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Kurzfassung

Systeme der weichen Materie, die typischerweise aus mesoskopischen Teilchen in

einem Lösungsmittel aus mikroskopischen Teilchen bestehen, können bei niedrigen

Temperaturen im festen Aggregatzustand in einer Vielzahl von geordneten Struk-

turen auftreten. Die Vorhersage dieser Strukturen bei bekannten Teilchenwechsel-

wirkungen und unter vorgegebenen thermodynamischen Bedingungen wurde in

den letzten Jahrzehnten als eines der großen ungelösten Probleme der Physik

der kondensierten (weichen) Materie angesehen. In dieser Arbeit wird ein Ver-

fahren vorgestellt, das die geordneten Phasen dieser Systeme vorhersagt; dieses

beruht auf heuristischen Optimierungsmethoden, wie etwa evolutionären Algorith-

men. Um die thermodynamisch stabile geordnete Teilchenkonfiguration an einem

bestimmten Zustandspunkt zu finden, wird das entsprechende thermodynamische

Potential minimiert und die dem globalen Minimum entsprechende Phase identifi-

ziert.

Diese Technik wird auf Modellsysteme für sogenannte kolloidale “Patchy Particles”

angewandt. Die “Patches” sind dabei als begrenzte Regionen mit abweichen-

den physikalischen oder chemischen Eigenschaften auf der Oberfläche kolloidaler

Teilchen definiert. “Patchy Particles” weisen, zusätzlich zur isotropen Hart-

kugelabstoßung der Kolloide, sowohl abstoßende als auch anziehende anisotrope

Wechselwirkungen zwischen den “Patches” auf. Durch neue Synthetisierungs-

methoden können solche Teilchen mit maßgeschneiderten Eigenschaften erzeugt

werden. Deshalb werden “Patchy Particles” oft als neuartige Bausteine angese-

hen, die sich unter idealen Bedingungen ohne weitere äußere Einflussnahme zu

wohldefinierten makroskopischen Strukturen zusammenfügen können. Die Systeme,

die in dieser Arbeit (sowohl in zwei als auch in drei Dimensionen) behandelt wer-

den reichen von aus wenigen Teilchen bestehenden Clustern bis hin zu unendlich

ausgedehnten Kristallen.





Abstract

Soft matter systems, typically consisting of mesoscopic particles in a microscopic

solvent, can form a surprisingly rich variety of solid, ordered structures at low

temperature. A reliable prediction which solid phases will appear for given particle

interactions under certain thermodynamic conditions has been considered a major

problem in (soft) condensed matter physics for several decades. In this thesis, we

present a prediction method based on heuristic global optimization schemes such as

evolutionary algorithms. In order to find the most stable configuration of a system

at a given thermodynamic state point, the particle arrangement corresponding to

the global minimum of the appropriate thermodynamic potential, such as the (free)

energy or enthalpy, is identified.

We apply these optimization methods to model systems for so-called patchy col-

loidal particles. Patches are defined as finite regions on the colloidal surface, which

differ in their physical or chemical properties from the rest of the surface. Such par-

ticles are characterized, in addition to the isotropic excluded volume interactions

of the colloids, by attractive as well as repulsive directional interactions induced by

the patches. Novel synthesization techniques yield particles with desired properties.

Thus, patchy particles are often seen as building blocks that are able to self-assemble

into well-defined ordered macroscopic structures under certain external conditions.

The systems we investigate range from finite clusters to bulk crystals in two as well

as three dimensions.
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1. Introduction

The work presented in this thesis is devoted to finding answers to some specific questions

related to self-assembly scenarios in a particular class of soft matter systems, making use of

modern computational tools.

Soft matter is an interdisciplinary field of science, transgressing the borders between physics,

chemistry and biology. Soft matter systems are abundant in our daily lives, either occurring

in nature, such as milk, blood or viruses or as man-made substances, such as ink, cosmetics,

lubricants or plastics, some of them being of technological relevance.

Soft matter systems are typically governed by phenomena taking place at mesoscopic length

scales ranging from 1 nm to 1 µm. Thus, the characteristic length scales are by orders of

magnitude larger than in microscopic, pure atomic systems (∼ 0.1 nm), but are still by

orders of magnitude smaller than in macroscopic systems (∼ 1 cm).

The fact that soft matter can indeed be considered as “soft”, i.e., exhibiting very small

resistance against mechanical deformation or compression, can be understood by taking

characteristic interaction energy (ǫ) and length (a) scales into account, as demonstrated in

Ref. [1]: in soft matter systems at room temperature, the typical ǫ-values are of the same

order of magnitude as in atomic systems (“hard matter”, such as metallic crystals), while the

length scales are by a factor of ∼ 101 − 104 larger. Estimating, for instance, the respective

shear moduli G ∝ ǫ/a3 illustrates the striking difference between the mechanical properties

of soft and hard matter.

The mesoscopic entities (i.e., constituent particles) making up soft matter systems consist

of large numbers of atoms themselves and often occur as a dispersed phase in a solvent of

atomic particles. The resulting large disparity in length scales can lead to very complex

and unexpected behavior in and out of equilibrium, where the internal architecture of the

constituent particles of such systems plays, in general, an important role [2]. Of course

this feature makes the general prediction of phenomena in soft matter systems complicated.

As Pierre-Gilles DeGennes put forward in his Nobel lecture [3], “mild chemical action” can

induce “drastic change in the mechanical properties”. On the other hand, the disparity in

length scales gives rise to the possibility to make a distinction between relevant (mesoscopic)

and irrelevant (microscopic) degrees of freedom, which can be treated in a cumulative, av-

eraged way. In so-called coarse-grained descriptions the irrelevant degrees of freedom are

integrated out and the systems are described in terms of effective interactions between “ef-

fective particles ” of a single component [1]. This often is the only practically feasible way

to treat soft matter systems within theory and computer simulations, as the number of mi-

croscopic degrees of freedom is typically by orders of magnitude larger than the number of

relevant ones, so that complete descriptions are beyond reach.
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1. Introduction

A specific class of soft matter systems are colloids, i.e., mesoscopic particles usually sus-

pended in a microscopic solvent. There are different kinds of colloidal suspensions, often

categorized by the states of aggregation of the solute particles and the solvent. Examples

for the mesoscopic solute are colloidal gold or silver nanoparticles or chemically synthesized

polystyrene spheres, whose interactions can often be approximated by pure excluded volume

models. The so-called depletion interaction, which is mediated by additional polymers in

the solution, can introduce entropy-driven, short-range attractive forces between the col-

loidal particles. On one hand, colloids are interesting for their specific properties, which can

conveniently be tuned in experiments, e.g., by changing the concentration of polymers or

salt in the solution. On the other hand, they can also act as models for atomic systems, as

both classes of systems share many features, if the colloids are viewed from a coarse-grained

perspective based on statistical physics. Colloidal model systems are more accessible than

their atomic counterparts, to which they are mapped. Additionally, it is possible to directly

observe colloids, e.g., by confocal microscopy.

Not only observation, but also direct manipulation of colloidal particles by tailoring their

shapes and interactions, is possible [2], a feature that can hardly be realized in atomic

systems. This kind of experimental freedom has raised much attention from the scientific

community in the past two decades.

One of the prospected applications of such manipulation techniques is the synthesis of specif-

ically designed building blocks [4], which ideally self-assemble into desired target structures

without further interference. Such “bottom up” fabrication methods of functional structures

could lead to devices that are considerably cheaper to produce and are operational at much

smaller length scales than those achievable with conventional “top down” assembly methods,

such as optical lithography. Although it is a very challenging task to attain sufficient control

over size, shape and interactions of the synthesized particles while being able to produce

them in large quantities, many promising and successful steps in that direction have already

been made [5].

In this work, we focus on so-called patchy particles, a class of novel nanoparticles with spe-

cific, anisotropic interactions. Such particles have well-defined areas with different physical

or chemical properties on their, usually spherical, surfaces. These areas (i.e., patches) induce

anisotropy (for more details, cf. Chapter 2).

We investigate the relation between shape and interactions of these building blocks and the

ordered macroscopic structures they can form under given thermodynamic conditions using

computational optimization tools such as evolutionary algorithms (cf. Sec. 3.2). These tools

are capable of locating global minima in vast search spaces in a reliable, efficient way and

thus enable us to identify ordered structures corresponding to minimal values of thermody-

namic potential functions. Such quantities, like energy, enthalpy or Gibbs free energy are

treated as analytic functions of the structural parameters of the system in optimization ap-

proaches. However, within such a framework, it is difficult to evaluate entropic contributions

to thermodynamic potential functions, which are relevant at non-zero-temperature values.
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In order to evaluate the finite temperature behavior of the investigated systems, it is nec-

essary to combine optimization tools with other methods, capable of incorporating entropic

effects (cf. Sec. 3.3).

We perform studies on two- as well as three-dimensional systems of patchy particles. Con-

cerning the former, we investigate a variety of systems containing particles with different

patch numbers and patch decorations. We predict bulk structures into which these parti-

cles are expected to self-assemble under varying pressure by identifying global energy- and

enthalpy minima of the systems at hand. Further, we explore the possibility of forming

Archimedean tilings using suitably designed patchy particles. In the three-dimensional case,

we thoroughly investigate systems consisting of particles with four patches, which have raised

particular interest in recent years. Here, in addition to identifying global minima, we also

search for further low-lying local minima characterizing the energy landscapes (cf. Sec. 3.1) of

finite cluster and infinite bulk systems. Thereby, we suggest candidates for low-temperature

ordered structures that could be formed via self-assembly and perform the first step of in-

depth finite temperature investigations presented elsewhere [6, 7].

The thesis is organized as follows: In Chapter 2, we introduce patchy colloidal particles and

provide a brief overview of available synthesization methods as well as interaction potentials

utilized for modeling them in theoretical approaches and computer experiments. InChapter

3, we describe the theoretical and computational tools we are making use of. Chapter 4 is

devoted to the results we obtained for the patchy particle systems sketched in the preceding

paragraph. In Chapter 5, we provide conclusions and an outlook. Some mathematical

derivations and a study on the performance of the optimization algorithm we use can be

found in the Appendices.
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2. Patchy Particle Systems

2.1. Experimental Overview

Immense progress in synthesizing colloidal particles with desired properties has been made

in the last two decades. A sub-class of such processed colloids that have raised particular

interest in recent years are so-called patchy particles, which are characterized by strongly

anisotropic, highly directional interactions [8]. As argued in Ref. [9], there are some naturally

occurring macromolecules, which could be described as patchy particles. Nevertheless, the

predominant part of the scientific interest in this field is devoted to synthetic systems, whose

features are obtained by patterning certain regions of the surfaces of the underlying colloids,

using materials with different chemical or physical properties. As pointed out in Ref. [10],

the resulting particles have potential applications in diverse fields, like the fabrication of

photonic crystals∗ [11, 12] as well as drug delivery [13] and photovoltaics [14]. The reason

why patchy particles are so attractive for such applications lies in the prospect of the “bottom

up” self-assembly of functional structures: The appropriately synthesized particles are used

as “building blocks”, which are expected to assemble into desired structures without further

intervention.

A number of distinct techniques for manipulating colloidal surfaces in order to obtain patchy

particles has been introduced. These methods make use of very different interaction types,

like electrostatic, magnetic, hydrophobic/hydrophilic, van-der-Waals or DNA base pair in-

teractions are employed at strongly varying length scales, typically ranging from nanometers

to micrometers, so that the denomination “patchy particles” can be seen as an umbrella

term, describing a wide variety of systems. An extensive review of synthesization methods

and their application can be found in Ref. [10].

In the following, we will give an introduction based on this review article, pointing out the

specific advantages as well as the limitations of some fabrication techniques, where two key

criteria are tunability (i.e., the amount of control over the emerging particles that can be

attained) and scalability (i.e., the possibility of mass-production) of the methods.

• Templating: When synthesizing functional particles by templating, anisotropy in

shape and interactions is obtained in a three-step procedure: first, the surface of the

colloidal seed particles is partly covered by a “template”, which often is represented

by a liquid-air or liquid-liquid interface. The particles are partly immersed in the tem-

plate. In the second step, the non-templated part of the particle surface is exposed to

vapor deposition or chemical modification, while the covered part remains unchanged.

∗A type of materials with band gaps in the photonic transmission spectrum.
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2. Patchy Particle Systems

Finally, the template has to be removed without further modifications to the desired

particle constitution. A major advantage of templating is the possibility of synthe-

sizing large quantities of uniform particles. On the other hand, the separation of the

template from the end product is a rather delicate step and the versatility of such

methods is limited: up to now, they are capable of yielding particles with one patch

only. Examples for templating techniques are described in Ref. [15] and [16].

• Colloidal assembly: Clusters of polystyrene spheres, whose shape only depends on

the particle number within the cluster can be obtained by the method described in

Ref. [17]: Roughly speaking, in an oil-water emulsion, polystyrene spheres are bound

to the water-interface within oil droplets. On evaporating the oil (i.e., the droplets

are shrinking), the spheres form spherical packings when the decreasing droplet size

requires the densest possible configuration. Subsequently, after the oil has been com-

pletely removed, the particles are found to be organized in characteristically shaped

clusters, which are stabilized by surface charges. Since the number of constituent par-

ticles within the oil droplets in the initial stage can not be controlled, the resulting

clusters have to be separated according to their mass if monodisperse superparticles

are desired. These structures show well-defined anisotropy in shape, but do not have

strongly directional interparticle interactions. Colloidal assembly is scalable and allows

for synthesis of large quantities of particles.

Making use of so-called liquid protrusions on polystyrene spheres, a related method for

synthesizing superparticles with controllable patch numbers and geometries has been

introduced [18]. However, it is not yet possible to yield “sticky” patches with this

method, the anisotropy is again only present in the shape of the resulting particles.

• Glancing-angle deposition: Deposition of vapor on a monolayer of close-packed

spherical particles is used to produce so-called Janus particles, which are characterized

by two hemispheres with different properties (i.e., the upper hemisphere is covered by

the evaporated substance, while the lower one remains unchanged after the process).

If the vapor is not deployed at a vertical, but an inclined angle with respect to the

monolayer, only a certain part of the surface of each particle is exposed to the reagent,

since the particles act as shadow masks for their respective neighbors. This is a purely

geometric effect, i.e. the size and shape of the generated patch on the particle surface

depends only on the angle of incidence of the vapor relative to the monolayer and the

orientation of the monolayer [19]. The method can be extended to produce particles

with multiple patches when the monolayer is inverted or reoriented between multiple

vapor deposition steps.

One of the most striking examples of bottom-up fabrication of a target structure via

patchy particles up to date was demonstrated using particles with two hydrophobic

poles and an electrically charged middle band synthesized by glancing-angle deposition.

These particles were shown to self-assemble into a two-dimensional Kagome-lattice

under certain conditions [20].
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2.1. Experimental Overview

The main limitation of this technique in the current state is the scalability, i.e. it is

rather difficult to produce large amounts of uniform particles using this scheme.

• DNA functionalized particles: Attaching single- and double-stranded (ss and ds)

DNAs to colloidal nanoparticles is another way to introduce selective anisotropic in-

teractions [21]. The oligonucleotides of the ssDNA can reversibly bind to their com-

plements attached to other particles via Watson-Crick base-pairing interactions. The

method was explicitly introduced in order to direct assembly of the nanoparticles into

desired structures. However, the target structures turned out to be stable in only a

narrow region of temperature and are not very robust to perturbations like polydis-

persity of the nanoparticles; thus, success in fabricating such self-assembled structures

has been limited so far. Nevertheless, some control over emerging crystalline structures

has been demonstrated [22, 23]. Very recent theoretical and simulation studies suggest

novel strategies, involving strong bonding between ssDNAs attached to different par-

ticles competing with weak bonding of DNA strands on the same particle, in order to

increase the crystal forming abilities of such systems [24, 25].

• Patchy magnetic particles: As presented in Ref. [26], patchy particles can also

be fabricated via a “dry self-assembly” technique. Similar to the colloidal assembly

method described above, constituent particles are confined within a liquid droplet.

Here, the droplet is deposited on a solid surface and dried in air. The method pre-

sented in [26] makes use of a mixture of magnetic and non-magnetic constituent par-

ticles within the droplet: during the drying process, a magnetic field is applied, which

influences the spatial distribution of these particles. It has been demonstrated that

magnetic super-particles with one, two or three patches can be obtained via this tech-

nique. The method is scalable using continuous droplet generation, however the ob-

tained particle quantities are rather small.

• Inverse patchy particles: In a recent theoretical contribution [27], a new class of

patchy particles has been introduced, which are termed “inverse” patchy, as their

patches repel each other, while a patch-free region on the surface of each particle

attracts the patches on nearby particles. The proposed system consists of positively

charged polyelectrolyte stars, which are adsorbed on negatively charged colloidal parti-

cles in a solution. The charge ratio can be tuned, so that each colloid adsorbs only two

polyelectrolyte stars, which then occupy opposite polar regions on the colloid, leading

to repulsive polar-polar and attractive equatorial-polar interactions between the re-

sulting complexes. The extent of the patches on the particle surface can be influenced

by the salt concentration of the solution.

Even though the suggestion of such a system is based on promising experimental and

simulation results (e.g., Refs. [27, 28]), it has not yet been fully realized in an experi-

mental multiparticle scenario. Therefore, it is hard to predict how scalable and tunable

the technique will be.

9



2. Patchy Particle Systems

2.1.1. Anisotropy Dimensions

The previous section focuses on patchy particle synthesis and mentions only a few examples

for the wide spectrum of novel nanoparticles fabrication methods. Still, it hints on the

fact that systems emerging from a more general class of novel particle synthesis techniques

have very different features and are often not easy to put into relation. In Ref. [4], a well-

received attempt to introduce a unified classification scheme based on anisotropy parameters

is presented. These parameters, such as (A - patchiness), (B - aspect ratio), (C - faceting),

(E - branching) or (H- roughness) are considered to be orthogonal dimensions, i. e., can be

varied irrespective of each other, so that virtually any conceivable anisotropic building block

can be represented as a vector in such a generalized coordinate system with a finite number

of dimensions. As suggested in Ref. [4], the phase behavior of systems in dependence of the

anisotropy parameters can be displayed in generalized phase diagrams, were the axes can

represent thermodynamic as well as anisotropy parameters.

10



2.2. Models

2.2. Models

Based on the review article Ref. [9], we briefly present different patchy particle models that

have been proposed in the literature in this section. Here, we put a particular focus on the

models that have been used for the investigations presented in Sec. 4. Most of these are

ad-hoc models, introduced to investigate the generic behavior of patchy particles instead of

trying to accurately represent the features of a specific system. An exception to this selection

is the inverse patchy model, which results from a multi-step coarse graining procedure of a

microscopic model specified in Sec. 2.2.3. For an extensive overview of both the models as

well as the theoretical and computational investigations they have been involved in, we refer

to Ref. [9].

2.2.1. Spot-like Models

In so-called spot-like potentials, patchy particles are composed of a (commonly spherical)

excluded volume interaction

VColloid(r) =

{
∞ r < σColloid

0 r ≥ σColloid
, (2.1)

representing the interaction of repulsive colloids of radius σColloid and additional, explicit

attractive interaction sites located on the surface of the colloidal particle. These sites are

usually represented by short-ranged square well interactions

VPatch−Patch(r) =

{
−ǫ r < σPatch

0 r ≥ σPatch
, (2.2)

where usually σPatch ∼ 0.1− 0.2σColloid. The range of the patch-patch interaction as well as

the spatial extent on the surface of the colloidal particle are both governed by σPatch.

These simple models have been extensively used in theoretical as well as in numerical studies,

investigating the basic thermodynamic and dynamic properties of patchy systems in the fluid

regime and the behavior of colloidal gels [29, 30]. Further investigations on gelation were

done using hard ellipsoids as central entities [31].

2.2.2. Extended Patch Models

A second class of patchy models employs isotropic, short range-repulsive and medium-range

attractive interaction potentials, which are modified by factors depending on particle orien-

tations. In these models, the range of the patchy interaction is decoupled from the patches’

extent on the surface of the central particle, as the range of the isotropic potential and the

angular dependence of the orientational factor can be tuned irrespective of each other.

11



2. Patchy Particle Systems

Kern-Frenkel Model

The first such model proposed in the literature [32] is also based on simple excluded volume

and square well pair interactions. Its functional form is given as follows:

VKF(rij, Ω̃i, Ω̃j) = VHSSW(rij) · f(r̂ij, Ω̃i, Ω̃j), (2.3)

where rij and rij represent the interparticle vector and its absolute value, Ω̃i stands for the

spatial orientation of particle i and VHSSW is the hard-core square well potential

VHSSW(rij) =





∞ r < σ

−ǫ σ ≤ r < λσ

0 r ≤ λσ

. (2.4)

The orientational factor f(Ω̃i, Ω̃j) is defined by

f(r̂ij, Ω̃i, Ω̃j) =





1 if

{
(êα · r̂ij ≤ cos δ) for some patch α on particle i

and (êβ · r̂ij ≤ cos δ) for some patch β on particle j

0 otherwise

,

(2.5)

i.e., the parameters λ and δ control the radial range and the angular width of the attractive

interaction.

This freedom makes the Kern-Frenkel model very versatile, as it is possible to model parti-

cles with very focused, point-like patches as well as particles with large attractive regions,

like so-called Janus-particles [33, 34], where the two hemispheres of each particle have dif-

ferent properties. Theoretical and simulation-based studies making use of the Kern-Frenkel

model include calculations of phase diagrams and the gas-liquid critical behavior of patchy

systems [35, 36].

Finally, we note that the functional form given in Eq. (2.3), as introduced in [32], is somewhat

ambiguous. The excluded volume interaction is multiplied by the orientational factor, which

can lead to a term ∞ · 0, which has to be interpreted as ∞ in order to retain the desired

physical behavior. To resolve this issue, Eq. (2.3) should be rewritten if r ≥ σ, so that VHSSW

is only multiplied by f .

Doye Model

This potential, first introduced by Doye and co-workers in Ref. [37], models patchy inter-

actions by a modulated Lennard-Jones (LJ) potential. The steric, isotropic interaction of

the central colloids is represented by the short-range (r ≤ σ) repulsion of the LJ potential,

while the patchy attraction is mapped onto the long-range (r > σ) attractive part of the LJ

potential, multiplied by a factor 0 ≤ Vang ≤ 1, depending on the orientation of the patches

12



2.2. Models

with respect to the interparticle vector rij (cf. Fig. 2.1).

particle i

particle j

rij

patch iα
piα

patch jβ

pjβ

Θiα

Θjβ

Figure 2.1.: Schematic representation of two interacting patchy particles, introducing the
parameters of the interparticle potential of the Doye model [cf. Eqs. (2.6) –
(2.8)].

The LJ potential is given by

VLJ(r) = 4ǫ

[(σ
r

)12
−
(σ
r

)6]
, (2.6)

where σ and ǫ are defining the length- and energy-units. The orientational dependence is

introduced via the modulating factor Vang = Vang(rij,piα,pjβ), which is given by

Vang(rij,piα,pjβ) = exp
[
−(Θ2

iα +Θ2
jβ)/w

2
]
. (2.7)

Here rij = ri − rj is the vector between the centers of masses of particles i and j; the patch

vector, piα, connects the center of mass of particle i with patch α of particle i, Θiα is the

angle enclosed by rij and piα. The parameter w specifies the extent of the patch along the

circumference (in two dimensions) or on the surface (in three dimensions), respectively (see

Fig. 2.1) and thus plays a role similar to δ in the Kern-Frenkel model (cf. above). If not

otherwise stated, we chose w = 2π · 0.05. In total, the functional form of the potential reads

VDoye(rij ,piα,pjβ) =

{
VLJ(rij) rij ≤ σ

VLJ(rij)Vang(rij ,piα,pjβ) σ < rij
. (2.8)

Although the Doye model has been successfully applied in numerous studies (including the

calculation of phase diagrams [6, 38, 39], self-assembly of patchy particles into large target

structures [40–43], and the possible formation of quasicrystals [44] or Archimedean tilings [45]

by patchy systems) there are some problems and drawbacks related to describing patchy

interactions in this coarse-grained way. In the following we are going to list these issues and

we will either show approaches to resolve them or discuss the range of parameters for which

these problems become negligible.
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2. Patchy Particle Systems

Figure 2.2.: Two distinctively different configurations of patchy particles that are character-
ized by the same energy in the Doye model [based on the interparticle potential
defined in Eqs. (2.6) – (2.8)].

Figure 2.3.: Example for a configuration which gives rise to an unphysical contribution to
the system’s binding energy, emerging from an interaction between the outer
particles, if rcut is chosen larger than two particle diameters (i.e., rcut < 2σ).

• Unphysical energy degeneracy: Considering the two particle arrangements shown in

Fig. 2.2, we note that, based on the interaction potential specified in Eqs. (2.6) –

(2.8), these configurations are characterized by the same energy, however, as a particle

arrangement in a realistic system, they are definitely not equivalent. Obviously, this

feature of the model originates from the simplification that Vang – cf. Eq. (2.7) – can

be split into two orientational factors that are independent of each other and both are

separate functions of the orientation of only one patch in addition to rij. However, for

patch width values w that are sufficiently small, this artifact will not play a significant

role, at least in investigations of equilibrium configurations.

• Long range interactions: Since the Lennard-Jones potential is of medium range, while

patchy interactions are usually considered to be short-ranged (like in the models treated

above), VLJ has to be cut (and possibly shifted) at some cut-off distance rcut in order

to represent a realistically short-ranged attraction. This truncation is of particular im-

portance, as unphysical patch-patch interactions between particles that are not near-

est neighbors have to be prevented; as discussed in Fig. 2.3, with a cutoff distance

rcut ≥ 2.2σ, the interaction between the leftmost and the rightmost particle would still

yield a binding energy of 0.035ǫ, even though the interaction should be completely

screened by the colloidal particle located at the center. In our calculations, we have

chosen rcut = 1.9σ in order to make interactions across particles (cf. Fig. 2.3) impos-

sible; nevertheless, we use rcut = 2.5σ in many of the calculations in three dimensions

in order to compare our results with the ones available in the literature [38, 39].
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2.2. Models

• In many studies of patchy particle systems (e.g. in theoretical approaches based on

the Wertheim theory of association [29, 46]) it is required that patches can only form

one bond and that there are no closed loops of bonds. This requirement is not fulfilled

a priori within the Doye model. In order to prevent bonding via multiple pairs of

patches that belong to the same pair of particles, only the patch-patch interaction

which minimizes Θiα + Θjβ is taken into account for each pair of particles. However,

this criterion does not prevent bonding of a particular patch with multiple patches

from different particles. Nevertheless, the single bonding condition can be retained if

the potential cutoff rcut and the patch width w are chosen to be sufficiently short and

narrow, respectively.

• Discontinuous first derivatives: Unlike the Kern-Frenkel potential, the present inter-

action potential VDoye(rij,piα,pjβ) is continuous in all variables. However, its first

derivative with respect to r, ∂VDoye/∂r is not continuous at r = σ (i.e., at the crossover

between isotropic repulsion and patchy attraction) for Θiα + Θjβ 6= 0. The optimiza-

tion algorithms we use to identify ordered equilibrium structures (cf. Sec. 3.2) heavily

rely on local optimization steps and thus on the availability of first derivatives of the

energy function∗. Therefore, we replaced VLJ(r) in Eq. (2.8) by a cubic polynomial for

r0 ≤ r < σ:

Pcore(r) = b3r
3 + b2r

2 + b1r + b0, (2.9)

where r0 is typically chosen to be 0.9σ. The coefficients bi are determined by requiring

continuity of function values and derivatives at r = r0 and r = σ, i.e.

Pcore(r0) = VLJ(r0) (2.10)

∂Pcore

∂r
(r0) =

∂VLJ

∂r
(r0) (2.11)

Pcore(σ) = VLJ(σ) exp

[
−min

α,β
(Θ2

iα +Θ2
jβ)/w

2

]
= 0 (2.12)

∂Pcore

∂r
(σ) =

∂VLJ

∂r
(σ) exp

[
−min

α,β
(Θ2

iα +Θ2
jβ)/w

2

]
, (2.13)

where the minimum min
α,β

is taken over all patch pairs (α, β) on a given pair of particles

(i, j).

In addition, we use another cubic spline, Pcut(r), to ensure that the potential function

vanishes smoothly at the long-distance cutoff r = rcut. In summary, our modifications

can be expressed as the following substitution of Eq. (2.8):

VLJ(r) →





VLJ(r), r ≤ r0,

Pcore(rij,piα,pjβ), r0 < r ≤ σ,

VLJ(r), σ < r ≤ rjoin,

Pcut(r), rjoin < r ≤ rcut,

(2.14)

∗Analytical derivatives of the potential function are computed in App. B.
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2. Patchy Particle Systems

with rjoin = 0.9rcut.

Figure 2.4.: Five-patch particle, decorated with two A and three B patches; in this model
like patches attract each other, while unlike patches repel each other.

Repulsive Interactions between Patches We have also considered the situation of

both attractive and repulsive patches on a colloidal particle: in this model the particles

are decorated by two different types of patches, denoted by indices A or B (cf. Fig. 2.4).

Interactions between different kinds of patches are considered to be attractive, their potential

is given by Eqs. (2.6) – (2.8). The interactions between like patches are assumed to be

repulsive; they are modeled in the following way:

VII(rij,piα,pjβ) =






V (rij,piα,pjβ) rij ≤ r1
VLJ(rij) + [V1(r)− VLJ(r)]Vang(rij,piα,pjβ) r1 < rij ≤ σ

V1(r)Vang(rij,piα,pjβ) σ < rij ≤ r0
−V (rij ,piα,pjβ) r0 < rij

, (2.15)

with I = A or B; further, r1 = 0.95σ and r0 = 6
√
2σ. The potential V1(r) is quadratic in r

and is chosen in such a way that

V1(r1) = VLJ(r1) (2.16)

V1(r0) = −VLJ(r0) = 1 (2.17)

∂V1

∂r
(r0) =

∂VLJ

∂r
(r0). (2.18)

VII(rij,piα,pjβ) is depicted in Fig. 2.5.

Patch Decoration Considerable progress has been made in recent years in synthesizing

patchy particle systems via a number of different experimental techniques. Encouraged

by Refs. [10, 18, 26] we have introduced a geometry parameter g, allowing us to control

the decoration of particles with patches in our calculations in a well-defined way. In the

framework of the anisotropy dimensions introduced in [4] (cf. Sec. 2.1.1), we are able to vary

the parameters (A - patchiness) via w, (B - aspect ratio) via g and (E - branching) via the

number of patches.
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2.2. Models

Figure 2.5.: Potentials for patchy particles with like and unlike patches, schematically rep-
resented in Fig. 2.4. The explicit expressions for these interactions are given in
Eqs. (2.6) – (2.15). Symbols: dotted lines – repulsion between like patches, full
lines – attraction between unlike patches. The potentials are displayed (from top
to bottom for the repulsion and from bottom to top for the attraction) for patch
width w = 2π0.05 and the following angles Θ: 0 (red), 0.2 (green), 0.4 (blue), 1
(purple). The corresponding particle configurations are displayed schematically.

For the four-patch system, we define the geometry parameter as follows:

The first patch, specified by p1, is fixed at the north pole of the particle, while the locations

of the remaining three patches, specified by pi, on the particle surface depend on the value
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2. Patchy Particle Systems

of g:

p1 =
σ

2



0

0

1


 (2.19)

p2 =
σ

2




cos(0π/3) sin(gπ/180)

sin(0π/3) sin(gπ/180)

cos(gπ/180)



 (2.20)

p3 =
σ

2



cos(2π/3) sin(gπ/180)

sin(2π/3) sin(gπ/180)

cos(gπ/180)


 (2.21)

p4 =
σ

2




cos(4π/3) sin(gπ/180)

sin(4π/3) sin(gπ/180)

cos(gπ/180)



 (2.22)

The patch decoration as a function of g is visualized in Fig. 2.6.

90 120 150

g

Figure 2.6.: Visualization of the decoration of the patchy particles (red sphere) by the four
patches (small blue and green spheres) as the geometric parameter g varies over
a representative range. Here and in the following figures the blue spheres specify
the patch located on the north pole of the particle (p1), while the green spheres
specify the remaining three patches (p2, p3 and p4). The red arrow represents
the g value for which the patches form a regular tetrahedron.

2.2.3. Inverse Patchy Colloids (IPCs)

In a recent publication [47], a coarse-grained interaction potential for the inverse patchy parti-

cles introduced in Sec. 2.1 has been constructed in a two-step process: First, the electrostatic

potential around one inverse patchy particle is derived analytically within the Debye-Hückel

theory [48]. Subsequently, the resulting potential function is mapped onto an ad-hoc model,

where the strength of interactions is determined by volume overlaps of spheres representing

the patches and the naked colloids, respectively. Many properties of the exact model can be

retained by suitable mapping, while pair interaction energies of the coarse-grained system

can be evaluated at moderate computational cost.
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2.2. Models

C
B

S1 S2

e

ρ
σ

σ + δ/2

Figure 2.7.: Schematic representation of the coarse-grained IPC model. For a description of
the parameters, see text. Image courtesy of Emanuela Bianchi.

The coarse-grained model consists of two concentric spheres C and B with radii rC = σ and

rB = σ + δ/2 and two additional spheres S1 and S2. These spheres of radius ρ are located

at a distance e ≤ σ on two opposite positions along the diameter of the colloidal sphere

(cf. Fig. 2.7). Since the surfaces of the larger central sphere B and each eccentric sphere S

are required to intersect in one point, these numbers fulfill the relation

δ = 2(e+ ρ− σ). (2.23)

The central sphere C mimics the steric repulsion between the colloids, which interact via

simple excluded volume potentials with each other. On the other hand, the spheres Si,

representing the patches interact repulsively with their counterparts on neighboring particles

and attractively with the larger central sphere B, representing the equatorial region of the

respective particles. The relative strengths of these interactions are controlled by parameters,

which are determined in the mapping procedure.

The spatial position and the orientation of an IPC i is given by vectors ri and n̂i
∗, respec-

tively. With the interparticle vector rij = rj − ri, interparticle distance rij = |rij| and the

angles θi = ∠(rij, n̂i), θj = ∠(−rij , n̂j) and θij = ∠(n̂i, n̂j), the coarse grained potential

between a pair of interacting IPCs i, j reads

VIPC(rij, θi, θj, θij) =





∞ rij ≤ 2σ

U(rij , θi, θj, θij) 2σ ≤ rij ≤ 2σ + δ

0 2σ + δ < rij

. (2.24)

∗Since the model exhibits cylindrical symmetry, a single axis (i.e., a unit vector n̂i) is sufficient to describe
its orientation.
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2. Patchy Particle Systems

U(rij , θi, θj , θij) = wBBuBB + wSSuSS + wBSuBS, (2.25)

is determined by the weight factors wαβ, which depend on the nine spherical overlap volumes

wBB ∝ΩSUM
BB = Ω(BiBj) (2.26)

wSS ∝ΩSUM
SS = Ω(S1

i S
1
j ) + Ω(S1

i S
2
j ) + Ω(S2

i S
1
j ) + Ω(S2

i S
2
j ) (2.27)

wBS ∝ΩSUM
BS = Ω(BiS

1
j ) + Ω(BiS

2
j ) + Ω(S1

i Bj) + Ω(S2
i Bj) (2.28)

and the energy contributions uαβ, which have to be determined in the mapping procedure.

In order to obtain dimensionless weight factors, the overlap volumes are normalized by a

reference value:

wαβ =
ΩSUM

αβ

4/3πσ3
. (2.29)

The overlap volume of two spheres α, β with radii Rα, Rβ and a center-center distance rαβ
is given by

Ωαβ(rαβ) =





0 rmax < rαβ

π
3

[(
2Rα +

R2
α−R2

β
+r2

αβ

2rαβ

)(
Rα − R2

α−R2
β
+r2

αβ

2rαβ

)2]
+

π
3

[(
2Rβ +

R2
α−R2

β
−r2

αβ

2rαβ

)(
Rβ −

R2
α−R2

β
−r2

αβ

2rαβ

)2]
rmin ≤ rαβ ≤ rmax

4
3
πR3

< rαβ < rmin

, (2.30)

where R< = min(Rα, Rβ), rmax = Rα+Rβ and rmin = |Rα−Rβ |. The inter-sphere distances
rαβ can be calculated as functions of the values rij, θi, θj and θij of the respective IPCs i, j.

For details on obtaining the uαβ and the mapping procedure, we refer to Ref. [47].

Since the derivatives of the wαβ with respect to the particle degrees of freedom ri, rj, n̂i and

n̂j can be calculated analytically in a straightforward way (cf. App. C), this model is well

suited for being studied with our optimization algorithm, as long as the interaction between

the central hard spheres C is approximated by some suitable function.
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Figure 2.8.: Example for an interaction potential V (r) of a pair of IPCs as a function of the
interparticle distance r in the equatorial-equatorial (red line), equatorial-polar
(blue line) and polar-polar (green line) configuration. Units and parameter
values are chosen as given in Sec. 4.2.3, for geometry A with no overcharges.
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3. Methods

3.1. Energy Landscapes

Following basic principles of thermodynamics, the equilibrium structure of a system at a

given state point is the one that minimizes the governing thermodynamic potential. In the

isothermal-isobaric ensemble (with constant particle number N , pressure P and temperature

T ), the Gibbs free energy

G = U + PV − TS (3.1)

plays this role, with U representing the potential energy, V the volume and S the entropy

of the system. At T = 0, G reduces to the enthalpy H .

In the canonical ensemble (with constant particle number N , volume V and temperature

T and the Helmholtz free energy F = U − TS), the potential energy U remains the only

relevant term in the thermodynamic potential at T = 0.

If we treat U as a function of the (Cartesian) particle coordinates {x}, the function {x} →
U({x}) is represented by a ξ = dN -dimensional hypersurface in a ξ+1-dimensional space, d

being the dimensionality of the system. For anisotropic rigid bodies, which have d(d− 1)/2

additional rotational degrees of freedom per particle, we obtain

ξ =

(
1 +

d− 1

2

)
dN.

This hypersurface is often called the potential energy landscape (PES). Physical and chemical

properties of many systems (e.g., clusters, glassy systems or the folding of proteins) can be

described in terms of their PES [49].

In the isothermal-isobaric ensemble, V can be treated as a function of {x} in a similar way,

leading, together with U({x}), to the enthalpy landscape H({x}). For S and the (Gibbs) free

energy landscape, the situation is more complicated, since in general, a reliable evaluation

of S({x}) is very difficult. Nevertheless, these quantities can sometimes be approximated

within a reduced system by functions of a small number of order parameters.

The key elements of the PES are stationary points i.e., minima {x}MIN (points from which

an infinitesimal step in any direction leads to an increase in energy) and transition states

{x}TS (specified below). All stationary points are characterized by a vanishing gradient

vector
∂U({x})

∂xi
= 0, (3.2)
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where the index i specifies a particle. These points can be classified into minima, transition

states and higher-order stationary points by the number of negative eigenvalues (termed the

index) of the Hessian matrix
∂2U({x})
∂xi∂xj

. (3.3)

For minima, the Hessian matrix has only positive eigenvalues, while for transition states,

there is exactly one negative eigenvalue (i.e., for a TS, there is exactly one eigenvector,

for which an infinitesimal step in the according direction decreases the energy, while it is

increased by taking such steps in any perpendicular direction). The energetically lowest min-

imum is of particular interest and is called ground state or global minimum, as it determines

the structure the system forms at zero temperature. The global minimum and additional

local minima and their respective densities of states (i.e., the vibrational entropy associated

with the minima) govern the equilibrium behavior of the system at finite temperature, while

the dynamics of the system also depend on the connection of local minima via TS. Fig. 3.1

displays a schematic two-dimensional energy landscape with four local minima and four TS.

Localizing arbitrary minima on a PES when analytic derivatives ∂U({x})/∂xi are available

is in principle a straightforward task, as search algorithms starting from random points

can follow the direction of the steepest gradient descent until a local minimum is reached.

The set of points in configuration space, from which a steepest descent minimization leads

to the same local minimum is often called the “basin of attraction” of the corresponding

minimum. However, there are several more sophisticated and much more efficient techniques

than the steepest descent method available, the limited memory Broyden-Fletcher-Goldfarb-

Shanno (L-BFGS) algorithm [50–52], being the one of our choice. This algorithm requires the

evaluation of function values U({x}) and of derivatives ∂U({x})/∂xi at each iteration and

approximates the Hessian matrix by storing information obtained during a limited number

M of previous optimization steps. As M can usually chosen to be rather small (∼ 3 − 10)

and each iteration requires only O(Mξ) operations, this approach is computationally more

efficient than algorithms which rely on the explicit calculation of the Hessian matrix (such

as Newton’s method).

Locating TS is a considerably more difficult task and in the following we will only give a very

brief overview of the available methods to cope with those difficulties. The common tech-

niques can generally be categorized into single-ended and double-ended methods: A single

ended algorithm searches for a TS starting from a given point on the PES, while a double

ended approach tries to identify a TS between two predefined points, often corresponding

to local minima. Most single-ended algorithms are based on a method called “eigenvector

following” [49]. In contrast to the standard Newton-Raphson method, which can converge to

stationary points of arbitrary index, eigenvector following allows to locate points of a chosen

index by introducing certain constraints and Lagrange multipliers in order to modify search

step directions. For large systems, hybrid eigenvector-following plus minimization techniques

can be employed in order to avoid explicit calculations of the Hessian. A double ended ap-

proach is the so-called nudged elastic band method, which is used in our pathway calculations
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Figure 3.1.: Two-dimensional energy landscape with four local minima (LM; GM signifying
the global minimum) and four transition states (TS).

presented in Sec. 4.2.1. Its basic principle is a geometric interpolation between the struc-

tures corresponding to the pre-defined endpoints. The interpolated structures are locally

optimized, with an additional spring force parallel to the path between the endpoints. Any

candidate TS found by this method are then further refined using the eigenvector-following

method. For a much broader introduction on TS searches, we refer again to Ref. [49] and

the references therein.

Once a representative database of minima and their connections via TS on a given energy

landscape is available, this information can be used in order to characterize the landscape. In

order to visualize the characteristics, some reduction of the generally multidimensional data

is necessary. A very convenient two-dimensional representation are so-called disconnectivity

graphs [53], which suppress any information about the actual location of minima and TS in

configuration space, but rather visualize the (lowest possible) energetic cost of moving the

system from one given local minimum A to a different minimum B. This cost is defined by the
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3. Methods

energetically highest-lying TS that needs to be passed on the path AB. In a disconnectivity

graph, local minima are assigned coordinates on the vertical axis proportional to their energy

values, while the coordinates on the horizontal axis are chosen arbitrarily. TS are categorized

into discrete energetic levels, and connections between minima are drawn according to the

level of the highest TS on the path. Of course, these connections do not necessarily reflect

the probability or rate constant of a transition from A to B, since any other TS on a path

are ignored; nevertheless, disconnectivity graphs generated from representative databases are

able to give a good impression of the general properties of an energy landscape. In Fig. 3.2,

a simple one-dimensional energy landscape and the corresponding disconnectivity graph are

displayed.

x
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LM 3
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LM 5
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LM 3 
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Figure 3.2.: Left: Sketch of a one-dimensional energy landscape with six minima (GM, LM n)
and five transition states (TS n). Right: The same energy landscape represented
as a disconnectivity graph; spacing between energy levels is chosen so that every
TS is separately resolved (in real applications, where hundreds or thousands of
transition states are present in a database, a much more coarse-grained spacing
is chosen).

In Ref. [54], some “archetypal” forms of energy landscapes have been introduced. These are

termed “palm tree”, corresponding to a landscape consisting of a deep funnel with minima

separated by low barriers, “weeping willow”, corresponding to a shallow funnel with high

barriers between minima and “banyan tree”, corresponding to a rough landscape consisting

of multiple, disconnected funnels. As it is argued in Ref. [49], palm-tree-like landscapes favor

self-assembly of the global minimum structure, since pathways that go downhill in energy

do not encounter comparably high energy barriers. For the same reason, solutions to global

optimization problems on such landscapes should be comparably easy to find. Banyan-tree

like landscapes on the other hand have strongly disconnected funnels, which can lead to

multiple relaxation timescales and trapping in local minima.
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In Sec. 4.2.1 we present disconnectivity graphs for clusters consisting of patchy particles.

3.2. Global Optimization

Identifying the global minimum on the PES, i.e., solving the optimization problem

minimize
{x}

U({x}) (3.4)

is of course a much harder task than locating arbitrary minima from a given starting points

(as discussed in the previous section).

In general, global optimization is a technique applied in a large number of scientific fields,

as diverse as physics (e.g., minimizing energy functionals in density functional theory [55]),

chemistry (e.g., the search for equilibrium configurations, i.e., minimizing thermodynamic

potentials), biochemistry (e.g., protein folding [56–58]), mathematics and computer science

(e.g., the famous traveling salesman problem [59], problems in graph theory [60], pack-

ing problems like Kepler’s conjecture and fitting problems) and economics (e.g., scheduling

problems).

Often, it is distinguished between deterministic, stochastic and heuristic global optimization

algorithms. However, it can be argued [61] that a more accurate classification scheme should

distinguish between the following types:

• incomplete - it is impossible to tell if the algorithm ever reaches the global minimum;

• asymptotically complete - the algorithm reaches the global minimum within an infinite

amount of time with probability one, but it is impossible to tell if this already has

happened during the run;

• complete/rigorous - such methods reach the global minimum with certainty given ar-

bitrarily long running times and know after a finite time that an approximation to the

global minimum has been found.

Complete and rigorous algorithms are guaranteed to identify the global minimum when they

are run for a sufficient amount of time, which usually scales exponentially with system size,

making them unfeasible for large and complex problems. In this case, incomplete – stochas-

tic or heuristic – approaches have to be used. Stochastic algorithms sample the search space

in a randomized way; heuristic ones try to incorporate information about the optimization

problem acquired in preceding steps into the decision where to move next in search space.

Such non-deterministic algorithms often provide good or “good enough” (i.e., for some op-

timization problems finding a sufficiently low-lying local minimum is already an adequate

solution) results within reasonable time scales. However it can never be guaranteed that an

identified solution is indeed the global minimum and strictly, one has to speak of putative
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solutions. The algorithms that will be discussed in the following are nondeterministic and

have both stochastic and heuristic features.

An additional class of methods for addressing optimization problems are strategies based

on deformations of the cost-function hypersurface [62]. By such deformations, one hopes

to simplify the optimization problem by reducing the number of minima, lowering barriers

between them and enlarging the basins of attraction of the lowest lying minima. Numerous

problem-specific methods of how to perform a hypersurface deformation have been proposed.

The method was first illustrated for specific graph partitioning problems [62]; for particle

geometry optimization, altering the shape of the interaction potential [63, 64] or smoothing

the potential by applying the diffusion equation [65, 66] have been proposed. However, in

general, it cannot be guaranteed that the position of the global minimum of a deformed

hypersurface corresponds to the global minimum on the original hypersurface.

A different kind of hypersurface deformation is defined by performing a steepest descent

minimization∗ with respect to the cost function Φ at each point {x} the search algorithm

encounters. As described in Ref. [67], the deformed hypersurface Φ̃ is given as

Φ̃({x}) = localmin[Φ({x})]. (3.5)

This deformation does not reduce the number of minima and keeps the size of the catchment

basins constant, but still greatly simplifies the optimization problem by effectively reducing

the cost function hypersurface to a number of plateaux, each corresponding to a catchment

basin (cf. Fig. 3.3 for a one-dimensional sketch). Thereby, the cost function values and

search space coordinates of all minima are kept intact, as well as the identity of the global

minimum.

In order to construct an efficient optimization algorithm, an effective search strategy for low-

lying minima on the (deformed) hypersurface needs to be employed. The choice for such a

search strategy is of course very problem-specific and depends on the global structure of the

cost function hypersurface. The search strategy should be able to exploit correlations of the

positions of minima on the hypersurface [68] and detect “promising regions” in search space,

in order to perform better than a completely random search. The two most widely used ap-

proaches in particle geometry optimization are basin-hopping Monte Carlo and evolutionary

algorithms, which will be described below.

3.2.1. Basin-Hopping

The basin-hopping method was first introduced in Ref. [67], as an optimization method for

the geometry of Lennard-Jones clusters. Local optimization steps are combined with global

∗In practice, it is much more efficient to use L-BFGS minimization [50–52], although this might lead to
a slightly different deformed hypersurface, as an L-BFGS minimization from a certain point does not
necessarily lead to the same local minimum as a steepest descent path.
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Figure 3.3.: Sketch of a one-dimensional energy landscape with six minima, their respective
catchment basins (different colors) and the transformed landscape emerging from
local minimizations at each point in search space (step function).

search based on canonical Monte Carlo (MC) sampling [69] of the energy landscape. Most

importantly, for the Metropolis acceptance criterion

Paccept = min(1, exp−∆U/kBT ), (3.6)

which determines the probability if a global search step is accepted or not, the energy values

of the locally optimized configurations before and after the step are taken into account, i.e.

∆U = Uoptimized
after MC step − Uoptimized

before MC step . (3.7)

Since the local optimizations are performed with respect to the energy only, the temperature

T does not have a physical meaning within this approach, but rather is a parameter in the

search algorithm; however, thermodynamic properties in the low temperature regime can be

calculated subsequently, e.g., by computing vibrational entropies for the identified minimum

energy structures, e.g. via lattice dynamics, as shown in Ref. [70].

The size of trial steps is chosen to be much larger than in thermodynamic MC simulations,

as these steps should be able to iterate the system from one catchment basin associated with

a local minimum to another. For an efficient global search, the algorithm usually runs at a

fixed acceptance probability Paccept, i.e., the step size (or, alternatively, the temperature) is

adjusted during the algorithm run, whenever Paccept differs from the desired value, which is

usually 30 to 50 percent.

The basin-hopping technique has been optimized for structure prediction of finite clusters,

introducing an additional type of moves: If the energy of the most weakly bound particle w

in the system is higher than a certain threshold, depending on the value for the most tightly
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bound particle, an “angular move” is performed: The particle is translocated to a random

position on the surface of the cluster, i.e., in spherical coordinates (r, θ, φ) with the center of

mass of the cluster being the origin, rw is set to the maximum distance between the origin

and any other particle, while θw and φw are given random values.

In our investigations on patchy particle clusters (cf. Sec. 4.2.1), we employed the basin-

hopping implementation “GMIN” [71], incorporating the Doye model potential (cf. Sec. 2.2.2)

into the framework of the program.

3.2.2. Evolutionary Algorithms for Crystal Structure Prediction

In a previous work [72] we have described an evolutionary algorithm (EA) for the prediction

of low energy (finite) cluster structures consisting of particles interacting via isotropic pair

potentials. We use the concepts presented therein as a basis for the present work, where

we extend the described framework for the prediction of low energy and low enthalpy three-

dimensional crystal structures, consisting of anisotropic particles.

For crystalline structures, we exploit periodicity and are therefore able to predict infinitely

extended configurations, working in a search space spanned by a finite number of dimen-

sions. The parameter set of this optimization problem∗ consists at least of six parameters

(a, b, c, α, β, γ) defining the primitive lattice vectors [73]

a =



ax
ay
az


 =a



1

0

0


 (3.8)

b =




bx
by
bz



 =b




cos γ

sin γ

0



 (3.9)

c =



cx
cy
cz


 =c




cos β

(cosα− cos β cos γ)/ sin γ

w/ sin γ


 , (3.10)

with

w = (1− cos2 α− cos2 β − cos2 γ + 2 cosα cos β cos γ)1/2, (3.11)

plus, for non-simple lattices with a basis of N particles, the positions xi and orientations oi
†

of the particles in the primitive cell. Thus, we have 6+6N−3 = 6N+3 independent variables,

as the translational coordinates of one basis particle can be chosen arbitrarily. Usually, the

positions and orientations of the basis particles are given in fractional coordinates fi, gi, i.e.,

∗In practice, we minimize the reduced enthalpy, cf. App. A.
†The index i indicates the particle. For a definition of the orientation vector oi, see below.
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in terms of the coordinate system defined by the primitive lattice vectors:

x =




x

y

z


 (3.12)

f =




fa
fb
fc



 (3.13)

x =




ax bx cx
ay by cy
az bz cz


 f . (3.14)

The number of particles within the unit cell, N , is a constant parameter of each global

optimization run. The operations that are performed by the optimization algorithm have

to be adapted to this new set of variables and will be described below. Before that we will

introduce a few terms frequently used in the context of EAs.

Definitions:

• Individuals: Any candidate solution (i.e., a point in search space) that the algorithm

is operating on is considered an individual taking part in the evolutionary process.

• Population: EAs are working on a number of candidate solutions simultaneously. The

collection of individuals (usually a constant number) that are currently taking part in

the simulated evolutionary process is called the population. New individuals can enter

the population by replacing existing ones.

• Fitness: Each individual is assigned a fitness value f as a measure for its quality with

respect to the underlying optimization problem. This value determines the individuals’

chances for surviving within the population along the evolutionary process and being

allowed to pass on its features by mating. To guarantee efficiency of the algorithm,

the fitness value has to be related to the cost function of the optimization problem.

There are many feasible choices for a useful fitness function [74]; in our approach, we

calculate fitness values via an exponential function of the thermodynamic potential;

the latter is considered with respect to the best and worst values within the population,

as described in [72, 75, 76]:

fi = exp

(
−α

Hi −Hmin

Hmax −Hmin

)
, (3.15)

where α is a parameter (we usually set α = 3), Hi represents the enthalpy of the

current individual and Hmin, Hmax are the lowest and highest enthalpy values within

the population.

Operations:
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• Selection and Mating: The central operation in an EA is the creation of new can-

didate solutions by recombination of features of existing ones. Before being able to

perform this so-called mating step, the individuals taking part in this process have to

be selected from the population. We employ a well-established [72, 75, 77] selection

scheme, based on fitness values attributed to the individuals. For convenience, the

fitness values of all individuals within the population are mapped onto the interval

[0, 1]. Each individual is assigned a unique sub-interval, where higher fitness values

correspond to longer subintervals. Subsequently, a random number c ∈ [0, 1] is chosen

and the individual occupying the sub-interval containing c is selected for mating. This

procedure is repeated to select a second parent; if the same individual is chosen twice,

the whole selection operation is restarted.

Once two unique parent individuals have been selected, they are recombined using a

real-space crossover operation. Real space crossover, as a radical change from crossover

operations based on encoded genotypes (e.g., [75–77]), was initially implemented for

cluster geometry optimization [78], as a “cut and splice” operation: Both clusters are

split along a plane and two of the emerging fragments – one from each parent – are

reassembled in order to from a child cluster, ensuring that the new cluster contains

the same number of particles as the old ones. In this way, a large fraction of the

information gained during local optimizations is retained in the child individual, as

the local environment of particles is only perturbed along the splicing plane.

This scheme was extended later to crystal structures, which are described by primitive

lattice vectors and a basis [79, 80]. It is most convenient to perform the crossover

operation for the basis particles in fractional coordinates, i.e., the particle positions

are described in terms of the primitive lattice vectors and the cut and splice operation

is carried out in the same way as for finite clusters, the cutting plane being perpen-

dicular to a randomly chosen primitive lattice vector. As pointed out in Ref. [79], it

is preferable to randomly shift the fractional coordinates of both parent individuals

before splicing, i.e., to add a random number rs ∈ [0, 1] to the fractional coordinates

xf,i; if a shifted component xs
f,i exceeds one or lies below zero, it is set to xs

f,i − 1

or 1 − xs
f,i, respectively. The authors of Ref. [79] recommend to perform the shifting

in the direction of the lattice vector defining the cutting plane with high probability

(∼ 95 percent) and in the two remaining directions with low probability (∼ 5 percent);

other investigators always perform shifts in all three directions [81]. The shifted con-

figuration is physically indistinguishable from the unshifted one; the operation should

increase diversity within the population by avoiding preferred positions of particles

within the primitive cell. Unfortunately, it is less obvious how to perform a crossover

for the primitive lattice vectors. The methods that have been proposed [79, 80, 82]

include defining the primitive lattice vectors of the child individual by taking ran-

domly weighted averages over the ones of the parents or inheriting the complete set of

vectors from a single, randomly chosen, parent. Both of these approaches cannot be

considered ideal, since changes in the lattice vectors of course can have large effects
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on the particle positions (as they are stored in fractional coordinates), heavily distort-

ing the local environment of all the particles in the system. We have implemented

both proposed techniques and observed slightly faster convergence rates (cf. App. E)

when using the averaging approach. A schematic, two-dimensional representation of a

real-space crossover operation can be found in Fig. 3.4.

• Mutation: In a real space encoded EA, random mutation seems to be a less important

operation. Nevertheless, it can be used to prevent premature convergence to local

minima, which is mainly an issue concerning the primitive lattice vectors. Therefore,

Oganov et al. [79, 83] defined a mutation operator, which performs a strain on the

primitive lattice vectors. In matrix notation, this operation can be written as

a′ = (1 + ǫij)a, (3.16)

where a and a′ represent a lattice vector before and after the mutation operation and

the strain matrix is given by1+ ǫij =




1 + ǫ11 ǫ12/2 ǫ13/2

ǫ21/2 1 + ǫ22 ǫ23/2

ǫ31/2 ǫ32/2 1 + ǫ33



 . (3.17)

The matrix is symmetric, i.e., ǫij = ǫji; ǫij are zero-mean Gaussian random variables.

• Volume Scaling: For each newly created configuration – either randomly, by mating

or by mutation –, the lattice vectors are uniformly rescaled, so that the volume of the

primitive cell VPC = |c · (a × b)| matches a predefined value V 0
PC, which has to be

defined in advance, with respect to the investigated system. In the subsequent local

optimization, VPC is allowed to (and will most likely) change. V 0
PC can be chosen to be

constant during the algorithm run or to be adaptive with respect to the most successful

individuals. In the latter case, at regular intervals, V 0
PC is redefined as a weighted

average of the current value and the values of the n most favorable individuals in the

population:

V 0,new
PC = aV 0,current

PC +
n∑

i=1

1− a

n
V i
PC. (3.18)

In our calculations, we usually employ an adaptive unit cell volume; the weighting

factor 0 ≤ a ≤ 1 is chosen to be 0.6, and 0 ≤ n ≤ nind is defined as half the total

number of individuals in the population nind.

• Local Optimization: In the context of EAs, local optimizations (cf. Sec. 3.1) can be

interpreted as “learning operations”. Since individuals pass on features they acquired

through learning to their offspring, these types of algorithms rather mimic Lamarckian

evolution∗ or epigenetics [84] than Darwinian evolution, where individuals only pass on

∗Within the theory of Lamarckian evolution, individuals can not only pass on their genetic material, but
also characteristics they acquired during their lifetime.
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their predefined genetic material. Another frequently used term for evolutionary algo-

rithms with local optimization is “memetic algorithms” [68], referring to the neologism

“meme” [85], signifying a “unit of cultural transmission”.

In our particular L-BFGS-based local optimization routine (cf. Sec. 3.1 and Refs. [50–

52]), we allow all nine components ai, bi, ci of the primitive lattice vectors to vary

freely, instead of the six parameters a, b, c, α, β, γ. In our experience, this leads to

faster convergence rates of the algorithm.

Crystal Boundary Conditions

When calculating energies via pair interaction potentials U(r) with a finite range rmax, for

which U(r > rmax) = 0, in a crystal lattice specified by the primitive vectors {a,b, c}, all
periodic images of the primitive cell within a distance r ≤ rmax from the origin have to

be taken into account. The distance r of an image cell specified by a lattice vector l, or

alternatively by a triplet {na, nb, nc}, is given by

r(na, nb, nc) = |l| = |naa+ nbb+ ncc|. (3.19)

Identifying each triplet, which fulfills the condition r(na, nb, nc) ≤ rmax is not completely

trivial if all components of the primitive lattice vectors can be varied arbitrarily. We are

using the following protocol (which is an extension of the method described in Ref. [73]) in

order to solve this problem in an efficient way.

First, the orthonormal vectors

v̂1 = b× c/|b× c| (3.20)

v̂2 = v̂1 × c/|v̂1 × c| (3.21)

v̂3 = v̂1 × v̂2 (3.22)

are calculated. These vectors define an orthonormal system; only the primitive lattice vector

a can have components parallel to v̂1, while a and b can have components parallel to v̂2

and all three primitive lattice vectors can have components parallel to v̂3:

a · v̂1 = av1 (3.23)

a · v̂2 = av2 b · v̂2 = bv2 (3.24)

a · v̂3 = av3 b · v̂3 = bv3 c · v̂3 = cv3 . (3.25)

An arbitrary lattice vector l can be expressed in terms of the orthonormal system {v̂i}:

l = (l · v̂1)v̂1 + (l · v̂2)v̂2 + (l · v̂3)v̂3 (3.26)

= (naav1)v̂1 + (naav2 + nbbv2)v̂2 + (naav3 + nbbv3 + nccv3)v̂3. (3.27)
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Now, a sphere with radius r = rmax is intersected with the lattice described in the orthogonal

system defined by {v̂i} in order to calculate n
max/min
a , n

max/min
b (na) and n

max/min
c (na, nb), for

which

|l|2 = (l · v̂1)
2 + (l · v̂2)

2 + (l · v̂3)
2 (3.28)

= (naav1)
2 + (naav2 + nbbv2)

2 + (naav3 + nbbv3 + nccv3)
2 (3.29)

≤ r2max. (3.30)

First, we compute each na, which fulfills |l · v̂1| ≤ rmax
∗. This leads to

nmax
a = ⌈+|rcut/av1 | ⌉ (3.31)

nmin
a = ⌊−|rcut/av1 | ⌋ , (3.32)

where ⌈x⌉ and ⌊x⌋ represent for the ceiling and floor functions, which take the values of the

smallest integer ic, for which ic ≥ x and the largest integer if , for which if ≤ x, respectively.

Next, for all values na ∈
[
nmin
a , nmax

a

]
, all nb(na) for which (l · v̂1)

2 + (l · v̂2)
2 ≤ r2max are

calculated:

nmax
b (na) =

⌈
(+
√
r2cut − (naav1)

2 − naav2)/bv2

⌉
(3.33)

nmin
b (na) =

⌊
(−
√

r2cut − (naav1)
2 − naav2)/bv2

⌋
. (3.34)

Finally, for each pair

na ∈
[
nmin
a , nmax

a

]
, nb ∈

[
nmin
b (na), n

max
b (na)

]
, (3.35)

we can calculate all nc(na, nb), which are allowed by inequality (3.30)†

nmax
c (na, nb) =

⌈
[+
√

r2cut − (naav1)
2 − (naav2 + nbbv2)

2 − (naav3 + nbbv3)]/cv3

⌉
(3.36)

nmin
c (na, nb) =

⌊
[−
√

r2cut − (naav1)
2 − (naav2 + nbbv2)

2 − (naav3 + nbbv3)]/cv3

⌋
. (3.37)

If there is more than one particle within the primitive cell, the maximum distance between

any two particles i and j in the primitive cell has to be added to the cutoff distance in order

to account for all possible interactions:

rmax → rmax +max
i,j

(|rj − ri|). (3.38)

∗Any translation parallel to v̂2, v̂3 caused by the variation of na can be compensated for by variations of
nb and nc, while the latter two variations will not change the projection l · v̂1.

†The primitive lattice vector c is parallel to v̂3, i.e. , variations of nc do not change l · v̂1 and l · v̂2.
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Handling Orientational Degrees of Freedom

In order to treat orientational degrees of freedom of rigid bodies in computer simulations,

parametrization based on Euler angles [86] (three consecutive rotations about certain axes

that are defined by convention), unit quarternions [69] (based on normalized vectors in four-

dimensional space) or angle-axis representations (determined by an axis and an angle of

rotation about that axis) have been used. Euler angles can lead to problems with singu-

larities (a phenomenon known as “gimbal lock”, which occurs when two of the three axes

of rotation become parallel and one degree of freedom is lost); unit quaternion descriptions

are singularity free and are used as a standard tool in MC and Molecular Dynamics (MD)

simulations [69], but their components cannot be freely varied, since their norm is defined to

be equal to unity. This makes them unsuitable for local optimization routines like L-BFGS,

where it is required to vary all variables without constraints. A special implementation of an

angle-axis description introduced in Ref. [87] has none of these limitations and has proved

to be especially well-suited for geometry optimizations of anisotropic, rigid particles.

The method is described closely following the presentation in Ref. [87]: All information

about the rotational state of a rigid body with one point fixed in space (i.e., the center of

mass fixed at r), can be stored in a vector

o =



o1
o2
o3


 = θô, with (3.39)

θ =
√

o21 + o22 + o23. (3.40)

The related unit vector ô is parallel to the axis of rotation, while its magnitude θ corresponds

to the angle of rotation about this axis. We can calculate the corresponding rotation matrix

R(θ) in the following way: An arbitrary vector v that is to be rotated about ô by the angle

θ, can be uniquely described as a sum of its projection on ô and its vector rejection from ô:

v = ô(ô · v)− ô× (ô× v), (3.41)

where the rotation will only affect the latter term. We perform the rotation in an orthonormal

coordinate system (in which coordinates will be denoted by primed variables x′ and →
signifies a transformation from the original coordinate system to the primed one in the

following), where the z-direction is chosen to be parallel to ô:

v → v′ =



v′x
v′y
v′z


 , (3.42)
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ô → ô′ =



0

0

1


 , (3.43)

ô′ × v′ =



−v′y
v′x
0


 , (3.44)

−ô′ × (ô′ × v′) =



v′x
v′y
0


 , (3.45)

R(θ) → R′(θ) =



cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 , (3.46)

R(θ)(−ô× (ô× v)) → R′(θ)



v′x
v′y
0


 = cos θ



v′x
v′y
0


+ sin θ



−v′y
v′x
0


 . (3.47)

Thus, in the original coordinate system we have

R(θ)v = ô(ô · v)− cos θ(ô× (ô× v)) + sin θ(ô× v), (3.48)

which is known as Rodrigues’ rotation formula [88]; substituting Eq. (3.41) leads to

R(θ)v = v + (1− cos θ)[ô× (ô× v)] + sin θ(ô× v). (3.49)

Writing the cross product as a matrix multiplication

ô× a = õa, (3.50)

with

õ =
1

θ




0 −o3 o2
o3 0 −o1
−o2 o1 0



 , (3.51)

we end up with the rotation matrix

R(θ) = 1 + (1− cos θ)õõ + sin θõ. (3.52)

Derivatives of R with respect to the components ok of o, denoted as ∂R/∂ok = Rk, can now

easily be calculated using the chain rule:

Rk =
ok sin θ

θ
õ2 + (1− cos θ)(õkõ + õõk) +

ok cos θ

θ
õ+ sin θõk, (3.53)
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with θ =
√
o21 + o22 + o23, ∂θ/∂ok = ok/θ and

õ1 =
∂õ

∂o1
=

1

θ




0 o1o3/θ
2 −o1o2/θ

2

−o1o3/θ
2 0 −(1− o21/θ

2)

o1o2/θ
2 (1− o21/θ

2) 0


 , (3.54)

õ2 =
∂õ

∂o2
=

1

θ




0 o2o3/θ
2 (1− o22/θ

2)

−o2o3/θ
2 0 o1o2/θ

2

−(1 − o22/θ
2) −o1o2/θ

2 0


 , (3.55)

õ3 =
∂õ

∂o3
=

1

θ




0 −(1 − o23/θ
2) −o2o3/θ

2)

(1− o23/θ
2) 0 o1o3/θ

2

o2o3/θ
2 −o1o3/θ

2 0


 . (3.56)

Care has to be taken for θ = 0, as Eq. (3.53) has a (removable) singularity at this value. In

this case, we substitute the finite rotation matrix in Eq. (3.46) by an infinitesimal one:

R′(θ → 0) ≈



1 −θ 0

θ 1 0

0 0 1


 . (3.57)

The rotation formula given in Eq. (3.48) becomes

R(θ → 0) ≈ 1+




0 −o3 o2
o3 0 −o1
−o2 o1 0



 . (3.58)

Now the derivatives can easily be calculated: Rk(θ → 0) ≈ õ0
k with

õ0
1 =




0 −o3 o2
o3 0 −1

−o2 1 0



 , (3.59)

õ0
2 =




0 −o3 1

o3 0 −o1
−1 o1 0


 , (3.60)

õ0
3 =




0 −1 o2
1 0 −o1

−o2 o1 0


 . (3.61)

In practice, Eq. (3.53) can be implemented as a single subroutine in a computer program in

order to efficiently and conveniently compute all derivatives with respect to the orientational

degrees of freedom.
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Population Control and Niches

Hard Constraints The parameter subspace spanned by the primitive lattice vectors and

the fractional coordinates of the particles in the primitive cell contains regions, which repre-

sent crystal structures that can immediately be discarded by physical intuition. Examples

are configurations that (a) obviously lead to overlaps of the colloidal particles or (b) strongly

distorted unit cells, which can always be described by an alternative set of primitive lattice

vectors [76]. In the most extreme cases of distorted unit cells [i.e., (c) the primitive lattice

vectors lie within a plane], we end up with flat structures, which are undesirable for our

system. By discarding unphysical configurations (corresponding to cases a and c) prior to

the local optimization procedure computational time can be saved without biasing the evo-

lutionary process. After local optimization, we also discard structures with at least one very

small or very large angle α between the primitive lattice vectors (corresponding to case b;

usually we allow π/6 ≤ α ≤ 5π/6) in order to avoid exploring redundant, but computation-

ally expensive regions of the parameter space (since such angles lead to a large number of

image cells that have to be taken into account for each energy calculation, cf. Sec. 3.2.2).

Diversity In order to prevent premature convergence to local minima and dominance of

individuals corresponding to such minima within the population, we need to ensure that

the population stays “diverse”, i.e., consists of individuals corresponding to sufficiently “dif-

ferent” local minima. Thus, we need a metric that can measure the “difference” between

individuals. The most straightforward and widely used way to do this is to use the binding

energy or enthalpy of the individuals as such a measure. In many implementations, only

one individual within each energy interval (the typical length of these intervals ranges from

10−3 to 10−2 in the respective units) is allowed to stay in the population. In many cases

this rather crude method of introducing “niches” to the evolutionary process, relying on the

assumption that energy levels are not structurally degenerate, works just fine.

As soon as structurally different but energetically equivalent minima on the energy landscape

come into play (which is particularly an issue for patchy particle systems), it is very desirable

to introduce a refined measuring system that quantifies structural features of the individuals.

For optimization problems involving finite clusters of particles, a method for measuring

structural diversity of individuals and constructing niches has been presented in [89]. It

uses a simple geometry parameter gp, which measures the distribution of particles in two-

dimensional projections of the three-dimensional clusters∗. Only a certain percentage of the

population is allowed to have similar gp-values.

For crystal structures, there is an additional complication: the description of an (infinite)

crystal by a set of primitive lattice vectors and a basis is very convenient, but not unique.

Assessing if two given representations describe the same crystal is a non-trivial task. Many

∗More specifically, the maximum number of coinciding particles in a two-dimensional projection is measured.
Thereby, clusters with fcc-like symmetry, which have a large number of coinciding particles for certain
cluster orientations, can easily be distinguished from clusters with icosahedral symmetry.
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implementations of EAs for structure prediction make use of “fingerprint-based” structural

identification, evaluating a set of characteristic parameters, in the spirit of the Hartke method

for clusters. Examples are a cosine distance measure, based on a fingerprint functions measur-

ing correlations between particle positions [90], a method based on scattering densities [91],

or space group identification [81].

Another application of fingerprint distance measures lies in the analysis of a collection of

local minima obtained by optimization techniques, in a subsequent post-processing step as

described in Ref. [90].

Only recently, a non-fingerprint-based exact technique that allows the identification of rep-

resentations describing the same infinite structure∗ has been introduced [92]. Thereby, un-

wanted duplicate structures can be detected and subsequently removed from the population

with high accuracy, in order to keep the population diverse.

Bond Order Parameters In our calculations, we rely on another fingerprint technique

in order to prevent domination of the population by a small number of structures; thereby,

we do not decide if two representations are equivalent (within some range of tolerance), but

rather distinguish between classes of structures. In fact, we can employ a well-established

approach that has been widely used for this task: the Steinhardt order parameters (also

known as bond order parameters) [93]. These parameters are based on calculating spherical

harmonics of bond angles and constructing third- and fourth order invariants out of these

quantities. Using the Steinhardt order parameters leads to a number of advantages:

• Bond order parameters can precisely distinguish between liquid (isotropic) phases and

solid phases, exhibiting discrete translational and orientational symmetries. (This

powerful feature – the averaged parameters vanish for the isotropic phase – is not

relevant in our case, since all our candidate structures are crystalline by design.)

• It is possible to distinguish between crystal structures by comparing sets of bond order

parameters (i.e., fingerprints) calculated for different individuals.

• Bond order parameters are insensitive to the representation in parameter space. Fur-

thermore, second and third order averages (see below), which are invariant under

spatial rotations of the whole system, can be calculated in a straightforward way.

• Finally, bond order parameters can be calculated with justifiable computational costs,

which is especially relevant in our case, since we want to measure structural features

of individuals after each local optimization step.

In the context of the Steinhardt parameters, the term “bond” does not strictly correspond

to chemical bonds (or patch-patch interactions for the systems studied here), but rather

refers to lines connecting the center of mass of a particle to the centers of masses of its

∗I.e., this does not measure a difference between structures, but reliably detects exact replicas even if they
are represented by distant points in parameter space.
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near neighbors. Of course, a criterion under which particles are to be considered near

neighbors, has to be defined. As possible values for the maximum interparticle distance r0
for near neighbors, the minimum of the interaction potential, or the first maximum of the

radial distribution function have been proposed [93]. To account for small perturbations,

r0 is usually multiplied by a factor ∼ 1.2. For arbitrary crystal structures, the “intrinsic”

number of near neighbors can be very different (e.g., in an fcc crystal each particle has

twelve neighbors in the first coordination shell, while in a bcc crystal, each particle has

eight neighbors in the first coordination shell and six further ones in the second coordination

shell.) Thus, we chose r0 (and thereby the number of neighbors Nn to be taken into account

for the calculation of the bond order parameters) “on the fly” for each candidate structure:

we evaluate Nn as a function of r0 at discrete values within a given interval (typically 50 r0-

values between 1.0σ and 1.3σ); then we perform a histogram analysis for these values. The

maximum in the histogram, i.e., the Nn-value with the most occurrences and the smallest

corresponding r0-value, are chosen for this particular candidate structure.

Once r0 is fixed, we compute for each particle i in the primitive cell and each of its neighbors

j = 1, ..., Nn, with interparticle vector rij = (xij , yij, zij)
T the spherical harmonics

Qlm(rij) ≡ Ylm (θ(rij), φ(rij)) . (3.62)

θ(rij) = acos
(
zij/(x

2
ij + y2ij + z2ij)

1/2
)
and φ(rij) = atan2(yij, zij)

∗ represent the polar and

azimuthal angles between the centers of mass of particle i and neighbor j (with respect to an

arbitrary external coordinate system), respectively. The indices l of the spherical harmonics,

for which we have to calculate Qlm in order to get significant results depend on the symmetry

of the crystal structures; for example, for cubic configurations, l = 4 is the lowest nonzero

value with finite Q [93]. In our calculations, we compute Q4,m and Q6,m. For each particle,

we take an average over all neighbors

Q̄lm(i) =
1

Nn

Nn∑

j=1

Qlm(rij). (3.63)

In order to obtain rotationally invariant quantities (and remove the dependence on the chosen

external coordinate system), we have to average over |m| ≤ l as well

Ql(i) =

√√√√ 4π

2l + 1

l∑

m=−l

|Q̄lm(i)|2. (3.64)

∗atan2(y, x) computes the principal value of the argument function of the complex number x + iy. This
function can be used to transform from Cartesian into polar coordinates and allows to determine the
angle in the correct quadrant [94].
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Ql(i) is an average of second order; a third order average can also be constructed:

Ŵl(i) =

∑

m1,m2,m3

m1+m2+m3=0

(
l l l

m1 m2 m3

)
Q̄lm1

Q̄lm2
Q̄lm3

(
m=l∑

m=−l

|Q̄lm|2
)3/2

, (3.65)

where the expression (
l l l

m1 m2 m3

)
(3.66)

stands for the so-called Wigner-3j-symbols [95], which are related to the Clebsch-Gordan

coefficients 〈j1m1j2m2|JM〉 in the following way:

(
l l l

m1 m2 m3

)
=

(−1)j1−j2−m3

√
2j3 + 1

〈j1m1j2m2|j3 −m3〉 . (3.67)

Finally, we average these invariants over the basis particles:

〈
Q̄l

〉
=

1

Nbb

Nbb∑

i=1

Q̄l(i) (3.68)

〈
Ŵl

〉
=

1

Nbb

Nbb∑

i=1

Ŵl(i). (3.69)

Thereby, we obtain a “fingerprint vector”

f =




〈
Q̄4

〉
〈
Q̄6

〉
〈
Ŵ4

〉
〈
Ŵ6

〉




(3.70)

for each individual after local optimization, which can be used to determine if two given

representations correspond to similar structures: Whenever an individual a is threatened

to be rejected from the population because of the enthalpy criterion (i.e., has an enthalpy

value too close to the value of another individual b), the “distance” vector ∆f = fb − fa of

the competing individuals a and b is taken into account: if at least one of its components is

sufficiently large – we typically use

∆min

〈
Q̄4

〉
= ∆min

〈
Q̄6

〉
= 0.1 (3.71)

∆min

〈
Ŵ4

〉
= ∆min

〈
Ŵ6

〉
= 0.01 (3.72)
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as minimum values – both individuals are allowed to coexist in the population, as they are

occupying different structural niches.

Recording of Minima

During the evolution of the population, we want to record candidate structures corresponding

to the global minimum as well as low-lying local minima on the enthalpy landscape, even

if they are removed from the current population at a certain stage. Thus, we introduce a

“vault”, which stores individuals if their enthalpy lies below a certain threshold and they

are sufficiently different in structure from already stored ones. Again, we use a combination

of binding energy differences and bond order parameters to measure this difference: Within

each energy interval of length δU , starting from the fully bonded configuration, we allow a

number ni of individuals. These individuals must have a sufficiently different set of bond

order parameters. If two individuals are located within the same binding energy interval and

have a similar bond order parameter-fingerprint, they compete for the same spot within the

vault and the one with the lower enthalpy value will be stored, the other being discarded.

Parallelization of the Algorithm

Implementations of EAs involving local optimization steps are usually very good candidates

for efficient parallelization. Since the local optimizations are very time-consuming (typically

taking more than 90 percent of the algorithm runtime), but completely independent from

each other, they can be carried out in parallel on different processor cores. The time dura-

tion of local optimization procedures varies strongly, as some newly created individuals are

close to a local minimum in parameter space, while others are far away; naively parallelizing

a synchronous, generation-based EA leads to the problem of very long waiting times for

some processors, as all distinct local optimizations have to be finished before the algorithm

advances to the next generation. This problem can be overcome by switching to an asyn-

chronous algorithm: here the population is treated as a “pool” of individuals; candidate

structures can be added to or removed from the pool at all times (while their total number

is usually kept constant).

The concept of elitism has to be adjusted in an asynchronous algorithm: In a generation-

based EA, the elitism parameter e defines how many of the fittest individuals of generation

i are taken into generation i + 1 without any changes [72]. For the pool-based algorithm

with population size n, we define elitism as a mechanism of protecting the fittest individuals

from being removed from the population: Whenever a new individual enters the pool, it has

to replace an existing one. The elitism parameter determines the e fittest individuals, which

can only be replaced by individuals with even higher fitness. The remaining n− e candidate

solutions within the pool can be replaced by any new ones with uniform probability. This

leads to the following special cases:
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• e = n: A new individual can only enter the population if its cost function has a lower

value than the least fit individual within the pool.

• e = n − 1: A new individual always replaces the least fit individual within the pool,

regardless of its cost function value.

• e = 0: A new individual replaces a randomly determined individual, regardless of their

cost function values.

The asynchronous scheme can be implemented conveniently using a “master-worker” ap-

proach, where a number of processes (workers) constantly create and locally optimize new

individuals. The workers do not have to communicate with each other, but only with a single

process (master), which is administrating the population. The workflow and communications

within this protocol is illustrated schematically in Fig. 3.5.

When constructing the parallelized protocol, a compromise between minimized waiting times

and accurate population control has to be found: since the population control routine might

involve the creation of completely new individuals, including local optimization, it often turns

out to be very time-consuming. Therefore running this routine within the master process can

increase waiting times drastically. Running this routine within the worker processes, on the

other hand, has the disadvantage that the population administered by the master process is

continuously evolving, while the workers are only aware of the state the population was in

at the last occurrence of communication with the master. Therefore, a worker process can

only check if its newly created individual is compatible with the niche criteria applied on

a previous state of the population. Nevertheless, we opted for the latter version, since we

consider its drawbacks minor compared to the loss of efficiency connected to the former one.

Since the workload of the master processor is much smaller than the one of the workers in

this scheme, such an algorithm becomes more efficient when adding more workers, up to a

certain threshold where the master process is working at full capacity. Typical numbers of

processor cores that we used for running the parallel algorithm were ranging from twelve to

32.

In practice, the communication between the processor cores can be handled by making use

of the so-called Message Passing Interface (MPI) [96].

Other Evolutionary Approaches

As a final note, we would like to mention that in the literature, there is a number of related

geometry optimization techniques based on evolutionary approaches, which do not make use

of hypersurface deformation by local optimization. Here the individuals are not represented

by the real space or fractional coordinates of the particles, but rather a more abstract search

space is explored. Examples are algorithms using genetic encoding for crossovers ([75, 77])

or algorithms describing the candidate solutions by lattice groups (which are a more precise

classification of crystal structures than the usual space groups, cf. [97]).
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Figure 3.4.: Real space crossover. Panel 1 : Primitive cells of two parent individuals selected
for mating, in Cartesian coordinates. Panel 2 : The same primitive cells,
in fractional coordinates. Panel 3 : The crossover operation is performed in
fractional coordinates - in this particular case, the cutting plane is defined by
x = 0.4. Panel 4 : Two fragments are reassembled to form a new primitive
cell in fractional coordinates. Panel 5 : The primitive lattice vectors of the
new individual are computed as averages of the parent-lattice vectors in order
to obtain the newly created primitive cell in Cartesian coordinates.
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Master Worker

wait until some worker
sends new individual

receive new indi-
vidual from worker

send copy of cur-
rent population
to this worker

include new indi-
vidual into cur-
rent population

receive copy of
current popula-
tion from master

select parents

crossover

local optimization

calculation of bond
order parameters

population control
(using previously
received pool)

send individ-
ual to master

Figure 3.5.: Schematic representation of tasks (black) and flow of communication (red) in a
parallel, asynchronous EA. For simplicity, only one worker process is visualized.
In a typical implementation, the master process communicates with a large
number (in our calculations around 30) of worker processes.
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3.3. Finite Temperature

In the regime of self-assembly, interaction energies are significantly higher than the thermal

energy kBT [98]. Thus, the knowledge of the zero-temperature equilibrium configurations

of a self-assembling system (i.e., its likely target structures) is an important ingredient for

understanding its characteristics. However, entropic effects, connected to the vibrational,

and – in case of anisotropic interactions – rotational motions of particles about their equi-

librium positions and orientations, can have an influence on the thermodynamic stability of

self-assembling structures at finite temperature and have to be taken into account. Several

methodologies for calculating free energies of ordered structures are available in the literature

(e.g., Refs. [69, 99–101]). For our purposes, each of these methods has specific advantages

as well as limitations. In the following, we will briefly introduce three techniques that we

consider most suitable for dealing with entropic effects within the structure identification

framework presented above.

3.3.1. Theoretical Methods

Lattice Dynamics

Within the theory of lattice dynamics [99, 102, 103], thermodynamic properties of crystal

structures are calculated by expressing all particle movements within a crystalline structure

as superpositions of harmonic oscillations.

The scheme is based on the assumption that the fluctuating displacement ui of particle i

from its average position is small compared to the average distance r0 from a neighboring

particle j. Then, a Taylor expansion of the pair interaction potential V (r = r0 − ui + uj)

around the r0 can be truncated after the quadratic term. This is known as the harmonic

approximation:

V (r) =V (r0) +
∂V

∂r

∣∣∣∣
r=r0

ui +
∂V

∂r

∣∣∣∣
r=r0

uj+ (3.73)

+
∂2V

∂r∂r

∣∣∣∣
r=r0

uiui + 2
∂2V

∂r∂r

∣∣∣∣
r=r0

uiuj +
∂2V

∂r∂r

∣∣∣∣
r=r0

ujuj +O(u3) .

In the formalism, the energy of the whole system is written as a superposition of truncated

Taylor expansions in a similar way. Since only configurations, which correspond to local min-

ima on the energy landscape (i.e., ∂V/∂r|r=r0 = 0), are taken into account in this analysis,

the linear terms in the expansion vanish per definition. In a bulk crystal, the equations of

motion for the displacements ui can conveniently be solved using a plane wave ansatz, after

performing a transform to Fourier space with wave vectors q [102]. Thus, particle movements

can be described as superpositions of vibrational normal modes with wave vector q and fre-

quency ω(q). These normal modes (or phonons) are treated as pseudoparticles within a

47



3. Methods

classical grand canonical ensemble, with an analytically computable partition function. The

vibrational contribution to the entropy can thus be calculated by solving an eigenvalue prob-

lem if the second derivatives of the potential with respect to the particle displacements are

available (for details, see App. D and [104]).

As outlined in [104], it is also possible to compute derivatives of the (Gibbs) free energy

with respect to the structural parameters within lattice dynamics. Thus, local structural

optimization, as described for T = 0 in the previous sections, is also feasible at finite T

within this formalism. This is known as the quasi-harmonic approximation (i.e., the free

energy of a structure is calculated within the harmonic approximation, but is treated as a

function of the structural parameters [104]). However, upon implementing a lattice dynamics

based global optimization scheme, we were confronted with major difficulties, arising from

high computational costs, especially when treating anisotropic particles [105], as well as

discontinuities in the second derivatives of many patchy particle potentials (such as the

Kern-Frenkel or the Doye potential). Thus, we consider this approach in principle useful,

but unsuitable for usage with the Doye potential of patchy particles (cf. Sec. 2.2.2), and

discarded it in favor of a numerical approach described below.

Additional care has to be taken when using lattice dynamics on colloidal systems, as some

differences from the more common usage within atomic crystals apply [76]. The influence of

the solvent has to be taken into account, introducing (i) friction and thus damping of the

vibrational motion of the colloidal particles, as well as (ii) hydrodynamic forces.

Classical Density Functional Theory

In classical density functional theory [100, 106], the Helmholtz free energy of a system is

expressed as a functional F [ρ(r)] of the one-particle density ρ(r). In the grand canonical

ensemble with the chemical potential µ and vanishing external forces, the thermodynamic

grand potential

Ω[ρ] = F [ρ]−
∫

drµρ(r) (3.74)

is minimized by the equilibrium one-particle density ρ0(r). Since the explicit form of F [ρ]

is usually unknown, approximations have to be employed. As outlined in [106], the thermo-

dynamic properties of structures identified by optimization algorithms can be evaluated via

classical density functional theory for a variety of systems (i.e., if a suitable approximation for

F [ρ] is available). To this end, the solid candidate structures are treated as inhomogeneous

liquids by expressing ρ(r) as a superposition of Gaussian distribution functions centered at

the respective lattice positions. This method could be suitable for an a posteriori evaluation

of free energies of structures obtained by T = 0 optimization methods.
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3.3.2. Numerical Method - Frenkel-Ladd Approach

In a conceptually different approach based on Monte Carlo simulations, free energies are

calculated by Hamiltonian integration from a reference system with an analytically com-

putable free energy value. For systems with isotropic interactions, one of the most successful

implementations of this concept is the Frenkel-Ladd method, which is described in detail in

Refs. [69, 107]. The Einstein crystal, where particles do not interact with each other, but

are coupled to their positions in the according crystal lattice by harmonic spring potentials,

is used as a reference system. For each particle i = 1, . . . , N , with current position ri, the

energy contribution only depends on the distance from its equilibrium position r0i :

UEC =

N∑

i=1

Uharmonic(ri) =

N∑

i=1

αi(ri − r0i )
2. (3.75)

With the switching parameter λ, a Hamiltonian

H(λ) = λH0 + (1− λ)UEC (3.76)

that continuously varies between the original, interacting system H0 and the reference system

can be constructed (the explicit dependence on the coordinates ri are suppressed here). With

∂F

∂λ
= − 1

β

∂

∂λ

{
ln

∫
· · ·
∫

exp [−βH(λ)]dqN

}
=

〈
∂H(λ)

∂λ

〉

λ

, (3.77)

the Helmholtz free energy F of the interacting system can now be calculated numerically as

F = F (λ = 0) +

∫ λ=1

λ=0

〈
∂H(λ)

∂λ

〉

λ

, (3.78)

since the free energy of the reference system F (λ = 0) is known analytically and the ensemble

average 〈∂H(λ)/∂λ〉λ can be evaluated at each λ by performing a Monte Carlo simulation.

An extension of this method to systems with anisotropic interactions is described in Ref. [108].

In the reference system, the particles’ rotational displacements are coupled to their equi-

librium orientations by additional spring potentials, whose explicit form depends on the

symmetry of the particles.

Calculating free energies by a Frenkel-Ladd based method is usually very accurate, but com-

putationally rather expensive. Performing such a calculation and especially taking numerical

derivatives of the free energy at each instance of a cost function evaluation within one of

the optimization algorithms described in Sec. 3.2 is completely out of scope (while it seems

feasible via lattice dynamics for certain systems). Nevertheless, the methods can be com-

bined a posteriori in a two-step approach [6]: first, the global minimum and low-lying local

minima of the enthalpy landscape are identified by the optimization method and taken into
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account as candidate finite temperature equilibrium structures; subsequently, free energy

calculations are performed for these proposed configurations in order to obtain the finite

temperature phase diagram.
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4.1. Patchy Particle Systems in Two Dimensions

In this section, we investigate possible self-assembly scenarios of two dimensional patchy

particle systems with varying geometry by identifying global enthalpy minima at different

pressure values and zero temperature. Additionally, we briefly explore binary mixtures of

particles with different patch numbers as well as systems with repulsive interactions between

patches. Finally, we thoroughly study the possibility of realizing Platonic and Archimedean

tilings in a bottom-up self-assembly strategy using patchy particle systems. In all of these

investigation, we employ the Doye model of patchy particles (cf. Sec. 2.2.2) with the param-

eters rcut = 1.9σ and w = 2π · 0.05.

4.1.1. Ordered Equilibrium Structures for Varying Patch

Decorations

Three Patch Systems

Figure 4.1.: Three-patch particles with three different decorations as they are investigated
in the present study: left panel – type 3a, regular patch distribution, i.e., with a
set of inter-patch angles of {120o, 120o, 120o}, center panel – type 3b, with a set
of inter-patch angles of {90o, 135o, 135o}, and right panel – type 3c, with a set
of inter-patch angles of {60o, 150o, 150o}. The patch, which encloses the same
angle with both other patches will be called “pole patch” in the following.

We consider particles carrying three patches in three different geometries, as shown in

Fig. 4.1. For particle type 3a, with patches located on the vertices of an equilateral tri-

angle, for which the colloidal particle represents the circumscribed circle, we identified two

different ground state structures over the pressure range that we investigated (cf. Fig. 4.2,

top panel). For low pressure values, a honeycomb lattice with full patch saturation (i.e.,

U⋆ = 1.50) and rather low area number density (η ≤ 0.50) exhibits the lowest enthalpy

value. On increasing pressure to P ⋆ > 0.78, an equilateral triangular (i.e., hexagonal close
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packed) lattice, with only two bonded patches per particle becomes dominant. With further

increasing pressure, the lattice is compressed, ultimately leading to quasi close packing of

the colloidal particles (U⋆ = 0.83, η = 0.87 at P ⋆ = 10.00 – the highest possible packing

fraction of hard disks is given by η = π/
√
12 ≈ 0.907 [109]).

For particle type 3b (the patches are located on the circumflex of the particle, with angles

{90◦, 135◦, 135◦}), the low-pressure equilibrium structure has the same bonding pattern

as the honeycomb structure formed by 3a, but the cells are more elongated due to the

changed geometry. Here, we observe two intermediate structures before reaching a close

packed high pressure configuration: For pressure values between P ⋆ = 0.51 and P ⋆ = 2.78 a

structure based on four-particle arrangements that are bound to each other via the patches

separated by small angles and thereby forming tetragons. Two of the pole patches, located on

diagonally opposite vertices of the tetragon, directly bond with neighboring tetragons, while

the remaining two patches, again on opposite vertices, are interacting via longer-distance

bonds. Thereby, this configuration achieves a binding energy of U⋆ = −1.29, while increasing

η by a factor of 1.36 compared to the fully bonded low-pressure lattice. On further increasing

pressure, a structure based on zig-zag lanes of particles represents the ground state. Here,

all the pole patches are fully bonded, while half of the small-angle patches engage in long-

distance bonds (with interparticle distance r = 1.67σ and a binding energy of 17.5 percent of

a fully optimized bond). This leads to values of U⋆ = −1.05 and η is increased by a further

factor of 1.06. For pressure values above P ⋆ = 5.13, the bonds connecting pole patches are

broken and the zig-zag pattern is rearranged, so that a (distorted) triangular lattice with

almost close packing (U⋆ = −0.53, η = 0.88 at P ⋆ = 10.00) is formed (cf. Fig. 4.3).

The particles of type 3c (with patches located on a triangle with angles {60◦, 150◦, 150◦})
form only two different ground state structures again (cf. Fig. 4.2, bottom panel): For

low pressure we observe an even more elongated, fully bonded honeycomb lattice. Due

to the geometry of the patch locations, this lattice already has a considerably high area

number density of η = 0.67. For pressure values above P ⋆ = 4.25, the minimum enthalpy

configuration is of almost close packed triangular type, with bonded low-angle patches, while

all the north-pole patches are unbonded; the particles themselves form close-packed trimers

of equilateral triangles in this configuration (U⋆ = −0.83, η = 0.87 at P ⋆ = 10.00).

Four Patch Systems

For systems containing particles with four patches, we have also considered three distinct

types of patch decorations, shown in Fig. 4.4. For any of these systems, we observe at most

two different minimum enthalpy configurations over the pressure range that we investigated.

The fully bonded (i.e., U⋆ = −2.00) low-pressure configuration has the same, obvious bond-

ing pattern for all three particle types, leading to square or rhombic lattices, depending

on the patch decoration. The high pressure configurations on the other hand show some

differences: The symmetric particles (4a) form a triangular lattice with two full and two
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Figure 4.2.: Gibbs free energy [G⋆ = U⋆+P ⋆/(ησ2
0), dash-dotted blue line], lattice sum (U⋆,

solid red line) and area [1/(ησ2
0), dashed green line] of the energetically most

favorable structures formed by a system of patchy particles of type 3a (top)
and 3c (bottom) as functions of pressure. Insets: low pressure configurations
(regular/elongated hexagons, left) and high pressure configurations (triangular
lattice/triangular packing of trimers, right).
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Figure 4.3.: Top: Gibbs free energy, lattice sum and area of the energetically most favorable
structures formed by a system of patchy particles of type 3b as functions of
pressure. Insets: low pressure configuration (elongated hexagons, left) and high
pressure configuration (triangular lattice, right). Bottom: intermediate pressure
configurations, with increasing pressure from left to right. Line styles as in
Fig. 4.2.
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4.1. Patchy Particle Systems in Two Dimensions

Figure 4.4.: Four-patch particles with three different decorations as they are investigated in
the present study: left panel – type 4a, regular patch distribution, i.e., with a
set of inter-patch angles of {90o, 90o, 90o, 90o}, center panel – type 4b, with a set
of inter-patch angles of {75o, 105o, 75o, 105o}, and right panel – type 4c, with a
set of inter-patch angles of {60o, 120o, 60o, 120o}.

long-distance bonds per particle for pressure values above P ⋆ = 2.84 (U⋆ = −1.07, η = 0.87

at P ⋆ = 10.0). Particles of type 4b form a configuration where each particle has two fully

bonded and four close-packed neighbors for P ⋆ ≥ 4.33 (U⋆ = −0.93, η = 0.87 at P ⋆ = 10.0).

Finally, particles of type 4c arrange in the same pattern over the whole investigated pressure

range, with the lattice being gradually distorted and the bonds being slightly bent in order

to achieve better packing at higher pressure (U⋆ = −1.64, η = 0.84 at P ⋆ = 10.0).

Five Patch Systems

The case of five patches is expected to show interesting properties, since polygons with five-

fold symmetry cannot fully cover a plane. Here we focus on a symmetrical patch distribution.

For the standard value of the patch width (i.e., patches with w = 0.05), we reproduce the

results presented in Ref. [37]: The low pressure configuration is represented by the so-

called σ-phase (in reference to the three-dimensional Frank-Kasper phases [110]). In this

configuration, each patch is bonded, but because of the incompatibility between the five-

fold symmetry and covering of a two-dimensional plane, four out of five bonds cannot be

perfectly aligned and each of them has an energy U⋆
Bond of only 60 percent of the optimal

value. Increasing the pressure to values P ⋆ > 4.30, the minimum enthalpy structure is a

variation of the σ-phase, as its central four particle-subunits are retained; however they do

not bond to each other anymore, but arrange instead in a packed configuration, thereby

reducing the binding energy from U⋆ = −1.45 to U⋆ = −0.83 and increasing the packing

fraction by a factor of 1.16. Finally, the high pressure configuration which is stable for

P ⋆ > 9.23 consists of trimers, which arrange in a close-packed way with U⋆ = −0.56 and

further increasing the packing fraction by a factor of 1.02.

On decreasing the patch width to w = 0.03, the low pressure configuration we find has a

slightly lower enthalpy than the one presented in Ref. [37]. The difference between these two

structures is rather subtle: both consist of closed interconnected five-particle loops, where

each particle has three perfectly bonded patches and two completely unbonded ones. For

the configuration shown in Ref. [37], these loops arrange parallel to each other (the so-called

H-phase, again in reference to the Frank-Kasper phases [110]), while for the lattice predicted
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Figure 4.5.: Gibbs free energy, lattice sum and area of the energetically most favorable struc-
tures formed by a system of patchy particles of type 4a (top) and 4b (bottom)
as functions of pressure. Insets: low pressure configurations (square/rhombic
lattice, left) and high pressure configurations (triangular lattices, right). Line
styles as in Fig. 4.2.
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Figure 4.6.: Gibbs free energy, lattice sum and area of the energetically most favorable struc-
tures formed by a system of patchy particles of type 4c as functions of pressure.
Insets: low pressure configuration (elongated hexagons, left) and high pressure
configuration with the same bonding pattern (triangular, right). Line styles as
in Fig. 4.2.

by our method, the loops are tilted against each other, leading to a slightly higher packing

fraction (η = 0.6177 compared to η = 0.6175). For P ⋆ > 1.64, the equilibrium structure we

identified consists of zig-zag lanes of particles, with two full bonds and two additional long-

distance bonds per particle. The long-distance bonds have a binding energy of seven percent

of the optimal value and could be seen as an artifact of the model, since their connection

line crosses a colloidal particle (see Fig. 4.8, bottom). The high pressure configuration

(P ⋆ > 4.53) is again triangular and almost close packed (η = 0.89 at P ⋆ = 10.00) and

exhibits one full and one (more realistic) long-distance bond per particle.

Binary Mixtures

Additionally, we have considered an equimolar binary mixture of particles, where the different

species are decorated with two and three regularly distributed patches, respectively. For this

system, we identify three different minimum enthalpy configuration over the investigated

pressure range: for very low pressure, we find a fully bonded lattice, which can be interpreted

as hexagons that are elongated by incorporating the two-patch particles. For slightly higher

pressure values, (P ⋆ > 0.18), an intermediate configuration, where two bonds per unit cell

are given up in order to increase the packing fraction by a factor of 1.61. Here, the three-

patch particles still arrange in fully bonded hexagons, while the two-patch particles form
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Figure 4.7.: Top: Gibbs free energy, lattice sum and area of the energetically most favorable
structures formed by a system of patchy particles with five regularly distributed
patches of width w = 0.05 as functions of pressure. Insets: low pressure config-
uration (σ phase, left) and high pressure configuration (trimers, right). Bottom:
intermediate pressure configuration. Line styles as in Fig. 4.2.
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Figure 4.8.: Top: Gibbs free energy, lattice sum and area of the energetically most favorable
structures formed by a system of patchy particles with five regularly distributed
patches of width w = 0.03 as functions of pressure. Insets: low pressure con-
figuration (left) and high pressure configuration (right). Bottom: intermediate
pressure configuration. Line styles as in Fig. 4.2.
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dimers, located in between parallel lanes of the hexagons. Interestingly, no single bond is

formed between two neighboring “hexagons + dimers”-lanes (see Fig. 4.9) and therefore,

they can freely move against each other (note the slight horizontal shift in the figure). The

high pressure configuration, which is already formed at P ⋆ > 0.53 in this system, is an almost

close-packed triangular lattice, where each particle, either having two or three patches, forms

two bonds.

Systems with Repulsive Interactions

For the case of additional patch-patch repulsion, we restrict ourselves to a system, which

seems particularly interesting: our particles are decorated by five patches (cf. Fig. 2.4) where

two of them are of type A, while the other three are of type B. In this model, like patches

attract each other, while unlike patches repel each other. The imparity in patch numbers of

different type induces considerably more rich self-assembly scenarios than those encountered

in systems where the numbers of A and B patches are equal.

By varying the pressure we identified three different MECs, depicted in Fig. 4.10. At low

pressure, we observe a tiling of the two-dimensional space by triangular shaped, equilat-

eral units that consist of six particles, with all tiles pointing in the same direction. Note

that all A patches are saturated by a B patch, so that only one B patch per particle re-

mains unbonded, which points towards the center of the triangular unit. As the pressure

is increased, the emerging minimum enthalpy configuration can be divided into elongated,

closed substructures, composed of six particles which cover the two-dimensional space in

alternating orientations (see Fig. 4.10, bottom left panel). Still, almost all A−B bonds are

saturated, but the increased pressure forces the (mutually repulsive) B patches to approach

each other. Finally, at the highest pressure, we observe hexagonal particle arrangements.

At first sight, the system seems to be homogeneous. However, a substructure characterized

by the orientation of the particles can easily be observed. The system forms double lanes:

using the terminology introduced for the bonds in Fig. 4.10 (bottom right), adjacent pairs

of lanes are stabilized via the strong B1 bonds, while inside each pair of lanes we observe B2

and B3 bonds, both of them being energetically less favorable. In a closer analysis of the en-

ergies of these bonds one recovers the following U/ǫ-values: UB1/ǫ = −0.75, UB2/ǫ = −0.13,

and UB3/ǫ = −0.06. The strength of the B1 bond can be easily traced back to the small

angles involved, while the weakness of the B3 bond is due to the large distances between the

patches.
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Figure 4.9.: Top: Gibbs free energy, lattice sum and area of the energetically most favorable
structures as functions of pressure. The system is a binary mixture of patchy
particles, where the particle species are decorated with two and three regularly
distributed patches, respectively. Insets: low pressure configuration (elongated
hexagons, left) and high pressure configuration (triangular lattice, right). Bot-
tom: intermediate pressure configuration. Line styles as in Fig. 4.2.
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Figure 4.10.: Top: Gibbs free energy, lattice sum and area of the energetically most favorable
structures formed by a system of patchy particles with attractive and repul-
sive patch interactions as functions of pressure. Differently colored patches are
mutually attractive, while patches in the same color repel each other. Insets:
low pressure configuration (left) and high pressure configuration (double lay-
ers/distorted triangular lattice, right). Bottom: intermediate pressure configu-
ration (left, with tiling as a guide to the eye) and high pressure configuration,
highlighting the bonds that are discussed in the text (right). Line styles as in
Fig. 4.2.
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4.1. Patchy Particle Systems in Two Dimensions

4.1.2. Platonic and Archimedean Tilings Realized by Patchy

Particles

Tesselations (or tilings) of a two-dimensional plane, have been under study in science and

in use in art and construction since antiquity [111]. In general, a tiling covers a plane

by repeating geometrical patterns (i.e., tiles), without any overlaps or gaps between the

individual tiles.

Tesselations with the highest degree of symmetry are the so-called Platonic, or regular,

tilings. Each of them contains only one type of regular polygons of equal edge-length. Such

tilings can be realized using either equilateral triangles (six polygons meet at each vertex,

denoted as 36), squares (four at each vertex, 44) or regular hexagons (three at each vertex

63). If the restriction to use only one type of polygons is relaxed to requiring only one

type of vertex, the Archimedean, or semiregular, tilings are obtained. These tilings contain

five different types of regular polygons of equal edge-length (namely equilateral triangles,

squares, hexagons, octagons and dodecagons). Besides the three regular tilings, there are

eight different realizations of this type of tesselation, which can be characterized by their

vertex type [i.e., a listing of the polygons meeting (in the same sequence) at each vertex].

These tilings and their vertex descriptions are listed in Tables 4.1 and 4.2 and depicted in

Fig. 4.11. In general, a given vertex of an Archimedean tiling can be mapped onto any other

vertex of the same tiling by a proper rotation; an exception to this rule is the truncated

trihexagonal tiling, where a reflection and a rotation are needed to achieve this mapping

(i.e., the tiling consist of chiral vertices that appear as two distinct enantiomers).

The regular and semi-regular tilings are ideal candidates for bottom-up self-assembly strate-

gies using patchy particles: since all vertices are of the same type and the distances between

neighboring vertices are the same, it is straightforward to make an appropriate guess for

decorating particles with patches in such a way that they might self-assemble into one of the

given target structures.

There are two options for decorating a tiling with patchy particles; the particles can ei-

ther be placed on the vertices or on the centers of the inscribed circles of the polygons. In

the following, these options will be called vertex representation and center representations,

respectively. The former has the advantage that only one species of patchy particles (con-

cerning particle size as well as patch decoration) has to be introduced for each Archimedean

tiling to be constructed (with the exception of the truncated trihexagonal tiling, where ena-

tiomeric particles are required), while the center representation requires particles with large

size disparity for many tilings. Therefore, systems in the vertex representation are expected

to be realize experimentally more easily. However, the vertex representation exhibits large

voids for tilings involving polygons with a large number of vertices and therefore the struc-

tures representing these tilings have rather high unit cell volumes and might be unstable

with respect to more closely packed configuration even at small pressure.

In the following, we present the results of our investigations where we have addressed the
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question if suitable patch decorations can lead to the formation of Platonic and Archimedean

tilings as equilibrium structures at T = 0 and varying pressure.

Vertex Representation

In the vertex representation, the patch decoration is chosen so that bonds are formed along

the edges of a tiling when the centers of mass of the patchy particles are located at the

vertices. This leads to the system parameters (i.e., required number of particles in the

primitive cell of a lattice and patch-angles) presented in Table 4.1.

vertex representation
tiling vertices N patch-angles [◦]

triangular 36 1 {0, 60, 120, 180, 240, 300}
square 44 1 {0, 90, 180, 270}
hexagonal 63 2 {0, 120, 240}
elongated triangular 33.42 2 {0, 60, 120, 180, 270}
snub square 32.4.3.4 4 {0, 60, 120, 210, 270}
snub hexagonal 34.6 6 {0, 60, 120, 180, 240}
trihexagonal 3.6.3.6 3 {0, 60, 180, 240}
rhombitrihexagonal 3.4.6.4 6 {0, 60, 150, 270}
truncated square 4.82 4 {0, 90, 225}
truncated hexagonal 3.122 6 {0, 60, 210}
truncated trihexagonal

4.6.12 6 {0, 90, 240}
4.12.6 6 {0, 90, 210}

Table 4.1.: List of the three Platonic and eight Archimedean tilings (first column) and their
vertex specification (second column). In the two other columns parameters are
collected that specify patchy particles for the vertex representation (see text): N
stands for the number of particles required per unit cell (cf. Fig. 4.11). The last
column specifies the patch positions along the circumference via the indicated
angles. Note that in the vertex representation all particles have the same size;
only for the truncated trihexagonal tiling two particle species of equal size but
different chirality in their decoration are required.

In our study, we use our optimization algorithm in order to identify the structure with low-

est enthalpy that can be formed by these systems. At P ⋆ = 0, the unit cell area does not

contribute to the enthalpy and the tilings represent (one of) the stable structure(s) by con-

struction, as they all minimize the binding energy of the system. We start our investigations

at low pressure (i.e., close to zero) and increase P ⋆ stepwise. For sufficiently high pressure

values, close-packed triangular lattices will be stable for all systems, as the packing term is

completely dominating the bonding term in the enthalpy.

For the Platonic tesselations, the situation is not very complex and all of the tilings can

be realized as equilibrium structures for sufficiently low pressure values: The triangular
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triangular square

hexagonal

elongated triangular snub square

snub hexagonal trihexagonal

rhombitrihexagonal truncated square

truncated hexagonal truncated trihexagonal

Figure 4.11.: Representative sections of the three Platonic and the eight Archimedean tilings
(as labeled) – thin lines. The left (right) panels visualize the vertex (center)
representations, respectively. The grey-shaded areas, delimited by thick lines
represent the respective unit cells. Different particle species (either distin-
guished via their patch decoration or their size) are displayed using different
colors.
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tiling, realized by particles with six patches already represents a close-packed structure and

therefore is stable over the whole pressure range. The square tiling, on the other hand, is

realized by a non-close packed lattice and is only stable until P ⋆ ≈ 2.9. Above this value,

a triangular lattice with a higher binding energy is identified as the equilibrium structure.

Finally, the hexagonal tiling, which is represented by a honeycomb lattice of particles with

three patches is only stable up to P ⋆ ≈ 0.8 due to its comparatively large unit cell area. For

higher pressures, we again encounter a close-packed, triangular lattice as the configuration

with minimal enthalpy.

The Archimedean tilings, on the other hand are more difficult to be stabilized for non-

vanishing pressure. The elongated triangular tiling corresponds to the equilibrium structure

of a system with two five-patch particles in the unit cell for P ⋆ . 3.5. This structure can be

viewed as parallel zig-zag lanes, characterized by strong bonding within the lanes (involving

four of the five patches); the fifth patch of each particle is used to connect to the neighboring

zig-zag lanes. As one passes the threshold value for the pressure, the four-fold bonding is

able to resist while the inter-lane bonds are broken. In an effort to decrease the area, the now

disconnected neighboring zig-zag lanes are shifted relative to each other (lowering thereby

the thermodynamic potential), leading to a structure which closely resembles a triangular

configuration, with a small deviation in order to retain bonds (i.e., the interparticle dis-

tances of bonded particles are close to the minimum of the Lennard-Jones potential 21/6σ,

while distances between non-bonding neighboring particles are close to σ). This deviation

continuously becomes smaller (i.e., the bond lengths are decreased from the energetically

optimal value, in order to minimize the area term) with increasing pressure. This configu-

ration closely resembles the high pressure configuration of the system with attractive and

repulsive interactions investigated in the previous section (cf. Fig. 4.12).

For the snub square tiling the pressure dependence of the emerging structures is even more

complex. Five patch particles are required with the decoration as specified in Tab. 4.1.

Again, the full saturation of all bonds of this tiling combined with a comparatively small

area guarantees that the configuration is able to resist up to relatively high pressure values

(i.e., P ⋆ ≈ 6.5). Only then a more close packed arrangement with approximately half of the

minimum binding energy is more favorable with respect to the enthalpy. This configuration

resembles the triangular high-pressure arrangement, like the high pressure configuration of

the elongated triangular system, but has a more complicated bonding scheme, as only half of

the particles have one completely unbonded patch and at two locations in the primitive cell,

three patches (from three different particles) connect to each other (cf. Fig. 4.12, bottom

panel).

The remaining six tilings never represent the minimum enthalpy structure of their respective

systems in the vertex representation at finite pressure values.

The snub hexagonal and the trihexagonal systems arrange already at the lowest accessible

pressure values in distorted triangular lattices, as these support full bonding while requiring

a much smaller unit cell area than the respective tilings. Again, the distortion is caused by
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larger distances between bonded nearest neighbors than for non-bonded ones and becomes

less evident with increasing pressure (cf. Fig. 4.13).

The particles designed for the rhombitrihexagonal lattice arrange already at vanishingly small

pressure values in a lattice similar to the snub square one, which remains stable for pressure

values up to P ⋆ ≈ 5.3. Note that the particles have one patch less than the particles designed

for the snub square lattice, which explains the lower threshold value in pressure. At higher

pressure, the system collapses into a triangular-like structure with two direct and two further

long-distance bonds per particle (cf. Fig. 4.14, top).

Particles designed to self-assemble in a truncated square tiling assemble, instead, already at

vanishingly small pressure in a distorted hexagonal lattice: again, the full bond saturation

combined with a smaller area than the lattice corresponding to the tiling makes this structure

more favorable with respect to the enthalpy. The system transforms at a relatively low pres-

sure value (P ⋆ ≈ 0.5) into a configuration consisting of square four-particle arrangements.

In this configuration, all the patches engage in bonding, even though two of the bonds in

each unit cell are long-distance ones. At P ⋆ ≈ 2.8 and above, we identified a double-lane

structure, where particles arrange in a zig-zag pattern, stabilized by strong internal bonds

as the most favorable one; the zig-zag lanes, themselves are connected to their next-nearest

neighbors via single long-distance bonds: a loss in bond-saturation is compensated by a

relatively small unit cell area. Eventually, at P ⋆ ≈ 5.0 the system collapses to a distorted

triangular structure with one full, one long-distance and one wide-angle bond (cf. Fig. 4.15).

Patchy particles designed to form the truncated hexagonal tiling form at low pressure a

distorted hexagonal lattice, where the distortion is induced by the patch decoration (in

this configuration the centers of mass of the particles occupy the same locations as in the

elongated triangular tiling, but there is a smaller number of bonds). At P ⋆ ≈ 4.4 the system

transforms into a triangular-like structure with two non-bonded patches per unit cell, which

again induce the distortion (cf. Fig. 4.14, bottom).

Finally, the vertex representation of the truncated trihexagonal tiling suggests to use the

two different enantiomers of a chiral patchy particle (six of each in the unit cell), to realize

this ordered particle arrangement. Due to the large number of parameters that have to be

optimized, it is difficult to give conclusive results on this system. We found lattices with

lower enthalpy than the desired tiling at all pressure values due to the tiling’s very large unit

cell area (however, we are not entirely convinced if these identified lattices really represent

the global minima on the enthalpy landscape).
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Figure 4.12.: Gibbs free energy [G⋆ = U⋆ + P ⋆/(ησ2
0), dash-dotted blue line], lattice sum

(U⋆, solid red line) and area [1/(ησ2
0], dashed green line) of the energetically

most favorable structures formed by the particles designed for elongated tri-
angular (top) and snub square (bottom) tilings in the vertex representation as
functions of pressure P ⋆. Insets: low pressure configurations (elongated tri-
angular /snub square tilings, left) and high pressure configurations (distorted
triangular lattices, right).
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Figure 4.13.: Gibbs free energy, lattice sum and area of the energetically most favorable
structures formed by the particles designed for snub hexagonal (top) and tri-
hexagonal tilings in the vertex representation, as functions of pressure. Insets:
low pressure configurations (distorted triangular lattices, left) and high pres-
sure configurations (same respective configurations, optimized for high pres-
sure, right). Line styles as in Fig. 4.12.
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Figure 4.14.: Gibbs free energy, lattice sum and area of the energetically most favorable
structures formed by the rhombitrihexagonal (top) and truncated hexagonal
(bottom) systems in the vertex representation, as functions of pressure. Insets:
low pressure configurations (snub square tiling/distorted triangular lattice, left)
and high pressure configurations (distorted triangular lattices, right). Line
styles as in Fig. 4.12.
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Figure 4.15.: Top: Gibbs free energy, lattice sum and area of the energetically most favor-
able structures formed by the particles designed for the truncated square tiling
in the vertex representation, as functions of pressure. Insets: low pressure
configuration (distorted hexagonal, left) and high pressure configuration (dis-
torted triangular, right). Bottom: intermediate pressure configurations, with
increasing pressure from left to right. Line styles as in Fig. 4.12.
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Center Representation

The parameters that specify the size and the decoration of the patchy particles designed to

self-assemble in the Platonic and Archimedean tilings within the center representation are

summarized in Table 4.2, along with the number of particles of each species in the primitive

cell that are required in order to realize the target lattice. Here, the particles are defined as

inscribed circles of the polygonal building units of the respective tiling; their patch decoration

is imposed by the requirement that each bond connecting two patches bisects the shared edge

of neighboring polygonal units. In an attempt to realize the desired target structures in the

center representation, at least two particle species of different size and decoration have to

be introduced; we point out that, compared to the vertex representation, a relatively large

number of patches is required. Again, we start our investigation at pressure values close

to zero; we then gradually increase the pressure up to P ⋆ = 10. Note that due to the

fact that at least two particle species are involved, the high-pressure phase is no longer the

(monodisperse) triangular lattice.

Again, all the Platonic tilings can be stabilized for sufficiently low pressure; in fact, the

triangular tesselation in the center representation corresponds to exactly the same system

of patchy particles as the hexagonal tesselation in the vertex representation and vice versa.

The square tiling corresponds to the same system in both representations. Therefore, the

threshold pressure values up to which the tilings are stable are the same as the ones discussed

in the section on the vertex representation.

Particles designed for the elongated triangular tiling show a size disparity of 0.577. At finite

pressure values, the target structure is not realized; instead, lanes form: alternatingly, the

larger particles populate a square lattice, while the smaller ones self-assemble in honeycomb-

cells. This lattice is favored over the target structure with respect to the enthalpy, even

though the unit cell area is only slightly smaller than the one of the lattice corresponding

to the elongated triangular tesselation. This is due to the higher compressibility of the

lane-based structure.

As the pressure is increased, the smaller particles form lanes as well, positioning themselves

in increasingly more compact arrangements, breaking up more and more bonds. Since the

lanes (consisting of alternating particle types) get broader as the number of particles in

the unit cell is increased, we suspect that this behavior corresponds to a phase separation

scenario, where the two phases are monodisperse triangular lattices consisting of the two

subspecies of particles, respectively (cf. Fig. 4.16). Complete phase separation can of course

only be realized in the limit of infinitely large primitive cells, which is clearly not reachable

using the optimization algorithm.

For the snub square system we observe exactly the same phase behavior, since its unit cell in

center representation consists of identical particle types and ratios as the elongated triangular

one (cf. Tab. 4.2).
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center representation

tiling N
size

Np
inter-patch angles

[σ0] 360/Np [◦]

triangular 2 1/
√
3 ≈ 0.577 3 120

square 1 1.000 4 90

hexagonal 1
√
3 ≈ 1.732 6 60

elongated triangular
1 1.000 4 90

2 1/
√
3 ≈ 0.577 3 120

snub square
2 1.000 4 90

4 1/
√
3 ≈ 0.577 3 120

snub hexagonal
1

√
3 ≈ 1.732 6 60

8 1/
√
3 ≈ 0.577 3 120

trihexagonal
1

√
3 ≈ 1.732 6 60

2 1/
√
3 ≈ 0.577 3 120

rhombitrihexagonal
1

√
3 ≈ 1.732 6 60

3 1.000 4 90

2 1/
√
3 ≈ 0.577 3 120

truncated square
1 1 +

√
2 ≈ 2.414 8 45

1 1.000 4 90

truncated hexagonal
1 2 +

√
3 ≈ 3.732 12 30

2 1/
√
3 ≈ 0.577 3 120

truncated trihexagonal
1 2 +

√
3 ≈ 3.732 12 30

2
√
3 ≈ 1.732 6 60

3 1.000 4 90

Table 4.2.: List of the three Platonic and eight Archimedean tilings and parameters that
specify patchy particles for the center representation (see text): N stands for the
number of particles required per unit cell (cf. Fig. 4.11). For all tilings at least
two particle species with different size are required; their respective size (in units
of σ0) is given in the third column. The last two columns specify the number
of patches Np and the (uniform) inter-patch angles for each particle species,
respectively.

In an effort to realize the snub hexagonal lattice we require one large six-patch and eight small

three-patch particles per unit cell, with a size disparity characterized by a factor of three.

The desired target structure is indeed stable for pressure values up to P ⋆ ≈ 2.0. Then, upon

increasing the pressure, four different lane structures emerge with increasing complexity and

space filling factors, while the number of bonds decreases. The large particles remain fully

bonded in the first two arrangements, while they lose one bond at each transition to the

higher pressure arrangements.

Finally, the large particles form a highly compact square lattice, hosting the small particles

in the interstitial regions. In this structure, the large particles have four, very weak wide-

angle bonds with small particles, while each small particle exhibits one strong bond with a
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neighboring particle of the same species (cf. Fig. 4.17).

Particles designed for the trihexagonal tiling (which also have a size disparity of three, but

require a stoichiometry of 1 : 2) do not form the target lattice as an equilibrium structure. At

low pressure values, the larger, six-patch particles instead arrange in a rectangular sublattice,

while the smaller three-patch particles arrange in lanes of dimers between the larger particles.

This configuration is fully bonded and has a smaller unit cell area than the target structure.

Increasing the pressure leads to a lattice characterized by double-lanes of large particles,

with four-particle arrangements of the smaller ones in between. The larger particles and 50

percent of the small particles are still fully bonded, while the remaining ones have no bonds

at all. The high pressure arrangement is characterized by single lanes of large particles, with

two small particles in each void. Each large particles has four bonds, each small particle has

a single bond in this configuration (cf. Fig. 4.18).

In the construction of the rhombitrihexagonal lattice, three particle species (six-patch, four-

patch and three-patch) are involved, the size disparity between the largest and the smallest

species again being characterized by a factor three. Indeed, the desired target structure

remains stable over a relatively large pressure range, i.e., up to P ⋆ ≈ 3.8, then transforming

into a complex, more packed lane structure. Here, the six-patch particles have three bonds,

half of the four-patch particles have three, the remaining half two bonds and all the three-

patch particles have one bond (cf. Fig. 4.19, top panel).

Particles designed for the truncated square tiling (i.e., one eight-patch and one four-patch

particle with a size disparity of a factor 2.414) arrange in the desired target structure,

two superposed square lattices decorated by the two particle species, respectively. This

configuration is the only equilibrium structure that these particles form: as the pressure is

increased, the system is homogeneously compressed (decreasing the bond lengths from the

optimal value 21/6(σi+σj)/2 towards (σi+σj)/2 and thereby increasing the energy from the

fully bonded value towards zero) until a close-packed configuration is reached, maintaining

the desired lattice structure (cf. Fig. 4.19, bottom panel).

In order to build up the truncated hexagonal tiling, two particle species (twelve-patch and

three-patch) with a size disparity of a factor 6.46 are required. Again, the desired target

structure represents the global enthalpy minimum at all pressure values investigated. The

particle arrangement is gradually compressed with increasing pressure (cf. Fig. 4.20, top

panel).

Finally, we require three particle species (twelve-patch, six-patch and four-patch) to realize

the truncated trihexagonal tiling; the largest and the smallest of these particles differ in their

size by a factor of 3.732. Similar to the two tilings discussed before, particles arrange for

all investigated pressure values in one single structure, which represents the desired particle

arrangement. An increase in pressure only reduces the lattice constants and bond lengths

(cf. Fig. 4.20, bottom panel).

In conclusion, we note that all Platonic tilings represent the equilibrium configuration at

74



4.1. Patchy Particle Systems in Two Dimensions

−2

0

0

2

2

4

4

6

6

8

8

10

10

12

P ⋆

(d
im

en
si
on

le
ss

u
n
it
s)

Figure 4.16.: Top: Gibbs free energy, lattice sum and area of the energetically most favorable
structures formed by the particles designed for the elongated triangular and
snub square tilings in the center representation, as functions of pressure. Insets:
low pressure configuration (lanes I) and high pressure configuration (phase
separation). Bottom: intermediate pressure configuration (lanes II). Particles
with three patches are displayed in green, particles with four patches in yellow
color. Line styles as in Fig. 4.12.
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Figure 4.17.: Top: Gibbs free energy, lattice sum and area of the energetically most favor-
able structures formed by the particles designed for the snub hexagonal tiling
in the center representation, as functions of pressure. Insets: low pressure con-
figuration (snub hexagonal tiling, left) and high pressure configuration (right).
Bottom: intermediate pressure configurations, with increasing pressure from
left to right and from top to bottom. Particles with three patches are displayed
in green, particles with six patches in red color. Line styles as in Fig. 4.12.
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Figure 4.18.: Top: Gibbs free energy, lattice sum and area of the energetically most favor-
able structures formed by the particles designed for the trihexagonal tiling in
the center representation, as functions of pressure. Insets: low pressure config-
uration (rectangular) and high pressure configuration (single lanes). Bottom:
intermediate pressure configuration (double lanes). Particles with three patches
are displayed in green, particles with six patches in red color. Line styles as in
Fig. 4.12.
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Figure 4.19.: Gibbs free energy, lattice sum and area of the energetically most favor-
able structures formed by the particles designed for the rhombitrihexagonal
(top) and truncated square (bottom) tilings in the center representation, as
functions of pressure. Insets: low pressure configurations (rhombitrihexago-
nal/truncated square tilings, left) and high pressure configurations (lane con-
figuration/truncated square tiling, right). Particles with three patches are dis-
played in green, particles with four patches in yellow, particles with six patches
in red and particles with eight patches in blue color. Line styles as in Fig. 4.12.
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Figure 4.20.: Gibbs free energy, lattice sum and area of the energetically most favorable
structures formed by the particles designed for the truncated hexagonal (top)
and truncated trihexagonal (bottom) tilings in the center representation, as
functions of pressure. Insets: low pressure configurations (truncated hexago-
nal/truncated trihexagonal tilings, left) and high pressure configurations (same
respective configurations, with bond lengths optimized for close packing, right).
Particles with three patches are displayed in green, particles with four patches
in yellow, particles with six patches in red and particles with twelve patches in
cyan color. Line styles as in Fig. 4.12.
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T = 0 and some finite pressure value in both the vertex and the center representation. All

Archimedean tilings except for the trihexagonal one represent the global enthalpy minimum

at T = 0 and finite pressure in one of the representations. The elongated triangular and the

snub square tilings can be stabilized only in the vertex representation, while the snub hexag-

onal, rhombitrihexagonal, truncated square, truncated hexagonal and truncated trihexagonal

tilings where identified as equilibrium structures only in the center representation. This

duality is not completely surprising, as polygonal building units correspond to voids in the

vertex representation and to particles in the center representation. Therefore, tesselations

with very large building units are strongly disfavored in the vertex representation, while

they correspond to a rather good space filling factor in the center representation by defi-

nition (as an increasing number of edges makes the polygons more disk-like). For many of

the systems, we have identified additional, sometimes very complex, global enthalpy minima

at intermediate and high pressure values, which become favorable when the packing term

in the enthalpy dominates over the bonding term. Only the truncated square, truncated

hexagonal and truncated trihexagonal tilings (which all include octagonal or dodecagonal

building units) in the center representation correspond to the global enthalpy minimum over

the whole investigated pressure range.
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4.2. Patchy Particle Systems in Three Dimensions

4.2.1. Clusters

The results in this section were obtained using the basin-hopping Monte Carlo global op-

timization algorithm [67], developed by David Wales and coworkers, during a visit to this

group in Cambridge. Again, we are using the Doye model (cf. Sec. 2.2.2) with parameters

w = 2π · 0.05 and rcut = 1.9σ.

The term “cluster” refers to cohesive arrangements of a finite number N of particles. Clus-

ters can be seen as an intermediate state between an (ideal) gas phase (i.e., single particles,

separated by distances that are large compared to their intrinsic length scales, defined in the

respective interaction potentials) and a condensed phase (i.e., a liquid or a bulk solid, con-

taining a huge number of particles that are separated by distances of the order of magnitude

of their intrinsic length scales). There are no well-defined minimum or maximum particle

number N above or below which such an arrangement can be considered a cluster, as entities

consisting of as little as two or as many as millions of particles are termed in this way.

Global Energy Minima of Clusters of Patchy Particles

We have identified putative equilibrium structures in the NV T ensemble∗ for clusters of

patchy particles containing up to N = 47 particles, each with four patches arranged in

regular tetrahedral symmetry. By inspecting the identified configurations, we make the

general observation that the minimum energy clusters contain substructures, which can be

characterized as closed rings consisting of either five or six particles. This is in agreement

with results presented in Ref. [37]. The six particle rings are never flat, but can be seen

as finite sections of cubic and hexagonal diamond crystals (in Sec. 4.2.2, Fig. 4.36, panels

C and D, these two crystal structures are depicted). For the five-particle rings, we can

distinguish between flat (all centers of masses lie within a plane, representing the vertices

of a regular pentagon) and warped arrangements (the vertices of the “pentagon” do not

exactly lie within a plane). The six-particle rings are energetically slightly favored, as the

bonding angles can be optimally aligned (i.e., Θiα = Θjβ = 0) within those rings. The flat,

pentagonal five-particle rings, where the patch alignments slightly deviate from the optimal

angles due to geometric constraints, are better suited for supporting a larger number of total

bonds in clusters with a higher number of particles by forming closed shells, based on the

structure of the smallest possible fullerene, C20 [112, 113].

Thus, it is not surprising that the minimum energy clusters contain mostly six-particle rings

for cluster sizes 5 < N < 11 while five particle rings dominate forN > 18. In the intermediate

region, we observe global minima corresponding to structures containing both types of rings.

Plotting the energy per particle as a function of cluster size, we identify minimal values for

∗At T = 0 and V ≫ NVParticle.
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N = 8, 10, 15, 20, 30, 35, 47. These sizes represent “magic numbers”, where a comparatively

large number of patches can be saturated.

By examining the structures (cf. Figs. 4.22 and 4.22), we observe that N = 6, 8, 10, 12 are

built up by six-particle rings only (N = 10 represents a section of a cubic diamond, N = 8

and 12 sections of a hexagonal diamond, while the minimum for N = 6 is degenerate and can

be realized both by the cubic and the hexagonal diamond arrangements). For N = 7 and 9

we observe global energy minima represented by structures consisting of the (N − 1) cluster

plus an additional, weakly bonded particle; N = 11 combines a non-flat five-particle ring

and cubic-type six-particle ring in order to maximize the number of saturated bonds. The

N = 15 minimum energy cluster contains both five- and six-particle rings, the former in the

flat version, the latter of hexagonal type. The minimum energy structures for N = 13, 14 and

17 are all based on this cluster, while the one forN = 16 is a particle arrangement with rather

low symmetry, consisting mostly of five-particle rings. N = 20 represents a dodecahedral

closed shell of flat five-particle rings. For N > 17 we observe a growth pattern, towards the

20 particle closed shell: The global minimum structures at N = 18 and 19 are represented

by incomplete versions of this shell. Cluster with more than twenty particles always contain

the shell as a substructure; for N = 30 and 32 − 34 the shell is combined with the clusters

observed at N0 = N −15, where one of the flat five-particle rings is shared between the shell

and the additional subcluster. For cluster sizes N = 21 to 25, 27 to 29 and 31, the global

minimum for N0 particles does not contain a compatible five-particle ring and therefore the

20 particle shell is combined with an energetically higher local minimum structure of the

N0-particle system, which does include a five-particle ring that can be shared. A special case

is the cluster with N = 26 particles, where the 20 particle shell is combined with the N = 8

cluster, where the subclusters share only two particles.

The global minimum for N = 35 is represented by a combination of two full closed shells,

again sharing one five-particle ring. All clusters with N > 35 contain those two merged shells

and another growth pattern can be observed for particle numbers up to N = 47, where the

global minimum consists of three combined closed shells.

Transition States and Energy Landscapes

For cluster sizes N = 10, 12 15 and 20 we performed extensive searches for additional local

minima and transition states, in order to characterize the energy landscape for these systems.

Examining the disconnectivity graph (cf. Sec. 3.1 and Ref. [53]) representation of the energy

landscape at N = 10 (cf. Fig. 4.24, left panel), we find a local minimum that is energetically

very close (within less than one percent of the total energy) to the global minimum (UGM ≈
−12.00). This local minimum consists of five-particle rings only and is therefore structurally

quite different from the global one, which is based on cubic diamond-type six-particle rings.

The fastest reaction pathway between these two minima that we identified has to pass over

a high-energy barrier (UTS ≈ −10.00, i.e., two bonds have to be broken on the pathway),
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Figure 4.21.: Energy per particle as a function of cluster size. Insets: Minimal energy clusters
with N = 10, 20 and 35 particles.
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5 6 (cubic) 6 (hexagonal)

8 10 11

12 14 15

Figure 4.22.: Visualizations of the structures corresponding to global energy minima for se-
lected cluster sizes. Particles that are parts of five-particle rings are colored
green, those forming cubic diamond-type six-particle rings are shown in red
and particles within hexagonal diamond-type six-particle rings are colored blue.
Particles which are part of two different ring-types appear (somewhat arbitrar-
ily) in one of the specified colors only, so that the illustration does not become
unnecessarily complicated.
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Figure 4.23.: Visualizations of the structures corresponding to global energy minima for se-
lected cluster sizes. For the particle coloring scheme, cf. Fig. 4.22
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in order to achieve the required structural rearrangement. We observe several, energetically

slightly higher-lying minima (U ≈ −11.65), which contain combinations of five- and six-

particle rings and are connected to the global minimum via lower-lying transition states

(UTS ≈ −10.50). All these local minima have the same number of bonds as the global

minimum, the higher binding energy is due to non-optimal bond angles.

At N = 12, we have evaluated a disconnectivity graph with a broad funnel containing a

large number of minima that are all separated by barriers of similar height (cf. Fig. 4.24,

right panel). The three lowest minima all lie within this funnel, i.e., are interconnected via

pathways requiring the same, comparatively small amount of bond breaking.

For N = 15, the disconnectivity graph (cf. Fig. 4.25, left panel) looks more peculiar: The

global minimum (UGM ≈ −19.97), consisting of flat five-particle and hexagonal diamond-

type six-particle rings is not located within the dominating funnel of the energy landscape,

which contains most of the low-lying local minima. More specifically, within the dominating

funnel, there is one local minimum with U ≈ −19.84, corresponding to a fragment of the 20

particle icosahedral shell and a number of additional minima that are represented by slight

variations of this structure, with −19.42 . U . −19.00. To transform one of these structures

to another, transition states with UTS ≈ −18.50 have to be overcome, while reaching the

global minimum from this funnel requires passing a barrier with UTS ≈ −18.00. This shows

that the N = 15 cluster system lies in an intermediate regime of cluster sizes, where local

minima based on five particle rings already dominate the energy landscape, but the global

minimum still corresponds to a structure largely based on six particle rings.

AtN = 20, we observe a more regular, “weeping-willow”-type disconnectivity graph (cf. Fig. 4.25,

right panel) with a single, broad funnel that is completely dominated by structures based

on five-particle rings. The global minimum (with UGM ≈ −29.62) is separated from five

structurally distinct local minima with degenerate energies (U ≈ −27.75) by a rather large

gap, which amounts to more than six percent of the total energy. These local minima can all

be assembled by removing one particle from the global minimum structure (i.e., the closed

icosahedral shell) and reattaching it at a different place on the surface of the shell, thereby

losing three (slightly non-optimal) bonds and regaining a single (optimal) one. Therefore,

reaction pathways from the global minimum to any of these local minima have to pass transi-

tion states with the same energies (UTS ≈ −26.50), as reflected in the disconnectivity graph.

However, there are a few slightly higher-lying minima (U ≈ −27.40), which are connected

to the global minimum via transition states that correspond to energetically less costly re-

arrangements of the structure (UTS ≈ −27.00, i.e., these pathways do not require complete

detachment of a particle from the cluster).

An interesting perspective for future investigations could be to study the influence of the

patch width w on the shape of the energy landscapes for different cluster sizes. With de-

creasing w, minima in funnels corresponding to five-particle rings are expected to be shifted

towards higher energies.
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Figure 4.24.: Left: Disconnectivity graph showing the 50 lowest minima on the energy land-
scape of the ten particle cluster. Right: Disconnectivity graph showing the
100 lowest minima of the twelve particle cluster. Insets: structures represent-
ing the energetically lowest minima of each system. The ordinate shows the
cluster energy in units of the Lennard-Jones ǫ.
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Figure 4.25.: Left: Disconnectivity graph showing the 100 lowest minima of the 15 particle
cluster. Right: Disconnectivity graph showing the 100 lowest minima of the
20 particle cluster. Insets: structures representing the two energetically lowest
minima of each system. The ordinate shows the cluster energy in units of the
Lennard-Jones ǫ.
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4.2.2. Crystals

In the following section, we present the generalized∗ zero-temperature phase diagram of the

three-dimensional four-patch system, in dependence of system pressure P ⋆ and the geometry

of the patch decoration, i.e., the anisotropy parameter g. Again, our calculations are based

on the Doye model (cf. Sec. 2.2.2), here with parameters w = 2π · 0.06752 and rcut = 2.5σ.

We vary P ⋆ between 0 and 10 and g between 90.00 and 150.00; to be specific, patches 2-4

are located on the equator for g = 90.00 and on the southern hemisphere of the colloidal

particles for all other g values; for our calculations, we increase g in 16 steps of ∆g = 3.75.

We give detailed insight into the structural features of the zero-temperature equilibrium

configurations (i.e., global minima on the enthalpy landscape) for each state point, specified

by (g, P ⋆). Additionally, we present structures corresponding to competing local minima

on the landscape, for selected values of g and P ⋆. In certain cases, these local minima can

be thermodynamically stabilized at finite temperature by entropic effects (cf. Sec. 3.3). In

order to investigate this possibility in more detail, full free energy calculations [107, 114]

have to be performed. As pointed out in Sec. 3.3, our search algorithm can not only be used

to determine the zero-temperature behavior of such systems, but also to suggest candidate

structures, for which free energy calculations are executed in order to determine the finite

temperature phase diagram in a two-step approach [6, 7].

Note that for many values of the geometry parameter g, the patchy interactions lead to –

sometimes strong – deviations from ideal lattices (such as bcc, fcc and hcp). Therefore we

refer to the structures we identified as bcc-like, fcc-like or hcp-like in order to indicate such

aberrations.

For the visual representations of the structures in the following figures, we introduce a color

code as a guide to the eye:

• For layered honeycomb lattices and structures consisting of hexagonal layers, particles

located in different layers are colored in an alternating pattern (i.e., red-yellow-red-

yellow-. . . ).

• For bcc-like lattices, particles located on the vertices of the cubic unit cell appear in

red, while the particles at the center of the unit cell are colored yellow.

• In the double diamond picture, particles belonging to different non-interacting diamond

sublattices appear in different colors.

• For fcc-like structures, the particles located at the vertices of the cubic unit cell and

the particles at the centers of the faces of the unit cell are colored red and yellow,

respectively.

Additionally, patches located on the north pole of a particle are colored blue, while the

patches with g dependent locations on the particle surface are colored green.

∗With pressure and an anisotropy parameter as coordinate axes, cf. Sec. 2.1.1 and Ref. [4].
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Minimum Enthalpy Structures

As shown in Figs. 4.26 and 4.27, we are able to identify a broad variety of zero-temperature

equilibrium structures for varying patch geometries and pressures. These can crudely be cat-

egorized as open, very loosely packed configurations, hexagonally layered and body-centered

(bc) configurations with medium packing fractions and (almost) close packed face centered

and hexagonal configurations. The multitude of the observed configurations is the result

of a complex competition between packing (maximizing the packing fraction η) and bond

saturation (minimizing the energy U⋆). Accordingly, we can identify three regions in the

(g, P ⋆)-phase diagram:

• For pressure-values up to P ⋆ ≈ 4.00 we observe structures that are characterized by

full bond saturation (i.e., U⋆ ≈ −2.00) and rather small packing fraction η, being

by a factor of ≈ 2.75 (for open structures) to ≈ 1.16 (for distorted body-centered

structures) smaller than the packing fraction of close-packed spheres (η ≈ 0.74). Here,

the spectrum of identified lattices ranges from open, layered structures (g ≈ 90.00)

over bc-like lattices (which dominate over a broad g range, i.e., 93.75 . g . 135.00)

to layers of hexagonally arranged particles for g & 135.00.

For intermediate and higher pressure-values a trend towards more compact structures is

observed: non-close-packed hexagonal and bcc-like lattices are encountered, which, as P ⋆ is

further increased, eventually transform into close-packed hcp-like and fcc-like structures.

• For g . 120.00 the transition from low- to high-pressure structures is characterized

by an abrupt change in the energy U⋆, increasing from nearly full saturation (i.e.,

U⋆ ≈ −2.00) to a value of around −1.00. In this range of g, the location of the patches

on the colloidal surface does not allow for the formation of strong bonds in denser

configurations, thus pressure rather easily wins over bond saturation.

• In contrast, for g & 120.00, U⋆ increases more smoothly with P ⋆ and the identified

ordered structures are the result of a delicate trade-off between saturation and packing.

In particular we emphasize that for selected g values (i.e., g ≈ 123.75 and g ≈ 150.00)

the respective patch decorations support both a high degree of bond saturation and, at

the same time, the formation of high density lattices. As a consequence, the identified

structures are able to persist up to high pressure values (i.e., P ⋆ ≈ 10.00 in the former

case, even higher in the latter) while maintaining a relatively low binding energy (i.e.,

U⋆ ≈ −1.65).

In the following, we will provide detailed descriptions of the structural features of the iden-

tified equilibrium configurations.

As mentioned above, the calculations in this section have been carried out with a long-

distance potential cutoff of rcut = 2.5σ, in order to allow a comparison with previously

published results [39] and a direct exchange of data with our collaborator Eva Noya. This

rather high value causes additional attractive long-distance interaction to play a (though
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Figure 4.26.: Contour plot of the reduced energy U⋆ = U/(Nǫ) of the identified minimum
enthalpy structures as a function of the geometry parameter g and the re-
duced pressure P ⋆ = Pσ3/ǫ; the color code is displayed on the right. White
boundaries indicate the limits of stability of the respective ordered structures
on the underlying (g, P ⋆)-grid. “bc” stands for body-centered lattices, “fc” for
face-centered lattices.
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Figure 4.27.: Contour plot of the packing fraction η of the identified minimum enthalpy
structures as a function of the geometry parameter g and the reduced pressure
P ⋆ = Pσ3/ǫ; the color code is displayed on the right (its range is cut off
at η = 0.45, i.e., all values below 0.45 appear in the same color). White
boundaries indicate the limits of stability of the respective ordered structures
on the underlying (g, P ⋆)-grid. “bc” stands for body-centered lattices, “fc” for
face-centered lattices.
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marginal) role in the energy calculations, which can lead to U⋆ values slightly larger then

2.00 for fully bonded systems.

When the region of stability of an identified structure spans over a larger region in the

phase diagram, the U⋆- and η values can considerably vary, especially on the g coordinate.

Therefore we report intervals of values in such cases.

We will use the following abbreviations:

• NP: north pole patch

• SH: patches located on the southern hemisphere of a particle (on the equator for g = 90)

• % OBE: percent of the optimal binding energy (of a single bond)

• fc(c): face centered (cubic)

• bc(c): body centered (cubic)

• h(c)p: hexagonal (close) packed

As labeled in Figs. 4.26 and 4.27, we categorize the identified equilibrium structures into 14

types:

1. “open”: For the lowest two values of g taken into account and very small pressure, we

observe a fully bonded staggered honeycomb lattice with very low packing fraction (see

Fig. 4.28, top panel) corresponding to the global enthalpy minimum. The honeycomb-

pattern in the layers making up this structure is induced by the bonds formed between

the SH patches; the layers are interconnected by NP-NP bonds.

g stability binding energy packing fraction

90.00 P ⋆ < 0.3 U⋆ ≈ −2.02 0.340 . η . 0.341

93.75 P ⋆ < 0.1 U⋆ ≈ −2.02 η ≈ 0.269

2. “hexagonal layers I”: For g = 90.00, the open structure is transformed into a hexag-

onally layered configuration (see Fig. 4.28, center panel) at P ⋆ ≈ 0.3. This configura-

tion is also stable in an intermediate pressure region for g = 93.75 and is character-

ized by strong SH-SH inter-layer bonds and slightly weaker NP-SH intra-layer bonds

(U⋆
Bond ≈ 85 % OBE).

g stability binding energy packing fraction

90.00 0.3 < P ⋆ < 4.4 −1.86 . U⋆ . −1.55 0.533 . η . 0.638

93.75 3.1 < P ⋆ < 4.6 −1.54 . U⋆ . −1.52 0.641 . η . 0.645

3. “hexagonal layers II”: A further increase of pressure stabilizes a second, much denser

and rather weakly bonded, hexagonally layered structure (see Fig. 4.28, bottom panel).

Its region of stability spans over a large interval on the geometry-coordinate: 90.00 .

g . 105.00. As for all relatively dense configurations, the variations in energy and
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especially packing fraction are small. The NP patches form strong inter-layer bonds,

more specifically, each layer is bonded with one of its two adjacent layers in this

way. One of the SH patches on each particle engages in an intra-layer bond of similar

strength. The remaining SH patches interact only very weakly (3 . U⋆
Bond . 20 %

OBE).

g stability binding energy packing fraction

90.00 4.4 < P ⋆ < 7.1 U⋆ ≈ −1.19 0.708 . η . 0.709

93.75 4.6 < P ⋆ < 5.7 U⋆ ≈ −1.18 η ≈ 0.709

97.50 3.8 < P ⋆ < 5.3 −1.23 . U⋆ . −1.22 0.695 . η . 0.699

101.25 3.7 < P ⋆ < 6.4 −1.20 . U⋆ . −1.19 0.698 . η . 0.700

105.00 3.3 < P ⋆ < 5.4 U⋆ ≈ −1.20 0.697 . η . 0.698

4. “fc I”: For the two lowest g values and for high pressure, we encounter an almost

close packed, fcc-like structure (i.e., an ABCABC.. stacking of hexagonal layers; see

Fig. 4.29, top panel). In this configuration, the NP patches engage in long-distance

bonds (r ≈ 1.32, U⋆
Bond ≈ 61 % OBE); one of the SH patches on each particle forms a

strong bond with one of its counterparts on a neighboring particle and the remaining

two SH patches form wide-angle bonds, with U⋆
Bond ≈ 20 % OBE. The packing fraction

of this structure is among the highest ones encountered in this phase diagram.

g stability binding energy packing fraction

90.00 P ⋆ > 7.1 −1.08 . U⋆ . −1.07 η ≈ 0.724

93.75 P ⋆ > 5.8 −1.11 . U⋆ . −1.09 0.721 . η . 0.723

5. “hexagonal packed I”: For g = 97.50 and g = 101.25, the high pressure structure

is hcp-like (i.e., an ABAB.. stacking of hexagonal layers, see Fig. 4.29, center panel).

This is the most weakly bonded equilibrium configuration encountered in the whole

parameter space investigated. The packing fraction is only slightly lower than the value

for close packed hard spheres. Similarly to the “hexagonal layers II” structure, the NP

patches form bonds with each other, connecting neighboring layers. But unlike in the

aforementioned configuration, the SH patches form only long-distance and wide-angle

bonds with 10 . U⋆
Bond40 % OBE.

g stability binding energy packing fraction

97.50 P ⋆ > 5.3 −1.09 . U⋆ . −1.07 0.722 . η . 0.724

101.25 P ⋆ > 6.4 −1.04 . U⋆ . −1.03 η ≈ 0.724

6. “fc II”: The high pressure equilibrium configuration for 105.00 . g . 116.25 is another

face centered structure (see Fig. 4.29, bottom panel). Each particle has two bonded SH

patches, which lead, with additional, very minor wide-angle contributions (U⋆
Bond ≈ 4

% OBE), to binding energies −1.14 . U⋆ . −1.11. The density of this configuration

is also near close packing, but slightly lower than for the two structure types described
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4.2. Patchy Particle Systems in Three Dimensions

before.

g stability binding energy packing fraction

105.00 P ⋆ > 5.4 −1.12 . U⋆ . −1.11 0.711 . η . 0.713

108.75 P ⋆ > 3.4 −1.13 . U⋆ . −1.12 0.709 . η . 0.710

112.50 P ⋆ > 3.6 −1.14 . U⋆ . −1.11 0.709 . η . 0.712

116.25 P ⋆ > 8.9 U⋆ ≈ −1.13 η ≈ 0.713

7. “bc I”: This structure covers by far the largest region of stability in the low-pressure

domain of the (g, P ⋆)-phase diagram, which extends within the intervals 93.75 . g .

135.00 and 0.0 . P ⋆ . 5.6. Because of these large variations, the structure type

undergoes substantial particle rearrangements as g is increased (see Fig. 4.30, bottom

panel for a comparison), and the characteristic values U⋆ and η vary within large

intervals. Nevertheless, we categorize the emerging configurations as being of a single

structure type, since the particles always bond in the same pattern: we observe two

inter-penetrating, but virtually non-interacting, fully bonded sublattices, with NP-SH

and SH-SH bonds. At g ≈ 109.47 (i.e., the patches are located on a perfectly symmetric

tetrahedron), the two sublattices are perfect diamond cubic structures and the full

lattice is body centered cubic (bcc). As the sublattices do not interact attractively,

they can freely move relative to each other (the movement is only restricted by the

repulsion of the colloidal particle cores). Indeed, we observe a slight shifting of the

sublattices against each other at geometries close to the symmetric tetrahedron, which

leads to a slightly lower enthalpy than the perfectly symmetrical bcc configuration (see

Fig. 4.30, top panel). This is due to more optimal bond lengths (i.e., r = 6
√
2 ≈ 1.122),

which can be retained at higher densities in the shifted configuration.

g stability binding energy packing fraction

93.75 0.1 < P ⋆ < 3.0 −1.84 . U⋆ . −2.01 0.529 . η . 0.571

97.50 P ⋆ < 3.8 −2.02 . U⋆ . −1.81 0.509 . η . 0.581

101.25 P ⋆ < 3.7 −2.02 . U⋆ . −1.85 0.497 . η . 0.567

105.00 P ⋆ < 3.3 −2.03 . U⋆ . −1.83 0.487 . η . 0.560

108.75 P ⋆ < 3.1 −2.03 . U⋆ . −1.87 0.482 . η . 0.546

112.50 P ⋆ < 2.9 −2.03 . U⋆ . −1.87 0.484 . η . 0.547

116.25 P ⋆ < 2.6 −2.03 . U⋆ . −1.92 0.493 . η . 0.550

120.00 P ⋆ < 1.9 −2.03 . U⋆ . −1.94 0.508 . η . 0.566

123.75 P ⋆ < 1.7 −2.03 . U⋆ . −2.00 0.533 . η . 0.570

127.50 P ⋆ < 3.3 −2.03 . U⋆ . −1.85 0.553 . η . 0.637

131.25 0.1 < P ⋆ < 5.6 −1.94 . U⋆ . −1.83 0.593 . η . 0.638

135.00 0.3 < P ⋆ < 5.3 −1.82 . U⋆ . −1.74 0.606 . η . 0.632

8. “bc broken”: In a very small region (g = 108.75, 112.50, 2.9 . P ⋆ . 3.6) of the zero-

temperature phase diagram, we observe a variation of the bc-like structure, which we

term “bc-broken” (see Fig. 4.30, center panel). Compared to the “bc I” configuration
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in the double-diamond description, bonds between two oppositely located pairs of

particles within each six-particle ring are broken (also cf. Fig. 4.38, panels I and L);

the emerging half-rings are slightly distorted and displaced with respect to each other.

This results in a higher packing fraction (increased by 9.8 %) but a substantially weaker

bonding term (decreased by 14.2 %).

g stability binding energy packing fraction

108.75 3.1 < P ⋆ < 3.4 U⋆ ≈ −1.63 η ≈ 0.593

112.50 2.9 < P ⋆ < 3.6 U⋆ ≈ −1.63 η ≈ 0.599

9. “bc II”: This structure spans over a wide range on the pressure coordinate and is

observed for geometries 116.25 . g . 127.50. These patch geometries (i.e., the SH

patch-vectors form angles close to 90 degrees between each other) allow for three and

a half bonds per particle in a dense bcc-like configuration: all the SH patches are able

to bond with their counterparts on neighboring particles, while only half of the NP

patches engage in NP-NP bonding. This configuration is the only one with a packing

fraction η < 0.70, which represents the global enthalpy minimum in its g region, even

at the highest pressure value we considered in our calculations. A visual representation

can be found in Fig. 4.31, top panel.

g stability binding energy packing fraction

116.25 2.6 < P ⋆ < 8.9 −1.44 . U⋆ . −1.41 0.675 . η . 0.684

120.00 P ⋆ > 1.9 −1.66 . U⋆ . −1.59 0.670 . η . 0.685

123.75 P ⋆ > 1.7 −1.75 . U⋆ . −1.68 0.671 . η . 0.685

127.50 3.3 < P ⋆ < 8.8 U⋆ ≈ −1.66 0.683 . η . 0.684

10. “fc III”: The third fcc-like structure (see Fig. 4.31, center panel) we identified repre-

sents the global enthalpy minimum for only one geometry value and at high pressures.

We observe three SH-SH bonds per particle, one of them being of long-distance type

and therefore considerably weaker (U⋆
Bond ≈ 67 % OBE). The NP patches are unbonded

in this configuration.

g stability binding energy packing fraction

127.50 P ⋆ > 8.8 U⋆ ≈ −1.44 η ≈ 0.706

11. “hexagonal packed II”: For more elongated patch geometries (g ≈ 131.25, 135.00),

the high pressure configuration is hcp-like again (see Fig. 4.31, bottom panel). The

bonding pattern of this structure is very peculiar: all the patches form bonds, but

none of these is fully optimized. Within the hexagonal layers, NP and SH patches

form wide-angle bonds with U⋆
Bond ≈ 65 % OBE, while the remaining patches form

long-distance inter-layer bonds with U⋆
Bond ≈ 53 % OBE.
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g stability binding energy packing fraction

131.25 P ⋆ > 5.6 U⋆ ≈ −1.34 0.711 . η . 0.712

135.00 P ⋆ > 5.3 −1.26 . U⋆ . −1.23 0.711 . η . 0.714

12. “hexagonal layers III”: The low pressure equilibrium structure for the most elon-

gated geometries (g & 131.25) is a stacking of hexagonally arranged layers (see Fig. 4.32,

top panel). All the patches are fully bonded and adjacent layers are alternatingly con-

nected via three SH-SH bonds or one NP-NP bond per particle. This bonding pattern

controls the packing fraction within the hexagonal layers, which strongly increases with

g. Consequently, the region of stability of this structure on the pressure coordinate

also heavily depends on g. At g = 138.75, the binding energy increases with pressure

considerably faster than at higher g values. This is caused by the SH-SH bonds arrang-

ing in less optimal angles (7◦ . Θi . 10◦, leading to bonds with 67 to 80 % OBE), in

order to increase the packing fraction.

g stability binding energy packing fraction

131.25 P ⋆ < 0.1 U⋆ ≈ −2.03 η ≈ 0.306

135.00 P ⋆ < 0.3 −2.03 . U⋆ . −2.01 0.336 . η . 0.356

138.75 P ⋆ < 1.4 −2.04 . U⋆ . −1.73 0.378 . η . 0.566

142.50 P ⋆ < 3.3 −2.06 . U⋆ . −1.90 0.438 . η . 0.601

146.25 P ⋆ < 3.5 −2.10 . U⋆ . −2.06 0.535 . η . 0.597

150.00 P ⋆ < 3.2 −2.15 . U⋆ . −2.12 0.580 . η . 0.594

13. “bc III”: For g ≈ 138.75, we observe an additional body-centered intermediate pres-

sure configuration (see Fig. 4.32, center panel). This configuration shows three bonds

per particle, one connecting NP patches and two connecting SH patches to each other.

g stability binding energy packing fraction

138.75 1.4 < P ⋆ < 4.2 −1.56 . U⋆ . −1.54 0.650 . η . 0.655

14. “hexagonal packed III”: Finally, the high pressure minimum enthalpy structure

for g & 138.75 is another hcp-like configuration (see Fig. 4.32, bottom panel). This

structure is closely related to the “hexagonal layers III”-configuration: starting from

the fully bonded configuration, the particles are tilted (in alternating directions in

adjacent layers), thereby making one of the SH-SH bonds on each particle long-range

and wide-angle, so that it retains only ≈ 13 % of its binding energy. The total energy

of the configuration is strongly decreasing with g. The beneficial effect of this tilting

is a considerable reduction of the inter-layer distance, leading to a packing fraction of

η ≈ 0.70.
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g stability binding energy packing fraction

138.75 P ⋆ > 4.2 −1.33 . U⋆ . −1.29 0.699 . η . 0.704

142.50 P ⋆ > 3.3 −1.49 . U⋆ . −1.44 0.697 . η . 0.703

146.25 P ⋆ > 3.5 −1.61 . U⋆ . −1.57 0.695 . η . 0.701

150.00 P ⋆ > 3.2 −1.71 . U⋆ . −1.66 0.694 . η . 0.700
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1
“open”

2
“hexagonal
layers I”

3
“hexagonal
layers II”

Figure 4.28.: Perpendicular views of ordered structures with regions of stability in the T = 0
phase diagram (Figs. 4.26 and 4.27). Particular configurations obtained for
g = 93.75, P ⋆ = 0.00 (top), g = 93.75, P ⋆ = 4.00 (center) and g = 93.75,
P ⋆ = 5.00 (bottom) are displayed.
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4
“fc I”

5
“hexagonal
packed I”

6
“fc II”

Figure 4.29.: Perpendicular views of ordered structures with regions of stability in the T = 0
phase diagram (Figs. 4.26 and 4.27). Particular configurations obtained for
g = 93.75, P ⋆ = 6.00 (top), g = 101.25, P ⋆ = 8.00 (center) and g = 108.75,
P ⋆ = 6.00 (bottom) are displayed.
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7
“bc I”

8
“bc
broken”

Figure 4.30.: Perpendicular views of ordered structures with regions of stability in the T = 0
phase diagram (Figs. 4.26 and 4.27). Particular configurations obtained for
g = 108.75, P ⋆ = 2.00 (top) and g = 108.75,P ⋆ = 3.20 (center) are displayed.
Bottom: Views of the structure “bc I” with increasing values of the geometry
parameter (from left to right): g = 93.75 (the flattest geometry for which the
structure is stable), g = 109.47 (tetrahedral symmetry of the patch decora-
tion/true bcc structure), g = 135 (the most elongated geometry for which the
structure is stable).
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9
“bc II”

10
“fc III”

11
“hexagonal
packed
II”

Figure 4.31.: Perpendicular views of ordered structures with regions of stability in the T = 0
phase diagram (Figs. 4.26 and 4.27). Particular configurations obtained for
g = 123.75, P ⋆ = 6.00 (top), g = 127.50, P ⋆ = 9.00 (center) and g = 135.00,
P ⋆ = 8.00 (bottom) are displayed.
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12
“bc III”

13
“hexagonal
layers
III”

14
“hexagonal
packed
III”

Figure 4.32.: Perpendicular views of ordered structures with regions of stability in the T = 0
phase diagram (Figs. 4.26 and 4.27). Particular configurations obtained for
g = 138.75, P ⋆ = 3.00 (top), g = 150.00, P ⋆ = 2.00 (center) and g = 150.00,
P ⋆ = 6.00 (bottom) are displayed.
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Competing Local Minima

In this section, we extend our focus from the global minima on the enthalpy landscape to

competing local minima. These local minima can become essential at finite temperature, as

entropic contributions to the Gibbs free energy G = H−TS start to play an important role.

As sketched in Sec. 3.3, it is very hard to take these entropic effects directly into account in

an optimization algorithm. Instead, we employed the two-step scheme described in Sec. 3.3:

enthalpy optimizations and subsequent Frenkel-Ladd type full free energy calculations [108,

114] are carried out, in order to obtain the finite temperature phase diagram of the studied

system.

Since the free energy calculations were entirely performed by our collaborator Eva Noya, we

will keep our focus in this thesis on the first step of this approach, namely the identification

of candidate structures. The finite temperature results have been published in Refs. [6, 7].

Some of the following results have also been compared to structures obtained from a variable

box shape simulation-based optimization method, as described in Ref. [115].

In Figs. 4.33-4.40 we display visual representations of the lowest-lying local enthalpy minima

for four different geometries g, at three different pressure values P ⋆ for each g. The first

figure in each group (i.e., the barchart) shows the enthalpy values for each minimum, along

with the two relevant contributions to this quantity. These are the lattice sums and the

packing fractions. These quantities are shown separately for each selected pressure value,

in relative units of the corresponding values of the most favorable lattice structures with

respect to the enthalpy. Thus, Ui/Uopt > 1(< 1) - where the index “i” stands for any of the

considered structures and the index “opt” indicates the most favorable lattice - correspond to

a higher (lower) degree of bond saturation than realized in the optimal particle configuration.

Similarly, ηi/ηopt > 1 (< 1) indicates a better (worse) packing of particles as compared to

the most favorable lattice.

In an effort to introduce order into the zoo of emerging structures, we label configurations,

which have already been identified as global minima in the previous section by the numbers

introduced there; on the other hand, the newly encountered structures that only occur as

local enthalpy minima are labeled by capital letters.

g = 90.00

P ⋆ = 0.5: For the flattest patch decoration (i.e., with three patches on the equator) and

rather low pressure, the global minimum corresponds to, as reported in the previous section,

the “hexagonal layers I” configuration. The second-lowest enthalpy minimum is represented

by the “open” structure, which is, as reported, the equilibrium configuration for even lower

pressure. As the third-lowest minimum, which is very close to the “open” configuration

in enthalpy, we identify a structure first mentioned in Ref. [115] and termed “honeycomb

double layered” (cf. Fig. 4.34, label A). Here, the particles arrange in honeycomb cells with

additional particles located in the central voids of the cells. In each layer, one bond per
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particle with one of the neighboring layers (either NP-NP or NP-SH) and no bonds at all

with the other one are formed. The bonding pattern in two adjacent honeycomb layers is

quite different: in a type A layer, the six particles on the rim of each honeycomb cell bond

to each other (SH-SH), while the central particle does not bond with them at all. In a

type B layer, the particles on the rim do not bond with each other, while three of them

engage in bonding with the central particle (SH-SH). In this rather complex pattern, eleven

out of twelve possible bonds in the six-particle primitive cell can be realized. The fourth

local enthalpy minimum corresponds to the fully bonded∗ “bc I” structure, which has a wide

region of stability for higher g values; at g = 90.00 however, many of the bonds can not

be sufficiently optimized in this arrangement, therefore the structure is not stable at zero

temperature for this patch geometry.

index classification H⋆ U⋆ η

2 hexagonal layers I -1.37 -1.88 0.52

1 open -1.26 -2.01 0.35

A honeycomb double layered -1.25 -1.77 0.50

7 bc I -1.17 -1.70 0.50

P ⋆ = 2.5: On increasing pressure, we observe three competing structures. The global mini-

mum corresponds to the “hexagonal layers I” configuration. “Hexagonal layers II” already

represents the second-lowest minimum here. Notably, at this pressure, the structure forms

an additional inter-layer SH-SH bond, which is traded off by a lower packing fraction com-

pared to the version representing the global minimum at higher pressure; in Fig. 4.34, label

3, we show the low P ⋆ version, for the high P ⋆ version, we refer to Fig. 4.28, bottom panel).

Finally, the third local minimum corresponds to a bc-like structure that has not been pre-

viously identified. Here, the NP patch and one of the SH patches on each particle strongly

bond with their respective counterparts on neighboring particles. The remaining SH patches

contribute to the binding energy via long-distance and slightly wide-angle bonds (r ≈ 1.56,

U⋆
Bond ≈ 0.18 % OBE). This structure has a considerably higher packing fraction than the

competing ones, but due to its rather high energy value it is never stable at vanishing tem-

perature.

index classification H⋆ U⋆ η

2 hexagonal layers I 0.47 -1.65 0.62

3 hexagonal layers II (low P ⋆) 0.54 -1.52 0.64

B bc-like 0.65 -1.25 0.69

P ⋆ = 4.5: At intermediate pressure, the “hexagonal layers II” structure in its denser version

represents the global enthalpy minimum, while the very close second-lowest minimum cor-

responds to the bc-like structure already identified at P ⋆ = 2.5. The almost close packed

“fc I” configuration differs only slightly in reduced enthalpy as well. The “hexagonal layers

∗In a sense that all patches engage in bonds with U⋆ > 50 % OBE.
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I” structure corresponds only to the fourth-lowest local minimum here and its enthalpy is

considerably higher.

index classification H⋆ U⋆ η

3 hexagonal layers II (high P ⋆) 2.14 -1.19 0.71

B bc-like 2.15 -1.25 0.69

4 fc I 2.16 -1.15 0.71

2 hexagonal layers I 2.23 -1.37 0.65
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Figure 4.33.: Enthalpies H⋆
i , binding energies (i.e., lattice sums) U⋆

i , and packing fractions ηi
of the lowest, structurally different local enthalpy minima identified by the EA
at g = 90.00 for different P ⋆ values, where i stands for a structure label. Values
are given in units of the respective values of the energetically most favorable
lattice at each P ⋆ value. At the lowest pressure, H⋆

i < 0, therefore high relative
values are favorable, while for the higher P ⋆ values the opposite is the case.
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Figure 4.34.: Visualizations of the structures corresponding to local minima at g = 90.00.
For the structure labels see text.
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4.2. Patchy Particle Systems in Three Dimensions

g = 109.47 (regular tetrahedral symmetry)

P ⋆ = 0.1: For the symmetrical tetrahedral geometry∗ and very low pressure, we observe four

competing enthalpy minima, which are all fully bonded. The global minimum is represented

by the shifted “bc I” configuration, which has a tiny advantage in binding energy over the

fully symmetrical bcc structure. The third enthalpy minimum is structurally degenerate and

is represented by both a cubic diamond and a hexagonal diamond structure. The structural

difference between these configurations is illustrated in Fig. 4.36, labels C and D. In a cubic

diamond, all bonds are of staggered type, i.e., the projections† of two bonded particles

are rotated by 60 degrees against each other about the axis defined by their mutual bond;

in a hexagonal diamond, one out of four bonds is of eclipsed type, i.e., the projections

of two bonded particles exactly overlap (cf. Fig. 4.36, labels C and D, yellow particles).

As mentioned in the previous section, the bcc-like structures can be interpreted as two

interpenetrating, but virtually non-interacting cubic diamond configurations.

index classification H⋆ U⋆ η

7sh bc I shifted -1.92 -2.03 0.49

7sy bc I symmetrical -1.91 -2.02 0.49

C cubic diamond -1.79 -2.01 0.24

D hexagonal diamond -1.79 -2.01 0.24

P ⋆ = 2.5: At intermediate pressure, we identify six competing minima with reduced enthalpy

values between H⋆ ≈ 0.53 and H⋆ ≈ 0.72 shown in Fig. 4.36. Again, the global minimum

is the shifted bcc-like structure, having a slightly lower enthalpy (by only 0.3 percent) than

the perfectly symmetric bcc structure (both are categorized as “bc I” in Fig. 4.26). The

third-lowest minimum is the – closely related – “bc broken” structure, which represents the

global minimum for slightly higher pressure 3.2 . P ⋆ . 3.4. For the lattice corresponding

to the fourth-lowest local enthalpy minimum (cf. Fig. 4.36, label E) the discrepancy between

bonding and packing is even more pronounced: we identify a relatively dense configuration

consisting of hexagonally arranged particles. This configuration resembles the previously

discussed “hexagonal layers I”, with the notable difference that each layer is strongly bonded

with one of its neighboring layers and unconnected with the other one. To be more specific, a

tagged particle forms strong bonds via three of its patches: two of these bond with particles

within the same layer, the third one connects the tagged particle to a neighboring layer.

The remaining patch on each particle engages in a very wide-angle bond, contributing 7 %

OBE to the energy. This lattice is not encountered as a global minimum for the symmetrical

patch geometry. The structure corresponding to the local enthalpy minimum five is a non-

close packed fcc-like structure (cf. Fig. 4.36, label F), where each particle has two saturated

bonds. Additionally, there is a number of weaker bonds, with 4 to 52 % OBE within each

unit cell. Within the fcc-picture, the particles located at the vertices of the cube differ in

∗Due to the symmetry of the particles, it cannot be distinguished between NP and SH patches at this
geometry.

†Onto a plane perpendicular to the axis defined by the bond.
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their orientation from the particles that occupy the centers of the faces. Despite its high

packing fraction, this structure is never stable at vanishing temperature due to the small

number of saturated bonds. However, a slightly modified version of this lattice, where each

particle is rotated in order to replace a single, fully saturated bond by two weaker bonds, is

found to be stable at finite temperatures in the (P ⋆, T ⋆)-phase diagram for T ⋆ & 0.06 over a

pressure range steadily increasing with temperature [6, 7]. The sixth-lowest local enthalpy

minimum at P ⋆ = 2.5 corresponds to the “fc II” structure, identified as global minimum for

pressure values P ⋆ & 3.4 in the previous section.

index classification H⋆ U⋆ η

7sh bc I shifted 0.53 -1.91 0.54

7sy bc I symmetrical 0.53 -1.90 0.54

8 bc broken 0.59 -1.63 0.59

E hexagonal layers 0.66 -1.41 0.63

F non close packed fcc-like 0.72 -1.22 0.68

6 fc II 0.72 -1.13 0.71

P ⋆ = 4.5: The global minimum in enthalpy corresponds to “fc II”, which is only the sixth-

lowest minimum at the pressure value discussed before; its characteristic values∗ at P ⋆ = 4.5

are the same as at lower pressure. The second-lowest minimum on the enthalpy landscape

corresponds to an hcp-like structure (cf. Fig. 4.36, label G): each particle forms two strong

bonds – one with a particle within the same layer, the other connecting to a particle in a

neighboring layer – similar as in the packed fcc-like case; however, here the bonding angles

are found to be considerably closer to the ideal values (i.e., the patches directly face each

other), resulting, along with three weak bonds between nine and 31 % OBE in each unit cell,

in the slightly lower U⋆ value. The lower packing fraction, however, renders it, in total, less

favorable than “fc II”. The structure corresponding to the third local enthalpy minimum is

realized by another hcp-like configuration (cf. Fig. 4.36, label H). Similar to the hexagonal

configuration (E) mentioned at P ⋆ = 2.5, each particle forms two strong intra-layer bonds;

however, here, there are only very weak (4 % OBE) inter-layer bonds. This configuration

reaches a packing fraction similar to the one of the global minimum structure; however, it

has a considerably higher U⋆-value, making it thus unstable in the entire pressure region.

Local minimum four corresponds to the non-close-packed fcc-like structure already identified

at P ⋆ = 2.5.

index classification H⋆ U⋆ η

6 fc II 2.20 -1.13 0.71

G hcp-like 2.23 -1.16 0.70

H hcp-like 2.26 -1.06 0.71

F non close packed fcc-like 2.26 -1.20 0.68

∗I.e., binding energy and packing fraction.
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Figure 4.35.: Enthalpies H⋆
i , binding energies (i.e., lattice sums) U⋆

i , and packing fractions
ηi of the lowest, structurally different local enthalpy minima identified by the
EA at g = 109.47 for different P ⋆ values, where i stands for a structure label.
Values are given in units of the respective values of the energetically most
favorable lattice at each P ⋆ value. At the lowest pressure, H⋆

i < 0, therefore
high relative values are favorable, while for the higher P ⋆ values, the opposite
is the case.
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Figure 4.36.: Visualizations of the structures corresponding to local minima at g = 109.47.
For the structure labels, see text.
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g = 127.50

P ⋆ = 2.5: At this elongated patch decoration and at intermediate pressure, we identify three

competing minima. The global minimum corresponds again to the fully bonded “bc I”

structure; all the bonds are slightly wide-angle and have binding energies around 90 % OBE.

The second-lowest minimum is represented by the “bc II” structure. As the third minimum,

having a much higher enthalpy value, we identify a previously not encountered non-close

packed fcc-like structure. This lattice is much less perturbed from perfect fcc than the

fcc-like structures usually encountered in this system.

index classification H⋆ U⋆ η

7 bc I 0.20 -1.87 0.63

9 bc II 0.23 -1.72 0.67

I non close packed fcc-like 0.36 -1.64 0.65

P ⋆ = 4.5: At intermediate pressure, the “bc II” structure is the most favorable one; here

it is slightly more compressed than in the previous case. The “bc I” structure still has a

competitive enthalpy value and corresponds to the second-lowest minimum at this pressure.

The third-lowest minimum corresponds to the “fc III” structure, already described as the

high pressure equilibrium structure for this system in the previous section; note that the ori-

entation of two particles in the primitive cell differs in the low pressure version (cf. Figs. 4.38,

label 10 and 4.31, center panel). Finally, the fourth minimum is represented by a denser, hcp-

like structure, where the layers slightly deviate from hexagonal symmetry. All the patches

engage in bonding: within the layers, there are slightly wide angle NP-SH bonds (82 %

OBE), while the SH-SH inter-layer bonds are of wide-angle and long-distance type (51 %

OBE).

index classification H⋆ U⋆ η

9 bc II 1.78 -1.66 0.68

7 bc I 1.84 -1.82 0.64

10 fc III 1.88 -1.54 0.69

J hcp-like 1.94 -1.37 0.71

P ⋆ = 6.5: Here, the “bc II” structure still corresponds to the global enthalpy minimum,

with almost unchanged characteristic values. The “fc III” structure represents the second-

lowest minimum; comparing the characteristic values shows that this configuration is more

compressible than “bc II” and explains why it represents the global minimum for P ⋆ & 8.8.

As the “bc I” structure is no longer competitive at this pressure, the third-lowest minimum

corresponds to the hcp-like structure mentioned above.

index classification H⋆ U⋆ η

9 bc II 3.31 -1.66 0.68

10 fc III 3.36 -1.48 0.70

J hcp-like 3.42 -1.37 0.71
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Figure 4.37.: Enthalpies H⋆
i , binding energies (i.e., lattice sums) U⋆

i , and packing fractions
ηi of the lowest, structurally different local enthalpy minima identified by the
EA at g = 127.50 for different P ⋆ values, where i stands for a structure label.
Values are given in units of the respective values of the energetically most
favorable lattice at each P ⋆ value. At all P ⋆ values, H⋆ > 0, therefore, low
relative values are favorable.
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Figure 4.38.: Visualizations of the structures corresponding to local minima at g = 127.50.
For the structure labels see text.
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g = 150.00

P ⋆ = 0.5: For the most elongated geometry and very low pressure, we observe three dif-

ferent fully bonded structures as the lowest-lying enthalpy minima. The global minimum

corresponds to the “hexagonal layers III” configuration, where the bonds are of NP-NP

and SH-SH types. This structure achieves the highest packing fraction of the fully bonded

ones and has an extraordinarily low binding energy, due to a very large number of weak

extra long-distance contributions (≈ 3 % OBE each). The next-lowest enthalpy minimum

corresponds to another hexagonally layered structure, but here the particles do not have

the same orientation within each layer, so that the bonds are of NP-SH and SH-SH types.

Compared to the global minimum structure, the particles slightly rearrange in the direction

perpendicular to the layers, so that the layers are not completely flat. This configuration

achieves only slightly less favorable values for the binding energy and the packing fraction.

The structure representing the third local minimum is also fully bonded, but has a consider-

ably lower density. As for local minimum two, bonds of NP-SH and SH-SH type are formed,

but different particle orientations lead to a rather peculiar lattice with voids (cf. Fig. 4.40).

index classification H⋆ U⋆ η

12 hexagonal layers III -1.70 -2.15 0.58

K hexagonal layers with different orientations -1.69 -2.14 0.58

L fully bonded lattice with voids -1.63 -2.12 0.54

P ⋆ = 2.5: At intermediate pressure, the first two minima are represented by the same struc-

tures as at the lower pressure value with almost identical binding energies and packing

fractions. The configuration corresponding to the third local minimum is related to the

“hexagonal layers I” structure; uniformly oriented particle are arranged in parallel layers.

Compared to the “hexagonal layers I” structure, the present lattice reaches a higher pack-

ing fraction by breaking one bond per unit cell and rearranging the particles. Finally, the

fourth local enthalpy minimum (with a relatively high enthalpy value) corresponds to the

“hexagonal packed III” configuration.

index classification H⋆ U⋆ η

12 hexagonal layers III 0.08 -2.13 0.59

K hexagonal layers with different orientations 0.10 -2.12 0.59

M hexagonal layers broken 0.12 -1.93 0.64

14 hexagonal packed III 0.18 -1.71 0.69

P ⋆ = 4.5: At this pressure value, the “hexagonal packed III” configuration with almost un-

changed characteristic values corresponds to the global enthalpy minimum. The second min-

imum is represented by a very symmetrical, previously unobserved fcc-like structure where

all the NP patches are unbonded, while the SH patches bond with their likes. The packing

fraction of this configuration is only slightly lower than the value of the global minimum.

Finally, the third-lowest minimum corresponds to the layered structure with broken bonds
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4.2. Patchy Particle Systems in Three Dimensions

already observed at lower pressure.

index classification H⋆ U⋆ η

14 hexagonal packed III 1.69 -1.70 0.70

N fcc-like 1.74 -1.68 0.69

M hexagonal layers broken 1.76 -1.91 0.64
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Figure 4.39.: Enthalpies H⋆
i , binding energies (i.e., lattice sums) U⋆

i , and packing fractions
ηi of the lowest, structurally different local enthalpy minima identified by the
EA at g = 150.00 for different P ⋆ values, where i stands for a structure label.
Values are given in units of the respective values of the energetically most
favorable lattice at each P ⋆ value. At the lowest pressure, H⋆

i < 0, therefore
high relative values are favorable, while for the higher P ⋆ values the opposite
is the case.
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Figure 4.40.: Visualizations of the structures corresponding to local minima at g = 150.00.
For the structure labels see text.
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4.2.3. Inverse Patchy Colloids

We examine global minimum configurations formed by the model system for inverse patchy

colloids described in Sec. 2.2.3. As the inverse patchy model has initially been introduced

for two patches per particles, we restrict ourselves to that case in the present investigation.

The parameters that specify the model are not completely independent from each other (for

details see Ref. [47]). They are defined and compiled in Tab. 4.3. In this thesis, we fix all

but two parameters to values as they are suggested from an experimental realization. In

particular, we perform all calculations at low electrostatic screening conditions (specified by

a low κ value and δ = 1/κ), as this choice guarantees that the angle-dependent attractive and

repulsive forces between the inverse patchy particles are of comparable orders of magnitude;

in this system, the repulsive forces decrease much faster with increasing screening than the

attractive ones. We expect considerably richer self-assembly scenarios if there is a strong

competition between antipodal forces.

The two parameters that we vary are eccentricity e, which defines the patch size if all other

spatial parameters (i.e., the size of the colloids σ and the interaction range δ) are fixed, and

the charge imbalance ∆Zx (with x ∈ {c, p}), which defines the strength of the interactions, if

all other paramters are fixed (cf. Tab. 4.3). For each pair (e,∆Zx), we perform the mapping

procedure described in Ref. [47] in order to obtain the interaction parameters ǫi (cf. Tab. 4.4).

Subsequently, we calculate the total interaction energy Uopt
pair of an optimally aligned pair of

inverse patchy particles (i.e., a full BS overlap, cf. Sec. 2.2.3) and define |Uopt
pair| as the unit

of energy for the chosen combination (e,∆Zx). In each system, all reduced quantities X⋆

(cf. App. A) are calculated in terms of the respective units of energy and length∗.

As in the preceding sections, we vary the reduced pressure P ⋆ for each system and identify

the ordered equilibrium structures using our optimization algorithm. Due to computational

limitations, we take lattices with up to eight basis particles into account. Some of the

systems show surpringly rich phase behavior, with some structures requiring indeed up to

eight basis particles. Thus, we cannot completely rule out the possible existence of ordered

configurations with even lower enthalpies, which could only be realized with larger basis

particle numbers in some cases. The minimum enthalpy structures we identified are presented

in the following. Visual representations of those structures can be found in Figs. 4.41 -

4.44. In these Figures, spheres arbitrarily colored red, yellow or blue represent the colloidal

cores of the inverse patchy particles, corresponding to spheres C in the interaction model,

cf. Sec. 2.2.3). Green spheres represent the polyelectrolyte star patches (i.e., small spheres S

in the interaction model), while the semitransparent coronae indicate the interaction range

(i.e., correspond to the large spheres B in the interaction model).

∗In App. A, the unit of length is termed σ. This must not be confused with the parameter σ used in this
section. In order to maintain consistency with the variables introduced in Ref. [47], the unit of length is
defined as 2σ here (cf. Tab. 4.3).

∗This system is completely repulsive, so the optimal alignment is a particle separation beyond the interaction
range (i.e., a configuration with zero energy). Thus, we do not normalize the energy values for this
particular system.

120
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Parameter Value Description How obtained

Zc -300 - ∆Zc
Electrostatic charge of can be chosen
the colloidal particles (experimental)

Zp 150 + ∆Zp/2
Electrostatic charge of can be chosen

one adsorbed polyelectrolyte star (experimental)
∆Zc,∆Zp vary Charge imbalance

κ 2/σ
Inverse Debye can be chosen
screening length (low screening)

σ 1/2
Radius of spheres defines unit

representing colloidal particles of length
δ 1/κ Interaction range natural choice

e varies
Eccentricity of spheres representing

adsorbed polyelectrolyte stars

ρ σ + δ/2− e
Radius of spheres representing given by
adsorbed polyelectrolyte stars Eq. (2.23)

Table 4.3.: Parameters of the inverse patchy model system: symbols, values chosen in this
thesis and brief descriptions of the respective physical meanings and how the
values were obtained.

Overcharge

Geometry Interactions Zp = 60 Zp = 30 Zx = 0 Zc = 30 Zc = 60

A – e = 0.3

ǫBB 21.49 24.00 32.75 55.82 88.17

ǫBS -113.47 -176.63 -226.59 -315.27 -403.95

ǫSS 1844.76 1550.11 1281.08 1281.08 1281.08

UOpt
Pair -5.50 -9.60 -12.10 -15.71 -18.30

B – e = 0.2

ǫBB 8.73 5.79 10.29 25.19 49.38

ǫBS 12.76 -16.74 -41.08 -71.04 -101.00

ǫSS 245.46 206.25 170.46 170.46 170.46

UOpt
Pair 0.00∗ -0.52 -2.24 -3.27 -3.28

Table 4.4.: Interaction parameters obtained by the mapping procedure described in Ref. [47]
for the cases (geometries A and B) investigated in this contribution.

Geometry A – e = 0.3

For comparatively small patches (imposed by a comparatively larger value of the eccentricity

e), we identified four different minimum enthalpy structures labeled A1 - A4. For each

∆Zx value, we located at least one phase transition on the pressure coordinate of the zero-

temperature phase diagram. In the following, different values for the patch overcharge (∆Zp)

and colloid overcharge (∆Zc) are assumed.

Strongly overcharged patches - ∆Zp = 60: For this system, we observe two different zero-
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temperature equilibrium structures: At low pressure, the particles arrange in parallel layers,

with energetically favorable BS overlaps between the particles within each sheet. The layers,

which are arranged in an ABCABC... pattern, are separated by relatively large inter-layer

distances, in order to minimize unfavorable BB overlaps (cf. Fig. 4.41, label A2). With

increasing pressure, this structure is slightly compressed by reducing this inter-layer distance.

At higher pressure, a close packed structure, where the centers of mass of the particles are

located on the sites of a perfect fcc lattice, is stable. Here, the particles are oriented in

different directions in an alternating pattern (cf. Fig. 4.41, label A4).

stability structure binding energy packing fraction

P ⋆ . 1.73 parallel layers (A2) −2.27 . U⋆ . −2.24 0.515 . η . 0.568

P ⋆ & 1.73 fcc (A4) U⋆ ≈ −1.87 η ≈ 0.741

Moderately overcharged patches - ∆Zp = 30: For a smaller electrostatic overcharge value

of the polyelectrolyte star patches, we identify a distinctly different self-assembly scenario:

again, the particles form parallel layers, but between those sheets a number of additional

particles are located at energetically favorable spots, connecting them thereby (cf. Fig. 4.41,

label A1). Compared to the standard “parallel layeres” configuration (i.e., A2), this bonding

mechanism slightly lowers the total energy, but requires a considerably higher inter-layer

distance and thus makes the the packing fraction smaller. Thus, this structure is stable only

at very low pressures. At intermediate pressure, we encounter the standard “parallel layers”

configuration (A2), while at high pressure the fcc structure (A4) is stable again.

stability structure binding energy packing fraction

P ⋆ . 0.05 layers with interstitials (A1) U⋆ ≈ −2.36 η ≈ 0.466

0.05 . P ⋆ . 0.14 parallel layers (A2) U⋆ ≈ −2.25 η ≈ 0.548

P ⋆ & 0.14 fcc (A4) U⋆ ≈ −2.32 η ≈ 0.741

Neutral particles - ∆Zp = Zc = 0: For a balanced overall charge of the particles, we again

identify three different ordered equilibrium structures. At very low pressure, the layers with

interstitial particles (A1) correspond to the global enthalpy minimum again. On increas-

ing the pressure to intermediate values, an arrangement of perpendicular sheets, forming a

lattice penetrated by empty “channels” is stable. The particles making up those layers are

not close-packed and show some deviation from a perfectly two-dimensional∗ configuration

(cf. Fig. 4.41, label A3). In the region of stability of this rather complicated structure, the

standard “parallel layers” configuration (A2) corresponds to a very close local minimum, as

the respective enthalpy values differ by less than 0.5 %. At high pressure the close packed

fcc structure is stable, as in all previous cases.

∗In a sense that all centers of mass lie within a plane.
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stability structure binding energy packing fraction

P ⋆ . 0.02 layers with interstitials (A1) U⋆ ≈ −2.35 η ≈ 0.463

0.02 . P ⋆ . 0.39 perpendicular layers (A3) U⋆ ≈ −2.34 η ≈ 0.556

P ⋆ & 0.39 fcc (A4) U⋆ ≈ −2.25 η ≈ 0.741

Moderately overcharged colloids - ∆Zc = 30: In this system, we encounter the same phase

behavior as in the previous case of strongly overcharged patches: the two stable structures

are “parallel layers” (A2) and fcc (A4), with a slightly lower coexistence pressure than in

the previous case. This is due to the fact that here the fcc structure has a lower energy,

relative to the layered structure. BB contacts, which are more abundant in the close packed

structure, lead to a smaller energy penalty in systems with a smaller overcharge value.

stability structure binding energy packing fraction

P ⋆ . 1.30 parallel layers (A2) −2.29 . U⋆ . −2.27 0.545 . η . 0.564

P ⋆ & 1.30 fcc (A4) U⋆ ≈ −1.98 η ≈ 0.741

Strongly overcharged colloids - ∆Zc = 60: Again, we identified “parallel layers” (A2) and

fcc (A4) as global enthalpy minima for low and high pressures, respectively. The higher

value of overcharge of the colloids make the close packed structure less favorable, leading to

a higher coexistence pressure than in the previous case.

stability structure binding energy packing fraction

P ⋆ . 2.83 parallel layers (A2) −2.22 . U⋆ . −2.15 0.546 . η . 0.577

P ⋆ & 2.83 fcc (A4) U⋆ ≈ −1.58 η ≈ 0.741

Geometry B – e = 0.2

For the geometry with a smaller value of the eccentricity e, leading to larger patches when all

other parameters are fixed, we find a different scenario for the ordered equilibrium structures.

For neutral inverse patchy particles as well as for moderate values of overcharge, close packed

fcc structures represent the global enthalpy minima at all pressure values. For strongly

overcharged patches as well as for strongly overcharged colloids, however, we find very rich

phase behavior, with five or even more transitions along the pressure coordinate of the phase

diagram. The identified configurations are labeled B1 - B11.

Strongly overcharged patches - ∆Zp = 60: As can be seen from the parameter values col-

lected in Tab. 4.4, this system differs substantially from all the other ones investigated, as it

has purely repulsive interactions. In this case, the need for compression caused by increasing

system pressure leads to an interesting phase behavior.

At very low pressure values, an fcc structure which corresponds to close packing of the
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4. Results

A1

A2

A3

A4

Figure 4.41.: Perpendicular views of the structures corresponding to global enthalpy minima
for geometry A. For the labels and the color scheme, see text.
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4.2. Patchy Particle Systems in Three Dimensions

large spheres B, their diameter being the interaction range σ + δ/2, minimize the enthalpy∗

(cf. Fig. 4.42, label B1). As in the model large sphere (BB) overlaps are energetically

only slightly unfavorable, this structure is continuously, but anisotropically compressed with

increasing pressure, forming an fct phase with uniform particle orientations (B2). This

configuration is characterized by overlaps of the large spheres in two perpendicular direction,

but avoids them in the third direction. At even higher pressure, a structurally different fct-

like lattice (B3) with BB overlaps in all directions and a higher packing fraction is stable.

In a tiny subsequent pressure region, yet another distorted fct-like structure (B4) represents

the global enthalpy minimum, before an fcc configuration (B10) which corresponds to a close

packing of the smaller central spheres C, representing the colloidal particles, becomes stable

at the highest pressure values. In this configuration, the particle orientations are identical

to the ones of structure A4. For visual representations of the four non-close packed lattices

(B1-B4), see Fig. 4.42, for the close packed fcc lattice (B10), see Fig. 4.44, center panel.

stability structure binding energy packing fraction

P ⋆ ≈ 0.00 fcc range (B1) U⋆ ≈ 0.00 η ≈ 0.380

P ⋆ . 34.20 fct I (B2) 0.00 . U⋆ . 4.15 0.380 . η . 0.606

34.20 . P ⋆ . 52.10 fct II (B3) 7.37 . U⋆ . 7.99 0.680 . η . 0.694

52.10 . P ⋆ . 53.80 fct III (B4) U⋆ ≈ 8.77 η ≈ 0.708

P ⋆ & 53.80 fcc colloids (B10) U⋆ ≈ 10.49 η ≈ 0.741

Moderately overcharged patches - ∆Zp = 30: For this system, the fcc structure (B10) corre-

sponding to close packing of the central spheres C and the same particle orientations as the

one identified for geometry A represents the global enthalpy minimum at all pressure values.

stability structure binding energy packing fraction

P ⋆ & 0.00 fcc colloids (B10) U⋆ ≈ −4.73 η ≈ 0.741

Neutral particles - ∆Zp = Zc = 0: Here we encounter exactly the same situation as in the

previously discussed model.

stability structure binding energy packing fraction

P ⋆ & 0.00 fcc colloids (B10) U⋆ ≈ −3.86 η ≈ 0.741

Moderately overcharged colloids - ∆Zc = 30: Again, an fcc-based close packing of the col-

loidal spheres has the lowest enthalpy value along the whole pressure coordinate (cf. Fig. 4.44,

label B11). However, in the global minimum configuration the particle orientations show

a pattern that is more complicated than the one of the fcc structure identified before (i.e.,

B10), which corresponds to a very close local minimum for the present parameter values.

stability structure binding energy packing fraction

P ⋆ & 0.00 fcc colloids (B11) U⋆ ≈ −3.12 η ≈ 0.741

∗Obviously, the orientations of the particles are arbitrary in this phase.
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4. Results

Strongly overcharged colloids - ∆Zc = 60:

In contrast to the case of strongly overcharged patches in the present geometry, a strong

overcharge of the central colloids still leads to attractive interactions between the inverse

patchy colloids. At very low pressure, a structure containing two perpendicular sets of par-

allel layers with almost perfect hexagonal symmetry (B5) corresponds to the global enthalpy

minimum. This geometry leads to rather large “channels” with almost square cross-sections

which penetrate the lattice in the direction perpendicular to the normal vectors of both sets

of layers. On increasing pressure, a phase transition to a structure with only one set of paral-

lel layers (B6) takes place. Within each layer, the hexagonal symmetry is strongly distorted,

as the particles arrange in a zig-zag pattern in the direction perpendicular to the layers

(i.e., the layers are not completely flat). A further increase of pressure leads to a strongly

distorted version (B7) of the perpendicular layers already encountered at low pressure to

become stable. The distortion causes the packing fraction to increase by 16 %, as the empty

“channels” penetrating the structure have a much smaller cross-section in this configuration.

In a small region at even higher pressure, a lattice containing parallel layers with square

symmetry corresponds to the global minimum. Here the particles are close packed in the

direction perpendicular to the layers, but not in the plane of the layers. For visual represen-

tations of the aforementioned structures, see Fig. 4.43. On further increasing the pressure,

we identify a configuration that corresponds to a perfect fcc lattice, with one lattice site

unoccupied per two “cubic blocks” (cf. Fig. 4.44, top panel). At the highest pressure values,

the close packed fcc structure, already identified for the system with ∆Zc = 30, corresponds

to the global enthalpy minimum.

stability structure binding energy packing fraction

P ⋆ . 0.44 perpendicular layers (B5) U⋆ ≈ −2.31 η ≈ 0.536

0.44 . P ⋆ . 1.44 distorted layers (B6) −2.29 . U⋆ . −2.28 0.564 . η . 0.569

1.44 . P ⋆ . 2.50 denser p. layers (B7) U⋆ ≈ −2.16 η ≈ 0.625

2.50 . P ⋆ . 2.72 square layers (B8) U⋆ ≈ −2.13 η ≈ 0.635

2.72 . P ⋆ . 3.53 fcc with defect (B9) U⋆ ≈ −2.08 η ≈ 0.649

P ⋆ & 3.53 fcc colloids (B11) U⋆ ≈ −1.72 η ≈ 0.741
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4.2. Patchy Particle Systems in Three Dimensions

B1

B2

B3

B4

Figure 4.42.: Perpendicular views of structures corresponding to global enthalpy minima for
geometry B. For the labels and the color scheme see text.
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4. Results

B5

B6

B7

B8

Figure 4.43.: Perpendicular views of structures corresponding to global enthalpy minima for
geometry B. For the labels and the color scheme see text.
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4.2. Patchy Particle Systems in Three Dimensions

B9

B10

B11

Figure 4.44.: Visualizations of structures corresponding to global enthalpy minima for geom-
etry B. For the structure labels and the color scheme see text.
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5. Conclusions

The investigations presented in this thesis focus on identifying ordered equilibrium structures

(i.e., energy-, enthalpy- or Gibbs free energy-minimizing configurations) of patchy colloids,

a certain type of synthesized, anisotropic particles with very specific angle-dependent in-

teractions. The identified configurations are relevant as macroscopic target structures of

bottom-up self-assembly processes these mesoscopic particles can undergo.

The initial studies, performed at vanishing temperature, deal with two-dimensional systems

of repulsive discs, decorated with mutually attractive as well as repulsive areas on their

circumferences (see Sec. 4.1.1 and Ref. [43]). As the number, distribution and interaction-

type of such patches varies, different sets of equilibrium structures, depending on the system

pressure, are identified. These configurations emerge as a consequence of a delicate trade-off

between optimizing the bonding-term and the packing-term in the enthalpy. At low pressure,

minimal enthalpy values usually correspond to rather open structures, which strongly depend

on the patch geometry; at high pressure values (almost) close packed (i.e., triangular) lattices

are optimal. For many systems, we identified additional intermediate structures, representing

a suitable compromise between energy- and area-minimization in certain pressure regions.

The subsequent investigation takes a further step in the direction of bottom-up self-assembly

of specifically designed particles: We give evidence that it is possible to decorate two-

dimensional patchy particles in such a way that their equilibrium structures represent Pla-

tonic and Archimedean tilings of the plane (see Sec. 4.1.2 and Ref. [45]). We were able to

show that all but one of the desired tilings can be stabilized at low to intermediate system

pressure, in at least one of two proposed representations, either placing the particles at the

centers or the vertices of the tiles. The realization of the tilings, especially the more compli-

cated ones, tends to be more successful in the center representation, which has high packing

fractions by definition; however this representation is expected to be more challenging in

experimental implementations due to a generally rather large size disparity of the particles.

In three dimensional systems, we mainly focused on particles with four mutually attractive

patches, modeled by the same potential. We first studied the minimum energy configurations

of finite clusters consisting of three to 47 particles with a regular tetrahedral patch decoration

(see Sec. 4.2.1). For these clusters, we identified two archetypal building units, namely rings,

containing either five or six particles. As the six-rings have a lower energy per particle, they

dominate the shapes of small clusters. The five-particle rings support a larger number of

total bonds in bigger clusters and become dominant for particle numbers larger than 15.

Examining the energy landscapes of selected cluster sizes by building databases of local

minima and transition states and plotting disconnectivity graphs provided further insights

into this competition.
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5. Conclusions

The next topic covered in the present work are three-dimensional bulk systems of parti-

cles with four patches, arranged in geometries systematically varying from flat to strongly

elongated pyramids (see Sec. 4.2.2 and Refs. [6, 7, 115]). Similar to the two-dimensional

case, we identified a wide variety of zero-temperature equilibrium structures, balancing the

bonding and packing terms in the enthalpy, as a function of the hydrodynamic pressure of

the system. The low pressure equilibrium structures are based on a body-centered, “double-

diamond” configuration for a large range of geometries. Only the most flat and the most

elongated geometries have hexagonally layered low pressure configurations. In contrast to

the two-dimensional systems, open low density structures correspond to the global enthalpy

minimum only in rare cases and the often desired cubic “single” diamond structure is only

metastable at very low pressure in this model. However, for certain intermediate geometries,

we found a medium density bcc-like structure that is particularly stable with respect to

close packed configurations at high pressure values. The remaining high pressure equilib-

rium structures frequently change between fcc-type and hcp-type configurations on varying

the geometry. For these systems, we also investigated low-lying local enthalpy minima which

might be stabilized by entropic effects at finite temperature. As such local minima with of-

ten only minute differences in enthalpy we encountered lattices that were already identified

as global minima in other regions of the parameter space as well as previously unknown

configurations.

In the final section of the results chapter (i.e., Sec. 4.2.3), we presented an initial investiga-

tion on the ordered equilibrium structures formed by a recently proposed model for so-called

inverse patchy particles. Exploring a comparatively small region of the available parameter

space of this system, we already identified a very rich variety of self-assembly scenarios, de-

pending on the hydrodynamic pressure as well as the geometry and the electrostatic charge

of these particles. Along global enthalpy minima corresponding to close-packed and hexago-

nally layered structures, we also encountered global minima represented by lattices that are

penetrated by channel-like voids with varying cross-sections in this system.

As the results obtained via optimization algorithms, minimizing binding energy or enthalpy,

are valid at zero temperature only, it is of course very desirable to extend the investigations

to finite temperature values, which can possibly be achieved using the methods presented in

Sec. 3.3, eventually computing the (P ⋆, T )-phase diagrams of the proposed systems. This is

quite costly on a computational level, but can be handled with the tools at hand today. We

have implemented such a framework for crystalline three-dimensional patchy particle systems

in a collaborative effort. The finite temperature results provided by our collaborator (using

the data presented in Sec. 4.2.2 as an input) are not covered in this thesis, but are presented

in Refs. [6, 7].

An even further step would be to investigate kinetic pathways, i.e., to check if the identified

equilibrium structures are actually formed via self-assembly, starting from random non-

equilibrium particle configurations at finite temperature or nucleate from an undercooled

liquid phase [116]. For large systems, currently achievable simulation times in molecular
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dynamics-based calculations suitable for this purpose might be too short for computing such

pathways. Kinetic traps, which can often be avoided when using the optimization approaches

described in this work, can make simulating these systems via molecular dynamics extremely

hard.
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A. Reduced Quantities

We calculate energy U , pressure P , volume V and enthalpy H as reduced, dimensionless

quantities X⋆. Additionally, we define the packing fraction

η =
Vparticles

V
=

N 4π(σ/2)3

3

V
=

Nπσ3

6V
, (A.1)

considering the particles as hard spheres of diameter σ.

With the particle number N , the unit of energy ǫ and the unit of length σ (which are usually

given as intrinsic parameters of the interaction potential), we arrive at

U⋆ =
U

Nǫ
(A.2)

P ⋆ =
Pσ3

ǫ
(A.3)

V ⋆ =
V

Nσ3
(A.4)

η =
π

6V ⋆
(A.5)

H⋆ =
H

Nǫ
= U⋆ +

π

6

P ⋆

η
. (A.6)

In the case of bulk systems, these quantities are all understood as per unit cell.
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B. Doye Model: Derivatives of the

Potential

The following convention will be used in this chapter: all occurring quantities will be denoted

as indexed terms, where lower indices always refer to vector components (1 ≤ k ≤ 3), for

which the Einstein summation convention (ESC) is used, while upper indices stand for

particles (Latin, 1 ≤ i ≤ N) and patches (Greek, 1 ≤ α ≤ Npatches)
∗, for which we do not

use the ESC. We employ the following symbols:

rik position vector of the center-of-mass (CMS) of particle i

ri,jk rjk − rik

ri,j
√
ri,jk ri,jk

pi,αk distance vector between center of patch α on particle i and CMS of particle i

p0,αk position vector of the center of patch α in the particle frame

oik orientation vector of particle i (in the angle-axis description, cf. Sec. 3.2.2)

The fundamental parameters of the central optimization problem (i.e., minimizing the bind-

ing energy U of a system with respect to these parameters, cf. Sec. 3.2) are rik and oik. The

following relations can be calculated in a straightforward way

∂ri,jk
∂ril

= −∂ri,jk
∂rjl

=− δkl (B.1)

∂ri,j

∂ri,jk
=
ri,jk
ri,j

, (B.2)

while oik, p
0,α
k and pi,αk are related by

pi,αk =Rkm(o
i
n)p

0,α
m (B.3)

∂pi,αk
∂oil

=
∂Rkm(o

i
n)

∂oil
p0,αm . (B.4)

The rotation matrix Rkm(o
i
n) and its derivatives ∂Rkm(o

i
n)/∂o

i
q are given in Sec. 3.2.2.

For a finite number of particles (and omitting arguments of the functions), the energy U of

the system can be calculated as a sum over pair interactions (cf. Sec. 2.2.2),

U =
∑

i,j>i;α,β

V i,j,α,β. (B.5)

∗N represents the number of particles in the system, Npatches the number of patches on each particle.
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B. Doye Model: Derivatives of the Potential

In the patchy regime, i.e., ri,j > σ, the interaction potential V i,j,α,β between patch α on

particle i and patch β on particle j is given as a function of ri,jk , pi,αk and pi,βk :

V (ri,jk , pi,αk , pi,βk ) = VLJ(r
i,j)Vang(r

i,j
k , pi,αk , pi,βk ). (B.6)

Hence, we need to calculate

∂V

∂rik
=

∂V

∂ri,jl

∂ri,jl
∂rik

= (B.7)

=

(
∂VLJ

∂ri,j
∂ri,j

∂ri,jl
Vang + VLJ

∂Vang

∂ri,jl

)
∂ri,jl
∂rik

∂V

∂rjk
=

∂V

∂ri,jl

∂ri,jl
∂rjk

= (B.8)

=

(
∂VLJ

∂ri,j
∂ri,j

∂ri,jl
Vang + VLJ

∂Vang

∂ri,jl

)
∂ri,jl
∂rjk

∂V

∂oik
=

∂V

∂pi,αl

∂pi,αl
∂oik

= VLJ
∂Vang

∂pi,αl

∂pi,αl
∂oik

(B.9)

∂V

∂ojk
=

∂V

∂pj,βl

∂pj,βl
∂ojk

= VLJ
∂Vang

∂pj,βl

∂pj,βl
∂ojk

; (B.10)

with

VLJ(r
i,j) =4ǫ

[( σ

ri,j

)12
−
( σ

ri,j

)6]
(B.11)

Vang(r
i,j
k , pi,αk , pi,βk ) = exp

[
−(θi,α)2 + (θj,β)2

w2

]
(B.12)

∂Vang

∂θi,α
=exp

[
−(θi,α)2 + (θj,β)2

w2

](
−2θi,α

w2

)
(B.13)

θi,α = arccos

(
ri,jl pi,αl
ri,j|pi,αl |

)
(B.14)

θj,β = arccos

(
−ri,jl pj,βl
ri,j|pj,βl |

)
(B.15)
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and the fact that |pi,αl | are constant values∗, we obtain

∂VLJ

∂ri,j
=− 4ǫ

[
12
( σ

ri,j

)13
− 6

( σ

ri,j

)7]
(B.16)

∂Vang

∂ri,jk
=
∂Vang

∂θi,α
−1√

1− cos2 (θi,α)

1

ri,j|pi,αk |

[
pi,αk − ri,jl pi,αl

(ri,j)2
ri,jk

]
+ (B.17)

∂Vang

∂θj,β
−1√

1− cos2 (θj,β)

−1

ri,j|pj,βk |

[
pj,βk − ri,jl pj,βl

(ri,j)2
ri,jk

]

∂Vang

∂pi,αk
=
∂Vang

∂θi,α
−1√

1− cos2 (θi,α)

ri,jk
ri,j|pi,αl |

(B.18)

∂Vang

∂pj,βk
=
∂Vang

∂θj,β
−1√

1− cos2 (θj,β)

−ri,jk
ri,j|pj,βl |

. (B.19)

Substituting these result in combination with Eqs. (B.1) and (B.4) in Eqs. (B.7) – (B.10),

we obtain the desired derivatives with respect to the fundamental parameters.

When optimizing crystal structures, there are nine additional fundamental parameters, defin-

ing the three primitive lattice vectors ak, bk, ck (k is the coordinate index and we will use a

in a representative way for all three vectors in the following); furthermore the position and

orientation vectors are given in fractional coordinates f i
a and gia, i.e., also depend on the

primitive lattice vectors (cf. Sec. 3.2.2) Therefore, the particle positions rik become functions

of f i
a and ak (we use the summation convention f i

aak =
∑3

a=1 f
i
aak). The particle index i now

specifies the particles within the primitive cell and is, in the case of CMS position vectors,

accompanied by a second upper index C(n1, n2, n3), which specifies the image cell within

the crystal. For the sake of brevity, we will not denote the explicit dependence of C in the

following. We can compute the derivatives of the potential with respect to the fundamental

parameters of the crystalline system using the protocol described above and the additional

relations given below:

ri,Ck (f i
a, ak) = f i

aak + naak (B.20)

pi,αk (f i
a, ak) = gi,αa ak (B.21)

∂ri,Ck
∂f i

a

= ak (B.22)

∂ri,Ck
∂al

= δkl(fa + na) (B.23)

∂oik
∂gia

= ak (B.24)

∂pi,αk
∂al

= δklg
i,α
a . (B.25)

∗All patches are located on the surface of the particle, i.e. |pi,αl | = σ/2.
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B. Doye Model: Derivatives of the Potential

When optimizing enthalpies H = U + PV, we also need to take derivatives of the volume

term∗

V(ak, bk, ck) = |ak · (bk × ck)|, (B.26)

where the three primitive lattice vectors are termed ak, bk, ck for clarity. With the signum

function sgn(x) and the unimodular, real prefactor A = sgn(ak · (bk × ck)), the respective

derivatives read

∂V
∂a1

=A(b2c3 − b3c2)
∂V
∂a2

=A(b3c1 − b1c3)
∂V
∂a3

=A(b1c2 − b2c1) (B.27)

∂V
∂b1

=A(c2a3 − c3a2)
∂V
∂b2

=A(c3a1 − c1a3)
∂V
∂b3

=A(c1a2 − c2a1) (B.28)

∂V
∂c1

=A(a2b3 − a3b2)
∂V
∂c2

=A(a3b1 − a1b3)
∂V
∂c3

=A(a1b2 − a2b1). (B.29)

∗I.e., the volume of the primitive cell.
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C. IPCs: Derivatives of the Potential

If not stated otherwise, the symbols we use here have the same meanings as in App. B. Again,

the fundamental parameters of the optimization problem are rik and oik; thus Eqs. (B.1) –

(B.4) are also valid here.

The relevant inter-sphere distances for two given IPCs i, j (cf. Fig. 2.7, Sec. 2.2.3) read

rBiBj =|rjk − rik| (C.1)

rBiSj,β =|rjk + pj,βk − rik| (C.2)

rSi,αSj,β =|rjk + pj,βk − rik − pi,αk |. (C.3)

It is straightforward to calculate the derivatives of these inter-sphere distances rAB with

respect to the fundamental parameters; the overlap volumes ΩAB given in Eq. (2.30) only

depend on rAB. Thus, we need to compute

• rmin ≤rAB ≤ rmax : (C.4)

∂ΩAB

∂rAB
=
π

3

[(
1− R2

A −R2
B + r2AB

2r2AB

)(
RA − R2

A − R2
B + r2AB

2rAB

)2

+

2

(
2RA +

R2
A −R2

B + r2AB

2rAB

)(
RA − R2

A − R2
B + r2AB

2rAB

)(
−1 +

R2
A − R2

B + r2AB

2r2AB

)
+

(
−1 − R2

A − R2
B − r2AB

2r2AB

)(
RB − R2

A −R2
B − r2AB

2rAB

)2

+

2

(
2RB +

R2
A −R2

B − r2AB

2rAB

)(
RB − R2

A − R2
B − r2AB

2rAB

)(
1 +

R2
A −R2

B − r2AB

2r2AB

)]

• otherwise :

∂ΩAB

∂rAB
=0

By combining these results, the derivatives ∂VIPC/∂r
i
k, ∂VIPC/∂o

i
k can easily be evaluated.
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D. Calculating Free Energies and

Their Derivatives via Lattice

Dynamics

D.1. Isotropic Potentials

We calculate the Gibbs free energy G of a given crystal configuration within the formalism

of lattice dynamics in the quasi-harmonic approximation, as described in Ref. [104]. A

configuration is characterized by geometric parameters {x}, i.e., a set of lattice vectors and

coordinates of particles in the primitive cell and the temperature T = T0 and the pressure

P = P0 are fixed. The Gibbs free energy reads

G({x}, T0, P0) = U({x})|T=T0
− T0S({x}) + P0V ({x}). (D.1)

The difference in potential energy between the finite and the zero-temperature case, caused

by temperature-driven particle fluctuations ui
k, in combination with the entropic term∗ gives

the vibrational part of the free energy

Fvib({x}, T0) = U({x})|T=T0
− U({x})|T=0 − T0S({x}). (D.2)

With this quantity and the enthalpy H , the Gibbs free energy can be rewritten as

G({x}, T0, P0) = U({x})|T=0 + Fvib({x}, T0) + P0V ({x}) (D.3)

= H({x}, P0)|T=0 + Fvib({x}, T0). (D.4)

As all vibrational motions in the crystal can be written as a superposition of plane waves,

Fvib({x}, T0) can be calculated as a sum

Fvib({x}, T0) =
∑

q,s

Fq,s({x}, T0) (D.5)

over terms corresponding to wave vectors q in the first Brillouin zone of the reciprocal lattice.

In principle, the sum has to be taken over an infinite number of vectors q, but there exist

several approximation schemes involving only a finite sum, e.g. [117].

∗We only treat the vibrational, not the configurational entropy here.
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D. Calculating Free Energies and Their Derivatives via Lattice Dynamics

In the harmonic approximation, particle displacements from their equilibrium positions are

treated as a superpositions of normal modes (phonons) with frequencies ωq,s. For each q, smax

frequencies, corresponding to acoustic and optical phonon branches [103] can be obtained by

solving an eigenvalue problem (see below). Treating the phonons as an ensemble of harmonic

oscillators, the free energy contribution Fq,s of each branch is given by [99, 103]

Fq,s({x}, T0) =
1

2
~ωq,s({x}) + kBT0 ln

[
1− exp

(
−~ωq,s({x})

kBT0

)]
. (D.6)

In the classical limit ~ → 0, with

exp

(
−~ωq,s({x})

kBT0

)
≈ 1− ~ωq,s({x})

kBT0
(D.7)

and ln (ab) = ln a + ln b, we obtain

FClassical
q,s ({x}, T0) ≈ const. + kBT0 ln [ωq,s({x})]. (D.8)

The normal mode frequencies ωq,s({x}) correspond to the square roots of the eigenvalues

λq,s({x}) of the so-called dynamical matrix Dij
kl(q, {x}), where, as in the previous appendix

chapters, upper indices correspond to particles in the primitive cell and lower indices corre-

spond to Cartesian coordinates. With the eigenvectors vikq,s({x}), the eigenvalue problem is

given as

Dij
kl(q, {x})vikq,s({x}) = λq,s({x})vikq,s({x}) (D.9)

and can be solved using standard software like LAPACK [118].

The dynamical matrix is calculated as a Fourier transform from the direct lattice with vectors

a to the reciprocal lattice with vectors q, i.e., a sum over all vectors a

Dij
kl(q, {x}) =

1
√
mimj

∑

a

eiqa
∂2U({x})|T=0

∂ui,0
k ∂uj,a

l

. (D.10)

mi indicates the mass of particle i. ui,a
k represents the k-th Cartesian component of the

displacement of the image of particle i in the cell corresponding to lattice vector a from its

equilibrium position ri,aeq,k (i.e., ri,ak = ri,aeq,k + ui,a
k ). Since only potentials with finite range are

employed in this work, the sum always consists of a finite number of terms. In practice, the

second derivatives of the interaction energy, which are given by the terms

∂2U({x})|T=0

∂ui,0
k ∂uj,a

l

, (D.11)

can be calculated once and stored for a given configuration, so that it is computationally

relatively cheap to compute the dynamical matrix for varying q.

Even though the normal mode frequencies and thus the vibrational free energy do not depend
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D.2. Anisotropic Potentials

on the geometry parameters in a closed form, it is still possible to calculate derivatives with

respect to the geometric parameters ∂{x}Fvib via a perturbative approach [104]. Taking a

derivative on both sides of the eigenvalue problem given in Eq. (D.9) leads to∗

∂{x}[D]vs +D∂{x}[vs] = ∂{x}[λs]vs + λs∂{x}[vs] (D.12)

(∂{x}[D]− ∂{x}[λs])vs = (λs −D)∂{x}[vs]. (D.13)

Since {vs} is an orthonormal basis of the underlying vector space, we can write ∂{x}[vs] =∑
s csvs; multiplying both sides with vT

s and using orthogonality (vsvt = δst) we find

vT
s ∂{x}[D]vs − ∂{x}[λs] = λscs − csλs (D.14)

∂{x}[λs] = vT
s ∂{x}[D]vs. (D.15)

This equation is exact. Thus, once the eigenvalue problem is solved, derivatives of the

eigenvalues and derivatives of the free energy

∂{x}[F
Classical
q,s ({x}, T0)] ≈ kBT0

1

2ω2
q,s({x})

∂{x}[λq,s({x})] (D.16)

can effectively be obtained by taking first derivatives of the dynamical matrix (i.e., third

derivatives of the interaction energy) with respect to the geometric parameters. Although

this procedure is quite cumbersome, it allows to perform quasi-Newton local optimization of

structural parameters at finite temperature, as long as the harmonic approximation is valid.

D.2. Anisotropic Potentials

This formalism can be expanded to anisotropic potentials by including the rotational degrees

of freedom in the dynamical matrix Dij
kl [105]; then the indices k and l not only represent

translational, but also rotational displacements (i.e., derivatives are also taken with respect

to infinitesimal rotations about the Cartesian coordinate axes). The rotation of a vector

pl = {p1, p2, p3}T about an infinitesimal angle dφ and the third (z-) axis of the coordinate

system is given by

protk = R3
kl(dφ3)pl (D.17)

R3
kl(dφ3) =




1 −dφ3 0

dφ3 1 0

0 0 1



 . (D.18)

∗We suppress the explicit dependencies and indices; ∂[ ] signifies that the partial derivative is only taken
for the expression within the square brackets.
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Hence, the derivative of the rotated vector with respect to this infinitesimal rotational dis-

placement dφ3 is

∂prot

∂φ3
=



−p2
p1
0


 . (D.19)

Rotations about the remaining axes can easily be obtained by cyclical permutations

∂prot

∂φ1

=




0

−p3
p2



 ∂prot

∂φ2

=




p3
0

−p1



 ∂prot

∂φ3

=




−p2
p1
0



 . (D.20)

Thus, the derivatives of the interaction energy with respect to rotational displacements φi,a
k

are given by
∂U({x})
∂φi,a

k

=
∂U({x})

pi,al

∂pi,al
∂φi,a

k

. (D.21)

Further, in Eq. (D.10) the masses mi, mj have to be replaced by the moments of inertia Ii, Ij
when the indices k, l correspond to rotational degrees of freedom.
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E. Performance of the Evolutionary

Algorithm

In this section, we measure convergence rates and runtimes of the evolutionary optimization

algorithm in dependence of tunable parameters. As measurement techniques we employ

graphs similar to the ones introduced in Ref. [119], sometimes called “Hartke plots”. In

such graphs, the performance of a (large) number of runs of an EA, applied on a certain

optimization problem with a given set of parameters, is visualized by plotting

• the value of the cost function for the best individual of the best run (i.e., the run which

reached the global minimum within the smallest number of iterations∗)

• the value of the cost function for the best individual of the worst run (i.e., the run,

whose best individual has the highest enthalpy value after the given number of itera-

tions)

• the average of the values of the cost function for the best individual of all runs

as functions of the number of individuals created so far. This method has been extended in

Ref. [81] by fitting an exponential function of type

H̄(i) =
(
H̄random −Hmin

)
exp(a ib) +Hmin (E.1)

to the average curve, where i is the number of individuals created so far, Hrandom represents

the average cost function value of a large number randomly created, locally optimized can-

didate solutions, Hmin is the cost function value of the (putative) global minimum and a, b

are fitting parameters.

Here, we define the fitting function in a slightly different way: Since prior the evolutionary

process the population is filled with random individuals, the EA effectively starts at

istart =Npopulation (E.2)

Hstart =min {Hrandom
1 , .., Hrandom

Npopulation
}. (E.3)

Therefore, we fit the average curve to the function

H̄(i) = (H̄start −Hmin)exp(a(i−Npopulation)
b) +Hmin. (E.4)

∗Since we chose a rather simple benchmark problem, the best of 100 runs often reached the global minimum
already at the first iteration.
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We use three values to measure the suitability of the chosen parameters for the given bench-

mark problem:

• psuccess, the percentage of algorithm runs which actually have reached the (putative)

global minimum after a chosen number of iterations imax.

• i1/10, the average number of iterations it takes the EA to reach a cost function value

below H̄(i1/10) = 1/10(H̄random−Hmin)+Hmin; this value can easily be calculated when

the fitting function is known and provides complementary information to psuccess: a

comparatively low value of i1/10 (i.e., “good” solutions are found within few iterations)

alongside a low success rate hints on the algorithm getting trapped in local minima

and possibly a multi-funnel energy landscape.

• t̄run, the average runtime of the EA (in seconds, all tests performed in a parallel en-

vironment making use of 12 processor cores) to perform imax iterations; this value is

mostly governed by the runtime of the local optimizations, i.e., better starting points

provided by the crossover operation should lead to shorter runtimes.

In the following, we will present the results of benchmark tests we performed for several

different parameters of the EA. As a test problem, we chose the identification of the zero-

temperature equilibrium structure of the symmetrical tetrahedral Doye model, with four

particles in the primitive cell. This optimization problem can usually be solved rather

quickly, within 100 iterations; therefore we were able to perform at least 100 independent

EA runs for each parameter setting. Based on the data presented in Tab. E.1, we calculate

standard deviations for psuccess of about 2− 5, based on several measurements averaged over

100 runs each; for i1/10 we compute values around 1.7−2.5 and for t̄ the standard deviations

are usually 0.1−0.3. Here we list the parameters under investigation and the standard values

we chose when varying other parameters:

parameter value

lattice crossover type (a)

unit cell volume (before local optimization) 0.8, adaptive

elitism 3 (population 10)

mutation rate 0.1

Crossover Type

As mentioned in Sec. 3.2.2, we have implemented two different protocols of performing a

crossover for primitive lattice vectors. In type (a), the child individual’s lattice vectors

are computed as averages over the parents’ lattice vectors, while in type (b), one parent

is randomly chosen to directly pass on its lattice vectors to the child. The data from five

independent benchmark tests consisting of 100 algorithm runs for each setting, provided in

Tab. E.1, show that crossover type (a) leads to a distinctively superior performance with
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respect to the values measuring the quality of the solutions (i.e., success rates and i1/10-

values), while the algorithm runtimes are similar for both types.

lattice crossover type and run number psuccess i1/10 t̄
(a) 1 84 24.82 35.72
(a) 2 85 22.87 35.34
(a) 3 80 26.43 35.56
(a) 4 84 22.20 36.20
(a) 5 84 23.41 35.70
(b) 1 61 39.73 36.02
(b) 2 73 35.45 36.07
(b) 3 71 35.29 36.34
(b) 4 65 40.39 36.17
(b) 5 73 35.86 36.24

Table E.1.: Benchmark values (as defined in the text) for two different versions of the lattice
crossover operation (see text); five independent tests for crossover types (a) and
(b) respectively, consisting of 100 EA runs each.

Initial Unit Cell Volume

In general, it seems to be natural to select an initial unit cell volume close to the expected

value of the global minimum configuration∗. However, our data (cf. Tab. E.2) suggests a

different scenario for patchy particles, at least when using the Doye potential (cf. Sec. 2.2.2).

Local optimizations of the interparticle distance in the isotropic repulsive regime of the

potential are rather easy, while the particles do not “feel” each other’s attraction at larger

distances when they are not oriented in the proper way, which makes local optimizations in

the patchy regime much less efficient. Thus, it is recommendable to choose a very small initial

unit cell volume and to let the system relax to a energetically more favorable volume by the

local optimization. In such a scenario, it is recommendable to keep the initial unit cell volume

fixed during an EA run. However, the negative effect of choosing an adaptive VUC is not

very pronounced in the data provided below, since the benchmark runs use a comparatively

small number of iterations. Notably, small initial unit cell volumes also decrease the average

algorithm runtime, i.e. result in shorter local optimization cycles.

∗In the test case, this would correspond to VUC ≈ 0.97.
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VUC psuccess i1/10 t̄
0.1, fixed 100 35.29 27.86
0.2, fixed 98 26.49 29.87
0.4, fixed 92 21.91 33.06
0.6, fixed 92 21.67 34.80
0.8, fixed 85 25.89 35.83
1.0, fixed 86 25.49 36.63
0.1, adaptive 95 40.33 27.96
0.2, adaptive 98 26.88 30.09
0.4, adaptive 94 26.27 32.53
0.6, adaptive 86 20.85 34.67
0.8, adaptive 87 28.37 34.98
1.0, adaptive 82 25.69 36.44

Table E.2.: Benchmark values (as defined in the text) for different initial unit cell volumes
VUC, either fixed during the run or adaptive (see text). Note that H̄start –
cf. Eq. (E.4) – depends on VUC, influencing the i1/10 values.

Elitism

According to our data (cf. Tab. E.3), the elitism parameter e has a much smaller influence

on the performance of the algorithm than the options mentioned before. Employing a total

population of ten individuals, we let e vary between 0 and 10. The only significant change

we observe here is a somewhat lower success rate when using no elitism at all. Any e-value

around half of the total population seems to be a good choice.

e psuccess i1/10 t̄
0 84 25.76 35.62
3 87 22.88 35.74
5 87 22.74 36.11
7 86 23.44 35.98
10 86 24.76 36.00

Table E.3.: Benchmark values (as defined in the text) for different values of the elitism
parameter e (see text).

Mutation Rate

As described in Sec. 3.2.2, we employ a mutation operator that performs a random strain

on the primitive lattice vectors. The mutation rate pmut is the probability of this operation

acting on a newly created individual. Our benchmark tests (cf. Tab. E.4) show that rather

low mutation rates around 10 percent have a beneficial effect on psuccess, as compared to

an algorithm without mutation, which seems to converge to low-enthalpy solutions faster
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(i.e., has a lower i1/10-value) but gets stuck in local minima more easily. Higher pmut-values,

resulting in a much more stochastic search, negatively influence psuccess as well as i1/10.

pmut psuccess i1/10 t̄
0.0 83 24.81 35.70
0.1 89 25.06 35.70
0.2 84 29.61 35.89
0.3 75 32.67 36.12
0.4 70 29.92 35.28

Table E.4.: Benchmark values (as defined in the text) for different values of the mutation
parameter pmut (see text).
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Figure E.1.: Hartke plots (see text) with a fitting function for the average curve as defined
in Eq. (E.4). Left: Best out of five tests for lattice crossover type (a); right:
best out of five tests for lattice crossover type (b).
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Figure E.2.: Hartke plots (see text) with a fitting function for the average curve as defined in
Eq. (E.4). Best (left; VUC = 0.1, fixed) and worst (right; VUC = 1.0, adaptive)
results among the tested initial unit cell volume parameter values.
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Figure E.3.: Hartke plots (see text) with a fitting function for the average curve as defined in
Eq. (E.4). Best (left; e = 5) and worst (right; e = 0) results among the tested
elitism parameter values.
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Figure E.4.: Hartke plots (see text) with a fitting function for the average curve as defined
in Eq. (E.4). Best (left; pmut = 0.1) and worst (right; pmut = 0.4) results among
the tested mutation rate values.
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(2008).

[99] Maradudin, A. A., Montroll, E. W., Weiss, G. H. & Ipatova, I. P. Theory of Lattice

Dynamics in the Harmonic Approximation (Academic, New York, 1971).

[100] Evans, R. Fundamentals of Inhomogeneous Fluids, 85 (Dekker, New York, 1970).

[101] Kofke, D. A. & Cummings, P. T. Quantitative comparison and optimization of methods

for evaluating the chemical potential by molecular simulation. Mol. Phys. 92, 973

(1997).

[102] Born, M. & Huang, K. Dynamical Theory of Crystal Lattices (Oxford University Press,

Oxford, 1954).

[103] Dove, M. T. Introduction to Lattice Dynamics (Cambridge University Press, Cam-

bridge, 1993).

[104] Taylor, M. B., Barrera, G. D., Allan, N. L. & Barron, T. H. K. Free-energy derivatives

and structure optimization within quasiharmonic lattice dynamics. Phys. Rev. B 56,

14380 (1997).

[105] Venkataraman, G. & Sahni, V. C. External vibrations in complex crystals. Rev. Mod.

Phys. 42, 409 (1970).
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Primož Ziherl for multiple suggestions concerning this thesis.

Johannes Strobl, Georg Wachter, Daniela Klotz andHanna & Yaniv Levy for being

very close friends during all the years of our studies.

My parents Maria and Franz, my grandparents andmy sister Eva-Maria for support

in many different ways.

Marta Montes Saralegui.

This work was supported by the Fond zur Förderung der wissenschaftlichen Forschung

(FWF) under Project No. W004. Further financial support by the European Comission -

Capacities Area - Research Infrastructure under the HPC-EUROPA2 project (project num-

ber: 228398) is gratefully acknowledged.





Curriculum Vitae

Personal Data

Name: Günther Doppelbauer

Birth Date: January 25th, 1984

Birth Place: Grieskirchen, Austria

Citizenship: Austria

Education

1990 - 1994 Volksschule I Grieskirchen

1994 - 1998 Hauptschule I Grieskirchen

1998 - 2002 Bundesoberstufenrealgynasium Grieskirchen

June 2002 Matura passed with distinction

2002 - 2009 Studies of Technical Physics at Vienna University of Technology

April 2009 all Diploma examinations passed with distinction

2009 - 2012 PhD studies in Technical Sciences at Vienna University of Technology,

with a two month stay at the University of Cambridge


