start at a high temperature and the system

is then gradually cooled down, and parallel tempering (also called replica exchange) [90],

where several systems are run in parallel at different temperatures and configurations can

be exchanged between two temperatures with a certain probability.

Finally, heuristic minimization strategies try to explore the search space in a more intelligent

way, making use of already obtained knowledge on the target function, such as symmetries,

boundaries, etc. With algorithms of this kind, it is of particular importance to tailor them

to the problem at hand. In general, we cannot assume that an algorithm that has been

optimized to solve problems of one kind will be appropriate at solving problems of a differ-

ent kind; this is known as the infamous no free lunch theorem [91]. One kind of heuristic

minimization strategies are swarm-based algorithms [92, 93]. The ”swarm” considered here

consists of several points in search space which are considered as an ensemble. These points

can be located in different basins of the energy landscape and the interplay between the

different members of a swarm may give further information concerning the overall shape

of the energy landscape. Another heuristic approach is reactive search [94], which employs

elements of machine learning to make use of underlying mechanisms which may be difficult

to extract analytically. A different possible approach is graduated optimization [95]. Here,

the actual problem is in a first step strongly simplified such that it becomes easily solvable.

Starting from this basic solution, more and more of the problem’s original complexity is iter-

atively added, all the while tweaking the previously obtained solution, until a hopefully good

solution to the original problem is found. Another possible approach is differential evolution

[96], where the initial problem is broken in many different sub-problems and a solution is

iteratively optimized for each sub-problem separately. In this work, we use the method of

evolutionary algorithms [97, 98], which tries to iteratively combine or modify different pre-

viously obtained solutions by making use of evolutionary principles. This approach can also

be combined with local optimization techniques, e.g., gradient descent algorithms [99–104],

in order to improve performance and convergence speed; algorithms combining both global

and local search strategies are called memetic algorithms [105].
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2.2.3. Evolutionary algorithms: principles

Darwinian theory of evolution

In this work, the main optimization strategy we employ to study global energy minima is

based on concepts of evolutionary algorithms (EAs) [98, 106]. EAs are derived from the

Darwinian theory of evolution [107] in biological systems. The theory of evolution explains

the gradual adaptation of a population of individuals to its environment in order to increase

its chances of survival and implicitly of passing on its genetic material. It is based on the

following three assumptions:

• Different individuals have different traits, i.e., there are different genotypes (genetic mate-

rial) and associated phenotypes (physical traits determined by genetic material).

• Different traits imply different adaptation to the environment and a different probability

to create offspring.

• Traits can be passed on to the next generation.

Since it is more likely for well-adapted individuals to create offspring, ”good” traits have

a higher chance for being passed on to subsequent generations; over time the population

selects for individuals which are better adapted to the environment (the degree of adapta-

tion is quantified as the fitness). In addition, random changes in traits occur with a small

probability, introducing thereby new traits; this process is called mutation.

Principles of evolutionary algorithms

In biology, the environment is a highly complex system and how well an individual is adapted

to it depends on many factors: it may depend on the rest of the population and may also

change over time. Therefore, we cannot specify any deterministic quantification of the degree

of adaptation.

For the development of an algorithm incorporating some of the underlying concepts of evo-

lution, we need to radically simplify and quantify both the environment and the degree of

adaptation. Our sole interest lies in optimizing a certain analytically known target function

such as a particle configuration’s energy. In most implementations of EAs, this target func-

tion remains unchanged over time and also doesn’t depend on the rest of the population

(in the following, we denote members of the population candidates to distinguish them from

their biological counterparts). We can thus use the value of the target function to numer-

ically quantify the degree of adaptation to the environment. This quantity is denoted the

fitness of a candidate; a lower target function value equals a higher fitness value.

The biological processes of procreation and mutation can also be used as inspiration for

algorithmic operators. The operator associated with procreation is denoted crossover. Its

purpose is to statistically extract and combine information from good solution strategies. The

mutation operator on the other hand serves to introduce completely new solution strategies.
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Both crossover and mutation only lead to a significant improvement if a sufficient number

of iterations is performed.

The aim of the crossover operator lies in combining good traits from two candidates without

actually knowing what these good traits are. This fact is very important, since the systems

we plan to study can be quite complex (see Subsection 2.2.1). We can select for good traits by

preferring good candidates (with high fitness) as source material for crossover. If this process

is repeated many times, good traits have a higher chance of being passed on and thus they

accumulate. The left panel of Figure 2.8 shows a simple example of the crossover operator,

where good traits of two candidates are combined at random. The crossover operator is

described in more detail in Subsection 2.2.5.

However, the crossover operator alone is to some extent limited by the good traits already

existing in the population as it is difficult to introduce completely new solution strategies via

this process. To compensate for this shortcoming, EAs employ a second genetic operator,

mutation. The mutation operator’s goal is to introduce random new traits to the population.

Since these traits are random, they in most cases have negative consequences for a candidate’s

fitness, but may nevertheless cause a better exploration of the search space. Mutation is

used only sparsely, i.e., the crossover operator is used much more often for the creation of a

new candidate. The different mutation operators are explained in more detail in Subsection

2.2.5.

2.2.4. Evolutionary algorithms: implementation

Parametrization

As mentioned before, we try to keep our algorithm as flexible as computationally possible. In

the ideal case, the algorithm should be able to explore and consider all possible solutions. In

practice, this ergodicity is restrained to some extent for computational reasons. The systems

we are going to investigate are periodic crystals, i.e., they can be characterized by a unit

cell, which is repeated periodically in accordance with the geometry of the system. The unit

cell’s shape and size is defined by the lattice vectors a, b, and c. Without loss of generality,

we assume in a three-dimensional (3D) system that vector a is aligned along the x-axis and
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that vector b lies in the xy-plane, i.e.,

a =

 ax
0

0

 (2.35)

b =

 bx
by
0

 (2.36)

c =

 cx
cy
cz

 . (2.37)

The unit cell volume Vc is then simply given by

Vc = |(a× b) · c| = |axbycz| , (2.38)

whereas in two-dimensional (2D) systems, the corresponding interesting quantity is the unit

cell area S0 = |axby|. When investigating systems at constant density, we can fix in a

three-dimensional system the unit cell volume by setting

ax =
Vc

bycz
. (2.39)

In 2D systems, we use ax = S0/by. In 3D systems, we thus have six independent parameters

that describe the shape of the unit cell (five in NV T ), while in 2D we only have three (two

in NV T ).

The particle positions within the unit cell can be specified either in Cartesian coordinates ri
or, preferably, in fractional coordinates rf

i

ri = xf
ia+ yf

ib+ zf
ic, (2.40)

such that the range of each component of rf
i can be confined to the interval [0, 1). The

use of fractional coordinates also simplifies certain genetic operators, in particular crossover.

Particle orientations are specified by a three-component vector following the formalism de-

scribed by Chakrabarti [108], wherein the rotation axis is given by the vector’s director and

the rotation angle by its length such that any orientation of a rigid body in 3D space can

be described. Depending on the system, the number of orientation parameters per particle

ranges between zero (isotropic particles) and three (three-dimensional rigid bodies).

For computational reasons, we keep the number of particles per cell, N , fixed during a run.

On the one hand, this greatly simplifies all genetic operators; on the other hand, however,

we have to perform runs for several different values of N to cover all relevant unit cell sizes.

Typical system sizes range between N = 1 and N = 40 particles per cell, but can reach a
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few hundred.

The set of parameters listed above – consisting of lattice vectors, particle positions and

particle orientations – is called a candidate’s phenotype. They determine its physical charac-

teristics (in our case the crystal lattice) and are used for the evaluation of the target function.

In traditional EAs, these properties are encoded as a sequence of binary numbers, similar to

a genetic code [98], which is called the genotype of the candidate. The biological counter-

parts of phenotype and genotype are the actual individual and its DNA, respectively. EAs

can be implemented either in phenotype formalism (which we use in this work and where a

candidate is described by a set of parameters), or in genotype formalism (where the param-

eters are converted into a single string of binary numbers). While most genetic operators

can be more directly related to their biological counterparts in the genotype formalism, the

phenotype implementation allows for more flexibility and for an easier exploitation of the

optimization problem’s physical interpretation.

Fitness

As mentioned in Subsection 2.2.3, a candidate’s adaptation to the environment is related

to its chances of producing offspring and passing on its genetic material. This level of

adaptation is quantified in the fitness of a candidate. For our purposes, a candidate (i.e., a

crystal lattice) is well-adapted when its energy E is low, since this is the quantity we seek

to minimize. The fitness F should thus be high for a low energy configuration and vice

versa. The functional form of the fitness function F (E) is a key ingredient of the algorithm’s

implementation. A commonly used function [98, 106, 109, 110] is

F (E) = exp

(
−s E − Emin

Emax − Emin

)
(2.41)

exp (−s) ≤ F (E) ≤ 1, (2.42)

where Emin and Emax are the minimum and maximum energies within the population, re-

spectively. The parameter s specifies how much more likely it is for fitter candidates to

reproduce, since a large value of s basically excludes weak candidates from reproduction.

We commonly use s = 3, such that the ratio between the minimum and maximum fitness is

F (Emax)

F (Emin)
= exp (−s) ≈ 0.05. (2.43)

There are several different methods to pick candidates for reproduction. In this work, we

employ the so-called roulette wheel method [106, 109, 111], where a re-scaled fitness function

is used to calculate the probability for a candidate to be picked. The re-scaled fitness f(E)

can be calculated after sorting the Nind candidates by their fitness F (E) in descending order
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(Fi+1 < Fi, where i = 1, ..., Nind)

f(Ei) =

∑
j≤i F (Ej)∑Nind

j=1 F (Ej)
. (2.44)

In order to pick a candidate for reproduction, we can generate a random number 0 ≤ r ≤ 1

and pick the candidate with the smallest index i such that f(Ei) ≥ r. Figure 2.6 shows an

illustration of the relation between energy, fitness, re-scaled fitness, and the probability of

being picked.

0 0.5 1

r = 0.45

E

F (E)

f(E)

1

Figure 2.6.: Illustration of the relation between energy E, fitness F (E), re-scaled fitness
f(E), and the probability of being picked for reproduction (when picking at
random by generating 0 ≤ r ≤ 1; shown here is r = 0.45). Candidates with low
energy (colored blue or green) have a high fitness and are thus more likely to be
chosen for reproduction.

Local optimization

For most problems, it is useful to combine global and local approaches, i.e., to use a memetic

approach. The idea here is to first find the attraction basin of the global minimum with a

global search algorithm and then to rapidly converge to the minimum with a local search

algorithm. There are various ways to balance the computational effort allocated to global

and local optimization, ranging from purely global (e.g., early EAs [98, 110]) to purely local

(local optimization of candidate structures).

In our implementation of EAs, we use an approach based on basin hopping [112], i.e., we

combine a global evolutionary search algorithm with a subsequent local optimization until

all forces vanish. The energy landscape thus reduces to a set of attraction basins and

the associated local minima. This improves performance of the algorithm since the energy

differences between a local minimum and other regions in its attraction basin can range

over several orders of magnitude. In traditional EAs, the creation of a new configuration

requires only a single evaluation of its energy. In basin hopping, fully relaxing a configuration
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(optimizing it locally until all forces are below a certain threshold) can require hundreds or

thousands of energy evaluations.

For the local optimization, we employ the linearized Broyden-Fletcher-Greenfarb-Shanno al-

gorithm in its bounded variant (L-BFGS-B) [99–104], which is based on an approximation of

the inverse Hessian matrix of the energy function. This approximation is updated iteratively

after each step. The term linearized refers to an implementation based on a limited amount

of memory, i.e., the matrix is stored only implicitly and only a limited number of previous

updates is kept. This is particularly efficient in systems with a large number of variables.

Parallelization

As mentioned before, a candidate’s fitness is only meaningful in comparison to the fitness

values of the other candidates in the population, since it quantifies the competition for

producing offspring. In traditional implementations of EAs, the creation of new candidates

is organized via generations, i.e., the entire population is replaced by new candidates in

each iteration (see left panel of Figure 2.7). In order to reach convergence, a large number

of iterations may be necessary. For computational reasons, it is thus more appropriate to

develop a parallelized implementation. One possible way of achieving this is by abandoning

the concept of generations [106] and introducing instead a pool of candidates, containing

the entire population. New candidates are created one at a time and replace one of the old

candidates in the pool (see right panel of Figure 2.7). The respective fitness of each candidate

is then recalculated and the process is repeated until a certain number of iterations has been

reached.

1

Figure 2.7.: Schematic view of different implementations of evolutionary algorithms (EAs).
Left panel: traditional implementation based on generations. In each iteration,
the entire old population (colored red) is replaced by newly created candidates
(colored blue). Right panel: implementation geared towards parallelization, in
which the concept of generations is abandoned. New candidates are created one
at a time and gradually replace old candidates.

It is a simple process to parallelize such iterative updates to a pool of candidates: a master

node keeps track of the current pool and the fitness of each candidate. A new candidate

is created by the master node using the crossover and mutation operators and is handed
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to a worker node for local optimization. Once optimization is achieved, the new candidate

is passed back to the master node and replaces a randomly picked candidate in the pool.

The master node then recalculates the fitness of each candidate. All computational tasks

performed by the master node require very little time avoiding thus the formation of a

bottleneck. The time required to locally optimize a candidate using the L-BFGS-B algorithm

can vary significantly and the different worker nodes thus do not work in sync. The number

of worker nodes is to some extent related to the pool size Nind and we commonly keep them

approximately equal. Our implementation of parallelization uses the MPI framework [113].

Elitism and nicheing

In biological systems, all candidates in a population are replaced when a new generation is

formed. In EAs, the best few candidates are usually carried over from one generation to the

next in a method called elitism [106]. This prevents the population from losing good traits

and ensures that the best obtained energy decreases monotonically. However, the degree of

elitism should not be too high, otherwise the best few candidates dominate the rest of the

population which then may be trapped in a few local minima.

The possibility that all candidates in the population converge to the same local minimum can

indeed pose a risk as it precludes further useful crossovers. To prevent this from happening,

we may employ a practice called nicheing [106, 114]. The niches here usually refer to energy

niches, i.e., we discard a new candidate if its energy is identical to that of an old candidate

already available in the pool. All candidates thus have to occupy different basins and their

associated local minima. However, we have to be careful when dealing with systems where

different but equivalent structures can exhibit the same energy and especially when the

ground state may be degenerate. In this case, niches have to incorporate a quantification of

a configuration’s structure, e.g., the order parameters.

2.2.5. Evolutionary algorithms: operators

We now discuss our implementation of the different evolutionary operators and their relative

probabilities. For the initial population, all candidates are initialized using the random

operator, which creates a completely random candidate.

Crossover operator

The aim of the crossover operator is to combine good traits from two candidates (called

parents) into a new candidate (called child). It stands apart from all other operators due to

how often it is used (approximately 53-80% of all iterations) and that it uses two candidates as

input. In genotype implementations, crossover is achieved by directly cutting and merging

the genetic code of the two parents. In phenotype implementations, such as the one we
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employ, it makes sense to use the physical interpretation of the system and to try to preserve

to some extent good local structures.

For a crossover (see the left panel of Figure 2.8), the two parents are first chosen from the

pool. The probability of a candidate to be chosen as a parent is determined by its fitness (see

Subsection 2.2.4). We insists on two different candidates for the choice of parents. In order

to create the child, we now randomly choose one parent that passes on its lattice vectors.

Fractional particle positions and orientations are passed on in a more complicated manner

called cut-and-splice [115]. First, we randomly choose how many particle positions N1 and

N2 are passed on from each of the parents. We then determine a fractional coordinate axis

â ∈ {xf , yf , zf} orthogonal to the plane that cuts the two parents. Before cutting, we shift

the fractional coordinates of both parents along the chosen axis â by a random interval

[116–118]; with a low probability, the shift occurs orthogonal to â. Then, we take the N1

particles with the lowest fractional coordinate â from the first parent and the N2 particles

with the highest fractional coordinate â from the second parent and add them to the child.

The associated particle orientations are also passed on. The rationale behind this is that the

local relative structure is preserved, even though the actual positions depend on the lattice

vectors, which may differ between parent and child. Without subsequent local optimization,

the resulting configuration has most likely a rather high energy.

Move mutation operator

Like all other mutation operators, the move mutation operator (see right panel of Figure

2.8) seeks to introduce new information to the population by hopping to different basins.

In genotype implementations, mutation occurs by randomly changing the genetic code. In

phenotype implementations, we can directly interpret mutations, allowing us to tailor the

operators to the problem at hand. For all systems studied in this work, randomly displacing

a single particle is always useful. The move operator is thus used rather frequently, with a

probability of 10-20%.

In a first step, we pick one candidate at random from the pool, which serves as the starting

point. We then pick a single particle in this candidate and displace it by a random distance

along a random direction. With a probability of 10-20%, this process is repeated, such that

multiple particles can be displaced in a single mutation. The configuration is then optimized

locally.

Strain mutation operator

If the unit cell contains only a few particles, the number of accessible crystal structures

strongly depends on the lattice vectors, i.e., on the periodicity. We thus use the strain

mutation operator (see left panel of Figure 2.9) to randomly change the shape (and in the

NPT ensemble also the volume or area) of the unit cell allowing thereby the formation of
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biased selection

lattice + fractional coordinates

cut & splice

new individual

1

random selection

lattice + fractional coordinates

random displacement

new individual

1

Figure 2.8.: Left panel: illustration of the crossover operator. Two parents with N = 4
particles are selected in a draw biased towards high fitness. One of them passes
on its lattice vectors and the fractional coordinates of both parents are shifted
along a random axis (see text). The (here) N1 = 1 particles with the lowest new
fractional coordinate are passed on from the first parent, complemented with the
N2 = N − N1 = 3 with the highest new fractional coordinate from the second
parent. Right panel: illustration of the move mutation operator. A candidate
is picked at random and one (or more) particles are randomly displaced.

completely different lattices [116, 119]. The strain operator is used with a probability of

3-7%.

Again, we first pick a candidate at random from the pool. We then construct the strain

matrix [116, 119]

M =

 1 + ε11
ε12
2

ε13
2

ε12
2

1 + ε22
ε23
2

ε13
2

ε23
2

1 + ε33

 , (2.45)

where εij are zero-mean random Gaussian variables. Finally, we obtain the mutated lattice

vectors using  a′x 0 0

b′x b′y 0

c′x c′y c′z

 = M ·

 ax 0 0

bx by 0

cx cy cz

 . (2.46)

Depending on the used ensemble, the volume can either change or be kept constant.

Swap mutation operator

In systems with more than one component, the relative positions of the different species

become important. It is thus useful to construct a swap mutation operator (see right panel
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of Figure 2.9), which exchanges the species of two particles. When studying mixtures, we

use a probability of 3-6% for this operator.

After picking a candidate at random, two particles are selected and their species are in-

terchanged, leaving their positions and orientations untouched. This operator is especially

useful when the two species are similar in their properties, as most other evolutionary oper-

ators would not be able to escape certain local minima. After the operator has been applied,

the configuration is locally optimized.

random selection

lattice + fractional coordinates

random deformation

new individual

1

random selection

lattice + fractional coordinates

particle kind swap

new individual

1

Figure 2.9.: Left panel: illustration of the strain mutation operator. A candidate is picked at
random and its lattice vectors are randomly deformed. Right panel: illustration
of the swap mutation operator. A candidate is picked at random and the species
of two particles is interchanged.

Rotation mutation operator

In systems with anisotropic interactions, particle orientations are of equal importance as

particle positions. In addition, local minima due to certain collective particle orientations

may be strongly pronounced. We thus use the rotation mutation operator to randomly

change the orientation of a single particle. It is used with a probability of 10-17%.

One particle in a randomly picked candidate is chosen and its orientation is changed by a

small angle. The configuration is then locally optimized.

Random mutation operator

Finally, we also introduce a mutation operator, which simply creates a random new candi-

date. Our intention here is to add completely new combinations of traits to the population.

However, this operator is only used in 3-7% of all cases. Random candidates are initialized

with a fixed, pre-defined volume. The lattice vectors are generated such that the angles

between them are equally distributed between π/6 and π/3 (π/3 and 2π/3 in 2D) and the
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ratios between their lengths are chosen randomly to be between 0 and 1. Fractional particle

positions within the unit cell are equally distributed, as are the particle orientations.

2.3. Monte Carlo simulations

In this section, we describe the algorithm implemented for our finite temperature Monte

Carlo (MC) simulations; these allow us to study both the stability of structures observed at

zero temperature. We first describe the general employed algorithm (see Subsection 2.3.1)

and then give details on our implementation (see Subsection 2.3.2).

2.3.1. Metropolis-Hastings algorithm

We employ standard Monte Carlo (MC) simulations using the Metropolis-Hastings algorithm

[120, 121]. The box is defined by the lattice vectors a and b and contains N particles. We

denote a cycle of the simulation as N attempted particle displacements and one attempt to

change the shape of the box. The step sizes are chosen such that the acceptance ratio is

30-50%.

As usual, our Monte Carlo simulation runs have three phases:

Initialization: For the results presented in this work, we usually make use of information

obtained with the EA by positioning the particles according to a zero temperature con-

figuration. This strategy is particularly useful for complicated structures. Since unit cells

in EA are usually rather small (on the order of a few dozen), we replicate this cell sev-

eral times in all directions and obtain thus a simulation cell containing several thousand

particles.

Equilibration: When the system is initialized, it is usually not yet in thermodynamical

equilibrium, i.e., its free energy is not yet minimized. We therefore have to let the system

equilibrate by performing a certain number of cycles during which the system adapts to

the temperature and other parameters. This can involve a transformation of the lattice,

the formation of defects, melting, etc.

Quantities measured during equilibration can not be used for averages since the system

is not in equilibrium; however, their change over time can indicate how close we are to

equilibrium.

Averages: In the subsequent production run, we store the positions of particles in intervals

of a few hundred cycles and use this information to calculate relevant properties of the

equilibrated system.

The numerical values for the system size N and the number of cycles performed for equili-

bration and averages are specified in the respective sections of Chapter 3.
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2.3.2. Details on the implementation

The accurate treatment of long-ranged interactions in MC simulations with Ewald summa-

tion can be a costly endeavour for unit cells containing a large number of particles. Therefore,

it is essential to improve the efficiency of the energy calculation as much as possible. In our

implementation, we employ cell lists [122] and factorize sums in the Ewald summation (see

Section 2.1 and Appendix A.1) whenever possible.

2.4. Voronoi construction and bond-orientational order

parameters

In this section, we explain the concept of order parameters and how we can use them to

quantify our results for an easier comparison and classification of observed structures (see

Subsections 2.4.1 and 2.4.2). We focus on bond-orientational order parameters and discuss

their meaning and how we can calculate them (see Subsection 2.4.4). We also treat the

method of Voronoi construction, which is essential for a correct implementation of these order

parameters (see Subsection 2.4.3); some important details on the implementation are also

discussed (see Subsection 2.4.5). Appropriate order parameters have to be chosen specifically

for each system and we therefore introduce and discuss them separately for the different

studied systems in Chapter 3.

2.4.1. Motivation for order parameters

For any kind of simulation or calculation, the configurations and energies alone only contain

a very limited amount of information. Even though we may be able to look at snapshots of

configurations, a deeper understanding of what exactly we see may be difficult. In addition

– since we also plan to construct phase diagrams – it can be difficult to manually evaluate

hundreds of snapshots. We thus have a strong interest in some numerical parameters that

can classify different structures and quantify what we see.

The concept of order parameters is built on this premise. Order parameters should allow

us to detect phase transitions between different structures and provide information on the

transition process between them. While the optimized quantity (the energy or enthalpy

of the system) itself can provide this information to some degree, it can be insufficient

for identifying structures. In some cases, order parameters can also provide additional,

quantitative information on the structure of our system.
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2.4.2. Definition of order parameters

From a thermodynamic point of view, order parameters are defined [123] as quantities that

describe a transition between two phases: they commonly vanish in one phase and are equal

to unity in the other. The choice of order parameters is not unique and depends on the

system. The order of the phase transition is reflected in the behavior of the order parameter

at the transition, i.e., the order parameter changes abruptly for a first order phase transition

and changes continuously for a second order phase transition. Order parameters describing

a phase transition are an essential element of Landau theory [124].

In addition, it is possible to extract further information on the phase transition from the first

derivative of the order parameter [123, 125–127] – in particular on the critical exponents in

second order phase transitions.

2.4.3. Neighborhoods and Voronoi construction

Order parameters are usually defined as sums over all particles in the system

Ψ ∼
N∑
i=1

ψi (r1, ..., rN ;u1, ...,uN) , (2.47)

where ui is the orientation of particle i. The local value of the order parameter, ψi, can

depend either only on particle i or also on its neighbors. A simple example for the former

case is the magnetization M of a system of N moments mi (assuming that |mi| = m)

M =
1

Nm

∣∣∣∣∣
N∑
i=1

mi

∣∣∣∣∣ . (2.48)

We give further details on order parameters of this type in the respective sections of Chapter

3 and focus in the following on order parameters depending on the entire neighborhood of a

particle.

The local order parameter is a function depending on the nearest neighbors of particle i, i.e.,

the Ni particles closer to particle i than any others. We can thus roughly write the local

order parameter ψi as a sum

ψi (r1, ..., rN ;u1, ...,uN) ∼
∑
j∈Ni

ψ (ri, rj;ui,uj) ; (2.49)

thus the global order parameter Ψ is given by

Ψ ∼
N∑
i=1

∑
j∈Ni

ψ (ri, rj;ui,uj) . (2.50)
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The evaluation of local order parameters strongly depends on the method we use for identi-

fying ”neighbors”, i.e., on our definition of ”proximity”.

In this work, we use the well-defined method of Voronoi construction for determining neigh-

borhoods of particles [128, 129] in two or three dimensions. In the following, we illustrate this

algorithm for the two-dimensional case; differences in the algorithm for the three-dimensional

case are outlined at the end of the subsection.

Mathematically, the Voronoi construction is based on an area containing a set of seeds,

which correspond to our particle positions. We now try to find in this area those polygons

associated with each particle such that any point within a polygon is closer to its central

particle than to any other particle.

We can construct these polygons geometrically by picking one particle at position ri (which

we dub the ”central” particle) and drawing equidistant lines between the position ri and

the positions rj of all other particles. These lines are given – for particles i and j – via the

following equation

g :

[
r − 1

2
(ri + rj)

]
· r̂⊥ij = 0, (2.51)

where r̂⊥ij is the normalized director perpendicular to the vector connecting particles i and

j. The smallest polygon formed around the central particle i is then the Voronoi polygon

(see bottom left panel of Figure 2.10). Repeating this process for all other particles yields

the Voronoi construction of the lattice; the sum of all Voronoi polygons completely fills the

entire space.

Mathematically, we construct Voronoi polygons by determining each vertex separately. Each

possible vertex is determined by two particles j and k. We draw the lines equidistant from

them and the central particle i and find their intersection point, i.e., a point rv which satisfies[
rv −

1

2
(ri + rj)

]
· r̂⊥ij = 0 (2.52)[

rv −
1

2
(ri + rk)

]
· r̂⊥ik = 0. (2.53)

In order to check whether this intersection point is an actual vertex of the Voronoi polygon,

we have to verify that it is closer to the central particle than the equidistant line generated

by any other particle m (see top left and right panels of Figure 2.10)

rv − ri
|rv − ri|

· r̂im ≤
1

2
. (2.54)

We define two particles sharing an edge of their polygons as neighbors of each other. De-

pending on the local geometry the distances between neighbors may vary widely. Also note

that some lattices may have degenerate polygon edges, i.e., where an edge reduces to a single
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1
Figure 2.10.: Principles of a Voronoi construction. Dotted lines mark points equidistant from

the central particle (colored white) and the respective neighbor candidate. The
Voronoi polygon is defined as the area around the central particle that is void of
any such lines. Top row: left panel: choice of two neighbor candidates (colored
blue) that doesn’t result in a valid vertex due to the presence of another particle
(colored red). The produced intersection point (blue dot at the crossing of the
dashed blue lines) is beyond the dashed red line. Right panel: choice of two
neighbor candidates (colored blue) that results in a valid vertex (blue dot at the
crossing of the dashed blue lines). The two candidates can now be considered
neighbors of the central particle. Bottom row: left panel: completed Voronoi
polygon for the central particle in the presented hexagonal lattice. All points
within the polygon are closer to the central particle than to any others. Right
panel: example of a square lattice with degenerate vertices. Diagonal neighbors
only share a single point of the polygon (black dots). Without modifications,
this system is very susceptible to numerical instabilities.
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point; such a case may pose a numerical problem (see bottom right panel of Figure 2.10).

Voronoi construction can also be performed for three-dimensional systems; the underlying

principle of the algorithm remains the same. However, three-dimensional calculations carry

a significantly higher computational cost since intersection points of the now polyhedra have

to be calculated by intersecting three planes instead of two lines. This leads to an increase

in the number of intersection points and thus the required computational effort grows by a

factor ≈ N .

2.4.4. Bond-orientational order parameters: principles

Once we have correctly determined the neighbors of each particle, we can calculate order

parameters that quantify the local geometry of a particle’s neighborhood. In two-dimensional

systems, we follow the formalism of bond-orientational order parameters (BOOPs) [130, 131],

in which the order parameters depend only on the relative angles between the neighbors,

i.e., between their bonds with the central particle. We define the bond angle φij between a

reference axis êref and the line connecting the central particle i and its neighbor j as

φij = acos (r̂ij · êref) , (2.55)

where r̂ij is the director of the vector connecting particles i and j (see Figure 2.11). We

choose the x-axis as the reference axis êref .

φi1
φi2

x

1Figure 2.11.: Schematic view of the definition of the bond angles for a hexagonal lattice.
Note that the crystal may be rotated with respect to the reference axis.

When calculated for just the central particle, the BOOPs should be able to detect a lo-

cal n-fold orientational symmetry, i.e., the n-fold BOOP should be large if angles between

neighbors are multiples of 2π/n. However, they should also be independent of the arbitrary

phase introduced by the choice of the reference axis êref .
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The full definition of the local BOOPs [130, 131]

ψn(i) =
1

Ni
∑
j∈Ni

exp (ınφij) (2.56)

fulfills these criteria by means of a sum of complex numbers. The module of ψn(i) reaches

its maximum value of unity if all involved bond angles are multiples of 2π/n. The complex

phase of ψn(i) can be used to check whether the neighborhood of each particle has the

same orientation with respect to the reference axis. Since the global BOOPs should be real

numbers, we have to calculate the module of ψn(i) at some point. There are two possible

ways of doing this: the first one is to use

Ψn =
1

N

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

ψn(i)

∣∣∣∣∣
∣∣∣∣∣ , (2.57)

which strongly depends on the complex phase of the local ψn(i). We illustrate this with a

small example:

• If we consider a unit cell containing a single region with a perfect square lattice, all

neighborhoods have the same tilt with respect to the reference axis and Ψ4 = 1.

• However, if the unit cell contains two regions – each with its own perfect square lattice

– which are tilted with respect to each other and thus have different complex phases, Ψ4

can be much smaller than unity or even vanish completely.

A second possible definition of the global BOOPs circumvents this behavior by using

Ψn =
1

N

N∑
i=1

||ψn(i)|| . (2.58)

Returning to the small example above, we obtain Ψ4 ≈ 1 in the second case. In the complete

absence of n-fold rotational symmetry, both definitions yield Ψn = 0.

In this work, we mostly use the second definition (see Equation 2.58), since it better quantifies

the local environment of each single particle. Relevant simple crystal structures in two

dimensions are either rectangular or hexagonal, i.e., it is definitely worth calculating Ψ4

and Ψ6. More complicated patterns may also lead to other non-vanishing Ψn > 0, i.e., we

can use these BOOPs to spot possible occurrences of unconventional lattices. Of particular

interest for this work are values of n for which no regular crystal structure exists, e.g., n = 5

and n = 7. Structures for which Ψ5 and Ψ7 are distinctly different from zero may be an

indication of structures related to quasicrystals [132].

In three-dimensional systems, BOOPs can conveniently be defined via spherical harmonics

[133].
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2.4.5. Bond-orientation order parameters: implementation and

modifications

As mentioned in Subsection 2.4.3, some ideal crystal lattices may result in a degenerate

Voronoi construction. A simple example is the square lattice, with eight nearest neighbors,

four of which are degenerate. For numerical reasons, the lattices we deal with are never per-

fect. As a consequence, the exact number of nearest neighbors can vary, making the BOOPs

numerically unstable for even tiny variations in particle position. In addition, BOOPs may

change discontinuously when the number of neighbors changes, even though this is difficult

to spot when looking at snapshots of structures, where changes appear as continuous.

A simple remedy to overcome this problem is to include in the evaluation of the local BOOPs

a weighting factor [134] related to the polygon side length, lij, that a neighbor j shares with

the central particle i

ψn(i) =
1∑

j∈Ni
lij

∑
j∈Ni

lij exp (ınφij) . (2.59)

Since the polygon side lengths associated with degenerate vertices are zero or at least ex-

tremely small (see bottom right panel of Figure 2.10), above definition effectively prevents

them from contributing substantially to the BOOPs.

2.5. Saddle points: nudged elastic band method

In this section, we discuss how to quantify the transition process of a system between different

local minima in the energy landscape and its relevance for our investigations. We first

explain what transition paths are (see Subsection 2.5.1) and specify their physical meaning

and importance. We then present the nudged elastic band method (see Subsection 2.5.2),

a concept that is able to identify transition paths and the associated saddle points and to

calculate the related energy barriers. Finally, we give details on our implementation of the

method and numerical parameters (see Subsection 2.5.3).

2.5.1. Transition paths

In our implementation of EAs, we effectively deal with an energy landscape characterized by

many different local minima and their associated attraction basins. While our aim is to find

the global minimum, the meta-stable local minima may also provide valuable information on

the system. Whereas the only stable point in the energy landscape at zero temperature is the

global minimum, entropic effects at finite temperature allow the exploration of previously

meta-stable local minima and their surrounding attraction basins.
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For a proper study at finite temperature, a rudimentary knowledge on the transitions be-

tween different minima (which we can associate with different structures) is advantageous;

understanding how one structure transforms into another and estimating the involved energy

barrier can help us study phase transitions at finite temperature. In particular close to first

order phase transitions, where two different structures are characterized by the same free

energy, a rough estimate of the energy barrier can help us to properly carry out simulations

and identify interesting temperature and parameter ranges.

2.5.2. Nudged elastic band method

Determining the transition mechanism and transition probability between two local minima

in a complex energy landscape is not a simple task since we have to deal with a high-

dimensional parameter space and a multitude of different transition paths between two min-

ima. In this work, we are only interested in the transition path with the lowest energy

barrier. Although this is not necessarily the only path contributing to a transition, knowing

the size of the involved energy barrier can be useful for choosing the temperature in finite

temperature simulations.

The nudged elastic band (NEB) method [135, 136] is based on the knowledge of two local

minima in the energy landscape. In order for the algorithm to converge, these minima

should be rather ”close” to each other in the d-dimensional search space. We define the

d-dimensional vectors of the two minima a and b via their coordinates in search space. Any

sequence of points connecting a and b is called a path q.

The left panel of Figure 2.12 shows a schematic view of a simple two-dimensional energy

landscape with two local minima separated by an energy barrier. All possible paths a→ b are

characterized by an associated energy barrier. We define the scalar reaction coordinate r ∈
(0, 1) [136] as the position of a point q(r) along the path, with q(r = 0) = a corresponding to

the start- and q(r = 1) = b to the end-point, respectively. Note that the reaction coordinate

itself does not have a direct physical meaning.

The NEB method is based on approximating a path q(r) by a chain of (n + 1) points

qi = q(r = i/n) (with 0 ≤ i ≤ n), which are equally spaced in r, but not necessarily in

search space. We can calculate the force, F (q), acting on each of these points along the

chain from our analytical knowledge of the energy functional E(q):

F (q) = −∇E(q). (2.60)

These physical force points towards the local minimum of the respective attraction basin.

The key idea in the NEB approach [136] is to neglect the component of this gradient along

the chain and to add springs within the chain (see center panel of Figure 2.12)

Feff(qi) = F (qi)− [F (qi) · êchain(qi)] êchain(qi) + k (qi+1 − 2qi + qi−1) , (2.61)
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1

Figure 2.12.: Schematic view of a simple two-dimensional energy landscape with two local
minima: a (blue circle) and b (green circle) are separated by an energy barrier
(indicated by isopotential lines), which assumes its lowest value at the saddle
point (red circle). Left panel: a possible path connecting start- and end-point
a→ b is shown. Center panel: the transition path is approximated by a chain
of points (black circles) in the NEB algorithm. The force calculated as gradient
of the potential (blue arrow orthogonal to the isopotential lines) is split into
a component along the direction of the chain (the chain direction is indicated
by the dashed black line) and one orthogonal to it; the former component is
replaced by a spring force along the chain (see Equation 2.61). The resulting
effective force (red arrow) moves the chain towards the transition path passing
through the saddle point. Right panel: when the chain has converged, it passes
through the saddle point.
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where the spring constant k is a parameter of the algorithm. The definition of the chain

direction

êchain =
τ

|τ | (2.62)

depends on how the values of Ei+1, Ei, and Ei−1 are related. We obtain six different cases

Ei−1 < Ei < Ei+1 τ = τ+
i

Ei+1 < Ei < Ei−1 τ = τ−i
Ei < Ei−1 < Ei+1

Ei−1 < Ei+1 < Ei

}
τ = τ+

i ∆Emax
i + τ−i ∆Emin

i

Ei+1 < Ei−1 < Ei
Ei < Ei+1 < Ei−1

}
τ = τ+

i ∆Emin
i + τ−i ∆Emax

i

, (2.63)

where

τ+
i = qi+1 − qi (2.64)

τ−i = qi − qi−1 (2.65)

∆Emax
i = max (|E(qi+1)− E(qi)| , |E(qi−1)− E(qi)|) (2.66)

∆Emin
i = min (|E(qi+1)− E(qi)| , |E(qi−1)− E(qi)|) . (2.67)

The component of the force orthogonal to the chain (see center panel of Figure 2.12) points

towards the transition path with the lowest energy barrier. The springs keep the chain

roughly equally spaced in search space. The start- and end-points are kept fixed; this allows

relaxation of the chain to yield the desired transition path, which passes through the saddle

point (see right panel of Figure 2.12).

2.5.3. Implementation and numerical parameters

We use particle configurations to generate the start-point a and the end-point b; for the

initialization of the chain, we keep with the common practice [136] of linearly interpolating

the chain points between a and b in search space. However, this may be troublesome for

some systems – e.g., if particles overlap due to the interpolation – and more complicated

methods may be required [137]. In this work, we only study rather ”simple” transitions, i.e.,

interpolation of the chain between a and b is to some extent already a viable transition path.

Such simple transitions do not require a large number of chain points to model correctly; we

commonly use (n+ 1) = 21 chain points.

We can justify the appropriateness of this choice by verifying that we do not miss any signif-

icant features of the energy landscape with this number of points by linearly interpolating

between neighboring points of the chain and plotting the energy: if we do not use a sufficient

number of points, ”bumps” in E(q) appear between neighboring points in the chain, indi-
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cating additional – true or artifical – barriers along the chain; these features can be missed

if the distances in parameter space between chain points is too large. On the other hand,

it is of course advantageous to keep the number of chain points as small as possible in an

effort to improve convergence speed.

The numerical value for the spring constant used in the algorithm is set to k = 500. We

consider the transition path converged when the total forces acting on the chain are smaller

than 10−5. Interpolation between chain points (after the algorithm has converged) allows

us to compute the barrier height more accurately without much additional computational

effort.

Note that due to the modifications to the forces acting on a point (see Equation 2.61), it is

difficult to calculate second derivatives; there is also no conservative potential. As a result,

most higher-order gradient descent methods are inadequate in their common implementa-

tions and we use a simple gradient descent method for relaxation of the chain.

44



3. Systems

In this chapter, we present the different systems we studied and the results we obtained.

We start with a simple long-ranged system, for which exact analytical results are available:

the classical Wigner 1 monolayer system. These results are useful as a benchmark for our

implementation of Ewald summation, which we use to properly treat long-ranged interac-

tions (see Section 2.1). We then extend the model of the classical Wigner monolayer to an

equimolar binary mixture of charges (see Section 3.1).

Our next goal is to study the transition from the purely two-dimensional Wigner monolayer

to a Wigner bilayer system. A first step in this endeavour is to investigate the effects of

vertically displacing a single charge from the monolayer (see Section 3.2).

The next step is the symmetric Wigner bilayer crystal, which provides another benchmark-

ing system for both global optimization and energy calculation, as exact analytical results

are available. We eventually put forward the complex system of the asymmetric Wigner

bilayer crystal, which incorporates many of the effects and limiting cases we have observed

in preceding systems (see Section 3.3). We also compare our results to data obtained in

high-precision analytical calculations and find good agreement.

In the last section, we consider anisotropic interactions based on quadrupole moments. We

develop a simple model for organic molecules, based on linear quadrupole moments that

are embedded in soft ellipsoids. Confining such particles to a plane provides us with a

computationally sufficiently simple model, which nevertheless captures the essential features

of realistic systems and exhibits interesting effects (see Section 3.4). We also discuss useful

order parameters that can be used to characterize the positional and orientational order of

similar systems.

Each of the following sections is organized as follows:

• We first give a short introduction to the respective system and detail its relevance for

related models and experimental systems.

• We then describe the particular model and give some computational details outlining our

approach.

• We also give some general theoretical considerations on the system and discuss measured

quantities and order parameters if required.

• We discuss the results and – if possible – compare them to data obtained via different

approaches.

1. Wigner systems are crystalline phases of electrons, first predicted by Eugene Wigner [138]. They
consist of a system of point charges and a uniform neutralizing background and can only be observed at low
temperature and low density, where the electrostatic interactions between electrons dominate over kinetic
energy and entropy.
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• We conclude by summarizing the results and outlining possible future studies.

3.1. Equimolar binary mixture of point charges confined to

a plane

3.1.1. Introduction and motivation

In order to verify and optimize our implementation of Ewald summation (see Section 2.1),

we require a simple long-ranged system for which exact analytical data is available. Such a

system can serve as a stepping stone for further studies on more complicated systems as we

may first observe interesting phenomena such as small energy differences between competing

structures.

One possible system that fulfills the requirements outlined above is the monolayer Wigner

crystal [138], i.e., a periodic arrangement of classical point charges with a neutralizing back-

ground. At zero temperature, the ground state of such a crystal is a simple hexagonal

(equilateral triangular) lattice. The energy of this configuration is given by

Ehex = cm
√
ρQ2, (3.1)

where cm = −1.960515789 is the Madelung constant of the hexagonal lattice, which has been

calculated with high accuracy [139]. Its numerical value is thus known with extremely high

precision; comparing our results obtained by Ewald summation with this reference yields

very good agreement of δ < 10−6 (see also Figure 2.4).

3.1.2. Model and approach

The model for a monolayer Wigner crystal is the same as the one we used to demonstrate

the derivation of Ewald summation (see Section 2.1). We assume a three-dimensional space

filled with classical point charges Qi (see left panel of Figure 3.1). The system has to fulfill

global electro-neutrality ∫
R3

σ(r)dr +
∑
i

Qi = 0; (3.2)

here σ(r) is the neutralizing background, which we assume as uniform and planar (located

in the z = 0 plane)

σ(r) = σδ(z) (3.3)

σ

∫ ∞
0

2πrdr +
∑
i

Qi = 0. (3.4)

46



CHAPTER 3. SYSTEMS 3.1. BINARY MIXTURE WIGNER CRYSTALS

At zero temperature, all of the point charges condense on the neutralizing plane (z = 0)

due to Earnshaw’s theorem [140], which states that a system of point charges cannot form a

stable equilibrium system when interacting solely via electrostatic potentials, thus effectively

forming a two-dimensional system (see center panel of Figure 3.1). However, we emphasize

that the system is still inherently three-dimensional, i.e., charges interact via the Coulomb

interaction

VCoulomb(r) =
QiQj

r
. (3.5)

Again, we assume that the system is periodic, yielding the same expressions for the energy

as in Section 2.1 (see Equations 2.29, 2.30, and 2.31). For any configuration, the dependence

of the energy on the density is the same as in the hexagonal monolayer (see Equation 3.1)

E ∼ √
ρQ2. (3.6)

1

Figure 3.1.: Left panel: schematic view of the model for the monolayer Wigner crystal.
The system consists of classical point charges (blue spheres) and a uniform pla-
nar neutralizing background (red plane). Center panel: at zero temperature,
all charges condense on the neutralizing background due to Earnshaw’s theo-
rem. The system thus becomes effectively planar (two-dimensional) and forms a
hexagonal lattice. Right panel: the introduction of two species of charges (blue
and green spheres) creates complexity in the system.

In principle, we can use the above model to describe real charged colloids in confinement

[141, 142] or for electrons at the surface of liquid helium [143]. However, since we do not

consider short-range non-Coulombic interactions (e.g., between the colloids), this theoretical

model is only applicable in the dilute case and even there, screening effects due to the

dielectric properties of the solvent and to counter-ions are likely to lead to differences in

experimental set-ups. Another important feature in realistic systems is polydispersity of the

particles, i.e., their size and the associated charge follows a certain distribution [144, 145].

In this work, we want to investigate the most basic effects of polydispersity on the formed

structure; we therefore study a binary mixture with two species of charges (Q1 and Q2)

and with partial densities (ρ1 and ρ2). To further reduce the parameter space, we study

an equimolar mixture, i.e., ρ1 = ρ2 = ρ/2 (see right panel of Figure 3.1). This leaves us

47



3.1. BINARY MIXTURE WIGNER CRYSTALS CHAPTER 3. SYSTEMS

with just a single free parameter of the system (assuming that Q1 = Q), namely the charge

strength ratio

q =
Q2

Q1

=
Q2

Q
. (3.7)

Since the system would collapse for q < 0, we can limit the interesting range of q to

0 ≤ q ≤ 1. (3.8)

Considering the range q > 1 is equivalent, due to the symmetry q ↔ 1/q.

In our efforts to determine the ground state over the entire interesting range of q, we perform

EA calculations for 101 equally spaced values of q ranging from q = 0 to q = 1. Due to

Equation 3.6, the nominal particle density can be scaled out of the results, i.e., we consider

the reduced energy

E∗ =
E√
ρQ2

. (3.9)

We run our optimization tool for N = 2 − 40 particles per cell and consider the output of

the run with the lowest reduced energy per particle E∗ as the final result.

3.1.3. Theory and order parameters

Since the Coulomb interaction is long-ranged, we can expect the energy differences between

competing structures, and thereby also the influence of the particle arrangement on the

energy, to be small. Therefore, it is useful to introduce a reference energy Eref(q), depending

solely on q; Eref(q) should be related to an actual configuration. A very simple way to

introduce such an Eref(q) is to assume a de-mixing scenario of the two species of charges (see

Figure 3.2).

For this scenario, we assume that the two species of charges form two separate crystal regions

with hexagonal particle arrangement. Furthermore, we assume that both regions are locally

electro-neutral. This allows us to neglect higher-order interactions between the two crystal

regions. The boundary region between the two crystal parts (where the lattice is significantly

distorted) has only a finite width 2, thus its influence on the total energy per particle can be

neglected as well.

We can now calculate the partial number densities of the two species in region 1

ρ
(1)
1 =

1 + q

2
ρ ρ

(1)
2 = 0, (3.10)

2. While still infinitely large in the direction along the boundary, the finite width of the boundary region
makes its total area incomparably smaller than the remaining two crystal regions, each of which is also
infinitely large in the direction orthogonal to the boundary.
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infinite crystal infinite crystal

finite width boundary

?

1

Figure 3.2.: Schematic view of the simplest phase separation scenario of a binary mixture
(complete de-mixing). Left panel: the crystal de-mixes completely into two
parts populated only by a single species each. Right panel: both species form
infinite hexagonal crystals, which are locally electro-neutral. As a consequence,
the crystal formed by the stronger charges (here blue spheres) is larger, but has
a lower number density (evidenced by a larger lattice constant). The border
region is of finite width, thus of no relevance for the overall energy per particle
of the infinitely large crystal.

which fulfills electro-neutrality ρ
(1)
1 Q+ σ = 0. Correspondingly, we obtain for region 2

ρ
(2)
1 = 0 ρ

(2)
2 =

1 + q

2q
ρ, (3.11)

where ρ
(2)
2 qQ + σ = 0. Since we already know the Madelung constant of the hexagonal

arrangement, we can now calculate the energy per particle in both crystal regions. As both

regions contain the same number of particles, the total energy per particle Eref(q) is just the

average of the two

Eref(q) = cmN

[
1

2

√
ρ

(1)
1 Q2 +

1

2

√
ρ

(2)
2 q2Q2

]
(3.12)

= Ncm
√
ρQ2

√
1 + q

2

1 + q3/2

2
. (3.13)

Further, we know which structures to expect for the two limiting cases q → 1 and q → 0:

(i) In the former case, we obtain a simple one-component hexagonal Wigner monolayer.

(ii) In the latter case, the weaker charges completely cease to interact, thus forming an ideal

gas, whose contribution to the energy we can disregard at zero temperature. The stronger

charges therefore form a hexagonal Wigner monolayer, but with a larger lattice spacing

than in case (i).

In both cases, it is interesting to quantify the hexagonal symmetry of the particle arrange-

ment. We therefore measure the six-fold BOOP Ψ6 (see Subsection 2.4.4 – albeit without the
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side-length modification) and the distortions of the lattice formed by the stronger charges.

3.1.4. Results

The left panel of Figure 3.3 shows the reduced ground state energy curve E∗(q)/N =

E(q)/N
√
ρQ2 obtained with our optimization tool for the entire relevant range 0 ≤ q ≤ 1.

E∗(q) decreases monotonously with increasing q, connecting the limiting values q = 0 and

q = 1. For q = 0, the weaker charges do not interact at all, behaving like an ideal gas. The

stronger charges thus form a hexagonal lattice (see top left panel of Figure 3.4) with density

ρ1 = ρ/2; thus the energy per particle 3 is simply E∗(q = 0)/N = cm/2
√

2. In the second

limiting case, q = 1, all charges are indistinguishable and the ground state structure is the

Wigner monolayer, thus E∗(q = 1)/N = cm (see bottom right panel of Figure 3.4). Note

that for both limiting cases E∗(q) = E∗ref(q).

At first glance, E∗(q)/N appears to be a completely smooth function of q, offering no insight

into possible structural transitions. While the different observed structures are discussed

later, we first focus on the energy curve itself. We can radically improve the readability of

this curve by subtracting from E∗(q) the reference energy E∗ref(q), introduced in Subsection

3.1.3. The resulting curve ∆E∗(q)/N now displays a rich variety of features (right panel of

Figure 3.3), which are by approximately three orders of magnitude smaller than the total

energy per particle.

We emphasize that this observation is typical of systems with long-ranged interactions:

a significant part of the energy is independent of the particular structure of the particle

arrangement, partly due to the interaction with the neutralizing background. The fact that

the total energy and the relative energy differences between competing structures differ by

several orders of magnitude indicates that very high precision in the energy calculation is

required for a correct treatment of long-ranged systems.

∆E∗(q) is non-monotonous and shows kinks corresponding to transitions between different

observed structures (indicated by different colors in the right panel of Figure 3.3). We observe

six different stable ground state structures, which are discussed below. We also immediately

observe that for q ≥ 0.6 the energy of the phase separation scenario E∗ref(q) is lower than the

results obtained with the EA tool, indicating that the system undergoes phase separation in

this q-range. We can thus discard the structures obtained in this region.

Table 3.1 provides an overview of the ground state configurations identified for 0 ≤ q ≤ 1.

The corresponding structures (including the limiting cases q = 0 and q = 1) are depicted in

Figure 3.4.

For 0.00 = q, the weaker charges vanish, leaving only the stronger charges Q1 with density

ρ1 = ρ/2. These form a hexagonal lattice (see top right panel of Figure 3.4).

3. Although the weaker charges Q2 in this case do not contribute to the energy, they are still considered
for the total number of particles.
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Figure 3.3.: Left panel: ground state energy E∗(q)/N of the equimolar binary mixture
Wigner crystal as a function of q. The energy per particle is given in units
of
√
ρQ2. The curve exhibits no identifiable features to the naked eye. Both

limiting cases q → 1 and q → 0 yield well-known results. Right panel: after
subtraction of the phase separation reference energy E∗ref(q), a variety of features
emerges in ∆E∗(q)/N , indicating the occurrence of transitions between differ-
ent structures (labelled 1 through 6 and indicated by colored regions). Note
that relevant energy differences are by about three orders of magnitude smaller
than the total energy per particle. For Q ≥ 0.6, we obtain energies larger than
Eref(q), indicating the occurrence of phase separation (hatched region).
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Figure 3.4.: Snapshots of the equimolar binary Wigner mixture. Strong/weak charges are
colored blue/green. Interesting structural features are indicated by shaded areas.
Top row: left panel: hexagonal structure in the limiting case for q = 0. Center
panel: structure 1 for q = 0.02. Right panel: structure 2 for q = 0.05. Center
row: left panel: structure 3 for q = 0.10. Center panel: structure 4 for q = 0.26.
Right panel: structure 5 for q = 0.27. Bottom row: left panel: structure 6
for q = 0.30. Center panel: structure 6’ for q = 0.35. Right panel: hexagonal
structure in the limiting case of the phase separation scenario (PS) for q = 1.
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Table 3.1.: Overview of the observed ground state structures of the equimolar binary mixture
Wigner crystal and their respective stability ranges (see also Figure 3.4).

q-range ground state structure
0.00 = q hexagonal lattice formed by strong charges Q1

limiting case of structure 1
0.00 < q . 0.04 structure 1
0.05 . q . 0.09 structure 2
0.10 . q . 0.25 structure 3
0.26 ' q structure 4
0.27 . q . 0.28 structure 5
0.29 . q . 0.59 structure 6
0.60 . q < 1.00 phase separation
1.00 = q hexagonal lattice formed by indistinguishable charges Q1 = Q2

limiting case of phase separation

For 0.00 < q ... 0.04, the stronger charges form a slightly distorted hexagonal lattice

(structure 1, depicted in the top center panel of Figure 3.4). The order parameter Ψ6 (see

Subsection 2.4.4) varies between Ψ6(q = 0.01) = 0.99972 and Ψ6(q = 0.04) = 0.99577. The

distortion of the hexagonal lattice is due to the presence of the weaker charges, which are

hosted in a zig-zag arrangement in the centers of triangles formed by the stronger charges.

For easier analysis, we can split the hexagonal structural units (shaded gray) of the crystal

in two parts separated by a central axis (indicated by a dashed blue line). The distances

between blue particles in the part hosting the weaker charges are enlarged by about +4%

(with respect to a perfect hexagonal lattice), while they are reduced by about −3% in the

other part.

For 0.05 ... q ... 0.09, the stronger charges maintain their hexagonal lattice but distortions

are now more strongly pronounced. The order parameters range from Ψ6(q = 0.05) =

0.90598 to Ψ6(q = 0.09) = 0.83643. Again, we can split the hexagonal structural units into

two parts, one of which remains empty and slightly contracted by about −5%. The weaker

charges are no longer hosted in the centers of triangles but instead move closer to bridge sites,

forming pairs (structure 2, depicted in the top right panel of Figure 3.4). The distortion

in the part hosting the weaker charges is asymmetric, some distances increasing by up to

+21%. At first look, it appears counter-intuitive that the intra-pair distances between weak

charges should decrease with increasing q (the interaction between them scales as ∼ q2), but

distances between weak and strong charges (where the interaction scales as ∼ q) increase

slightly.

For 0.10 ... q ... 0.25 we observe two intertwining, commensurate square lattices (structure

3, depicted in the center left panel of Figure 3.4). This structure appears to be very stable,

evidenced by the large q-range in which it is observed and by its high energy gain ∆E∗ (see

right panel of Figure 3.3).

For 0.26 ' q the stronger charges form hexagonal structural units which are in their shape
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reminiscent of gems or diamonds. These rings host in their center a triplet of weak charges.

The structural units form head-to-tail parallel lanes, with neighboring units sharing single

vertices (structure 4, depicted in the center panel of Figure 3.4). Note that distances

between neighboring strong charges are almost identical, indicating that this remains the

dominant interaction in the system.

For 0.27 ... q ... 0.28 we observe a particle arrangement similar to structure 4. However,

the structural six-particle units now form antiparallel lanes, where structural units from

neighboring lanes share two vertices (structure 5, depicted in the center right panel of

Figure 3.4).

For 0.29 ... q ... 0.59 we observe an arrangement based on intertwined elongated hexagonal

lattices (structure 6, depicted in the bottom left panel of Figure 3.4). The stronger charges

form elongated hexagons hosting two weaker charges each; the weaker charges in turn form

rather strongly distorted hexagons containing two stronger charges each. For an easier

analysis, we can again define an axis in each structural unit and observe that the side lengths

of the hexagon parallel to the axis increases in length as q is increased. For q = 0.29 this

length l2(q = 0.29) = 1.29/
√
ρ is shorter than the other side length l1(q = 0.29) = 1.297/

√
ρ,

but this situation is reversed at larger q, i.e., l2(q = 0.59) = 1.324/
√
ρ and l1(q = 0.59) =

1.269/
√
ρ. Close to the crossover, where l1 = l2, we also observe a different variant, where

the structural units arrange in a herringbone pattern (denoted structure 6’, depicted in

the bottom center panel of Figure 3.4).

For 0.60 ... q < 1.00 we find that E∗ref(q) < E∗(q), indicating that phase separation (PS)

is energetically favorable. Some of the configurations obtained with the EA in this region

already indicate this behavior, though their accuracy is marred by the finite system size. The

two species form separate infinite hexagonal crystals which observe local electro-neutrality.

For 1.00 = q we again obtain a hexagonal particle arrangement. In this case, the two

species are indistinguishable and form the simple hexagonal Wigner monolayer. This is also

the limiting case of the phase separation scenario (see bottom right panel of Figure 3.4).

3.1.5. Conclusions and outlook

In summary, we have been able to verify the high accuracy of our implementation of the

Ewald summation technique by considering the hexagonal Wigner monolayer as a bench-

marking system. In addition, we have proved the compatibility of the treatment of long-

ranged interactions with Ewald summation and the global ground state search with EAs.

For the simple equimolar binary mixture of charges studied in this section, we have been

able to identify six different structures, some of which show remarkable structural complex-

ity. By introducing a reference energy derived from a phase separation scenario, we were

able to extract the effective influence of competing structures on the total energy of the sys-

tem. We have observed that these energy differences are by about three orders of magnitude
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smaller than the total energy. This fact is most likely due to the long-ranged nature of the

interaction. In addition, we have identified a region where phase separation was favorable

compared to any of the structures obtained with our EA tool.

The results presented in this section were published in [146].

For future work, it would be interesting to study the system for different molar fractions,

i.e., ρ1 6= ρ2. The results obtained from such an investigation could be used for the study of

more complicated phase separation scenarios beyond a simple de-mixing; this could possibly

improve the phase diagram presented in this work.

3.2. Removing a single charge from a Wigner monolayer

3.2.1. Introduction

In Section 3.1, we have verified the treatability of long-range interactions within the EA

approach. In our study of a simple system of point charges, we have obtained useful in-

formation on the relevant energy differences. As we have seen, the one-component Wigner

system is trivial at zero temperature, forming a simple hexagonal (equilateral triangular)

lattice [139]. In this section, we combine our experience in studying systems of point charges

confined to a plane with interesting properties of quasi-two-dimensional geometries.

In particular, we are for the moment interested in the process of removing a single charge from

a Wigner monolayer, i.e., on how this vertical displacement influences the two-dimensional

structure of the remaining crystal. This process is related to the formation of a bilayer

system, which we will investigate in Section 3.3.

We can further relate our idealized model to more specialized studies on the interaction

of asymmetrically charged surfaces [147] or on the rearrangement of charge carriers on the

surface of a colloid in the presence of another colloid [148].

3.2.2. Model and approach

Our model consists of classical point charges confined to a plane; they have a charge Q and a

number area density ρ. The plane which they are confined to is infinitely large and contains

a uniform neutralizing background σ = −Qρ. In addition, we add one more charge to the

set-up, which is displaced vertically by a distance h from the plane (see Figure 3.5). Without

loss of generality, we assume that this displaced charge – which we denote the tagged charge

– is positioned at x = y = 0. The only relevant length scale in the monolayer crystal is
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?h

1
Figure 3.5.: Schematic view of the Wigner monolayer (blue spheres) when vertically displac-

ing a single charge (denoted ”tagged” charge; red sphere) by a distance h. This
process is energetically unfavorable, leading to a positive energy of the defect.
Charges in the layer rearrange to compensate for the displacement of the tagged
charge.

determined by ρ; we can thus introduce the dimensionless displacement

η = h

√
ρ

2
. (3.14)

The factor 1/
√

2 may appear arbitrary, but allows us to relate our results to previous work

presented in [149, 150]. For comparison, the lattice constant of the hexagonal Wigner mono-

layer is

ahex =

√
2√
3ρ

(3.15)(
h

ahex

)2

=
√

3η2. (3.16)

Thus, h > ahex for η > 0.760. Our main interest lies in the structural changes the layer

undergoes as we vary the displacement η.

Two limiting cases are immediately obvious:

η → 0: If the tagged charge is not displaced at all, we obtain a simple hexagonal Wigner

monolayer. Therefore, we expect that for very small displacements, the vertical projection

of the position of the tagged charge will be at the center of a hexagonal hole in the

layer. The particles in the layer (including the projection of the tagged charge) form a
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perfect hexagonal (equilateral triangular) lattice. We denote configurations based on this

archetype as the ”out”-branch (see left column in Figure 3.6). For finite values of η, the

hexagonal lattice will deform slightly in order to reduce its energy; in the simplest case,

i.e., for very small η, this deformation is merely a contraction of the hexagonal hole in the

layer (see bottom left panel of Figure 3.6).

η → ∞: Positioning the tagged charge very far away from the layer (i.e., ionizing the layer)

again recovers a perfect hexagonal Wigner monolayer, i.e., the crystal rearranges com-

pletely to compensate for the missing charge. Therefore, we predict that for very large

displacements, the vertical projection of the position of the tagged charge will be at the

center of a triangle in the layer. The particles in the layer (excluding the projection of

the tagged charge) form a perfect hexagonal (equilateral triangular) lattice. We denote

configurations based on this archetype as the ”in”-branch (see right column in Figure

3.6). For finite values of η, the hexagonal lattice will deform slightly in order to reduce its

energy; in the simplest case, i.e., for very large η, this deformation is merely an expansion

of the triangle in the layer surrounding the projection of the tagged charge (see bottom

right panel of Figure 3.6).

Our approach for studying the system is three-pronged. In all three approaches, the inter-

esting thermodynamical quantity is the defect energy δE∗, which we define as the energy

penalty for the formation of the defect with respect to the unperturbed hexagonal Wigner

monolayer, i.e.,

δE∗ = E∗(η,N)−Ncm. (3.17)

The first approach is based on analytical calculations performed by Ladislav Šamaj and Em-

manuel Trizac [149, 150]. Their method directly optimizes candidate configurations in order

to study energies and deformations along the ”out”- and the ”in”-branches with extremely

high accuracy. However, due to the complexity of the involved energy terms, only a limited

number of deformations can be considered for the two branches. Figure 3.6 shows what types

of deformations can be taken into account for the two considered branches in the analytical

approach.

Our other two approaches are numerical and use Ewald summation for accurate treatment

of the long-ranged interactions. Since the system we have described so far is nonperiodic,

it is obviously incompatible with Ewald summation, which assumes periodicity. We thus

approximate the nonperiodic system with a periodic system with an appropriately large unit

cell. In particular, we want to keep interactions between periodic replicas of the tagged

charge and its surroundings in the layer (denoted the defect) as small as possible. Since the

deformations of the lattice caused by the tagged charge are also a concern, our cell should

be sufficiently large such that the deformations of neighboring cells do not compensate each

other.

The unit cell contains a total number N of charges, only one of which is vertically displaced.
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Figure 3.6.: Schematic representation of the two considered branches. Left column: top
panel: ”out”-branch, based on the η → 0 limiting case. Bottom panel: two
different deformations δ and δ′ are considered in the analytical approach [149–
151], while particles are free to move in the energy minimization (EM) and MC
approaches. Right column: top panel: ”in”-branch, based on the η → ∞
limiting case. Bottom panel: only one possible deformation δ is considered in
the analytical approach.
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The system effectively forms a bilayer, but with very low density in the second layer (we

denote the original layer by layer 1 and the layer formed by the displaced charges by layer

2)

ρ2

ρ
=

1

N
� 1. (3.18)

We initially performed a small number of EA runs for different values of η and observed

only two different configuration archetypes: equivalents of the ”out”- and ”in”-branches. In

order to both increase system size and accuracy, we thus limit our investigation to these two

branches. If we assume a hexagonal lattice in layer 2, we can calculate values of N that are

compatible with either the ”out”- or the ”in”-branch. For the former, these N -values are

given by

Nout(i, j) = (i+ j)2 − ij (3.19)

= 3, 4, 7, 9, 12, 13, ..., 100, ..., 2025, ... (3.20)

where i ≥ j and j ≥ 0 are integers. Note that for some values of N , more than one

configuration fulfilling all characteristics of the respective branch can be constructed, i.e., the

mechanism is to some extent degenerate. An example is N = 49, which can be represented

either with (i = 7, j = 0) or with (i = 5, j = 3); the two lattices are not identical. The

values of N compatible with the ”in”-branch are given by

Nin(i, j) = (i+ j)2 − ij + 1 (3.21)

= 4, 5, 8, 10, 13, 14, ..., 101, ..., 2026, .... (3.22)

Note that some values of Nout- and Nin-values are identical, thus they can be used in either

branch. This fact will be useful when we try to calculate the energy barrier between the two

branches.

We compare results obtained from the following three approaches:

• The analytical approach considers the ”out”- and ”in”-branches as described in Figure

3.6. While it is able to correctly describe the nonperiodicity of the system, only a limited

set of selected deformations can be taken into account (two in the ”out”-branch, one in

the ”in”-branch).

• The energy minimization (EM) approach considers system sizes of N = 100 and N =

101 per unit cell (using periodic boundary conditions) for the ”out”- and ”in”-branches,

respectively. We use the L-BFGS-B algorithm [104] to relax the undistorted configuration.

All particles are free to move in this approach.

• The Monte Carlo (MC) approach considers system sizes ofN = 2025 andN = 2026 per cell

(again using periodic boundary conditions) for the ”out”- and ”in”-branches, respectively.

Simulations are initialized with either the ”out”- or ”in”-configuration and – with exception

to the tagged particle – all particles are allowed to move. We perform simulations at low
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temperature (corresponding to a high coupling constant Γ =
√
πσQ2/kBT ≈ 1550 such

that the overall crystalline order is preserved [152, 153]. The system is first equilibrated

for ≈ 2× 105 MC cycles before computing averages for ≈ 3× 105 MC cycles.

Apart from the documentation of the rearrangement of the hexagonal lattice caused by the

vertical displacement of this single charge, the transition between the ”out”- and the ”in”-

branches represents an additional interesting problem. We try to investigate the involved

energy barrier using the nudged elastic band (NEB) method (see Section 2.5). For this

method, we require ”out”- and ”in”-configurations with the same number of particles per

cell. We find that such configurations can always be found for what we denote double-

compatible values

Nout(i+ 1, i− 1) = 3i2 + 1 = Nin(i, i)

Nout−in(i) = 3i2 + 1, (3.23)

where i > 0 is an integer. Note that there are values of N other than Nout−in that also fulfill

the condition Nout = Nin: examples are Nout(4, 3) = 37 = Nin(6, 0) or Nout(8, 0) = 64 =

Nin(6, 3).

We investigate configurations with Nout−in = 4, 13, 28, 49 particles per cell. While these cells

are comparatively small, they allow us to investigate a trend in the energy barrier as the

system size increases and possibly even an extrapolation to the non-periodic system. As

detailed in Section 2.5, we need to uniquely identify all particles in the cell in both start-

and end-configuration since particles are required to be distinguishable in the NEB approach.

Since this limits the possible transition paths, we have to be very careful in this choice. For

double-compatible values of N = Nout−in, ”out”- and ”in”-configurations with the same

periodicity can be constructed.

If we now overlay both configurations (corresponding to the start- and end-points of the

NEB approach), we can correlate particles in one branch with those in the other (see Figure

3.7). The required displacements form a vortex-like scheme: the cell spanned by the periodic

images of the tagged charge consists of two equilateral triangles. At the center of one of these,

particle positions for the two branches are almost identical; we denote this the center of the

vortex, where we can start correlating particle positions based on proximity. As we move

radially outwards from the center of this vortex, the displacements between the ”out”- and

”in”-branches increase in a swirl-like manner, allowing us to systematically correlate particle

positions even if the displacements are larger than the lattice spacing a.

3.2.3. Theory and order parameters

In order to properly compare the results obtained with the three different approaches spec-

ified in the preceding subsection, we have defined the defect energy δE∗, which quantifies

the energy penalty caused by the vertical displacement of the tagged charge. Since we know
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Figure 3.7.: Schematic views of superposed ”out”- (blue circles) and ”in”-branch (green cir-
cles) configurations for different double-compatible cell sizes Nout−in. Top row:
left panel: Nout−in(i = 1) = 4. Right panel: Nout−in(i = 2) = 13. Bottom
row: left panel: Nout−in(i = 3) = 28. Right panel: Nout−in(i = 4) = 49. The
position of the tagged charge (red sphere) and the lattice vectors (black lines)
are the same for both branches. Blue and green lines indicate the orientation of
the hexagonal lattices in the two branches, as well as the position with respect
to the tagged charge. For small values of N , correlation based on proximity ar-
guments is straight-forward. For larger values of N , we consider the vortex-like
structure of the displacement between the two branches: each cell is composed
of two equilateral triangles formed by periodic images of the tagged charge. The
center of one of these triangles is considered the center of the vortex, where dis-
placements are very small. We can systematically identify correlations between
the two branches by radially moving outwards from the vortex center; this allows
us to correlate particles even when the displacement is larger than the lattice
spacing a of the underlying hexagonal lattice.
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the limiting cases concerning the particle arrangement for η → 0 and η →∞ – namely the

”out”- and ”in”-branches, respectively – we can calculate the corresponding defect energies.

In the former case, we obtain the simple hexagonal monolayer, i.e.,

δE∗(η → 0) = 0. (3.24)

In the latter case, we obtain a hexagonal monolayer (index 1) with an additional charge

located in a layer (index 2) that is separated by an infinite distance from layer 1. If we

assume that the neutralizing background is also split between the two layers such that both

are locally electro-neutral, i.e.,

σ2

σ1

=
1

N − 1
, (3.25)

we can easily calculate the asymptotic defect energy for the ”in”-branch: since both layers

are hexagonal at infinite separation η →∞ and do not interact with each other

δE∗(η →∞, N) = cmQ
2√ρN

[(
N − 1

N

)3/2

− 1

]
. (3.26)

Interestingly, in the limit of an infinite cell size (i.e., for N →∞), this expression yields an

asymptotic defect energy

lim
N→∞

δE∗(η →∞, N) = cmQ
2√ρ lim

N→∞

[
N

(
1− 1

N

)3/2

−N
]

δE∗(η →∞, N →∞) = −3

2
cmQ

2√ρ. (3.27)

The prefactor 3/2 might seem counter-intuitive at first sight, as we would expect a factor

of one instead. However, the removal of a single particle from the infinite lattice causes an

infinitesimal increase in the lattice constant a of the hexagonal lattice in layer 1

a → a

√
N

N − 1
(3.28)

ρ1 → ρ1
N − 1

N
. (3.29)

The resulting energy gain affects infinitely many particles, yielding thus a finite difference.

We can also understand the prefactor 3/2 if we keep in mind that cm is only the average

energy per particle in the monolayer. However, when we start building a monolayer by

assembling charges, the energy required for adding another charge depends on how many

charges have already been accumulated: thus, the corresponding prefactor is different for

each case and also differs from the average value cm. Our result is substantiated by analytical

calculations, which do not assume periodicity.
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As already indicated in Figure 3.6, the deformations caused by the vertical displacement of

the tagged charge are of particular interest to us. We thus use them to quantify the agree-

ment between the different approaches. For the ”out”-branch, we measure the normalized

projected distance between the the tagged charge and its six nearest neighbors (i = 1 − 6,

see bottom left panel of Figure 3.6)

δi(η) =
s0i(η)

s0i(η → 0)
− 1, (3.30)

where s0i(η → 0) = a is the lattice constant of the hexagonal lattice. Note that this may

lead to up to six different values in the EM approach, while only two possible different values

δ = δ1 = δ3 = δ5 (3.31)

δ′ = δ2 = δ4 = δ6 (3.32)

are assumed in the analytical approach. In the MC approach, we measure the positions of the

first three peaks of the radial distribution function, respectively. The third peak is required

for a correct identification of the lattice structure using the radial distribution function.

For the ”in”-branch, we measure the distances to the nearest and second-nearest neighbors

(see bottom right panel of Figure 3.6), normalized by the corresponding undeformed distances

at η → ∞. In the analytical approach, only the deformations caused by the three nearest

neighbors are considered; they are assumed radially symmetric

δ = δ1 = δ2 = δ3 (3.33)

δ′ = 0. (3.34)

3.2.4. Results

The left panel of Figure 3.8 shows the obtained defect energies for the ”out”- and ”in”-

branches in the analytical approach, the EM approach, and the MC approach. We can see

that the ”out”-branch is favorable for small η, whereas the ”in”-branch is favorable for large

η. The transition between the two branches occurs around ηc ≈ 0.47. The energy curve for

each branch continues into the region where it is no longer favorable, indicating that the two

branches are separated by an energy barrier and thus can not transform continuously into

each other. The slope of the energy difference between the two branches (see right panel of

Figure 3.8) around ηc also indicates a first order transition.

If we now turn to compare the results obtained with the different approaches, we see that

agreement is very good for small values of η, especially for the ”out”-branch. As η increases,

the differences become larger and though this is not easily visible to the naked eye, the

value ηc at which the ”in”-branch becomes favorable differs between the three approaches

(see right panel of Figure 3.8). While EM and MC agree quite well, the analytical approach
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Figure 3.8.: Defect energies obtained with the three approaches: analytical calculations
(black), energy minimization (blue), and MC simulations (red). Left panel:
defect energies δE∗(η) obtained for the ”out”-branch (solid lines) and the ”in”-
branch (dashed lines). The asymptotic limit for the ”in”-branch E∗in(η →∞) is
indicated by a dotted black line. Right panel: energy difference between ”out”-
and ”in”-branches, δE∗in − δE∗out, close to the transition. The η-range where the
”in”-branch is favorable differs slightly between the EM and MC approaches
(indicated by colored regions).

overestimates the stability of the ”out”-branch significantly. This is most likely due to the

fact that this approach only considers only three deformations in the ”in”-branch and the

configuration can thus not fully adapt to the presence of the tagged charge. It is therefore

interesting to also compare the deformations themselves, which we will do below.

As pointed out above, even for large values of η, configurations in the ”out”-branch do not

transform into ”in”-branch configurations (or vice versa for small η). This implies the exis-

tence of an energy barrier between the two branches preventing meta-stable configurations of

one branch from decaying into the other stable branch, indicating a first order transition. In

the EM approach, where we only locally optimize configurations, even a small barrier would

be sufficient to prevent this decay. The same is, however, not true for the MC approach:

while we perform simulations at relatively low temperature, one would still expect configu-

rations to transform if the energy barrier is small enough. However, we have to keep in mind

that the barrier height depends on the system size for a first order transition [126, 154, 155].

We now focus on the measured deformations in the two branches. The left panel of Figure

3.9 shows the deformations, which are characteristic of the three different approaches, of the

tagged charge’s nearest neighbors along the ”out”-branch. For small values of η – includ-

ing the entire range where the ”out”-branch is stable – we observe that all deformations

are isotropic, i.e., the ring of nearest neighbors contracts uniformly to compensate for the

displaced tagged charge. We can see that only for η ≈ 0.60 small differences between the ana-
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lytical approach (which only considers these six deformations) and the other two approaches

(where all particles are free to move) appear. We can explain this observation by the fact

that displacements of particles in the second or third ring (which also contract slightly)

become more pronounced. The analytical approach thus underestimates the deformation.

δ1 = δ2 = δ3 = δ4 = δ5 = δ6

δ1 = δ3 = δ5

δ2 = δ4 = δ6

δ1 = δ4

δ2 = δ3 = δ5 = δ6
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Figure 3.9.: Deformations of the lattice surrounding the tagged charge (displacement of the
six nearest neighbors from their equilibrium positions at η = 0) obtained using
the following three approaches: analytical calculations (black), EM (blue), and
MC simulations (red). In the MC approach, a Gaussian fit is used to determine
the peak positions in g(r) and thus the deformations [151, 156]. Error bars
indicate the width of the peaks. Left panel: ”out”-branch, where we measure
displacement of the six particles in the first ring. In the stable region η . 0.47,
the ring of nearest neighbors contracts isotropically. In parts of the metastable
region (area shaded gray), more complicated contractions occur (see text). These
are not observed in the analytical approach. Right panel: ”in”-branch, where
we measure displacement of three particles in the first and second rings each (δ
and δ′, respectively).

Starting at η & 0.63, we observe a different process: instead of a uniform contraction, we

observe that three neighbors approach the tagged charge, while the other three move away

(see top center panel of Figure 3.10). As quantified in the left panel of Figure 3.9, neighbors

1, 3, and 5 approach, while neighbors 2, 4, and 6 move away. This process is somewhat

reminiscient of the transformation of a hexagon into a triangle (see top center panel of

Figure 3.10). The previous six-fold symmetry is thus broken and replaced by a three-fold

symmetry. Finally, for η & 0.85, we observe a more complicated process, where two opposing

neighbors approach and the other four move away (see left panel of Figure 3.9 and top right

panel of Figure 3.10). Here, the produced defect region extends over a much larger area of

the lattice.

The right panel of Figure 3.9 shows the deformations in the ”in”-branch. For the results
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1
Figure 3.10.: Schematic view of the different deformation mechanisms encountered in the

EM approach. Top row: ”out”-branch. Left panel: uniform contraction of
the ring of nearest neighbors encountered for small η. Note that this is the only
stable deformation mechanism. Center panel: symmetry breaking for interme-
diate η, reminiscent of the transformation of a hexagon into a triangle. Right
panel: more complicated deformation mechanism for large η, which is highly
metastable. Bottom panel: deformation mechanism in the ”in”-branch.
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obtained with the EM approach, both δ (for the three nearest neighbors) and δ′ (for the

three second-nearest neighbors) are plotted. Note that the analytical approach assumes

δ′ = 0. We observe that the agreement between the analytical and the EM approaches is

reasonably good for large η, but noticeably not perfect, even for η ≈ 1.1. In this region

results are difficult to compare to the MC approach, where the position of the tagged charge

is basically uncorrelated (the inter-layer energy becomes negligible). For small values of η,

we observe that the analytical approach underestimates the deformation, while EM- and

MC-data are in agreement.

Our final point of interest lies in determining the height of the energy barrier ∆E∗ between

the two branches, as well as in identification of the associated saddle point. The left panel

of Figure 3.11 shows the energy barriers between the two branches calculated for several

system sizes. The reaction coordinate r describes the transition from the start-configuration

(in our case the ”out”-branch; r = 0) to the end-configuration (”in”-branch; r = 1). η is

chosen such that the energy difference between the ”out”- and the ”in”-branches for the

respective system size is minimal after local relaxation δE∗out ≈ δE∗in (i.e., we are at ηc for

the respective system size N). Table 3.2 lists the values of η that have been used for each

N (see Nout−in in Equation 3.23), as well as the calculated barrier height. We observe no

barrier for the smallest system size N = 4, where start- and end-configurations are identical

after relaxation. For the other three system sizes, we see that the barrier height grows with

increasing N . This may explain why we do not observe a transition between the two branches

in MC simulations at low temperatures: rearrangement of the entire crystal constitutes a

barrier which grows with increasing N . If we disregard the case N = 4, the system sizes

considered indicate that the energy barrier grows as ∆E∗ ∼ N .

Table 3.2.: Dependence on system size N of the vertical displacement η for which we observe
minimal energy difference between relaxed ”out”- and ”in”-branches. The energy
barrier ∆E∗ between the branches increases with increasing N .

N η ∆E∗

4 (0.45891) 0
13 0.45891 0.02862
28 0.46461 0.06561
49 0.46738 0.10701

The right panel of Figure 3.11 shows a snapshot of the configuration at the saddle point

for N = 49. While most parts of the crystal remain hexagonal, defect lanes connecting the

periodic images of the tagged charge form. These lanes form the boundaries of the hexagonal

regions. We can understand the transition process as a rotation of these hexagonal regions

(denoted vortices) and an associated sliding of the lanes with respect to each other. At the

saddle point, the lanes are almost rectangular. Since most of the cell is hexagonal, a first

approximation of the energy barrier (neglecting non-nearest-neighbor interactions) depends

only on the length of the defect lines separating the vortices. The length of these lines is

proportional to l ∼
√
N for large values of N and vanishes for N = 4. This proportionality
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Figure 3.11.: Left panel: energy barriers calculated for the four considered system sizes N =
4, 13, 28, 49. The reaction coordinate r describes the transition from start-
configuration (”out”; r = 0) to end-configuration (”in”; r = 1). There is no
barrier for N = 4, since start- and end-configuration (after local relaxation)
are identical in this case. For the other values of N , we observe an increase
in barrier height as N increases. Right panel: snapshot of the saddle point
configuration for N = 49. Hexagonal crystallites are indicated by dashed blue
lines; arrows indicate how the rotation of these crystallites leads towards ”out”-
and ”in”-branch configurations, respectively. At the saddle point, lanes (shaded
gray) connecting the periodic images of the tagged charge appear.
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is in contrast to the data in Table 3.2 and indicates that the study of much larger systems

would be required. In addition, more complicated transition mechanisms than the simple

vortex rotation considered here may be at work.

3.2.5. Conclusions and outlook

In summary, we have seen that the vertical displacement of a single charge from a hexagonal

planar Wigner crystal causes not only small deformations close to the defect, but requires

a complete reorganization of the crystal for large separation distances. The energy barrier

associated with this rearrangement increases with the system size, trapping the system in

meta-stable branches at low temperature. We have treated the problem using the following

three approaches: analytical calculations, energy minimization, and MC simulations. In

η-ranges where all approaches were able to treat the problem adequately, we have found

good agreement between the corresponding data sets. In other η-ranges, we were able to

understand differences in the results obtained with the different approaches.

Most of the results presented in this section were published in [151].

For future work, a more accurate computation of the energy barrier between the two branches

is of interest. This would require investigating more and larger system sizes. The inherent

problem here is our need to correlate start- and end-configuration in the NEB method,

leading to – at least loosely – pre-defined structures along the transition path.

3.3. Asymmetric Wigner bilayer crystals

3.3.1. Introduction

As we have seen in Section 3.1, long-ranged systems composed of classical point charges can

show a rich variety of stable structures. For these cases, we have been able to verify the

accuracy and flexibility of both our implementations of Ewald summation and EA global

energy minimization. In Section 3.2, we have studied the effects of a vertical displacement of a

single charge from the monolayer Wigner crystal. For this problem, we have already employed

concepts of a true bilayer system, albeit in the dilute case. In this section, we focus on actual

bilayer systems and investigate the interplay between two layers of point charges. The ground

state structures of symmetric bilayer Wigner crystals (the term symmetric referring to the

fact that both layers exhibit the same background, σ1 = σ2, and thus also density and particle

arrangement) have only recently been determined analytically [149, 150]: depending on the

distance between the plates, five different archetypes of structures (denoted structures I

through V) can be observed. In particular the stability of the hexagonal monolayer (structure

I) has posed a long-standing question [157, 158]. The exact, analytical results showed that

structure I is only stable if the distance between the plates is zero. The sequence of phases
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and their stability regions provide a final benchmark for our implementation and we find

excellent agreement.

Bilayer Wigner crystals can be observed in several experimental systems, such as ions in

Penning traps [159], electrons [160] or holes [161–163] in double quantum well semiconduc-

tor interfaces, confined dusty plasmas [164], bilayer graphene [165], or vertically coupled

quantum dots [166]. The symmetric bilayer Wigner crystals poses a simple, yet already

surprisingly interesting problem [158, 167, 168]. In this section, we develop the model of the

asymmetric bilayer Wigner crystal, where the particle arrangements of the two layers may

differ (σ1 6= σ2), leading thereby to a tremendous increase in the complexity of the problem.

3.3.2. Model and approach

The bilayer Wigner system consists of two parallel infinite plates with uniform charge den-

sities σ1 and σ2, respectively. The plates are separated by a vertical distance h and we use

the same dimension-less plate separation η = h
√
σ/2 as in Section 3.2, where σ = σ1 + σ2

is the total neutralizing background charge density. The point charges of size Q occupy the

plates with number densities ρ1 = N1/S0 and ρ2 = N2/S0 (S0 being the unit cell area),

respectively. We introduce the total background charge and particle number densities

σ = σ1 + σ2 (3.35)

N

S0

= ρ = ρ1 + ρ2, (3.36)

which allow us to define global electro-neutrality

σS0 + ρQS0 = 0 (3.37)

σS0 = −ρQS0 = −NQ. (3.38)

In particular cases, the system also exhibits local electro-neutrality, where both layers carry

zero net charge

σ1S0 = −ρ1QS0 = −N1Q (3.39)

σ2S0 = −ρ2QS0 = −N2Q. (3.40)

In the symmetric bilayer Wigner system (see left panel of Figure 3.12), both plates carry the

same charge density σ1 = σ2 = σ/2. This also implies that they carry the same number of

charges ρ1 = ρ2 = ρ/2, which entails local electro-neutrality.

In experimental systems, applying an electric field perpendicular to the plates will cause

more point charges to sit on one plate than the other. We can model this behavior by

70



CHAPTER 3. SYSTEMS 3.3. ASYMMETRIC WIGNER BILAYER CRYSTALS
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1
Figure 3.12.: Schematic views of the bilayer Wigner crystal model. Left panel: symmetric

case, where both plates have the same charge density σ1 = σ2. Both plates
carry the same density of point charges ρ1 = ρ2. Right panel: asymmetric
case, where the charge densities are different σ1 > σ2. In general, the plates
carry different densities of point charges ρ1 ≥ ρ2.

introducing the asymmetry parameter A such that (see right panel of Figure 3.12)

A =
σ2

σ1

(3.41)

σ1 =
1

1 + A
σ (3.42)

σ2 =
A

1 + A
σ. (3.43)

The range of A is technically A ∈ (−∞,∞); however, a negative value leads to the trivial

hexagonal Wigner monolayer (structure I). In addition, A-values larger than unity are equiv-

alent to the range A ∈ (0, 1), with the role of the two plates reversed. We can thus limit our

investigations to the range 0 < A ≤ 1, with A = 1 corresponding to the symmetric case.

A direct consequence of A < 1 is that we can no longer assume ρ1 = ρ2 = ρ/2. Instead, we

only obtain

ρ1 ≥ ρ2 (3.44)

ρ1 + ρ2 = ρ. (3.45)

We define an order parameter x as follows:

x =
N2

N
=
ρ2

ρ
(3.46)

ρ1 = (1− x) ρ (3.47)

ρ2 = xρ. (3.48)

Global electro-neutrality is still maintained, while local electro-neutrality is no longer guar-
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anteed.

The energy per particle of the system can be calculated using the same Ewald summation as

in Section 3.2 (see also Appendix A.1). We will use the reduced energy per particle, defined

as

E∗

N
=

E

N
√
ρQ2

. (3.49)

In an effort to determine the ground state structure of the system for the entire range 0 ≤
η ≤ ∞ and 0 < A ≤ 1, a straight-forward approach would be to perform EA optimizations

for a suitably fine grid in both parameters η and A. However, we can take advantage of the

fact that the only A-dependent terms E∗A in the energy calculation are independent of the

particle positions and instead only depend on η and x:

E∗A(η, x, A) = 23/2πηN
x+ A2 − xA2

(1 + A)2 . (3.50)

This allows us to transform the energy obtained for (η, x, Aold) to a new value (η, x, Anew)

by using

E∗(η, x, Anew) = E∗(η, x, Aold)− E∗A(η, x, Aold) + E∗A(η, x, Anew). (3.51)

We can thus formulate the following strategy for computing the phase diagram, which in our

experience improves the convergence speed when sampling search space:

(i) We do not allow particles to move from one layer to the other but consider all possible

values of x(≤ 0.5) that are compatible with the number of particles per cell, which ranges

from N = 1 to N = 40.

(ii) We fix A = 0 and perform computations for 201 evenly spaced values of η ∈ [0,
√

2]. We

thus obtain the optimized energy-values E∗(η, x, A = 0).

(iii) We then proceed to A > 0 and vary this quantity on a grid of 201 evenly spaced values

of A ∈ [0, 1]. The optimized energy for these configurations E∗(η, x, A) is then obtained

via

E∗(η, x, A) = E∗(η, x, A = 0) + 23/2πηN
A

(1 + A)2
(A2 − 2x− 2xA); (3.52)

For a given state point (η, A) we retain only the configuration with the lowest reduced

energy per particle E∗/N as the ground state.

As we will see in Subsection 3.3.4, two competing effects – commensurability considerations

favoring a discrete set of x-values and the effective charges of the two layers favoring contin-

uous x-values as η and A change – govern what particle arrangement is formed. In order to

obtain further insight into the interplay between these two effects, we compare our results

to analytical calculations performed by Ladislav Šamaj and Emmanuel Trizac [149, 150].
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These calculations feature extremely high accuracy and can be performed on a very fine grid

in η and A. However, they require well-defined candidate structures (limiting their scope),

which we try to identify using our EA tool.

We also perform Monte Carlo simulations at a low temperature for several points in the

(η, A)-plane. For the simulations presented in this section, we use a system size of N = 4056

particles. The system is initialized with a configuration obtained from the EA approach (see

Subsection 3.3.5). We first let it equilibrate for ≈ 1.6 × 106 MC cycles, before computing

averages for ≈ 8.0× 105 MC cycles. Each cycle consists of N attempted particle moves and

one attempt to deform the unit cell. Particle moves are either two-dimensional (within the

current layer) or vertical from one layer to the other.

In most cases, a vertical displacement of a particle is very unfavorable if it is not accom-

pagnied by a simultaneous two-dimensional rearrangement of both layers; this can lead to

problems with proper equilibration of the x-value. We thus use the configurations obtained

with the EA tool as starting points for the MC simulations and explore their stability. We

focus on the phases characterized by x = 1/3, which offer a rich variety of structures. Ini-

tializing the simulation with a configuration characterized by a value of x similar to the one

obtained at zero temperature (but possibly a different two-dimensional particle arrangement)

is very convenient: it supports the formation of this structure and prevents the system from

getting stuck due to frustration effects between the two-dimensional particle arrangement

and the value of x.

Since we are only interested in the low temperature behavior of the system, we use a large

value of the coupling constant Γ, defined as

Γ =

√
π

kBT

√
ρQ2 ≈ 2000. (3.53)

As the two-dimensional Wigner crystal melts at Γ ≈ 140 [169–171], we expect the formation

of crystalline structures for this value of Γ.

Finally, we make extensive use of the results obtained in Section 3.2: as we will see in

Subsection 3.3.4, the ”out”- and ”in”-branches studied in in Section 3.2 represent a special

case of the asymmetric bilayer system and structures based on these two branches play an

important role in the phase diagram. For a closer study of the competition between the

hexagonal Wigner monolayer and structures based on the two branches, we again use energy

minimization (EM). This allows us to use a finer grid in η and to increase the number of

particles per cell. As in Section 3.2, we only study particle numbers compatible with the

respective branch, ranging from N = 3 to N = 101.
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3.3.3. Theory and order parameters

Several limiting cases with regards to η and A are known to us from previous work [149,

150] and from general considerations. We can use these as reference data for our other

investigations.

A→ 1: In the symmetric case, we obtain the symmetric structures 4 I, II, III, IV, and V

[149, 150]. The boundaries are reproduced within the accuracy of our grid in η.

A→ 0: When σ2 = 0, all charges occupy plate 1, thus x = 0, and we obtain the hexagonal

Wigner monolayer (structure I).

η → 0: In the case of a monolayer system, we also obtain structure I.

η → ∞: For infinitely large plate separation, the energy of the system can only have a finite

value if both layers are locally electro-neutral. In this case, we can neglect the interaction

between the layers and both of them are characterized by a hexagonal particle arrangement

and an asymptotic density ratio

xasy =
A

1 + A
. (3.54)

In this case, the asymptotic energy per particle is given by

E∗asy

N
= cm

1 + A3/2

(1 + A)3/2
. (3.55)

x→ 0: As we know from our results obtained in Section 3.2, the transition from structure

I to a bilayer system depends on the plate separation η. For η . 0.47, we have obtain

the ”out”-branch, while for η & 0.47, we expect the ”in”-branch. In the asymmetric

bilayer system, the two branches correspond to the upper boundary ηc, beyond which the

hexagonal monolayer is unstable and particles start moving to layer 2. As we will see,

the value of ηc depends on A; if ηc . 0.47, we expect a transition from structure I to the

”out”-branch, and a transition to the ”in”-branch for ηc & 0.47.

As mentioned before, competition between different phases is governed by the complex in-

terplay between commensurability considerations (favoring a discrete set of x-values) and

the effective charge of the two layers (favoring continuous x-values as η and A change). One

can easily observe this feature as one considers the parameter x: for small values of η, the

lattices of the two layers interact strongly and commensurability considerations are the dom-

inant factor. Therefore, unit cells are typically rather small and have an intricate particle

arrangement, such that simple fractions as values of x dominate (these preferred values can

be seen as plateaus of constant x). For large values of η, on the other hand, what structure is

formed is dominated by the precise value of x, while the interaction (and commensurability)

between the particle arrangements in the two layers plays only a minor role; thus x becomes

a rather continuous quantity, evidenced by continuous curves x(η).

4. The symmetric structures will be described in detail in the following subsection.
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Figure 3.13.: Schematic view of the different Voronoi constructions used in the bilayer geom-
etry. Voronoi polygons are indicated by lines. Particles in layer 1 are colored
blue, particles in layer 2 red. Particles for which the respective order parame-
ters are calculated are drawn enlarged. Top row: left panel: Ψ(1), calculated
for particles in layer 1 only. Right panel: Ψ(2), calculated for particles in layer 2
only. Bottom row: left panel: Ψ(3), calculated for all particles projected into
the xy-plane (see text). Right panel: Ψ(4), after projecting all particles into
the xy-plane, we calculate parameters only for particles in layer 2 and consider
only particles in layer 1 as possible neighbors (see text).
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The full phase diagram computed using our EA tool is based on approximately 200× 200 =

40000 grid points; to put order into the abundance of structures, we require a straight-

forward method of quantifying the observed structures. For this purpose, bond-orientational

order parameters (BOOPs) appear as an ideal tool (see Section 2.4). Due to the bilayer

geometry of the present system, we can calculate these order parameters in several different

ways:

• We can calculate them for particles in layer 1 only (denoted in the following Ψ(1), see top

left panel of Figure 3.13).

• We can calculate them for particles in layer 2 only (denoted in the following Ψ(2), see top

right panel of Figure 3.13).

• We can calculate them after projecting the positions of all particles into the xy-plane

(denoted Ψ(3), see bottom left panel of Figure 3.13).

• We can calculate them after projecting the positions of all particles into the xy-plane,

but calculate them only for particles in layer 2 and consider only particles in layer 1 as

possible neighbors in the Voronoi construction (denoted Ψ(4), see bottom right panel of

Figure 3.13); this can help us quantify the geometry of ”holes” in layer 1, which are

occupied by particles in layer 2. Note that such a construction is not space-filling, thus

not a ”real” Voronoi construction.

In two-dimensional structures, four- and six-fold rotational symmetries are common. We

thus calculate Ψ4 and Ψ6. In addition, we are interested in rather unconventional crystalline

structures, in particular those that might be indicative of quasi-crystals, which can exhibit

uncommon rotational symmetries, such as five- or seven-fold ones. In addition to Ψ4 and

Ψ6, we only discuss Ψ5 in the results.

3.3.4. Results at vanishing temperature

We now proceed to present and discuss the obtained results. In a first step, we verify

available results for energies and structures observed in the symmetric Wigner bilayer system

[149, 150]. Since the asymmetric system is by far more complex and provides us with a

multitude of results, we split the discussion in two parts:

(i) We first list and describe all observed structures, discussing the underlying competing

effects, and how these structures can be adapted for the analytical approach. In parallel,

we gradually construct the phase diagram.

(ii) Then, we discuss the relations between the different observed structures and further

interesting phenomena. In addition, we compare our zero temperature results to MC

simulations at low temperatures.
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Symmetric case A = 1: structures I through V

As mentioned before, we will first verify results obtained for the symmetric case [149, 150].

The highly accurate analytical data available serve here as a final benchmark for our imple-

mentation. For A = 1, five different structures can be observed. The top panel of Figure

3.14 shows the sequence of structures in the symmetric case and their regions of stability.

In agreement with the analytical prediction, we find that the hexagonal monolayer (structure

I, see first bottom panel of Figure 3.14) is only stable for η = 0. Previously, this fact had

been a long-standing point of contention, as in many contributions a finite range of stability

for the monolayer was predicted [157, 158, 167, 172]. We can easily identify the structure

using the order parameter described in Subsection 3.3.3: x = 0.

η
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

I II III IV V

1I

1
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1
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1
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1
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1

1

Figure 3.14.: Symmetric bilayer Wigner system (A = 1). Top panel: sequence of structures
and their regions of stability in terms of η (as labeled). Structure I is only stable
for η = 0 (indicated by a blue dot). Bottom panels: snapshots of structures I,
II, III, IV, and V (as labeled). Particles in layer 1 are colored blue, particles in
layer 2 red. The unit cell of the respective structure is indicated by the shaded
area. Blue and red lines indicate interesting structural features in layer 1 and
2, respectively.
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For 0 < η . 0.263, we observe structure II (see corresponding panel of Figure 3.14), which

consists of a staggered rectangular bilayer. Particles in layer 2 are positioned above the

centers of rectangles in layer 1 and vice versa. The side length ratio of the rectangles

decreases from
√

3 at η = 0 to 1 (square) at η = 0.263. We can define structure II using the

order parameters: x = 1/2, Ψ
(1,2)
4 = 1, 0 < Ψ

(1,2)
6 < 1.

For 0.263 . η . 0.621, we observe structure III (see corresponding panel of Figure 3.14),

which consists of a staggered square bilayer. Particles in layer 2 are positioned above the

centers of squares in layer 1 and vice versa. Structure III can be considered a special case

of both structures II and IV; thus transitions between these three structures are of second

order. We can define structure III using the order parameters: x = 1/2, Ψ
(1,2)
4 = 1, Ψ

(1,2)
6 = 0.

For 0.621 . η . 0.732, we observe structure IV (see corresponding panel of Figure 3.14),

which consists of a staggered rhombic bilayer. Particles in layer 2 are positioned above the

centers of rhombs in layer 1 and vice versa. The deformation angle of the rhombs decreases

from π/2 (square) at η = 0.621 to 0.386π at η = 0.732; note that structure IV is not

hexagonal for the latter value of η. We can define structure IV using the order parameters:

x = 1/2, 0 < Ψ
(1,2)
4 < 1, 0 < Ψ

(1,2)
6 < 1.

Finally, for 0.732 . η, we observe structure V (see corresponding panel of Figure 3.14),

which consists of a staggered hexagonal (equilateral triangular) bilayer. Particles in layer

2 are positioned above the centers of triangles in layer 1 and vice versa. The transition

between structures IV and V is of first order since there is a jump in the deformation angle

and particles in each layer move from the center of a rhomb to the center of a triangle. Since

both layers are hexagonal, structure V represents the asymptotic case for η → ∞. We can

define structure V using the order parameters: x = 1/2, Ψ
(1,2)
4 = 0, Ψ

(1,2)
6 = 1.

Hexagonal monolayer for A < 1: structure I

While structure I is not stable for finite η in the symmetric case, analytical calculations for

A < 1 [173] have shown that this phase should be the energetically most favorable one at

least for small values of η. The top panel of Figure 3.15 shows the region of stability of

structure I, calculated with the EA and with the analytical approach. The known limiting

cases for η → 0 and for A→ 0 are correctly reproduced. In particular for small values of A,

structure I appears to dominate the phase diagram. The small discrepancy in the line that

limits the region of stability of structure I between the analytical and the EA approach will

be discussed later.

The energy of structure I can be calculated analytically via the Madelung constant plus an

η- and A-dependent energy term (see Equation 3.50)

E∗hex (η, A)

N
= cm + 23/2πη

A2

(1 + A)2 . (3.56)
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Figure 3.15.: Top panel: region of stability (colored blue) of the hexagonal monolayer (struc-
ture I); it fulfills the known limiting cases for A → 1, η → 0, and A → 0.
Bottom panel: snapshot of structure I. All particles are in layer 1. The unit
cell is indicated by the shaded area. Blue lines indicate interesting structural
features.
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Structures based on the ”out”-branch: structures Ix, H, and IIx

As we have seen in Section 3.2, the formation of a bilayer is facilitated – for small distances

η – by the following mechanism: starting from the hexagonal crystal in layer 1 (structure

I), a few particles are vertically displaced to layer 2; they leave hexagonal holes in layer 1

and form a new, ordered particle arrangement in layer 2. The emerging phases, structures

Ix, H, and IIx, are shown in the snapshots of Figure 3.16; the regions of stability of the

respective phases are shown in the top panel of this figure. The two-dimensional particle

arrangement of these three structures is strongly reminiscent of the hexagonal monolayer,

i.e., projecting all particles into one plane yields an almost perfect hexagonal lattice. We

can thus characterize these structures using the criterion Ψ
(3)
6 > 0.9. The main difference

between structures Ix, H, and IIx lies in the percentage of particles in the upper layer, which

in turn determines the structural mechanism:

• Structure Ix (see first bottom panel of Figure 3.16) represents the formation of the mono-

layer and is in direct competition with structure I. It is characterized by 0 < x < 1/3.

• Structure H (see second bottom panel of Figure 3.16) is a special case of both structures

Ix and IIx. It consists of a honeycomb lattice in layer 1 and a hexagonal lattice in layer 2

and is characterized by x = 1/3.

• Structure IIx (see third bottom panel of Figure 3.16) represents the transition from struc-

ture H to structures II and III. It is characterized by 1/3 < x < 1/2. The hexagonal holes

in layer 1 can be elongated or have more complicated shapes, while the lattice in layer 2

consists of distorted rectangles and triangles.

In the analytical approach, the two-dimensional particle arrangement of all three above

phases is assumed to be perfectly hexagonal. The ordered particle arrangement of layer 2 is

assumed to be as follows:

• For structure Ix, the structure of layer 2 is assumed to be hexagonal. This imposes a

discrete set of possible values of x (see the quantity Nout derived in Section 3.2, Equation

3.19). Note that this criterion is less strict in the EA approach, where layer 2 is not

necessarily perfectly hexagonal.

• Due to the high degree of symmetry in structure H, no deformations are possible in either of

the lattices and the analytical model perfectly matches the particle arrangement observed

with the EA.

• For structure IIx, layer 2 is assumed to be built up by a sequence of triangular and rectan-

gular rows. These rows are produced by lines of particles in layer 1 or in layer 2 (indicated

by dashed lines in the bottom right panel of Figure 3.16). A blue line followed by a red

line produces a row of rectangles, while two blue lines followed by a red line produce a row

of equilateral triangles. Using these two building blocks, x can be continuously interpo-

lated between 1/3 and 1/2. Note that this does not always match the structure observed

with EA. This mechanism shares some characteristics with precursors of quasicrystalline

structures [174].
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Figure 3.16.: Structures based on the ”out”-mechanism: structures Ix, H, and IIx (see text).
Top panel: regions of stability of the respective structures. For small values
of x, i.e., in particular close to the boundary with structure I, we observe
structure Ix (yellow region). Structure H (pink region) is a special case with
x = 1/3 and represents the transition to structure IIx (brown region), which
– in turn – shares some of the features of structure II. Only a limited number
of candidate structures could be considered in the analytical approach (black
lines). Bottom row: snapshots of the respective structures. Particles in layer
1 are colored blue, particles in layer 2 red. Left panel: snapshot of structure
Ix for η = 0.184 and A = 0.775, where x = 1/4. Center panel: snapshot of
structure H for η = 0.198 and A = 0.85, where x = 1/3. Right panel: snapshot
of structure IIx for η = 0.148 and A = 0.95, where x = 2/5 = 0.4.
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Structures based on the ”in”-branch: structure Vx

The structure based on the ”in”-branch in Section 3.2 (which we denote structure Vx) is

dominant for small values of A and especially for large values of η. The top panel of Figure

3.17 shows its region of stability. We denote it structure Vx since it maintains many of

the defining characteristics of structure V. In particular, both layers are almost perfectly

hexagonal and the interaction between the two layers is small. We can define structure Vx

using the modified bond-orientational order parameter: (1 − x)Ψ
(1)
6 + xΨ

(2)
6 > 0.9. In the

limiting case η →∞, the order parameter x approaches its asymptotic value xasy = A/(1+A)

from below. The bottom panels of Figure 3.17 show snapshots of structure Vx. In many

– but not all – cases, particles in layer 2 are positioned above the centers of triangles in

layer 1. Note that slight distortions are common for intermediate values of η, while the two

layers form almost uncorrelated hexagonal lattices for large values of η, thereby creating a

moiré-like pattern 5.

In the analytical approach, both layers are assumed to be perfectly hexagonal, albeit with

different densities. The correlation of the two-dimensional lattices in the two layers is ne-

glected and x is thus continuous and not discretized (see Equation 3.21).

Structures with x = 1/2: structures II, III, and IV

As mentioned before, for A < 1 structure I occupies a large portion of the phase diagram

while structure V is immediately replaced by structure Vx (as shown by analytical calcu-

lations) as A deviates from the value of one. Interestingly, also the three other structures

observed in the symmetric case play a prominent role in the asymmetric case. The top panel

of Figure 3.18 shows the stability ranges of structures II, III, and IV; the limiting case A→ 1

is well reproduced.

A very interesting effect occurring for these three structures is that the net charge of the

two layers is reversed compared to all other regions of the phase diagram. Since we usually

observe x < xasy, layer 1 most often carries more point charges than would be required to

compensate for the neutralizing background, leading thus to a negative net charge; layer 2

correspondingly carries a positive net charge. For the three symmetric structures, we observe

charge inversion x = 1/2 > xasy, i.e., layer 2 is overcharged and has a negative net charge.

As a consequence, x = x(η) exhibits non-monotonic behavior. We discuss this phenomenon

in more detail once we have finished constructing the phase diagram.
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Figure 3.17.: Destabilization of structure I via the ”in”-mechanism: structure Vx. Top
panel: region of stability of structure Vx (green region). Black lines mark the
respective regions of stability determined with the analytical approach, where
only a limited number of candidate structures is considered. Bottom row:
left panel: snapshot of structure Vx for η = 0.707 and A = 0.5, where x = 1/4.
This allows for perfect commensurability. Center panel: snapshot of structure
Vx for η = 0.7 and A = 0.9, where x = 13/28 = 0.464. Note the wave-like
modulation of the hexagonal lattices. Right panel: snapshot of structure Vx

for η = 1.061 and A = 0.7, where x = 12/31 = 0.387. For large η, there is
little correlation between the two layers, leading to a moiré pattern. Particles
in layer 1 are colored blue, particles in layer 2 red.
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Figure 3.18.: Stability of the symmetric structures for A < 1: structures II, III, and IV. Top
panel: regions of stability of the respective structures. Structures II (orange
region), III (red region), and IV (purple region) remain stable even for A < 1. In
particular, we observe structure III for as low as A ≈ 0.89. The three symmetric
structures are of particular interest as they exhibit overcharging, i.e., the net
charge of top and bottom layer changes sign and x(η) is non-monotonic. Black
lines mark the respective regions of stability determined with the analytical
approach, where only a limited number of candidate structures is considered.
Bottom row: snapshots of the respective structures. Particles in layer 1 are
colored blue, particles in layer 2 red. Left panel: snapshot of structure II for
η = 0.134 and A = 1. Center panel: snapshot of structure III for η = 0.445 and
A = 1. Right panel: snapshot of structure IV for η = 1.414 and A = 1.
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Figure 3.19.: Structures with x = 1/3: phases H, S2, and S1. Top panel: regions of stabil-
ity of the respective structures. Phase H conforms to the Ix-formalism (pink
region). Phases S2 (dark gray region) and S1 (light gray region) have more com-
plicated geometric features. Black lines mark the respective regions of stability
determined with the analytical approach, where only a limited number of can-
didate structures can be considered. Structure S2 could not be treated within
the analytical approach (indicated by a dark label). Bottom row: snapshots
of the respective structures. Particles in layer 1 are colored blue, particles in
layer 2 red. Left panel: snapshot of structure H for η = 0.198 and A = 0.85.
Center panel: snapshot of structure S2 for η = 0.417 and A = 0.7. Right panel:
snapshot of structure S1 for η = 0.622 and A = 0.675.
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Structures with x = 1/3: structures H, S1, and S2

In addition to the previously discussed honeycomb structure H, we observe two other major

structures with x = 1/3 for larger plate separations η. Due to their unique lattices, we

denote these structures the snub square structures S1 and S2. The top panel of Figure

3.19 shows the stability regions of the two structures. Note that due to its more intricate

particle arrangement, phase S2 could not be treated within the analytical approach. The

two structures are characterized by the following geometric features:

• Structure S1 consists of a slightly distorted snub square particle arrangement (consisting

of squares and equilateral triangles) in layer 1. Particles in layer 2 are positioned above

the centers of the squares in layer 1 and thus form a square lattice (see bottom right panel

of Figure 3.19). We can identify structure S1 using x = 1/3, Ψ
(1)
5 > 0.9, and Ψ

(2)
4 > 0.9.

• Structure S2 consists of a strongly distorted snub square particle arrangement in layer 2

and pentagonal structural units in layer 1 (see bottom center panel of Figure 3.19). While

the snub square lattice is obviously less clean, structure S2 still occupies a significant region

in the phase diagram. Thus phase S2 can be specified via x = 1/3 and Ψ
(2)
5 > 0.45.

2π/5

4π/5

π/3

5π/6

1Figure 3.20.: Schematic view of the neighborhood of a particle in the snub square tiling. Go-
ing clockwise from the top, each vertex is formed by the following sequence of
surrounding polygons: 4−�−4−�−4. The respective bond angles (indi-
cated by dotted black lines) are close to the ones of a pentagonal arrangement
(indicated by the green particles and the dotted green lines).

The reason why snub square lattices produce a significant five-fold BOOP Ψ5 is related to the

angles required for the formation of such a lattice. As in all Archimedean tilings, each vertex

(represented by a particle) in the snub square tiling has the same surrounding geometry.

Since the polygons meeting at each vertex form the characteristic sequence4−�−4−�−4,

5. Moiré patterns are created by superposition of two simple lattices. Depending on the commensurability
and the relative orientation of the two lattices, highly complex patterns can emerge.
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the relevant bond angles are (see dotted black lines in Figure 3.20)

φsn.sq. =


0

±π
3
≈ ±0.333π

±5π
6
≈ ±0.833π

. (3.57)

These are very close to the bond angles of pentagonal arrangement (see dotted green lines

in Figure 3.20)

φpent. =


0

±2π
5

= ±0.400π

±4π
5

= ±0.800π

. (3.58)

In the analytical approach, structure S1 is assumed to have a perfect snub square lattice

in layer 1 and a perfect square arrangement in layer 2. While the number of particles per

cell N = 6 is relatively small for numerical calculations, it hits the limit for the analytical

approach since each explicit particle position (independent of the lattice periodicity) requires

evaluation of an additional integral in the calculation of the energy. For structure S2, this

problem becomes even more pronounced since N = 12; thus it could not be included in the

analytical approach (indicated by a dark label in the phase diagram).

Structures with pentagonal features: structures P1, P2, and P3

The structures in the remaining regions of the phase diagram exhibit complicated geometries

and symmetries which prohibit an analytical treatment. These particular particle arrange-

ments tend to change continuously as a function of η and A, making the classification of

distinct structures difficult. However, we observe several regions where the order parameters

indicate the occurrence of distinct mechanisms. We have particular interest in structures

with pentagonal features due to their importance with respect to possible formation of quasi-

crystals. Figure 3.22 shows the regions of stability of three observed pentagonal structures:

• Structure P1 has a complicated particle arrangement and exhibits a significant five-fold

symmetry in layer 2 (see left panel of Figure 3.21); we can identify phase P1 with 1/3 <

x < 1/2 and Ψ
(2)
5 > 0.45.

• Structure P2 consists of a large number of pentagonal holes, i.e., a large part of particles

in layer 2 occupies positions above centers of pentagons in layer 1 (see center panel of

Figure 3.21). In addition, particles in layer 2 form a rather well-defined hexagonal lattice.

We can identify phase P2 with 1/3 < x < 1/2 and Ψ
(4)
5 > 0.9.

• Similarly, structure P3 consists of a large number of pentagonal holes, albeit at a much

lower density (see right panel of Figure 3.21). We can identify phase P3 with 0 < x < 1/3

and Ψ
(4)
5 > 0.45.

Structures with pentagonal features could not be treated within the analytical approach.
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Figure 3.21.: Snapshots of structures with pentagonal features identified using BOOPs:
structures P1, P2, and P3. The respective regions of stability are shown in
Figure 3.22. They appear as contiguously colored regions in the ΨRGB-phase
diagrams (see Figure 3.25). Structures P1 and P2 appear for x > 1/3, where
they compete with structures III and H. Structure P3 exhibits x < 1/3 and
strongly competes with structure Ix; it may also be important close to the
critical point (marked by a circled asterisk). Structures of these types are not
included in the analytical approach (indicated by dark labels). Particles in
layer 1 are colored blue, particles in layer 2 red. Left panel: snapshot of struc-
ture P1 for η = 0.381 and A = 0.85, where x = 12/28 = 0.429. Center panel:
snapshot of structure P2 for η = 0.346 and A = 0.825, where x = 3/8 = 0.375.
Right panel: snapshot of structure P3 for η = 0.410 and A = 0.6, where
x = 4/18 = 0.222.

Full phase diagrams

Figure 3.22 shows the phase diagram obtained with the EA and the analytical approach,

including all structures that have been discussed so far. As can be seen, a white region of

significant extent – populated by structures that could not be properly classified – remains.

While the analytical approach covers the general features of the phase diagram, it is unable

to treat the more complicated features surrounding the white region. The definitions of the

classified structures are summarized in Table 3.3.

We can illustrate the difficulties arising in the remaining white regions of the phase diagram

when color-coding the state points in the (η, A)-plane by the number of particles per cell of

the observed ground state structures in the EA approach (see Figure 3.23). We observe at

times abrupt changes in cell size for a variety of reasons. Bright regions in general imply

simple lattice structures (with few particles per unit cell) and usually a strong correlation

between the two layers, often resulting in a discrete set of preferred values of x (see Figure

3.24). Dark regions, however, not necessarily indicate complicated structures, but can also

imply continuously changing values x(η).

In order to obtain additional information on phases that populate the white region, we gen-

erate plots of the (η, A)-plane, where the order parameters of each state point are illustrated

using using an RGB color scheme. Since we are interested in four-, five-, and six-fold sym-
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Figure 3.22.: Full phase diagram showing all structures identified in the preceding subsub-

sections (as labeled). Structures that could be treated within the analytical
approach have light labels. Black lines mark the respective regions of stability
determined with the analytical approach. Structures with dark labels are too
complicated to be treated within the analytical approach. White regions indi-
cate structures with more complicated geometric features, some of which may
be characterized by specific color combinations in the ΨRGB-phase diagrams
(see Figure 3.25).
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Figure 3.23.: Number N of particles per cell for the observed ground state structures in the

(η,A)-plane in the EA approach using a grayscale encoding: N = 2 corresponds
to white, N = 40 to black. Simple structures that are easily treatable with the
analytical approach (blue lines and bright labels) appear as bright regions.
Structure Vx poses an exception to this since the layers are not necessarily
strongly correlated here. Note that parts of the phase diagram – in particular
the white region – exhibit large cells and continuously changing structures.
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Figure 3.24.: Order parameter x = ρ2/ρ for the observed ground state structures in the

(η,A)-plane in the EA approach using a grayscale encoding: x = 0 corresponds
to white, x = 1/2 to black. Certain discrete values are preferred and appear
as plateaus. Note the especially interesting value x = 1/3 (region surrounding
the labels of structures H, S2, and S1).
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Table 3.3.: Observed structures in the asymmetric Wigner bilayer system and their charac-
teristic features. For the classification, we first decide by the value of x (second
column) and then further refine using BOOPs (third column). Note that the
cutoff values for the order parameters are to some extent arbitrary, but fit well
with distinctly colored regions in Figure 3.25.

I x = 0 hexagonal monolayer

II x = 1/2 Ψ
(1,2)
4 = 1, 0 < Ψ

(1,2)
6 < 1 rectangular bilayer

III x = 1/2 Ψ
(1,2)
4 = 1, Ψ

(1,2)
6 = 0 square bilayer

IV x = 1/2 0 < Ψ
(1,2)
4 < 1, 0 < Ψ

(1,2)
6 < 1 rhombic bilayer

V x = 1/2 Ψ
(1,2)
4 = 0, Ψ

(1,2)
6 = 1 hexagonal bilayer

Ix 0 < x < 1/3 Ψ
(3)
6 > 0.9

H x = 1/3 Ψ
(3)
6 > 0.9 honeycomb (layer 2)

IIx 1/3 < x < 1/2 Ψ
(3)
6 > 0.9

Vx 0 < x < xasy (1− x)Ψ
(1)
6 + xΨ

(2)
6 > 0.9 hexagonal bilayer

S1 x = 2/6 Ψ
(1)
5 > 0.9, Ψ

(2)
4 > 0.9 snub square (layer 1)

S2 x = 4/12 Ψ
(2)
5 > 0.45 snub square (layer 2)

P1 1/3 < x < 1/2 Ψ
(2)
5 > 0.45 pentagonal (layer 2)

P2 1/3 < x < 1/2 Ψ
(4)
5 > 0.9 pentagonal holes

P3 0 < x < 1/3 Ψ
(4)
5 > 0.9 pentagonal holes

metries, we associate Ψ4 to the red-, Ψ5 to the green-, and Ψ6 to the blue-values, respectively.

This scheme allows for an easy visualization of several order parameters at once, allowing us

to perceive distinctly colored regions more easily (which may indicate a distinct mechanism).

Figure 3.25 shows such ΨRGB phase diagrams for the four different Voronoi constructions

presented in Subsection 3.3.3.

Stability of the monolayer

We now proceed to the discussion of a few interesting phenomena in the phase diagram.

The first of these is directly related to the problem presented in Section 3.2. There, we

were interested in the transition from a monolayer to an extremely diluted bilayer. In

the asymmetric bilayer Wigner system, this corresponds to the line where x assumes an

infinitesimal positive value, i.e., the upper boundary of structure I. As we have seen in the

phase diagram (see Figure 3.22), structure I competes only with structures Ix and Vx, which

correspond to the ”out”- and ”in”-branches, respectively. The tricritical point where these

three stability regions meet can be calculated within the EM approach by comparing the

energy curves obtained for the two branches in Section 3.2 to structure I using Equation
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Figure 3.25.: Order parameter-based phase diagrams in the (η, A)-plane. The BOOPs are
calculated using different methods of Voronoi construction (see Subsection 3.3.3
and Figure 3.13). The phase diagrams are created by assigning to each grid
point a color based on the respective values of the order parameters of the
ground state configuration. We use the ΨRGB-color scheme, such that the
value of Ψ4 corresponds to red, Ψ5 to green, and Ψ6 to blue. Top row: left
panel: order parameters Ψ(1) for layer 1. Right panel: order parameters Ψ(2)

for layer 2. Bottom row: left panel: Ψ(3). Right panel: Ψ(4).
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3.52; we obtain (see circled white asterisk in Figure 3.22)

ηc = 0.470 (3.59)

Ac = 0.4085. (3.60)

This compares reasonably well to the values obtained with the EA approach, where we use

smaller cell sizes than in the EM approach (up to N = 40 particles per cell)

ηc = 0.477 (3.61)

Ac = 0.4075. (3.62)

The EA results imply that the region of stability of structure P3 also reaches this tricritical

point. This might be an indication that structure P3 represents a transition phase between

structures Ix and Vx. However, our resolution in the EA approach is too small for a closer

study of this phenomenon and the complicated geometry of structure P3 precludes a more

accurate analytical investigation.

Close to the tricritical point, deformations in structure Ix and Vx are most pronounced for

the iso-line x ≈ 0. For structure Ix, η can be considered large, causing the holes left by those

particles that moved to layer 2 to contract significantly. For structure Vx, η can be considered

small and the triangles in layer 1 surrounding particles in layer 2 distort significantly. Since

both of these distortions are neglected in the analytical approach, the boundaries between

structure I and structures Ix and Vx differ noticeably (see Figure 3.22). However, agreement

is excellent both for small and large η-values, where distortions are small.

The left panel of Figure 3.26 shows the x(η)-curve for A = 0.93, along which we identify

structures I, Ix,H, IIx, P1, II, III, a range of unclassified structures and finally structure

Vx. For now, we study only the part where x < 1/3, i.e., the region where structure Ix
is stable. As we know, certain values x = 1/Nout are preferred for structure Ix since they

allow a commensurate hexagonal particle arrangement in layer 2 (see Equation 3.19). As

a consequence, x(η) is not a continuous function in the analytical approach, but rather

staircase-like (for A = 0.93 we observe x = 1/7, 1/4, 1/3). For A close to unity, x(η) grows

very quickly and the plateaus are very thin.

For smaller values of A ≈ 0.6 (not shown), we observe more pronounced plateaus, which can

become smeared out as x(η) becomes more continuous once deformations come into play.

The competition between preferred discrete values of x and a continuous increase x(η) can

serve as an explanation for the intricate shape of the upper boundary between structures Ix
and P3 (see Figure 3.22), which undulates back and forth with decreasing A.

The analytical approach predicts that the transition I→Ix is of second order with a critical

exponent for the order parameter x of β = 2/3

x(η) ∼ [η − ηc(A)]2/3 . (3.63)
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Figure 3.26.: x(η) for A = 0.93. Left panel: curve over the entire considered range of η.
EA results in blue, analytical results in black. In the region of stability of
structure Ix (where x < 1/3), a discrete set of compatible x-values (see Nout

in Equation 3.19) is preferred, evidenced by a staircase-like form of the curve;
regions of constant x are very thin for A this close to unity. However, non-
compatible values are also possible in the EA approach. Shaded areas indicate
overcharging, i.e., where x > xasy. Right panel: double-logarithmic plot of
x(η − ηc). The dotted black line is a guide to the eye, indicating a critical
exponent β = 2/3 (see Equation 3.63).
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While we can not directly calculate the critical exponent from either our EA data nor from

our EM data, we can use them to corroborate this prediction. The right panel of Figure 3.26

shows x(η) close to the transition I→Ix. Note that even small numerical inaccuracies in ηc or

the energy calculation can severely change the slope in a double-logarithmic representation.

However, the observed shape of x(η) does seem compatible with the analytical prediction.

We now proceed to the case of rather small values of A. The left panel of Figure 3.27 shows

the x(η)-curve for A = 0.38, along which we identify structures I and Vx. While we know

that some preferred values x = 1/Nin exist for structure Vx (see Equation 3.21), the x(η)-

curve is basically continuous and smooth; the reason for this is that η is already quite large

at the transition, leading to a rather weak interaction between the two layers. Interestingly,

x(η) appears to converge only very slowly towards the asymptotic value xasy. As mentioned

before, deformations are rather well pronounced since we are close to the tricritical point

(evidenced by a visible difference in ηc between EA and analytical results).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
η

0.0

0.1

0.2

0.3

0.4

0.5

x

EA

analytical

asymptotic

1

10−3 10−2 10−1

η − ηc(A)

0.01

0.1
x

EM

β = 2/3

1

Figure 3.27.: x(η) for A = 0.38. Left panel: curve over the entire considered range of η
(compare Figure 3.26). EA results in blue, analytical results in black. As ηc
is rather large, the two layers are not strongly correlated, leading to a smooth
curve x(η). The asymptotic value xasy is indicated by a dotted line. Note the
visible difference in ηc between the two approaches; this difference is due to
deformations, which are rather strongly pronounced in structure Vx this close
to the tricritical point (see also Figure 3.22). Right panel: double-logarithmic
plot of x(η − ηc). The dotted black line is a guide to the eye, indicating a
critical exponent β = 2/3.

The analytical approach predicts the transition I→Vx to be of first order with an associated

jump in x from zero to a finite value. This discontinuity is most distinct close to the tricritical

point. However, the EA and EM results predict the transition to be of second order. We

can again try to obtain more information on this critical behavior by computing x(η) close
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to the transition (see right panel of Figure 3.27). Data are much less accurate here, but it

appears that our results would again be compatible with a critical exponent β = 2/3.

Overcharging

The second interesting phenomenon is overcharging. In significant parts of the phase di-

agram, the symmetric structures II, III, and IV are stable (see Figure 3.22). Since these

structures are characterized by x = 1/2 > xasy for A < 1, the net charge of the two plates

changes sign compared to all other regions in the phase diagram. In most regions of the

phase diagram, the stronger (positive) background on plate 1 causes the majority of the

(negative) point charges to be in layer 1, resulting in net charges

σ1 +Qρ1 =

(
1

1 + A
− (1− x)

)
σ < 0 (3.64)

σ2 +Qρ2 =

(
A

1 + A
− x
)
σ > 0. (3.65)

This energetically unfavorable value of x again exemplifies the strong competition between

two opposing principles:

Commensurability When the two layers are strongly correlated, the commensurability of

the particle arrangements in the two layers is the dominant factor. This favors discrete

values of x which result in commensurate lattices. Otherwise, strong distortions are re-

quired to avoid unfavorable inter-layer interactions. This principle is dominant for small

values of η.

Effective charge When correlation between the two layers is weak, the interaction between

the effective charges (particles plus background) of the two layers is the dominant factor.

If we consider structure Vx in the case of large plate separation η � 1, the energy per

particle in the analytical approach is given by [173]

E∗η�1

N
= cm

[
(1− x)3/2 + x3/2

]
+ 23/2πη

(
x− A

1 + A

)2

. (3.66)

This expression assumes that both layers are hexagonal and that their lattices are un-

correlated. The first term in Equation 3.66 on the left side is merely the energy of the

two (isolated) hexagonal layers, whereas the second term gives the interaction between

the effective plate charges σeff = ρQ[x−A/(1 +A)], i.e., of background and point charges

combined. The value of x for which E∗η�1 reaches its minimum is a continuous function

in η and A.

The system thus tries to achieve a favorable value x(η,A), favoring a smooth curve and a

continuous increase in x as η or A increase. This principle is dominant for large values of

η.

In the case of the symmetric structures (characterized by x = 1/2), the first principle is
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decisively dominant. As x increases above the asymptotic value xasy, x(η) further acquires

non-monotonic features (see left panel of Figure 3.26).

We point out that our numerical resolution in the EA approach is limited regarding x. In

particular, the largest value of x < 1/2 obtainable is x = 19/39 = 0.487. It is possible

that significantly larger system sizes could allow for both a good value of x and a more

complicated two-dimensional particle arrangement.

Additional details of structure Vx

We now turn to the discussion of additional details of structure Vx. While we make no

distinction between structures V and Vx in the phase diagram, we point out that the ana-

lytical approach clearly shows that x = 1/2 is only obtained for A = 1. Due to the limited

numerical resolution regarding x in the EA approach, we observe structure V also for a small

region A < 1 (as can be seen in Figure 3.23 since structure V requires only two particles per

cell and is thus visible as a bright region close to A = 1).

The lower boundary of structure Vx (see Figure 3.22) undulates back and forth with decreas-

ing A. Again, we can relate this phenomenon to preferred values of x, which necessitate fewer

distortions (see Figures 3.23 and 3.25). There is, however, a pronounced region where a dis-

tinct mechanism appears to be at work. For A & 0.8, the ΨRGB phase diagrams (see Figure

3.25) show a region in structure Vx where the color changes smoothly. A closer look at

the corresponding snapshots reveals a wave-like modulation of the hexagonal lattices in the

two layers, allowing for a good correlation between the lattices in the two layers without

significantly decreasing the hexagonal order of either layer or preventing a favorable value of

x (see bottom center panel of Figure 3.17). A different mechanism is at work for structures

Vx for A . 0.8, where the two lattices are mostly uncorrelated, leading to moiré patterns

(see bottom right panel of Figure 3.17).

In the symmetric case, where both layers are locally electro-neutral, the interaction between

the two plates decays exponentially [150, 157]. In the asymmetric case, the analytical results

show that the two layers remain charged for arbitrarily large plate separation η. In particular

for small values of A, x(η) converges very slowly towards the asymptotic value xasy for large

η (see left panel of Figure 3.27). The remaining effective interaction between the two plates

decays algebraically ∼ 1/η2 [173].

3.3.5. Results at finite temperature

As mentioned in Subsection 3.3.2, frustration between the lattices in the two layers and the

value of x can pose a problem for correct equilibration of the Wigner bilayer system and an

unfavorable choice of the initial configuration can prevent the ground state structure from
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Figure 3.28.: State points investigated with MC simulations (indicated by black dots). We
use a rough interpolation line [A(η) = 1− 1.00749η+ 0.905807η2− 0.299731η3]
(dashed line), along which x ≈ 1/3. The red dot indicates the S1-configuration
obtained with the EA used for initialization of the simulation. Note that along a
small section of this line, the EA predicts x 6= 1/3, a feature which is confirmed
by the MC simulations.
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being formed even for very large coupling constant Γ. However, this problem all but disap-

pears if we choose an initial configuration with a similar value of x as the predicted ground

state structure, even though the two-dimensional particle arrangement may be different.

For the results presented in this section, we focus on the case x = 1/3, for which we have

classified via the EA approach a sequence of four different distinct structures with increasing

η and decreasing A, namely H, S2, S1, and Vx; in addition, some unclassified regions with

more complicated structures remain. Figure 3.28 shows the investigated state points in the

(η, A)-plane chosen for MC simulations. These lie along an interpolated line x ≈ 1/3

A(η) = 1− 1.00749η + 0.905807η2 − 0.299731η3. (3.67)

For the initial configuration of all subsequent MC-based investigations 6, we choose structure

S1 obtained in the EA approach for η = 0.65 and A = 0.6455. MC simulations for state

points along the line given in Equation 3.67 show that the systems easily adapt to these

selected values of η and A by forming the structure predicted in the EA approach. While x

assumes a value extremely close to 1/3 for η & 0.4, it is slightly larger than 1/3 for η . 0.4,

indicating that it can adjust properly. Note that the interpolated curve lies slightly above

the region where we predict x = 1/3 in the ground state around η ≈ 0.35.

Figure 3.29 shows the bond-orientation order parameters Ψ6, Ψ8, and Ψ10 along the inter-

polated line. In particular Ψ
(3)
6 and Ψ

(2)
8 prove useful in determining the regions of stability

of structures H and S1. In addition, we see a significant increase of Ψ
(1)
6 and Ψ

(2)
6 as we

approach structure Vx. The region where Ψ5 > 0 coincides with the unclassified region

between structures S1 and Vx (see Figure 3.25).

Figure 3.30 shows a snapshot of structure H. We can see excellent hexagonal order when all

particles are projected into a plane. In addition, the honeycomb lattice in layer 1 and the

hexagonal lattice in layer 2 are apparent.

Figure 3.31 shows a snapshot of structure S2. Even though this structure is already rather

strongly distorted at zero temperature, a pronounced pattern in layer 2 remains visible.

Figure 3.32 shows a snapshot of structure S1. The excellent square order in layer 2 is nicely

visible.

Figure 3.33 shows a snapshot of structure Vx. Both layers exhibit excellent hexagonal order

with very few defects. For the value of η presented here, particles in layer 2 still avoid

being on top of particles in layer 1; this implies that the two layers are correlated (see also

below). For larger values of η, this correlation decreases and the two layers form independent

hexagonal lattices.

We can study the correlation between the two layers more closely by calculating the center-

6. Computational details of the MC simulations are given in Subsection 3.3.2.
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Figure 3.29.: BOOPs of different state points with x ≈ 1/3 in low-temperature MC sim-
ulations. Shown are Ψ6 (blue), Ψ8 (red), and Ψ10 (green); the latter two
parameters can be used to quantify four- and five-fold rotational symmetry,
respectively. Top left panel: Ψ(1) for layer 1. Top right panel: Ψ(2) for layer
2. Bottom panel: Ψ(3) when all particles are projected into a plane (see Figure
3.13).
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Figure 3.30.: Snapshots of MC simulations for η = 0.30 and A = 0.771 (where we predict
structure H). Particles in layers 1 and 2 are colored black and red, respectively.
Voronoi polygons are colored according to their number of sides: three sides
(black), four (yellow), five (green), six (white), seven (red), eight (blue). Top
left panel: Voronoi construction for layer 1. Top right panel: Voronoi construc-
tion for layer 2. Bottom panel: Voronoi construction when all particles are
projected into a plane. Note the excellent hexagonal order.
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Figure 3.31.: Snapshots of MC simulations for η = 0.45 and A = 0.703 (where we predict
structure S2). Particles in layer 1 and 2 are colored black and red, respectively.
Voronoi polygons are colored according to their number of sides: three sides
(black), four (yellow), five (green), six (white), seven (red), eight (blue). Left
panel: Voronoi construction for layer 1. Right panel: Voronoi construction for
layer 2.

Figure 3.32.: Snapshots of MC simulations for η = 0.60 and A = 0.657 (where we predict
structure S1). Particles in layer 1 and 2 are colored black and red, respectively.
Voronoi polygons are colored according to their number of sides: three sides
(black), four (yellow), five (green), six (white), seven (red), eight (blue). Left
panel: Voronoi construction for layer 1. Right panel: Voronoi construction for
layer 2. Note the excellent square order.
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Figure 3.33.: Snapshots of MC simulations for η = 0.78 and A = 0.623 (where we predict
structure Vx). Particles in layer 1 and 2 are colored black and red, respectively.
Voronoi polygons are colored according to their number of sides: three sides
(black), four (yellow), five (green), six (white), seven (red), eight (blue). Left
panel: Voronoi construction for layer 1. Right panel: Voronoi construction for
layer 2. Note that both layers exhibit good hexagonal order.

to-center pair correlation functions for different values of η and A

g11(r) =
1

4πrσ1N1

〈∑
i∈L1

∑
i 6=j∈L1

δ (r − |rij|)
〉

(3.68)

g22(r) =
1

4πrσ2N2

〈∑
i∈L2

∑
i 6=j∈L2

δ (r − |rij|)
〉

(3.69)

g12(r) =
1

2πrσ1N

〈∑
i∈L1

∑
j∈L2

δ (r − |rij|)
〉
. (3.70)

These are shown in Figure 3.34. We observe that for intermediate values of η, hexagonal

order is more strongly pronounced in layer 1; this indicates that the lattice in layer 2 is

rather strongly distorted. A distinct structure in g12(r) (see top left panel of Figure 3.34)

also indicates that the correlation between the two layers is quite strong. For larger values

of η, the peak positions coincide well with a hexagonal lattice in both layers. We further

observe a loss of correlation between the layers, evidenced by a flat shape of g12(r) (see

bottom left panel of Figure 3.34).

In order to obtain an even better understanding of the structural correlations between the
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Figure 3.34.: Correlation functions gij(r) and G6(r) calculated in the MC simulations. The
relevant length scale is given by the Wigner-Seitz radius aW = (2/

√
3ρ)1/2 of

the respective layer or of the total system. Top row: results for η = 0.75
and A = 0.6274. Left panel: gij(r) for the different layers. Right panel: G6(r)
for the two layers. Center row: results for η = 0.85 and A = 0.6140. Left
panel: gij(r) for the different layers. Right panel: G6(r) for the two layers.
Bottom row: results for η = 1.00 and A = 0.5986. Left panel: gij(r) for the
different layers. Note the weakening of the structural correlations between the
two layers in g12(r). Right panel: G6(r) for the two layers.
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layers, it is useful to also calculate the bond-orientational correlation functions

G
(1)
6 (r) =

1

g11(r)

〈
ψ

(1)
6 (0)ψ

(1)
6 (r)

〉
(3.71)

G
(2)
6 (r) =

1

g22(r)

〈
ψ

(2)
6 (0)ψ

(2)
6 (r)

〉
. (3.72)

We observe that long-range hexagonal order in layer 1 is indeed present for all three values

of η presented in Figure 3.34. For intermediate values of η, we observe a small – yet constant

– value of G
(2)
6 (r) (see top right panel of Figure 3.34). This matches with snapshots (not

shown here), which show that particles in layer 2 form a well-ordered rhombic lattice. For

larger values of η, we observe that G
(2)
6 (r) is large for small r, but decays with increasing

distance (see bottom right panel of Figure 3.34). We can interpret this as the presence of

several large crystallites in layer 2 with slightly different orientation. This indicates that

even for η = 1.00, the lattice in layer 2 still tries to adapt to the lattice in layer 1; this leads

to distortions since there is no possible commensurate case of structure Vx with x = 1/3 (it

is not part of the set Nin in Equation 3.21).

We point out that the coupling constant Γ differs for the two layers [175], i.e., Γ1 6= Γ2:

if we assume that the layers are uncorrelated, we obtain that for ρ1 ≈ 2ρ2 the coupling

constants of the two layers, Γ1 and Γ2, are related as Γ1 ≈
√

2Γ2. Though not relevant at

the low temperatures studied in this work, this indicates that layer 2 may melt at a lower

temperature than layer 1 when the coupling between the two layers is small.

3.3.6. Conclusions and outlook

In summary, we have seen that the introduction of asymmetry to the Wigner bilayer model

entails a significant increase in complexity of the observed structures. While we are able

to describe the important structural mechanisms for most parts of the phase diagram, a

complete classification of all observed structures remains elusive. Starting from the known

limiting cases – A→ 0, A→ 1, η → 0, and η →∞ – and previously known results, we have

identified 14 different structures. Out of these, ten are relatively simple and can be used in

the formulation of analytical calculations, which allow for higher precision computations. In

particular structures IIx and S1 were observed with the EA approach and could be adapted

for analytical calculations. Both of these configurations exhibit an intricate, non-trivial

particle arrangement and are remarkably stable. The remaining four structures identified

in the EA approach were too complicated to be included in the analytical approach; these

structures show more complicated structural mechanisms with large unit cell sizes. In the

entire phase diagram, we have observed a strong competition between two opposing effects:

commensurability and effective charge of the layers. While the former plays an important

role for two-dimensional lattices and favors a discrete set of x-values, the latter is related

to the influence of the plate separation η and the background asymmetry A on the charge
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density distribution x.

A publication containing the results presented in this section is currently in preparation

[173].

For future work, a closer investigation of the remaining unclassified regions would be inter-

esting. This could on the one hand be done by performing additional computations with

increased systems sizes. On the other hand, it might be possible to identify the underlying

mechanisms using different ΨRGB-phase diagrams or other order parameters. In addition,

finding a relatively simple parametrization of the more complicated structures and including

them in the analytical approach may help improve accuracy.

3.4. Ellipsoidal particles with embedded linear quadrupole

moment confined to a plane

3.4.1. Introduction

As we have seen in Section 3.1, even a simple equimolar binary mixture can exhibit remark-

ably complex behavior. Similarly, a simple modification to a system’s confining geometry

(in this case a bilayer) can produce a multitude of interesting and non-trivial structures (see

Section 3.3).

In this section, we introduce and adapt another feature in the properties of the particles

which also can lead to an unexpectedly large variety of self-assembly scenarios, namely

anisotropy. We introduce this feature by naturally extending the electrostatic interaction,

studied in Sections 3.1, 3.2, and 3.3, towards higher-order multipoles [62].

Multipoles are often used to model complicated charge distributions in complex particles,

such as organic molecules [176]: in organic chemistry, molecules often exhibit complicated

shapes [177, 178] and can moreover be deformable [179, 180]. In this section, we put forward

a simple model for such organic molecules which captures both an aspheric shape as well

as a complicated charge distribution. We study soft ellipsoidal particles with an embedded

linear quadrupole moment in two dimensions.

3.4.2. Model and approach

Carbon chains are a very common element in organic molecules. Due to the large number

of possible bonds that carbon can form with variety of other atoms, organic molecules can

form highly intricate structures and shapes [178]. The presence of hydrogen or atoms other

than carbon, as well as the geometry of the molecule and the kind of bonds between its

constituent atoms can influence the distribution of partial charges within a molecule [181].
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In electrostatics, any charge distribution can be developed into a multipole expansion [62],

splitting the complicated charge distribution into a point net charge, a point net dipole

moment, a point net quadrupole moment, etc.

The top left panel of Figure 3.35 shows an example of a simple organic molecule, the type of

which we want to model. We approximate the rough shape of the elongated molecule with

an ellipsoid (see top right panel of Figure 3.35). For simplicity, we further assume that the

molecule carries neither a net charge, nor a net dipole moment. The lowest-order remaining

electrostatic interaction is thus quadrupolar. In order to further simplify the problem, we

only consider linear quadrupole moments, such that the quadrupole tensor can be written

as

Q̂ =

 Qxx 0 0

0 Qyy 0

0 0 −Qxx −Qyy

 (3.73)

= Q

 1/2 0 0

0 1/2 0

0 0 −1

 . (3.74)

We study the system in two dimensions, such that the interaction between linear quadrupole

moments can be written as

Vqp(rij, ûi, ûj) =
3

4

Q2

r5
ij

[
1− 5a2 − 5b2 − 15a2b2 + 2 (c− 5ab)2] , (3.75)

where we use

a = ûi · r̂ij (3.76)

b = ûj · r̂ij (3.77)

c = ûi · ûj. (3.78)

Here, the vector rij = ri−rj denotes the distance between particles i and j and r̂ij its direc-

tion. The particle orientation ûi of particle i indicates the direction of the linear quadrupole

moment, which we assume to be identical with one of the two axes of the ellipse and to lie in

the xy-plane. While the interaction (see Equation 3.75) decays rather slowly ∼ 1/r5, we can

still calculate the corresponding lattice sums with sufficient accuracy with real space summa-

tions. In contrast to two dipoles, which tend to line up head-to-tail, two linear quadrupoles

prefer the so-called T-configuration (see Figure 3.36).

In order to model the ellipsoidal shape of the particles, we employ a simple short-ranged

repulsive potential whose dependence on the particle orientations is inspired by the Gay-
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σ⊥

σ‖

σ0

σ0

σ⊥

σ‖

1

Figure 3.35.: Top row: left panel: example of a simple organic molecule composed of several
benzene rings. Molecules of this type are distinctly aspheric and feature a com-
plicated charge distribution. Right panel: we model simple organic molecules
as soft ellipsoidal particles (with aspect ratio κ) with an embedded quadrupole
moment. Due to the high degree of symmetry, the quadrupole moment in this
example is linear. Bottom row: soft ellipsoidal particles with axes parallel and
perpendicular – σ‖ and σ⊥, respectively – to the embedded linear quadrupole
moment. Left panel: κ = σ‖/σ⊥ > 1. Center panel: soft disk (κ = 1) with
embedded linear quadrupole moment. Right panel: κ < 1.
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1

Figure 3.36.: Schematic view of the typical T-configuration in quadrupolar systems. In iso-
lated clusters, neighboring particles assume orthogonal orientations with re-
spect to each other. This two-particle configuration can be repeated to form a
square particle arrangement.

Berne potential [182]

Vell(rij, ûi, ûj) = 4ε(rij, ûi, ûj)

[
σ(rij, ûi, ûj)

rij

]n
, (3.79)

where

ε(rij, ûi, ûj) = ε0 = const. (3.80)

χ =
κ2 − 1

κ2 + 1
(3.81)

σ(rij, ûi, ûj) = σ0

{
1− χ

2

[
(a+ b)2

1 + χc
+

(a− b)2

1− χc

]}−1/2

. (3.82)

Throughout, we have set n = 18. We define the basic length scale σ0 as the diameter of a

soft disk (κ = 1), such that the area occupied by each ellipse is the same for any value of κ

π

4
σ‖σ⊥ =

π

4

(√
κσ0

)(√1

κ
σ0

)
(3.83)

=
π

4
σ2

0 = const. (3.84)

While the shape of the ellipse is the same for κ ↔ 1/κ, the orientation of the embedded

quadrupole moment is not (see bottom panels of Figure 3.35). Investigating values of κ both

smaller and larger than unity thus allows us to study both cases within the same model.

We perform calculations under NPT -conditions, where the relevant thermodynamic poten-

tial for vanishing temperature is the enthalpy per particle

H

N
=

E

N
+ P

S0

N
. (3.85)
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We use reduced units throughout by defining the scales for length, σ0, and energy, ε0: the

resulting reduced quadrupole moment (Q∗)2 = Q2/4πεpmσ
5
0ε0 (where εpm = 1 is the relative

permittivity) and reduced pressure P ∗ = Pσ0/ε0 define – together with the aspect ratio

κ = σ‖/σ⊥ – the phase diagram.

First we will treat the problem at zero temperature in order to identify the ground state

structures and the basic strategies for self-assembly under specified external conditions. We

employ our EA tool to investigate the ground state structures over a range of κ for several

different combinations of (Q∗)2 and P ∗. Due to the large computational effort – necessitated

by the variable density and the additional degrees of freedom of the particle orientations –

we restrict ourselves to cells containing up to twelve particles.

Then, in order to determine their thermodynamic stability, we use the obtained structures

as input for subsequent Molecular Dynamics (MD) simulations performed by Thomas Heine-

mann. The obtained results provide further insight into the melting behavior of the system.

3.4.3. Theory and order parameters

In order to quantify the positional order of a configuration, we again use two-dimensional

BOOPs (see Section 2.4), in particular the four-fold Ψ4 and and six-fold Ψ6 parameters.

Since the interaction is anisotropic, it is also useful to quantify the orientational order.

One possible way of doing this is via the tensor order parameter

T̂ = 2
1

N

N∑
i=1

ûi ⊗ ûi − 1 (3.86)

=

 Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

 . (3.87)

The more commonly used nematic order parameter S is defined as the largest eigenvalue of

T̂ ; its equivalent is a trivial problem in two dimensions (if – as we assume – ûi is in-plane)

since the tensor is traceless and Txy = Tyx:

T̂ =

(
Txx Txy
Txy Tyy

)
(3.88)

S =
√
T 2
xx + T 2

xy. (3.89)

The eigenvector associated with S is called the director d̂ and indicates a preferred orientation

in the configuration. Note that S is always positive, except when all elements of T̂ are zero;

this occurs when no preferred direction is present in the system.

We can also quantify the orientational order using Voronoi construction and the alignment

111



3.4. QUADRUPOLAR ELLIPSOIDS CHAPTER 3. SYSTEMS

of nearest neighbors

β =
1

N

N∑
i=1

1∑
j∈Ni

lij

∑
j∈Ni

lij |ûi · ûj| , (3.90)

where we again use the modification with the side length of the Voronoi polygons (see

Subsection 2.4.5). In addition, we can also define order parameters combining positional

and orientational order [183, 184]

α =
1

2N

N∑
i=1

1∑
j∈Ni

lij

∑
j∈Ni

lij
∣∣(ûi · r̂ij)2 + (ûj · r̂ij)2

∣∣ . (3.91)

Since the phase of the system is determined by three independent parameters – κ, (Q∗)2,

and P ∗ – it might be advantageous to investigate possible scaling relations between these

quantities. For simplicity, we assume that the short-range interaction is hard (thus Eell = 0

for allowed configurations). The remaining two contributions to the enthalpy

H = Eqp + PS0, (3.92)

thus scale as

Eqp ∼ (Q∗)2 (3.93)

PS0 ∼ P ∗. (3.94)

Therefore, as long as the ratio (Q∗)2/P ∗ is kept constant, we expect similar structures for a

given value of κ. However, we emphasize that this scaling relations is only valid in the limit

of very hard particles, i.e., for very large values of n in Equation 3.79.

3.4.4. Results

In the following, we focus on results obtained for (Q∗)2 = 1 and P ∗ = 1, varying κ over an

evenly spaced grid of 210 points in the range [0.4, 2.5], since this set of parameters exhibits

most of the interesting features of the system. In addition, we discuss some other special

cases. We start with a general discussion of the different order parameters as κ varies before

elaborating on the different observed structures.

Phase diagrams

The short-range potential remains unchanged upon inversion of the two axes κ↔ 1/κ. This

is, however, not true for the quadrupolar interaction, resulting in a different shape of both

enthalpy per particle H∗(κ)/N and order parameters (see top panel of Figure 3.37). For
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Figure 3.37.: Reduced enthalpy and order parameters of the observed structures as functions
of κ (logarithmic axis). Top panel: (Q∗)2 = 1 and P ∗ = 1. Bottom row: left
panel: (Q∗)2 = 0.1 and P ∗ = 0.1. Right panel: (Q∗)2 = 10 and P ∗ = 10. Note
that η is larger than unity for most values of κ in this case.
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(Q∗)2 = 1 and P ∗ = 1, the enthalpy curve shows a pronounced local minimum around κ ≈ 1

(where the T-configuration is dominant) and diverges for κ → 0 and κ → ∞ (where the

formation of parallel rows is favorable). The local maxima occurring between these regions

signal the formation of more complicated structures, which is also reflected in the different

order parameters. The nematic order parameter S shows that for κ far from unity, a single

orientation prevails (thus S = 1); whereas we observe S = 0 for κ ≈ 1, indicating the

absence of a preferred direction. If we contrast S with the similar order parameter β, we

see that there are actually two distinct regions with S = 0 and that the angles between the

orientations of nearest neighbors is π/2 and π/3, respectively.

In order to check our scaling relation for hard quadrupolar ellipsoids (see Equations 3.93

and 3.94), we can compare results for several points with the same ratio (Q∗)2/P ∗. The

two bottom panels of Figure 3.37 show the phase diagrams for (Q∗)2 = 0.1, P ∗ = 0.1 and

(Q∗)2 = 10, P ∗ = 10. We can immediately see that the general shape of the order parameters

and the enthalpy as functions of κ is partly similar, in particular for smaller values of (Q∗)2

and P ∗. However, results differ significantly in some regions, i.e., some structures are not

observed at all. We thus conclude that even for the exponent n = 18 used in this work for

the short-range repulsion, the behavior of the ellipsoidal particles is still remarkably different

from the hard limit.

Structures with one orientation

For κ-values far from unity, i.e., in case of strong anisotropy, the ellipsoids tend to align in a

parallel fashion. They accomplish this by forming tilted rows with high density, denoted the

parallel displaced-configuration (PD-configuration, see top and bottom right panels of Figure

3.38). Since the head-to-tail arrangement is unfavorable for quadrupoles, neighboring rows

repel each other, leading to large gaps between these lanes. The parallel offset between rows

can be very sensitive to changing κ, leading to a slight modulation of BOOPs. An interesting

special case occurs for vanishing quadrupole moment (Q∗)2 = 0, where we observe a distorted

hexagonal lattice, denoted the parallel-configuration (P-configuration, see left panel of Figure

3.38).

Structures with two orientations

For κ close to unity, particles prefer orthogonal orientation with respect to their nearest

neighbors. For large (Q∗)2 and small P ∗, a perfectly orthogonal particle orientations with

an underlying square pattern can be realized, denoted the square T-configuration (Tsq-

configuration, see top left panel of Figure 3.39). However, another similar arrangement

– this time with an underlying hexagonal pattern – is possible, denoted the hexagonal T-

configuration (Thex-configuration, see bottom left panel of Figure 3.39). Note that in this

configuration perfect orthogonal orientation of nearest neighbors is, however, only realized
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1 1

1

1

Figure 3.38.: Snapshots of configurations with one preferred orientation. Left panel: P-
configuration for (Q∗)2 = 0, P ∗ = 1, κ = 1.5. Top right panel: PD-
configuration for (Q∗)2 = 1, P ∗ = 1, κ = 2.1. Bottom right panel: PD-
configuration for (Q∗)2 = 1, P ∗ = 1, κ = 0.4.
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Figure 3.39.: Snapshots of configurations with two preferred orientations. Different colors
indicate different orientations. Left column: top panel: Tsq-configuration for
(Q∗)2 = 1, P ∗ = 1, κ = 1. Bottom panel: Thex-configuration for (Q∗)2 =
0.1, P ∗ = 10, κ = 1. Center column: top panel: HBdense-configuration
for (Q∗)2 = 1, P ∗ = 1, κ = 1.38. Bottom panel: HBdense-configuration for
(Q∗)2 = 1, P ∗ = 1, κ = 0.58. Right column: top panel: HBloose-configuration
for (Q∗)2 = 1, P ∗ = 1, κ = 1.83. Bottom panel: HBloose-configuration for
(Q∗)2 = 1, P ∗ = 1, κ = 0.48.
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for κ = 1.

The two T-configurations discussed above are special cases of the more general herringbone-

configuration (HB-configuration). Here, the relative orientation between neighboring parti-

cles changes with κ. Interestingly, the shape of β indicates a first order transition within the

HB-configuration (see top panel of Figure 3.37), i.e., at some point the relative orientation

of neighboring particles is discontinuous. A closer investigation of the associated particle

configurations reveals the existence of two different versions of the HB-configuration:

• For κ somewhat closer to unity, we observe a dense structure, which we denote HBdense

(see top and bottom center panels of Figure 3.39).

• For κ slightly further away from unity, we observe the formation of rows of alternating

orientation (see top and bottom right panels of Figure 3.39). Since neighboring rows repel

each other, this structure has a lower density; we thus denote it HBloose.

Structures with three orientations

1

1

1

Figure 3.40.: Snapshots of configurations with three preferred orientations. Different colors
indicate different orientations. Top panel: TH-configuration for (Q∗)2 = 1,
P ∗ = 1, κ = 1.5. Bottom panel: TH-configuration for (Q∗)2 = 10, P ∗ = 1,
κ = 0.65.

A very interesting phenomenon is the occurrence of a structure with three preferred orien-

tations. Similar to the T-configurations, we cannot define a preferred direction in this case,

resulting in a nematic order parameter S = 0. The particle arrangement here is reminiscent
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of a trihexagonal tiling, consisting of hexagons and triangles; we thus denote it the TH-

configuration (see Figure 3.40). The relative orientation between neighboring particles of

π/3 is reflected in the order parameter β = cos2(π/3) = 1/4 (see top panel of Figure 3.37).

Note that the stability of the TH-configuration strongly depends on the choice of (Q∗)2 and

P ∗, whereas some variant of the HB-configuration can almost always be observed for some

range of κ.

More complicated structures

1 1 1

1

Figure 3.41.: Snapshots of more complicated configurations. Different colors indicate differ-
ent orientations. Left panel: B-configuration for (Q∗)2 = 1, P ∗ = 1, κ = 1.66.
Center panel: B-configuration for (Q∗)2 = 10, P ∗ = 10, κ = 0.52. Right panel:
B-configuration for (Q∗)2 = 1, P ∗ = 0.1, κ = 0.53.

For some small ranges of κ, we also observe more complicated structures not conforming

to the structural mechanisms described above. These structures require a larger number of

particles per cell. While we observe several different variants of such structures, they share a

common mesh-like lattice, where chains of particles undulate back and forth (see Figure 3.41).

We denote these branched structures (B-configuration). The similarity of B-configurations

to what we would expect at finite temperature, i.e., the undulation of previously straight

lines, indicates that they may actually represent metastable structures. Since they can also

be interpreted as a hybrid between the two different HB-configurations, it is also possible

that the system phase separates.

Stability and melting of observed structures

MD simulations performed by Thomas Heinemann [185] reveal that the structures observed

at zero temperature remain stable at low temperature (T ∗ = kBT/ε0 = 0.1, see second

column of Figure 3.42). With increasing temperature, more and more defects start to form

(see third column of Figure 3.42). The most common of these is a slight wave-like modulation

of previously straight lines. Finally, crystalline order is rapidly lost once the temperature

is raised above a certain threshold value (see fourth column of Figure 3.42); the related
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κ = 1.00 T ∗ = 0 T ∗ = 0.1 T ∗ = 0.4 T ∗ = 0.5

κ = 1.38 T ∗ = 0 T ∗ = 0.1 T ∗ = 0.3 T ∗ = 0.4

κ = 1.50 T ∗ = 0 T ∗ = 0.1 T ∗ = 0.3 T ∗ = 0.4

κ = 1.83 T ∗ = 0 T ∗ = 0.1 T ∗ = 0.3 T ∗ = 0.4

κ = 2.10 T ∗ = 0 T ∗ = 0.1 T ∗ = 0.5 T ∗ = 0.6

1

Figure 3.42.: Snapshots of MD simulations (courtesy of Thomas Heinemann [185]) for differ-
ent values of κ = σ‖/σ⊥ (as labeled) and T ∗ = kBT/ε0 (as labeled). Different
colors indicate different particle orientations (see inset in the top left panel).
First row: κ = 1 (Tsq-configuration). Second row: κ = 1.38 (HBdense-
configuration). Third row: κ = 1.5 (TH-configuration). Fourth row:
κ = 1.83 (HBloose-configuration). Fifth row: κ = 2.1 (PD-configuration).



3.4. QUADRUPOLAR ELLIPSOIDS CHAPTER 3. SYSTEMS

temperature depends strongly on κ. Configurations with κ ≈ 1 (Tsq-configuration) and

κ far from unity (PD-configuration) are the most stable ones (losing order for T ∗ = 0.5

and T ∗ = 0.6, respectively), while the complicated B-configurations (not shown) melt very

quickly or transform into other configurations (as low as T ∗ = 0.2).

Obtaining the observed ground state configurations via simulated annealing is only successful

for very few parameter points. In general, it is marred by frustration effects, especially for

κ far from unity, where particles have difficulties rotating.

3.4.5. Conclusions and outlook

In summary, we have derived a simple model for elongated organic molecules without a

net charge or dipole moment: this model consists of soft ellipsoids with an embedded linear

quadrupole moment. The preferred orthogonal arrangement of linear quadrupole moments in

close proximity to each other leads to an interesting contrast compared to dipolar systems,

where particles prefer parallel arrangement, thus often forming chains. In addition, the

system is characterized by a competition between the shape anisotropy of the ellipsoids and

the quadrupolar interaction. We have investigated the system for several different parameter

points in the [(Q∗)2,P ∗]-plane and observed several different mechanisms depending on the

shape anisotropy κ. While we always observed configurations of parallel rows for κ far

from unity, the sequence of structures between these two limiting cases strongly depends on

the competition between the short- and long-range interactions. We observe two different

configurations with orthogonal particle arrangement for κ ≈ 1, one based on a square lattice,

the other on a hexagonal lattice. Intermediate ranges of κ – both for κ > 1 and κ < 1 –

are mostly dominated by two variations of the herringbone configuration. In addition, we

sometimes observe an interesting, non-trivial lattice based on the trihexagonal tiling. In very

small ranges of κ, more complicated branched structures can emerge. However, these are

generally very unstable at finite temperature as shown in complementary MD simulations,

indicating metastability at vanishing temperature.

A publication containing the results presented in this section is currently in preparation

[185].

For future work, it would be useful to extend our simple model to general quadrupole mo-

ments and slab (or even fully three-dimensional) geometries. This would nicely tie in with

the huge experimental interest in the self-assembly of complex organic molecules on surfaces

[177, 181]. Some of these systems show a remarkable variety of different structures, which

can even be controlled via external parameters, which opens up many interesting technolog-

ical applications [186, 187]. The understanding of our simple model could serve as a starting

point for the investigation of the more complex molecules used in these studies. Extending

the model step-by-step towards more complicated shapes and effective interactions would

help with the many competing effects [180, 188].
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A closely related system are inverse patchy colloids (IPCs): colloids decorated with charged

patches, leading to a charge distribution close to a linear quadrupole moment. IPCs have

been observed to form similar structures in both simulations [189] and experiments [190].
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4. Conclusions

In this thesis, we have investigated the ordered equilibrium structures of several simple long-

ranged systems. Each of these systems was characterized by some property that induced a

sufficient degree of complexity for interesting phenomena to be observed.

Our approach consisted in first determining a system’s ground state configuration using an

optimization tool based on evolutionary algorithms (EAs). We then used the obtained results

as starting points for investigations of their mechanical and thermodynamic stability using

either Monte Carlo (MC) or Molecular Dynamics (MD) simulations at low temperatures. In

order to quantify and classify the observed structures, we defined suitable order parameters.

The first system was based on classical point charges confined to a planar geometry, a well

established system known as the Wigner monolayer. Its ground state is given by a simple

hexagonal (equilateral triangular) lattice. Comparing our results to data available in the

literature, we could verify the accuracy of our energy calculations based on Ewald summation

and found excellent agreement. We then increased the complexity of the system by extending

it to an equimolar binary mixture of charges confined to a planar geometry. The consideration

of a simple phase separation scenario – based on complete de-mixing of the two components

– allowed us to analytically calculate a reference energy to put our results in relation with.

Considering the entire interesting range of ratios between the two charges, we observed

six non-trivial ordered ground state configurations and a range where our phase separation

scenario was favorable; the relevant energy differences between competing structures were

three orders of magnitude smaller than the total energy of the system. A simple structure

based on two intertwining square lattices was found to be remarkably stable. For future work,

introducing the molar fraction as an additional parameter, i.e., investigating non-equimolar

binary mixtures, may be of interest. Not only would this substantially increase the number

of possible structures, but it would also allow more complicated phase separation scenarios

with two phases: one being rich in the first charge species, the other in the second.

The second system was based on a different way of introducing complexity to the Wigner

monolayer: this time by vertically displacing a single charge. The two limiting cases for

vanishing and infinite separation distance are well-known and allowed us to construct two

different structural branches, denoted the ”out”- and ”in”-branches, respectively. Global

energy minimizations showed that these branches are indeed the only relevant scenarios for

the entire range of separation distances. We observed that the two branches remain meta-

stable outside their respective stability regions even for (small) finite temperatures (as found

in MC simulations); this provided evidence for a significant energy barrier between the two

branches. Using the nudged elastic band (NEB) algorithm, we calculated the approximate

energy barrier for a simple transition path. We found that the energy barrier grows with
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system size.

The third system we investigated was the Wigner bilayer model. Since this system received

a considerable amount of attention in the past, high-accuracy reference data are available

for the case that both layers are characterized by the same background density and particle

arrangement (denoted the symmetric case), allowing us to benchmark both our energy cal-

culations and global optimizations. Again, we obtained excellent agreement in the observed

energy and particle arrangement, reproducing all five observed structures and their stabil-

ity regions. We then introduced additional complexity by adding asymmetry between the

two plates’ background charges. The two-dimensional phase diagram (in plate separation

and charge asymmetry factor) was characterized by several interesting structural mecha-

nisms, some of which were suitable for analytical treatment performed by Ladislav Šamaj

and Emmanuel Trizac. Some of these structures were remarkably complex: to us, lattices

featuring both triangular and rectangular structural units were of particular interest; these

were similar to elongated triangular or snub square Archimedean tilings, which – in turn

– are related to precursors of quasi-crystalline structures. All known limiting cases – both

for the plate separation and for the asymmetry factor – were correctly reproduced. The

structures observed in the symmetric case remained stable within a significant region of the

phase diagram in the asymmetric case, in particular the square bilayer. The de-stabilization

of the monolayer crystal in this model was directly linked to the problem of vertically dis-

placing a single charge (similar as in the system discussed above). In order to quantify the

observed structures, we used bond-orientational order parameters (BOOPs) and the num-

ber density ratio between the two layers. Using in addition an RGB color scheme for three

BOOPs (denoted ΨRGB-scheme) we were able to identify many distinct regions in the phase

diagram characterized by the same underlying structure formation. However, the structures

in some regions of the phase diagram remained too complicated to classify. Most observed

structures were characterized by a strong competition between commensurability consider-

ations (favoring a discrete set of charge density ratios) and the effective charges of the two

layers (favoring a continuous change in the charge density ratio as the plate separation and

charge asymmetry factor are changed). This competition can lead to frustration, making

MC simulations difficult; this problem could be largely avoided by choosing a proper starting

configuration featuring an appropriate charge density ratio between the two layers.

The fourth system was a simple model for complex organic molecules; it was based on

soft ellipsoids with an embedded linear quadrupole moment in a planar geometry in or-

der to model both the aspheric shape and complex charge distribution of such molecules.

Complexity was introduced by the competition between short- and long-range anisotropic in-

teractions, which each favor different two-particle arrangements. We observed several basic

structural mechanisms based either on the formation of uniform crystals or on the sepa-

ration into parallel rows, which repel each other. Apart from a few more complicated –

and possibly meta-stable – configurations, observed structures could be characterized by

the occurrence of a single, two, or three specific particle orientations. Of particular interest

were structures featuring square and trihexagonal lattices. Supplementary MD simulations
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showed that the observed structures remain stable for low temperatures; strongly elongated

ellipsoids proved to form the most stable structures, followed by spherical ones. For future

work, extending our simple model to incorporate more properties of experimental systems

such as organic molecules on surfaces or inverse patchy colloids (IPCs) would be promising.

Such an endeavour entails moving to a quasi-2D geometry to allow multilayer arrangements,

introducing particle-substrate interactions, and including more interaction sites per particle

to more closely model a molecule’s distinct shape and charge distribution. The structure

formed by special organic molecules on inorganic substrates was shown to be switchable in

experimental studies and gaining control of their self-assembly process would allow for both

tunable materials and technologically interesting surface structures and properties.
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Université Paris-Sud 11 – Jean-Jacques Weis, Dominique Levesque, Jean-Michel

Caillol, Cécile Appert-Rolland, Hendrik-Jan Hilhorst, Robert Salazar Rodriguez,

and Sarah Klein – for their hospitality during my stays in France. I have always enjoyed

going there.

I am grateful to my friends both in Vienna and in Linz for providing much-needed distrac-

tions. Finally, I am very thankful for the continuing support and encouragement of my

family – Karin Antlanger, Leo Furtlehner, and Marlies Antlanger – throughout all

these years.

128



Bibliography

[1] Y. Yuan, T. Yin, M. Rong, and M. Zhang. Self healing in polymers and polymer

composites. Concepts, realization and outlook: A review. Express Polym. Lett., 2:238,

2008.

[2] E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electron-

ics. Phys. Rev. Lett., 58:2059, 1987.

[3] T. Krauss, D. Rue, R. De La Rue, and S. Brand. Two-dimensional photonic-bandgap

structures operating at near-infrared wavelengths. Nature, 383:699, 1996.

[4] N. Engheta and R. Ziolkowski. Metamaterials: Physics and Engineering Explorations.

Wiley, 2006.

[5] S. Guenneau, A. Movchan, G. Petursson, and S. Ramakrishna. Acoustic metamaterials

for sound focusing and confinement. New J. Phys., 9:399, 2007.

[6] J. Page. Metamaterials: Neither solid nor liquid. Nature Mater., 10:565, 2011.

[7] R. Shelby, D. Smith, and S. Schultz. Experimental Verification of a Negative Index of

Refraction. Science, 292:77, 2001.

[8] W. Lu, J.-F. Jin, Z. Lin, and H. Chen. A simple design of an artificial electromagnetic

black hole. J. Appl. Phys., 108:064517, 2010.

[9] H. Yan, S. Park, G. Finkelstein, J. Reif, and T. LaBean. DNA-Templated Self-

Assembly of Protein Arrays and Highly Conductive Nanowires. Science, 301:1882,

2003.

[10] L. Di Michele, F. Varrato, J. Kotar, S. Nathan, G. Foffi, and E. Eiser. Multistep

kinetic self-assembly of DNA-coated colloids. Nature Commun., 4:2007, 2013.

[11] O. Cayre, V. Paunov, and O. Velev. Fabrication of asymmtrically coated colloid par-

ticles by microcontact printing. J. Mater. Chem., 13:2445, 2003.

[12] L. Hong, S. Jiang, and S. Granick. Simple Method to Produce Janus Colloidal Particles

in Large Quantity. Langmuir, 22:9495, 2006.

[13] A. Pawar and I. Kretzschmar. Fabrication, Assembly, and Applications of Patchy

Particles. Macromol. Rapid Commun., 31:150, 2010.

[14] S. Gubin, Y. Koksharov, G. Khomutov, and G. Yurkov. Magnetic nanoparticles:

preparation, structure and properties. Russ. Chem. Rev., 74:489, 2005.

129



Bibliography Bibliography

[15] M. Klokkenburg, C. Vonk, E. Claesson, J. Meeldijk, B. Erné, and A. Philipse. Di-
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[167] R. Messina and H. Löwen. Reentrant Transitions in Colloidal or Dusty Plasma Bilayers.

Phys. Rev. Lett., 91:146101, 2003.

[168] M. Mazars. Bond orientational order parameters in the crystalline phases of the clas-

sical Yukawa-Wigner bilayers. EPL, 84:55002, 2008.

[169] R. Morf. Temperature Dependence of the Shear Modulus and Melting of the Two-

Dimensional Electron Solid. Phys. Rev. Lett., 43:931, 1979.

[170] R. Gann, S. Chakravarty, and G. Chester. Monte Carlo simulation of the classical

two-dimensional one-component plasma. Phys. Rev. B, 20:326, 1979.

[171] M. Mazars. The melting of the classical two-dimensional Wigner crystal. EPL,

110:26003, 2015.
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A. Appendix

A.1. Ewald summation for a bilayer Wigner crystal

In this section, we present the derivation of Ewald summation for a system of classical

point charges in the presence of two parallel planar uniform neutralizing backgrounds. This

derivation of the intra-layer terms is similar to the case of the Wigner monolayer (see Sub-

section 2.1.3), but introduces interactions between the two layers, i.e., inter-layer terms. We

first define the system and its parameters (see Subsection A.1.1) and then derive the Ewald

summation (see Subsection A.1.2). Finally, we comment on the implementation of Ewald

summation and computational details (see Subsection A.1.3).

A.1.1. Bilayer Wigner crystal

The bilayer Wigner crystal is periodic in two dimensions. It consists of N point charges

Qi per unit cell and two parallel planar uniform backgrounds with charge densities σ1 and

σ2, respectively. For simplicity, we assume that all charges are indistinguishable, i.e., Qi =

Q. Since the charges condense on either plate at zero temperature (due to the Earnshaw

theorem), we can define the particle number densities at the two plates ρ1 = N1/S0 and

ρ2 = N2/S0, such that N1 +N2 = N and ρ1 + ρ2 = ρ. Electro-neutrality states that

ρQ+ σ = 0 (A.1)

(ρ1Q+ σ1) + (ρ2Q+ σ2) = 0. (A.2)

We define local electro-neutrality if each layer carries no net charge, i.e., ρiQ + σi = 0 for

i = 1, 2.

A.1.2. Derivation of Ewald summation for the bilayer Wigner crystal

The total interaction energy of the system E can be divided into intra- (11 and 22) and

inter-layer (12 and 21) terms, as well as in particle-particle (pp), particle-background (pb),

and background-background (bb) terms. Starting from the different contributions

Epp = E(1)
pp + E(2)

pp + E(12)
pp + E(21)

pp (A.3)

Epb = E
(1)
pb + E

(2)
pb + E

(12)
pb + E

(21)
pb (A.4)

Ebb = E
(1)
bb + E

(2)
bb + E

(12)
bb + E

(21)
bb , (A.5)
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we again seek to derive the Ewald summation and arrive at separate real space sums, recip-

rocal space sums, constant contributions, and divergent terms

E(r) = E(r,1) + E(r,2) + E(r,12) + E(r,21) (A.6)

E(k) = E(k,1) + E(k,2) + E(k,12) + E(k,21) (A.7)

E(c) = E(c,1) + E(c,2) + E(c,12) + E(c,21) (A.8)

E(div) = E(div,1) + E(div,2) + E(div,12) + E(div,21). (A.9)

The intra-layer parts are identical to the ones derived for the monolayer system and we

obtain immediately

E(r,1) =
1

2
Q2
∑
i∈L1

∑
j∈L1

′∑
R

1

r
erfc (αr) (A.10)

E(k,1) =
π

S0

Q2
∑
G 6=0

wwwww∑
i∈L1

exp (ıG · ri)
wwwww

2
1

G
erfc

(
G

2α

)
(A.11)

E(c,1) = −
√
π

αS0

Q2N2
1 −

α√
π
Q2N1 (A.12)

E(div,1) =

[
2
√
πσ1QN1 +

√
πσ2

1S0 +

√
π

S0

Q2N2
1

]
lim
ε→0

1√
ε
, (A.13)

where exchanging 1→ 2 yields the respective terms for the second layer. Note that the sums

are only carried out for particles in the respective layer. We would also like to point out

that local electro-neutrality is not necessarily given, i.e., the divergent terms do not have to

cancel out.

We now develop the inter-layer terms, splitting them into (pp)-, (pb)-, and (bb)-contributions.

We obtain

E(12)
pp = Q2

∑
i∈L1

∑
j∈L2

∑
R

1

|ri − rj +R| (A.14)

E
(12)
pb = Qσ2

∑
i∈L1

∫
L

∑
R

dr

|ri − r +R| (A.15)

E
(12)
bb = σ1σ2

∑
R

∫
L

∫
L

drdr′

|r − r′ +R| , (A.16)

where exchanging 1↔ 2 yields the complementary terms. The integration over L covers the

entire unit cell, the shape of which is the same for both layers. Using the same identities as
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for the monolayer, we can transform these terms into

E(12)
pp =

1√
π
Q2
∑
i∈L1

∑
j∈L2

∑
R

[
lim
ε→0

∫ α2

ε

dt√
t

exp
(
− |ri − rj +R|2 t

)
(A.17)

+

∫ ∞
α2

dt√
t

exp
(
− |ri − rj +R|2 t

)]
E

(12)
pb =

σ2√
π
QN1

∫ ∞
r=0

2πrdr lim
ε→0

∫ ∞
ε

dt√
t

exp
(
−r2t

)
(A.18)

E
(12)
bb =

σ1σ2

2
√
π

∫
L

∫ ∞
r=0

2πrdr lim
ε→0

∫ ∞
ε

dt√
t

exp
(
−r2t

)
. (A.19)

If we now consider that the relation between the three-dimensional distance r and its two-

dimensional projection s, r2 = s2 + h2, we obtain

E(12)
pp =

1√
π
Q2
∑
i∈L1

∑
j∈L2

∑
R

[
lim
ε→0

∫ α2

ε

dt√
t

exp
(
− |ri − rj +R|2 t

)
(A.20)

+

∫ ∞
α2

dt√
t

exp
(
− |ri − rj +R|2 t

)]
E

(12)
pb =

σ2√
π
QN1

∫ ∞
r=0

2πsds lim
ε→0

∫ ∞
ε

dt√
t

exp
(
−s2t

) (
−h2t

)
(A.21)

E
(12)
bb =

σ1σ2

2
√
π
S0

∫ ∞
s=0

2πsds lim
ε→0

∫ ∞
ε

dt√
t

exp
(
−s2t

)
exp

(
−h2t

)
. (A.22)

We can transform the latter two terms using

2π lim
ε→0

∫ ∞
ε

dt√
t

exp
(
−h2t

) ∫ ∞
s=0

s exp
(
−s2t

)
ds = π lim

ε→0

∫ ∞
ε

dt

t3/2
exp

(
−h2t

)
(A.23)

= −2π3/2h+ 2π lim
ε→0

1√
ε
, (A.24)

into

E
(12)
pb = −σ1σ2πS0h+ σ1σ2

√
πS0 lim

ε→0

1√
ε

(A.25)

E
(12)
bb = −2σ2QN1πh+ 2σ2QN1

√
π lim
ε→0

1√
ε
. (A.26)

For the (pp)-term, we – as before – convert the first part of the integral into a reciprocal

space summation (splitting off the G = 0-term) and carry out the second integral. We

145



A.1. BILAYER EWALD SUMMATION APPENDIX A. APPENDIX

obtain

E(12)
pp =

Q2

√
π

∑
i∈L1

∑
j∈L2

[
π

S0

lim
ε→0

∫ ∞
ε

exp
(
−h2t

) dt

t3/2
(A.27)

+
π

S0

∑
G 6=0

exp (ıG · si) exp (−ıG · sj) lim
ε→0

∫ ∞
ε

exp
(
−h2t

)
exp

(
−G

2

4t

)
dt

t3/2

]

+Q2
∑
i∈L1

∑
j∈L2

∑
R

1

r
erfc (αr)

=
2
√
π

S0

N1N2Q
2

[
−√πherf (αh)− 1

α
exp

(
−α2h2

)
+ lim

ε→0

1√
ε

]
(A.28)

+

√
π

S0

Q2
∑
G 6=0

[∑
i∈L1

exp (ıG · si)
][∑

j∈L2

exp (−ıG · sj)
]

lim
ε→0

∫ ∞
ε

exp
(
−h2t

)
exp

(
−G

2

4t

)
dt

t3/2

+Q2
∑
i∈L1

∑
j∈L2

∑
R

1

r
erfc (αr)

=
2
√
π

S0

N1N2Q
2

[
−√πherf (αh)− 1

α
exp

(
−α2h2

)
+ lim

ε→0

1√
ε

]
(A.29)

+

√
π

S0

Q2
∑
G 6=0

[∑
i∈L1

exp (ıG · si)
][∑

j∈L2

exp (−ıG · sj)
] √

π

G
F (G,α, h)

+Q2
∑
i∈L1

∑
j∈L2

∑
R

1

r
erfc (αr) ,

where we define

F (G,α, h) = exp (−Gh) erfc

(
G

2α
− αh

)
+ exp (Gh) erfc

(
G

2α
+ αh

)
. (A.30)

We now collect all terms as described in the beginning of the section and sort them into real

space contributions, reciprocal space contributions, constant contributions, and divergent

terms. We can simplify the real space summation to

E(r) =
1

2
Q2

N∑
i=1

N∑
j=1

′∑
R

1

r
erfc (αr) . (A.31)

The reciprocal space contribution can be simplified to

E(k) =
π

S0

Q2
∑
G 6=0

N∑
i=1

N∑
j=1

exp (ıG · si) exp (−ıG · sj)
1

G
F (G,α, h) (A.32)
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and the constant contributions to

E(c) = −
√
π

αS0

Q2
(
N2

1 +N2
2

)
− α√

π
Q2N (A.33)

−2πh

S0

(
σ2S0N1Q+ σ1S0N2Q+ σ1σ2S

2
0

)
−2πh

S0

N1N2Q
2

[
herf (αh) +

1√
πα

exp
(
−α2h2

)]
.

Finally, the divergent terms add up to

E(div) =

√
π

S0

[
2σ1S0N1Q+ σ2

1S
2
0 +N2

1Q
2 + 2σ2S0N2Q+ σ2

2S
2
0 +N2

2Q
2 (A.34)

+2σ1σ2S
2
0 + 2σ2S0N1Q+ 2σ1S0N2Q

+2N1N2Q
2
]

lim
ε→0

1√
ε

=

√
π

S0

[S0 (σ1 + σ2) +Q (N1 +N2)]2 lim
ε→0

1√
ε

(A.35)

= (0) lim
ε→0

1√
ε
, (A.36)

i.e., the energy calculation converges as long as global electro-neutrality S0 (σ1 + σ2) +

Q (N1 +N2) is maintained.

A.1.3. Comments and numerical details

Most terms in the Ewald summation for the bilayer system are very similar to the ones

obtained in the planar case. However, we would like to point out a significant difference

in the reciprocal space terms: in contrast to the intra-layer terms, the double sum in the

inter-layer term can not immediately be factorized into two single sums. However, since

particles are located either in the first or the second layer, we can still split the double sum

into three factorized single sums such that |zij| = 0, h

E(k) =
π

S0

Q2
∑
G 6=0

1

G

{[
N∑
i∈L1

exp (ıG · si)
][

N∑
j∈L1

exp (−ıG · sj)
]

erfc

(
G

2α

)
(A.37)

+

[
N∑
i∈L2

exp (ıG · si)
][

N∑
j∈L2

exp (−ıG · sj)
]

erfc

(
G

2α

)

+

[
N∑
i∈L1

exp (ıG · si)
][

N∑
j∈L2

exp (−ıG · sj)
]
F (G,α, h)

+

[
N∑
i∈L2

exp (ıG · si)
][

N∑
j∈L1

exp (−ıG · sj)
]
F (G,α, h)

}
.
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This is only easily doable because we have two possible values for the vertical position.

At finite temperature, charges may also detach from the layers, thus their vertical position

becomes continuous. The increased computational effort required by the double sum can

become prohibitive for even medium sized systems.
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