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Kurzfassung

Systeme der weichen Materie nehmen beim Übergang von der flüssigen zur festen Phase

selbst in zwei Dimensionen komplexe Strukturen an. Mit Hilfe von Optimierungsstrate-

gien, die auf genetischen Algorithmen beruhen, ist es möglich, die globalen Energiemi-

nima, denen diese stabilen Konfigurationen entsprechen, auf systematische und zuverlässige

Weise zu identifizieren und so die Bildung der unterschiedlichen Strukturen zu studieren.

In dieser Arbeit betrachten wir drei verschiedene Systeme: erstens ein Einkomponenten-

system, dessen Teilchen über ein rein repulsives Kastenpotential, das sogenannte ”square-

shoulder”-Potential, in Wechselwirkung stehen, zweitens eine binäre Mischung von dipolaren

Kolloidteilchen und drittens ein System in dem ebenfalls dipolare Teilchen zu einem bes-

timmten Ausmaß von der zweidimensionalen Geometrie abweichen können und das somit

einen Übergang von zwei- zu dreidimensionalen Systeme darstellt. In Hinblick auf zukünftige

technologische Anwendungen untersuchen wir zusätzlich die Phononenspektren jener Gle-

ichgewichtsstrukturen binärer Mischungen, die in Experimenten als stabile Anordnungen

identifiziert werden konnten.





Abstract

Even if confined to a plane, particles of soft matter systems are able to self-assemble in a

vast variety of complex equilibrium structures upon solidification. In an effort to gain deeper

insight into the various strategies how particles arrange in an energetically favourable and

therefore stable pattern, we investigate three exemplary model systems: a one-component

system, where the particles interact via a square-shoulder potential, a binary mixture of

dipolar colloids, and a system considered to be at the cross-over from two to three dimen-

sions, where particles are allowed to detach vertically from the strict two-dimensional setup

to a certain amount. By employing a search technique based on genetic algorithms, we are

able to systematically explore the broad variety of ordered structures encountered for these

three systems and present results that surpass previous investigations. The unbiased search

strategies of genetic algorithms make us confident that the identified sequences of stable con-

figurations are reliable and complete. With future, technologically relevant applications in

mind, we determine the phonon band structures for those ordered equilibrium configurations

of the binary mixture of dipolar colloids that were also encountered in experiments.





Die Neugier steht immer an erster Stelle eines Problems,

das gelöst werden will.

Galileo Galilei
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Chapter 1

Introduction

Soft matter physics ranges among the fast expanding fields of material science of the last decade.

The concentrated interest it receives is mainly due to two reasons: first, soft matter is ubiquitous

in our daily lives. Many everyday substances classify as soft matter, as their rigidity against

mechanical deformation is much smaller than in atomic materials. The field thus comprises a

broad variety of different substances, ranging from various organic materials, like blood or protein

solutions, over comestibles like milk, mayonnaise or ice cream, to all kinds of industrial products,

for example paint, ink, all varieties of foam, or liquid crystals [1, 2]. This diversity of substances

leads to a plethora of technological applications, warranting the applied aspect of the interest in

soft matter.

The second reason for the broad attention that soft matter receives is related to its role in

academic research, as their special properties make soft materials valuable model systems. Soft

matter systems, also known as colloidal dispersions or complex fluids, are not only characterised

by their low shear modulus, but also by their composition. A colloidal dispersion consists of

mesoscopic particles suspended in a microscopic solvent. The mesoscopic particles, or colloids,

are of a size between 1 nm and 1 µm, and can be of various shapes and nature: solid particles

made of silica or polystyrene, solid rods, platelets or ellipsoids all classify as colloids, as well

as so called ”fractal” objects like polymer chains or dendrimers. To facilitate the investigation

of colloidal dispersions, effective interactions between colloidal particles, obtained via suitable

coarse-graining procedures, are employed [3–5]: instead of taking the whole system with its huge

number of particles into account, those degrees of freedom that belong to the solvent are averaged

out, incorporating the influence of the much smaller solvent particles in the pair-interaction of

the larger colloidal particles. If necessary, also the internal degrees of freedom of the constituent

mesoscopic aggregates, e.g. the different building-blocks of a polymeric chain, can be incorporated

into ”effective” spherical particles [6]. By altering the salt concentration in the solvent, by varying

the temperature or by changing the chemical and physical architecture of the mesoscopic particles,

the effective interactions can be almost deliberately influenced by the investigator in many, well-
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defined ways, leading to interaction potentials tailored to the wish of the scientist and the need of

the application.

Another attractive feature of soft matter, besides the freedom to create model systems with

designed interactions, are the special conditions concerning observation and handling of the ma-

terials in experiments: instead of depending on indirect methods like the various scattering tech-

niques known from the investigation of atomic substances, the comparatively large size of the

colloids allows for a direct observation of the particles’ motions and behaviour via light or video

microscopy [7]. Additionally, optical tweezers enable experimentalists to easily trap, move and

arrange single particles, as well as they grant direct measurements of the forces acting between

the colloids [8–10].

In the present work, we focus on the solidification of soft matter systems in two dimensions.

Every substance, if sufficiently cooled, self-arranges in an ordered structure. Contrary to atomic

materials, soft matter systems are known to exhibit a broad range of complex structures: the spec-

trum of ordered configurations encountered does not only comprise micellar and inverse-micellar

structures [11, 12]; soft matter systems can also aggregate in cluster phases [13], chain-like and

layered arrangements [14, 15] or gyroid phases [16–18]. There exist many different theoretical

techniques to investigate the transition from the liquid to the solid phase and the thermodynamic

properties of both, liquid and solid, can be determined accurately via, e.g., density functional the-

ory [19–21], liquid state theory [22] or perturbation theory [23–25]. However, the missing tool in

the theoretician’s arsenal is a way to reliably predict the ordered structure a system adopts upon

solidification – especially if the effective interactions of the involved particles are to represent the

sole input. The conventional approaches often used for atomic substances rely on a biased prese-

lection of possible candidate structures and are therefore insufficient for soft matter systems with

their rich and unpredictable wealth of stable structures, as suitable, especially complex, candidates

can be easily forgotten in the preselection process.

Knowing about the difficulties encountered by conventional approaches, genetic algorithms

were introduced as an alternative way to determine the stable structures adopted upon freez-

ing. Genetic algorithms were developed in the late 1960ies, early 1970ies by John Holland and

coworkers [26], to deal with complex, high-dimensional optimisation problems in a broad range of

different fields. They are modelled after natural evolutionary processes and employ mechanisms

like mating, mutation and recombination, as well as Darwin’s principle of ”survival of the fittest”

to find the optimal solution to a given problem. Genetic algorithms have been successfully applied

to such different fields as economics, business administration, biology, logistics or computational

sciences over decades, but their use in optimising ordered structures was acknowledged only a few

years ago [27–29]. In this work, we extend and employ a search technique, introduced by Dieter

Gottwald to predict stable configurations of three dimensional systems [30,31], to two-dimensional

soft matter systems.



5

The main aim of this thesis lies with the investigation of the structural properties of three

different model systems: first, a one-component system of particles interacting via a repulsive

square-shoulder potential. The simple form of the interaction makes this system the ideal testing

ground for our adapted and refined search technique, as emerging structures are easily classified by

the number of overlapping coronas and can also be conveniently visualised. Additionally, the two-

dimensional square-shoulder system has been extensively investigated in the past, using geometric

arguments and computer simulations [12, 15, 32, 33]. In these previous investigations, a large

number of different, often asymmetric equilibrium structures have been discovered. The revealed

variety of complex structures fostered the hope that the alternative method of genetic algorithms is

able to thoroughly revise – and if necessary, correct – the established phase diagram for the square-

shoulder system, as it was successfully done previously in the case of three-dimensional systems

of starpolymers and ionic microgels [34, 35]. Besides the square-shoulder system’s importance as

a ”quintessential” test system [25], it is also widely used to model the behaviour of realistic soft

systems, such as polymer-grafted colloids [36] and micellar structures built of dendritic polymers

[37] or diblock co-polymers [38, 39].

The second system we investigate is a binary mixture of dipolar colloidal particles. The two

different species vary in size and thus in their dipole moment. Besides changing the particle

size ratio, we investigate systems of different composition, leading to a systematic scan of the

structural properties. The motivation for studying this particular system came from two different

experimental setups, that can be seen as realisations of the model system: in the first experiment,

polystyrene particles floating at an oil–water–interface are considered, which are interacting via an

induced effective dipole potential. Although experiments on this setup have been performed for the

one-component case only [40, 41], there exist computer simulations, mimicking the experimental

setup for a binary mixture [42] and thus providing results to test our findings against. The

second setup uses super-paramagnetic colloids that are suspended on a pendant water droplet. A

magnetic field, applied perpendicular to the water–air–interface and trapping the particles in a

two-dimensional geometry, polarises the colloids and leads to a repulsive dipolar interaction. The

second experimental setup has been the centre of experimentalists’ attention for some years [43–47],

yielding ample data on the static and dynamic properties of the system. Both experiments and

simulations have given evidence of a rich variety of complex alloy phases, but both experience

difficulties if confronted with the task of providing a systematic investigation of the system’s

response to varying parameters due to, e.g. finite size effects, or local fluctuations of the density

or limits in computational power. Again, we believe that our genetic algorithm-based search

technique, that is highly appropriate for optimisations in complex search spaces, is the ideal

method to complete the results of these studies.

The third system covered in this thesis considers the cross-over from a two- to a three-

dimensional setup: colloidal particles are trapped in a thin cell, slightly thicker than the particle’s
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diameter. The colloids are thus allowed to deviate from the two-dimensional plane and buckle in

the vertical direction. The particles are super-paramagnetic and interact via an ideal dipole-dipole

potential as an external magnetic field is used to induce magnetic moments perpendicular to the

plane in the colloids. Depending on the cell thickness, the interaction is either purely repulsive,

softened repulsive, or attractive at small distances, leading to a variety of solid phases [9,10]. Our

genetic algorithm-based search technique was included in the survey as a third, complementary

method, besides the current investigations by experiment and simulations.

We have chosen these three systems in particular with respect to their realisability in exper-

iments and their relevance as model systems. In this way, we can guarantee the verification of

our findings, not only by comparison to results obtained in computer simulations, but also to ex-

perimental data on colloidal systems. With the possibility of future applications in mind, we also

investigate the dynamic and elastic properties of some of the emerging structures by determining

their phonon band structures.

This work is organised as follows:

Chapter 2 introduces the investigated systems. The interparticle potentials used in our studies

are presented along with a discussion of their relevance as model systems and their realisa-

tions in experiments.

Chapter 3 provides the theoretical concepts of statistical mechanics and thermodynamics es-

sential to the understanding of this work. A description of ordered solid states and the

calculation of their defining properties complete the chapter.

Chapter 4 is dedicated to the method employed to determine the equilibrium structures – genetic

algorithms. An introduction to their general concepts and the specific implementations nec-

essary to adapt a generic genetic algorithm to the problem of finding stable solid structures

is given in this chapter.

Chapter 5 gives an introduction to the harmonic theory of lattice dynamics. It covers the cal-

culation of the dispersion curves or phonon band structures of harmonic crystals and also

includes a short overview on the lattice dynamics of solid colloidal dispersions.

Chapter 6 presents the results obtained for the systems introduced in chapter 2: we discuss the

identified sequences of minimum energy configurations of all three systems and study the

phonon band structures obtained for those stable structures of the binary mixture of dipolar

colloids that have been verified in experiments.

Chapter 7 contains a brief summary of the results and provides the conclusions drawn from this

work. A short outlook on future work completes the last chapter.



Chapter 2

Investigated systems

In the following chapter, we present the three systems investigated in this thesis: in Section 2.1,

we start with the one-component, two-dimensional square-shoulder system. The next section is

dedicated to binary monolayers of dipolar, colloidal particles and in Section 2.3 a one-component

system of dipolar colloids is considers, which represents a link between two- and three-dimensional

systems. Besides introducing the respective interparticle potentials, we also discuss their relevance

as model systems and introduce their various realisations in experiments.

All systems have the following features in common: They classify as soft matter or colloidal

dispersions, meaning that each of the three systems investigated in this thesis consists of mesoscopic

particles, with a size ranging from 1 nm to 1 µm, which are suspended in a microscopic solvent.

Neither the behaviour of the considerably faster and smaller solvent particles, nor the inner

structure of the mesoscopic particles is of direct concern in our investigations. Both influences are

therefore subsumed in suitably coarse-grained, effective pair potentials that describe the interaction

between spherical, effective particles [5].

These effective potentials Φ(r) are all radially symmetric and isotropic. The interaction be-

tween two particles is therefore only dependent on their distance r = |r|, so that

Φ(r) = Φ(r) .

We are also able to define an energy scale ε in all three cases, so that the interparticle potential

can be written as

Φ(r) = εf(r) .

Furthermore, all investigated particles exhibit an impenetrable hard-core region of diameter σ,

which is called on as a length scale.

7
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Figure 2.1: Pair potential for the square-shoulder system, corresponding to
equation (2.1) (left panel), and the two configurations corresponding to the two
characteristic lengths of the system (right panel).

The pair potentials of all three systems thus are of the same general form,

Φ(r) = Φ
(
x =

r

σ

)
=





∞ x ≤ 1

εg(x) x > 1
,

with g(x) being a dimensionless function.

2.1 Square-shoulder systems

In a square-shoulder system, hard particles of diameter σ interact via a soft, repulsive, step-shaped

corona of width λ and height ε. The spherically symmetric pair potential for this system reads as

Φ(x) =





∞ x ≤ 1

ε 1 < x < λ/σ

0 λ/σ ≤ x

, (2.1)

(see figure 2.1, left panel). We choose the particle diameter σ to act as a length scale in this

system and the shoulder height ε as an energy scale. The pair potential (2.1) is thus characterised

by the height of the shoulder ε and by the ratio of shoulder width to particle diameter λ/σ. The

right panel of figure 2.1 shows the two configurations typical to the defining lengths λ and σ of

the system: first, at the top of the right panel in figure 2.1, a configuration where the repulsive

coronas of two particles are just in touch with each other, and second, a schematic representation

of two particles in hard-core contact (see figure 2.1, right panel, bottom).

The square-shoulder potential with its short repulsive step is typical for steric interactions
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Figure 2.2: Schematic representation of two systems exhibiting a distinct core-
corona architecture: A polymer-grafted colloid (top panel) and a micell assem-
bled by dendritic polymers (bottom panel, taken from ref. [37]).

and is therefore often used to model the behaviour of particles that exhibit a distinct core-corona

architecture. A common example for this particle class are polymer-grafted colloids, i.e. hard,

colloidal particles with a brush of flexible polymer chains attached to their surface [36]. A schematic

representation of such a polymer-grafted colloid is given in the top panel of figure 2.2. The

colloids themselves are impenetrable, thus forming the hard core visible in the potential. The soft

coronas on the other hand, that consist of the polymer chains, can interpenetrate at some energy

cost, leading to the soft, repulsive, step-shaped shoulder adjacent to the hard-core region. The

parameters of the potential – the height of the repulsive step ε and the shoulder width λ – can be

controlled by changes in the grafting density and in the length of the polymer chains, respectively.

Other examples of particles whose pair interaction has been modelled using the square-shoulder

potential are micells of dendritic polymers [37] and diblock co-polymers [38, 39]. The micells

formed by these two types of polymers display two distinct regions: the inner core, composed

of the solvophobic parts of the constituent polymers, is characterised by a high polymer density,

whereas the solvophilic polymer groups form a diffuse corona considerably less dense and thus

interpenetrable, leading to the characteristic inner architecture. For a schematic representation

of a micell assembled by dendritic polymers see figure 2.2, bottom panel. Other systems, where

the square-shoulder potential has been successfully employed to model the particle interactions,

include Cs and Ce [48], water [49, 50], and electron liquids in weak magnetic fields [51, 52].

In addition to its role as a model for experimentally realisable soft systems, the square-shoulder

potential constitutes a valuable potential in the investigations of solid-solid transitions. Due to

the sharp cutoff and the flat plateau in the pair potential, the square-shoulder system is extremely

sensitive to changes in the pair-correlation function [25]. Its simple potential form makes it also

especially easy to interpret obtained results, as the energy of an emerging lattice is simply given
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as the number of overlaps of the particles’ coronas.

Besides the above mentioned applications of the square-shoulder system, we have chosen to

investigate this particular potential due to another reason: it is a well tested system. Results of

previous investigations on the two-dimensional square-shoulder system employing various different

methods, such as computer simulations [12, 15, 32, 33], geometric analysis [15, 33], or mean-field

methods [12], show a remarkably rich variety of stable structures, providing us with ample data

to test our findings against. Additionally, the often asymmetric structures encountered and the

known drawbacks of the employed methods raise doubts whether the spectra of stable structures

determined in these previous studies are complete, thus leading to the hope that our method

of genetic algorithms will offer deeper insight on the square-shoulder system’s strategies to form

stable structures.

2.2 Binary mixtures of dipolar colloids

The second class of systems studied in this thesis is a binary mixture of polystyrene particles

floating at an oil–water interface to ensure the two-dimensional geometry of the setup. The

interaction between the particles of the species A and B, which differ in size, is given by an

effective dipole-dipole-potential of the form

Ψij(r) =





∞ r ≤ (Ri + Rj)

ΨI
ij =

PiPj

16πǫRiRj

1
r ln

[
r2−(Ri−Rj)

2

r2−(Ri+Rj)2

]
r > (Ri + Rj)

i, j = A, B . (2.2)

In (2.2), ǫ denotes the dielectric constant of water, Ri, i = A or B, stands for the radius of the

particle species i and Pi for the corresponding dipole moment [42].

These effective interactions are believed to have their origin in the formation of surface charge

dipoles on the particle’s interface with the oil phase, as indicated in figure 2.3 [53]: On contact

with water, hydrophilic sulfate head groups on the particles’ surface dissociate and surface charge

dipoles are formed. Since the particles are covered by a thin water film when poured into the setup,

dipole charges are found on the whole surface of the particle. In the aqueous phase, the interaction

of these dipoles is shielded due to the small Debye length in water, resulting in an effective dipole

moment. This net dipole moment can be calculated via the vector sum of all the surface charge

dipoles sitting at the particles’ interface with the oil phase (see figure 2.3). Computer simulations

were able to affirm the potential form (2.2), as they reproduced the equilibrium structures observed

in experiments on a one-component system of polystyrene particles when using this particular

potential [40, 41, 53].

The interaction potentials given in (2.2) can be simplified by introducing the diameter of the

larger species σA = 2RA as a length scale to the system, so that x = r/σA. Additionally, we set
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Figure 2.3: Two polystyrene particles of different size floating at an oil-water
interface. The net dipole moments PA and PB are given by the vector sums of
the surface charge dipoles sitting on the particle-oil-interface (picture inspired
by ref. [53]).

z = RB/RA ≤ 1, and, following the arguments presented in reference [42], assume

Pi = αR
n+2

2

i . (2.3)

With these parameters, the interactions ΨI
ij(r) of equation (2.2) can finally be written as

ΦI
AA(x) = εI

1

x
ln

[
x2

x2 − 1

]
for x ≥ 1; (2.4)

ΦI
BB(x) = εI

zn

x
ln

[
x2

x2 − z2

]
for x ≥ z; (2.5)

ΦI
AB(x) = εI

zn/2

x
ln

[
4x2 − (1 − z)2

4x2 − (1 + z)2

]
for x ≥ (1 + z)/2 , (2.6)

with a common prefactor

εI =
α2

16πǫ
Rn

A .

The two potential parameters z and n have a distinct influence on the form of the interaction

potential. In the following considerations, the interaction between large particles ΦI
AA acts as a

reference, since it depends neither on z nor on n. If the particle size ratio z = 1, all ΦI
ij coincide,

representing the trivial one-component case. Decreasing z corresponds to shrinking the size of one

of the particle species and thus weakens the adjoint repulsive tail in ΦI
BB(x) and ΦI

AB(x), as the

particles’ dipole moment was chosen to be proportional to the radius of the colloid in equation

(2.3) (see figure 2.4). The exponent n, on the other hand, changes the strength of the repulsive tail,

without changing its position: the smaller the exponent n, the softer is the interaction between

the particles. Following the argumentation put forward in reference [42], we distinguish between

two different interaction regimes in our survey, corresponding to two values of the exponent n: a
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Figure 2.4: Interaction potentials ΦI

ij in a binary mixture of dipolar colloids
floating at an oil-water interface for different values of the particle size ratio z
for n = 3.

0 0.5 1 1.5 2
x

0

0.02

0.04

0.06

0.08

0.1

Φ
Ι (x

)

AA
BB, n=2
AB, n=2
BB, n=3
AB, n=3

Figure 2.5: Interaction potentials ΦI

ij in a binary mixture of dipolar colloids
floating at an oil-water interface for different values of the exponent n and for
a particle size ratio z = 0.5
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Figure 2.6: Double logarithmic plots of the interaction potentials ΦI

ij in a binary
mixture of dipolar colloids floating at an oil-water interface for z = 0.5. The
power-law dependence of the interaction for large and intermediate values of x
is clearly visible, as well as deviations from the ideal dipole behaviour at short
distances.

”weak” interaction regime, where the dipolar moment scales with the particles surface (n = 2);

and a ”strong” interaction regime with n = 3 (see figure 2.5).

A double logarithmic plot of the interactions (2.4)-(2.6) reveals that the potentials deviate from

the ideal 1/r3-behaviour of a pure dipole-dipole-interaction only at small distances (see figure 2.6).

This behaviour becomes more obvious as we expand the logarithms in (2.4)-(2.6) in a Taylor-series,

yielding

ΦI
ij(x) ∼ (zizj)

n+2

2

x3
+ O(x−5) , i, j = A, B (2.7)

with zA = 1 and zB = z, leading to a functional form that represents an ideal dipole-dipole

interaction.

Retaining the first term in equation (2.7), the interaction potentials correspond to another

system, extensively investigated in the past [43–47,54,55]: In their experimental realisation of this

system, Ebert et al. [47] use super-paramagnetic colloidal particles, suspended on a pendant water

droplet to ensure the two-dimensional geometry (see figure 2.7). By applying a strong external

magnetic field B perpendicular to the plane of the droplet, magnetic moments are induced in the

particles, which align parallel to the external field,

Mi = χiB ,

where χi is the susceptibility of a particle of species i, and i = A or B. Introducing the suscepti-

bility ratio mi = χi/χA, the dipole-dipole potentials acting between the particles can be written
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Figure 2.7: Schematic representation of the experimental setup described in
ref. [47]: super-paramagnetic colloids are trapped at the air-water interface in
a pendant water droplet. An external magnetic field B is used to tune the
interactions between the particles (picture inspired by ref. [47]).

as

ΦII
ij(x) = εII

mimj

x3
(2.8)

with

εII =
µ0χ

2
A

32πR2
A

B2 ,

acting as an energy scale and x = r/σA being the reduced distance between the interacting

particles.

At low and intermediate densities, where the particles are separated sufficiently far from each

other, the two sets of potentials, (2.4)-(2.6) and (2.8) are practically identical and are therefore

expected to lead to the same particle arrangements. The equivalence relation between the particle

size ratio z and the susceptibility ratio m, that allows for a direct comparison of results obtained

in both cases, is given by

miB ⇔ z
(n+2)/2
i .

Furthermore, one of the two potential parameters used to describe system I becomes superfluous

in (2.7), as, e.g., a change in the exponent, n → ñ, can always be translated to a change in the

particle size ratio,

n → ñ ⇔ z → z̃ = z
n+2

ñ+2 . (2.9)

At high densities, however, the Taylor expansion (2.7) is no longer valid and differences in the

ordered equilibrium structures will occur.

2.3 Quasi-planar dipolar colloids

In this system, super-paramagnetic colloids are confined to a horizontally oriented cell of variable

thickness D. The monodisperse, impenetrable particles interact via a dipole-dipole potential, in-

duced by an external magnetic field, which is applied perpendicular to the cell. Depending on the

thickness of the cell, the interaction can either be repulsive, softened repulsive or even attractive

at short distances: for very small values of D, i.e. D ≈ σ, the system resembles a two-dimensional
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Figure 2.8: Schematic cross section of the quasi-planar setup discussed in sec-
tion 2.3. The particles are confined to a cell of thickness D = σ+h and interact
via a dipole-dipole potential, induced by an external magnetic field B = Bez,
perpendicular to the x, y-plane.

setup of dipolar colloids with its characteristic dipole-dipole repulsion. As the cell widens, the

particles are allowed to detach from the strictly two-dimensional arrangement at the bottom of

the cell and the repulsion starts to soften. In sufficiently wide cells, where the particles can detach

sufficiently far from the bottom, the interaction becomes attractive at short distances [9,10]. This

behaviour of the interaction will be discussed in more detail below. Apart from the possibility to

investigate these different interaction regimes, the setup enables to study the behaviour of systems

at the cross-over from two to three dimensions.

We choose the magnetic field to be perpendicular to the vertical direction z of our setup, so

that the cell has infinite extension in x- and y-direction. For convenience, we use the particles’

hard-core diameter to express the cell thickness D as D = σ + h, in order to directly access the

the maximal vertical shift h the particles can obtain (see figure 2.8).

As the particles are allowed to detach from the strict two-dimensional setup, we introduce an

effective hard-core diameter σe, which depends on h:

σe =
√

σ2 − h2 .

With this effective particle diameter, the interaction between two particles separated by an in-plane

distance x = r/σ and a vertical displacement z̃ = z/σ, z ∈ [0, h], can be written as

Φ(x, z̃) =





∞ x ≤ σe/σ

ε x2−2z̃2

(x2+z̃2)5/2 x > σe/σ
. (2.10)

The interaction constant ε depends on the magnetic field strength B and the particles’ suscepti-

bility χ,

ε =
πσ6χ2B2

144µ0
.

The potential was verified in experiments through a measurement of the in-plane force Fr, acting



16 CHAPTER 2. INVESTIGATED SYSTEMS

0 0.5 1 1.5 2 2.5 3 3.5 4
 x

-1

-0.5

0

0.5

1

1.5

 Φ
(x

, z
)

Φ(x, z = 0)
Φ(x, z = 0.445)
Φ(x, z = 0.55)
Φ(x, z = 0.8)

Figure 2.9: Interaction potential Φ(r, z) between two dipolar colloids at four
different vertical displacements: for z = 0, the interaction potential resembles
the two-dimensional case. The potential for z = 0.445σ is close to the cross-
over to the attractive regime but still purely repulsive whereas for z = 0.55σ it
exhibits a region of relative attraction. At z = 0.8σ, the interaction is attractive
at short distances.

between two isolated spheres at varying distances [9],

Fr(x, z̃) =
∂Φ

∂x
(x, z̃) = −3εx

4z̃2 − x2

(x2 + z̃2)7/2
. (2.11)

As argued above, it is possible to change the characteristic features of the interparticle potential

by controlling the maximal vertical shift h. Widening the cell, three regimes can be distinguished:

Starting from h = 0, at which the two-dimensional behaviour, Φ(x, z̃) ∼ 1/x3, is recovered, the

interaction is purely repulsive. For increasing h, the potential softens until a first ”critical” value

hm is reached. For vertical displacements h > hm = σ/
√

5, a regime of relative attraction is

reached, where the in-plane force between two touching particles,

Fr(x = σe/σ, z̃) = −3ε
σe

σ

[
5 (z̃)2 − 1

]

is attractive, but the pair potential Φ(x, z̃) is still positive on contact. Only beyond a second

critical vertical displacement hc = σ/
√

3, both, the in-plane force Fr and the interparticle potential

Φ(x, z̃) are negative at small distances, x ≈ σe/σ, leading us to the attractive regime. At h = σ,

the effective hard-core diameter vanishes, as the particles are able to arrange atop of each other.

This formation of ”towers” resembles the behaviour of dipolar colloids in three dimensions, where

the particles form columns parallel to the applied external field. Figure 2.9 shows pair potentials

for all three interaction regimes.



Chapter 3

Statistical mechanics &

Thermodynamics

When a system solidifies, it adopts a certain ordered structure, depending on the constraints put on

the system. In order to predict these ordered structures, it is necessary to define the characteristic

properties which set them apart from all other possible configurations of the system.

In this chapter we introduce the theoretical framework needed to describe the states of a

system and formulate the concepts of thermodynamic stability and equilibrium [56–60]. We start

by outlining the basic concepts of statistical mechanics that allow us to derive the macroscopic

properties of a system from the behaviour of its microscopic constituents, before concentrating on

the macroscopic theory of thermodynamics and the description of systems in equilibrium. The end

of this chapter is dedicated to the solid state and the calculation of the characterising properties

of the stable solid.

3.1 Basic concepts of statistical mechanics

Statistical mechanics derives the macroscopic properties of a system from its microscopic be-

haviour, employing classical or quantum mechanics and the laws of probability theory to cope

with the large number of degrees of freedom. The basis for this deduction is the Hamiltonian

H, that governs the dynamics of the N particles in the system. H depends on the positions

rN = {r1, r2, . . . , rN} and momenta pN = {p1,p2, . . . ,pN} of the particles,

H = H(rN ,pN ) .

The positions rN and momenta pN span the 6N -dimensional phase space of the system, where

every microscopic state that the system can take on, is represented by a single point.

In the case of particles obeying the rules of classical mechanics, the Hamiltonian H leads to

17
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the 6N equations of motion,
∂H
∂ri

(rN ,pN ) = −ṗi , (3.1)

and
∂H
∂pi

(rN ,pN ) = ṙi , (3.2)

where the dot denotes a derivative with respect to time t. Solving the equations given in (3.1)

and (3.2) yields the trajectory (rN (t),pN (t)) in phase space and thus the evolution of the system

in time.

Due to the huge number of constituents in a typical macroscopic system, N ∼ 1023, which

makes an explicit treatment of the equations of motion impossible, we have to resort to a statistical

description of the system. To this end, it is convenient to introduce the concept of ensembles : a

macroscopic state, characterised by certain macroscopic constraints, such as particle number N ,

volume V , and temperature T , can be realised by a large number of different, but yet equivalent

microscopic configurations. The idea of ensembles is to subsume all microscopic configurations

that correspond to the same macroscopic state into one set - an ensemble.

To extract the value of macroscopic observables from an ensemble, methods of statistics are

employed, involving in particular the concept of averaging. We distinguish two different ways to

take the average: in an ensemble average, the value of a macroscopic property O is determined as

the average over all S microscopic states in the ensemble,

〈O〉Sens. =
1

S

S∑

i=1

Oi ,

with Oi being the value of the observable obtained from the i-th member of the ensemble. If we

introduce ρ(rN ,pN ), the probability density for the specific microscopic state characterised by

(rN ,pN) to be taken on by the macroscopic system, the ensemble average can be written in its

continuous form as

〈O〉ens. =
1

Z

∫∫
drNdpNO(rN ,pN )ρ(rN ,pN ) , (3.3)

with the partition function Z representing the sum over all states in the ensemble.

In a time average, the value of a macroscopic property, that is macroscopically time independent

itself, is determined by the evolution of one single microscopic system in the time interval t,

〈O〉ttime =
1

t

∫ t

0

dt′ O(rN (t′),pN (t′)) . (3.4)

Assuming that the investigated system is ergodic, which means that in an infinite amount of

time, the system will indeed adopt all microscopic states in an ensemble, the time average and the

ensemble average are equivalent:

〈O〉t→∞
time = 〈O〉S→∞

ens. .
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With this general notions on ensembles and on the deduction of macroscopic quantities of a

system from the microscopic behaviour of the constituent particles, we introduce the two specific

ensembles important to the investigations carried out in this thesis: the canonical and the isobaric-

isothermal ensemble.

3.1.1 The canonical ensemble

The canonical ensemble is used to describe systems of fixed particle number N and volume V ,

that are in contact with a heat bath. This contact fixes the temperature of the system, whereas

the energy is free to fluctuate.

The states that are available to the so called NV T -system in phase space are distributed

according to Boltzmann’s law,

ρcan.(r
N ,pN ) ∝ e−βH(rN ,pN ) , (3.5)

where H is the Hamiltonian and β = 1/(kBT ) the inverse temperature of the system, with Boltz-

mann’s constant, kB = 1.38065 J/K.

In the case of identical and indistinguishable particles, the partition function of the canonical

or NV T -ensemble can be written as

Zcan.(N, V, T ) =
1

h3NN !

∫∫
drNdpN e−βH(rN ,pN ) , (3.6)

where the factor 1/N ! accounts for the indistinguishability of the particles and h = 6.626 ·10−14Js

denotes Planck’s constant.

All thermodynamic, i.e. macroscopic, properties of the system can be derived from the partition

function (3.6). The Helmholtz free energy is connected to it via

F (N, V, T ) = −kBT log Zcan.(N, V, T ) , (3.7)

and acts as the thermodynamic potential for the NV T -systems (see Section 3.2.1).

3.1.2 The isobaric-isothermal ensemble

If a system is under fixed pressure instead of being of fixed volume, the isobaric-isothermal or

NPT -ensemble is used to describe the system. It contains a fixed number of particles N and is

in contact with a heat bath, guaranteeing a fixed temperature T . Additionally, it is connected to

another reservoir, e.g. through a freely moveable piston, so that the volume V at the disposal of

the system adjust to keep the pressure fixed.

The probability density of the isobaric-isothermal ensemble is given by

ρiso.(r
N ,pN ) = e−βPV e−βH(rN ,pN ) , (3.8)
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so that its partition function is linked to the partition function of the canonical ensemble (3.6)

through a Laplace transformation:

Ziso.(N, P, T ) =

∫
dV e−βPV Zcan.(N, V, T ) =

=
1

h3NN !

∫
dV e−βPV

∫∫
drNdpN e−βH(rN ,pN) . (3.9)

The appropriate thermodynamic potential for a system of constant N , P and T is the Gibbs

free energy, which is related to the partition function (3.9) through

G(N, P, T ) = −kBT log Ziso.(N, P, T ) . (3.10)

With equations (3.7) and (3.10), the link between the microscopic behaviour of the NV T - and

NPT -ensemble and the systems’ macroscopic properties is established.

3.2 Thermodynamics

Thermodynamics is the phenomenological theory used to describe and predict the macroscopic

properties of systems in equilibrium. Its laws are expressed in terms of macroscopic quantities

only, without any reference to the underlying microscopic structure of the system. The link

from the behaviour of the microscopic constituents to the macroscopically observable properties

of a system is provided by statistical mechanics, thus acting as the ”microscopic foundation” of

thermodynamics.

It is convenient to distinguish three different types of thermodynamic systems:

• The isolated system, which does not interact with its surroundings in any form. Energy and

the number of particles are therefore fixed quantities.

• The closed system, where particles are neither allowed to escape nor join the system, but

interaction with the surroundings in the form of heart exchange is possible.

• The open system, which freely exchanges both, energy and matter, with its surroundings.

All systems considered in this work belong to the class of closed systems.

3.2.1 Thermodynamic potentials

The thermodynamic potential is the central state function of a macroscopic system in equilibrium,

as it guarantees the complete knowledge of all the system’s thermodynamic properties. It fully

describes a system via a function of its respective natural variables. The latter quantities can

be divided into two groups: extensive variables like the number of particles N in a system or a

system’s volume V , which scale with the amount of substance present in the system, and intensive
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variables of state like the temperature T or the pressure P , that are independent of the system

size.

All thermodynamic potentials are interrelated through Legendre transformations. We here

introduce the thermodynamic potential of the isolated system, the internal energy

U = U(N, V, S) ,

as a starting point from which all other potentials are accessible: The natural variables of the

internal energy – particle number N , volume V , and entropy S – are all extensive quantities, so

that U(N, V, S) itself is a first order homogeneous function,

U(λN, λV, λS) = λU(N, V, S) , (3.11)

with λ an arbitrary factor. We can therefore expand equation (3.11) in a Taylor-series and write

U(N, V, S) = N

(
∂U

∂N

)

V,S

+ V

(
∂U

∂V

)

N,S

+ S

(
∂U

∂S

)

N,V

. (3.12)

As it follows from the first and second law of thermodynamics that

TdS = dU + PdV − µdN ,

equation (3.12) yields Euler’s equation,

U(N, V, S) = µN − PV + TS , (3.13)

from which expressions for all other thermodynamic potentials can be derived by exchanging the

appropriate independent variables.

Closed systems (NVT)

As stated in section 3.1.1, a closed system is characterised by constant particle number N , constant

volume V and constant temperature T , and its corresponding thermodynamic potential is the

Helmholtz free energy,

F = F (N, V, T ) .

F (N, V, T ) is related to the internal energy U(N, V, S) via a Legendre transformation,

F (N, V, T ) = U [N, V, S(T )]− S(T )
∂U

∂S
= µN − PV . (3.14)

All thermodynamic properties of a closed system are accessible from the Helmholtz free energy

by differentiation of F with respect to its variables N , V and T . For instance the internal energy
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U of the system is given by

U =

(
∂(βF )

∂β

)

N,V

,

the pressure P can be calculated via

P = −
(

∂F

∂V

)

N,T

,

and the chemical potential via

µ =

(
∂F

∂N

)

P,T

.

The second derivatives of the thermodynamic potential with respect to the natural variables

correspond to the so-called response functions. These thermodynamic properties are most easily

accessible to experimental investigations and indicate the physical stability of macroscopic states

(see Section 3.2.2). As examples, we here present the heat capacity cV , which is a measure for the

heat needed to raise the temperature of the system by a given amount at constant volume,

cV =

(
∂U

∂T

)

V

= −T

(
∂2F

∂T 2

)

V

,

and the isothermal compressibility κT , which determines the change in volume corresponding to

a given change in pressure, as

κ−1
T = −V

(
∂P

∂V

)

T

= V

(
∂2F

∂V 2

)

T

.

Closed systems under external pressure (NPT)

The appropriate thermodynamic potential for a system of fixed particle number N , pressure P ,

and temperature T is the Gibbs free energy,

G = G(N, P, T ) ,

which is related to the Helmholtz free energy and thus the internal energy via

G(N, P, T ) = F [N, V (P ), T ] − V (P )
∂F

∂V
= U [N, V (P ), S(T )] − S(T )T + PV (P ), (3.15)

yielding

G(N, P, T ) = µN .

Again, all properties of the system are contained in this thermodynamic potential and can be

calculated via partial derivatives: the internal energy U of the system is given by

U =

(
∂βG

∂β

)

N,P

,
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the volume V by

V =

(
∂G

∂P

)

N,T

,

and the chemical potential µ by

µ =

(
∂G

∂N

)

T,P

.

The response functions are again determined via second derivatives of the thermodynamic potential

G(N, P, T ): the heat capacity at constant pressure cP and the isothermal compressibility κT are

calculated via

cP = −T

(
∂2G

∂T 2

)

P

,

and

κT = − 1

V

(
∂2G

∂P 2

)

T

.

3.2.2 Equilibrium and stability

A macroscopic system is in equilibrium, if its macroscopic properties are independent of time

and if the intensive variables of state – temperature T , pressure P , and chemical potential µ –

are constant throughout the whole system. Additionally, the equilibrium state of a non-isolated

system is characterised by a global minimum of the appropriate thermodynamic potential, as can

be derived from the second law of thermodynamics [57].

Following LeChatelier’s principle, a system is in a stable equilibrium state, if spontaneous

fluctuations in the system induce processes which drive it back to equilibrium and thus counter the

initially inducing fluctuations. We can formulate this principle in terms of the response functions:

A system is thermally stable if its heat capacity is not negative,

cV,P =

(
∂U

∂T

)

V,P

≥ 0 . (3.16)

In this way, it is guaranteed that if some small part of the system spontaneously absorbs more heat

than its surroundings, its temperature will increase. Due to the resulting temperature gradient,

energy is again dissipated, leading the system back to the equilibrium state.

A mechanically stable equilibrium state of a system is reached, if its compressibility is zero or

positive,

κS,T = − 1

V

(
∂V

∂P

)

S,T

≥ 0 , (3.17)

so that, if a small subsystem spontaneously increases in volume, the pressure in this subsystem

lowers with respect to its surroundings. The local decrease in pressure not only stops the sponta-

neous growth of the subsystem, the subsystem is also again compressed, restoring the equilibrium

state.

The conditions (3.16) and (3.17) correspond to constraints on the curvature of the thermody-
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namic potential of the system. In the case of a closed system, the Helmholtz free energy F (N, V, T )

of a stable state has to be concave in T and convex in V , as

−
(

∂2F

∂T 2

)

V

=
1

T
cV ≥ 0 and

(
∂2F

∂V 2

)

T

= (V κT )−1 ≥ 0 . (3.18)

If we are to consider a closed system under constant pressure, the Gibbs free energy G(N, P, T )

of a stable equilibrium state is concave in both, T and P , as

−
(

∂2G

∂T 2

)

P

=
1

T
cP ≥ 0 and −

(
∂2G

∂P 2

)

T

= V κT ≥ 0 . (3.19)

3.3 The solid state

In this work we investigate the equilibrium structures a two-dimensional system obtains upon

freezing. As we choose to determine the system’s behaviour at zero temperature, the possible

equilibrium structures comprise only ordered monolayers. In order to conduct our investigations,

we first have to define the notion of an ”ordered solid state” by introducing a suitable description

of periodic structures, before discussing how to determine the thermodynamic potential for these

structures.

3.3.1 Description of two-dimensional lattices

We describe the ordered solid as an infinite, periodic arrangement of discrete, motionless particles.

To this end, the structure is considered to be built of two parts: first, we introduce an underlying

periodic array, the Bravais lattice. Its so-called lattice points are given by linear combinations of

two vectors, a and b,

Aij = ia + jb , i, j ∈ Z . (3.20)

The two primitive vectors, a and b, have to be linearly independent and span the unit cell of the

structure, which contains exactly one point of the lattice (see figure 3.1). It is often convenient to

subsume the two indices, i and j, that define the linear combination into one index n, that labels

the unit cell:

Aij → An .

Second, we decorate each point An in the lattice with the identical assembly of particles – the

so-called basis of the lattice. The basis thus describes the arrangement of the particles within a

unit cell: If each unit cell is to contain np particles, their positions in the unit cell are given by np

position or basis vectors Bν , ν = 1, ..., np. We are free to choose the first one B1 to be equal to

zero, B1 = 0, so that the origin of the unit cell coincides with the position of the first particle in

this cell (see figure 3.1).

With the above definitions, the position of an arbitrary particle in the ordered structure is
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a

b

B2

An

Rn2

0

Figure 3.1: Schematic representation of a lattice structure, whose unit cell (bro-
ken lines) is spanned by the two primitive vectors a and b. The cell contains
two particles: one at the chosen origin of the cell and one at the position given
by the vector B2. The overall position vector Rn2 = An +B2 is also indicated
in the picture.

determined by the vector

Rnν = An + Bν , (3.21)

with n ∈ N and ν = 1, . . . , np.

At this point we also introduce the concept of reciprocal lattices of ordered structures for later

use in chapter 5: The reciprocal lattice of a given structure is determined by two reciprocal lattice

vectors, c and d. These vectors are related to the primitive vectors of the Bravais or direct lattice,

a and b via

[cd]−1 = 2π[ab]T , (3.22)

where the two sets of vectors were written as matrices

[cd] =



 cx dx

cy dy



 and [ab] =



 ax bx

ay by



 ,

and [. . . ]−1 and [. . . ]T indicate the inverse or transposed matrix, respectively.

In analogy to the situation in Bravais lattices (3.20), an arbitrary vector in the reciprocal

lattice, Qn, can thus be expressed as a linear combination of the two primitive vectors of the

reciprocal lattice:

Qn = ic + jd , i, j ∈ Z . (3.23)

It is important to note that the basis of a structure has no influence on the reciprocal lattice.

Being defined by equations (3.22) and (3.23) the reciprocal lattice represents the set of wave

vectors, {Q}, that yields plane waves of the same periodicity as the corresponding Bravais lattice
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Figure 3.2: A Bravais lattice of sixfold symmetry (left). The corresponding
reciprocal lattice with the border of the first Brillouin zone marked by broken
lines is given on the right.

[61]:

eiQnr = eiQn(r+An) or eiQnAm = 1 ,

with Am a vector in the Bravais lattice of the structure.

As a primitive unit cell – i.e. a volume of space that, if translated by all possible lattice

vectors fills space gaplessly and completely – we choose to introduce the first Brillouin zone of the

reciprocal lattice: it is given by the region in Q-space, that is closer to one Q-point than to any

other (see figure 3.2). It thus reflects the symmetry of the corresponding lattice and is used to

determine distinct solutions to the equations of motion in the harmonic approximation of lattice

dynamics (see chapter 5).

3.3.2 Lattice sums

In order to investigate the ordered equilibrium structure of a system under given constraints like

fixed particle number N , volume V , and temperature T , we have to determine the corresponding

thermodynamic potential. As the influence of the entropy of the structure is irrelevant due to

the chosen constraint T = 0, the expressions (3.14) and (3.15) for the Helmholtz and Gibbs free

energy simplify to

F (N, V, T = 0) = U(N, V ) and G(N, P, T = 0) = U [N, V (P )] + PV (P ) . (3.24)

We therefore first focus on the calculation of the internal energy of an ordered structure in the

following. For a general ordered structure, the internal energy per particle at zero temperature
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is given by the sum over the pair interactions between all particles contained in this structure.

With Φ(r) being the interaction potential between two particles at distance r, and {Rnν} the set

of possible lattice sites, we can write for the internal energy per particle

U

N
=

1

2

∑

{Rnν}

′

Φ(Rnν) , (3.25)

where the sum in (3.25) has to be suitably taken to avoid self-interactions [31].

One component systems

For a known two-dimensional structure whose unit cell is spanned by the two vectors a and b and

contains only one single particle, equation (3.25) can be written as

U

N
=

1

2

∑

i,j

′

Φ(ia + jb) . (3.26)

The sum in (3.26) runs over all values of i, j ∈ Z, except the term for i = j = 0, which is omitted in

order to avoid self-interactions. This omission of the (0, 0)-term is denoted by a prime in equation

(3.26).

For lattices with more than one particle in the unit cell, equation (3.26) reads as

U

N
=

1

2

∑

i,j

′

Φ(ia + jb) +
1

np

∑

i,j

∑

k>m

Φ(ia + jb + Bk − Bm) , (3.27)

where Bi denotes the position vector of the i-th particle in the unit cell and np is the total number

of particles present in the cell. It is important to note that the first summation in the second term

of equation (3.27) runs over all possible values i, j ∈ Z, whereas in the sum of the first contribution

the (0, 0)-term, which corresponds to a self-interaction of the particle located in the origin of the

chosen coordinate system, is omitted again.

Binary mixtures

If the lattice we consider does not consist of only one species but rather of two different sorts of

particles, additional changes to equation (3.27) are necessary: let nA be the number of particles

per unit cell that belong to species A and nB the number of particles of species B. The total

number of particles in the cell is thus given by np = nA + nB. We choose to label the particles of

species A as the ”first” particles in the cell, so that particle pi is of sort A if i ≤ nA and of sort

B, if nA < i ≤ np, (see figure 3.3).

As the interaction between different particle species varies, we distinguish between three cases:

ΦAA(r), the interaction between two particles of species A at a distance r, ΦBB(r), the interaction

between two particles of species B, and ΦAB(r), the interspecies interaction. The internal energy
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a

b
B2

B3

Figure 3.3: Example for an ordered structure of a binary mixture. The origin
of the unit cell is chosen to coincide with the position of the first particle in
the cell, p1, so that B1 = (0, 0).

per particle for a binary mixture can thus be written as [62]

U

N
=

1

np


nA

2

∑

i,j

′

ΦAA(ia + jb) +
nB

2

∑

i,j

′

ΦBB(ia + jb)+

∑

ij

np−1∑

k=1

np∑

m=k+1

Φǫ(k)ǫ(m)(ia + jb + Bk − Bm)


 . (3.28)

Φǫ(k)ǫ(m)(r) stands for the appropriate interaction potential, depending on the involved particle

species, ǫ(i) = A for i ≤ nA and ǫ(i) = B for nA < i ≤ np.



Chapter 4

Theoretical Tools I:

Genetic algorithms

Genetic Algorithms (abbreviated ”GAs”, ”GA” in singular) are widely applicable optimisation

techniques, invented in the late 1960ies, early 1970ies by John Holland [26]. They were developed

with the information-theoretical aspects of natural evolution in mind and closely resemble bio-

logical processes: Information is stored by encoding it in sequences of ”genes” and is propagated

from step to step using operations like recombination, mating and mutation. The iterative search

process is guided by a principle resembling Darwin’s ”survival of the fittest”. The main feature

of a GA is its inherent ability to simultaneously explore large areas of the search space, but to

concentrate its numerical efforts on promising regions at the same time. It is this global scope

that leads to the GA’s efficiency in finding global extrema in rough and high-dimensional search

spaces.

The first applications of GAs ranged from biology – modelling the development of cells [63,64]

– to computer science, namely designing artificial intelligence [65] and controlling image recogni-

tion [66]. In the meantime, GAs have taken over many different fields, including business admin-

istration, economics, game theory, logistics, circuit design and, of course, physics.

4.1 General principles

One of the main characteristics of a GA is the way in which information is stored: Every solution

to the problem at hand is translated to a sequence of genes, usually a binary vector. Thus, every

solution has two representations: a phenotype, the ”physical appearance” like the actual values

of a set of parameters, and a genotype, which comprises all hereditary information, i.e. the exact

sequence of genes. In the context of GAs, a possible solution is also often called an individual,

meaning both, the pheno- and the genotype specific to this solution. The GA acts solely on the

”genetic” level, i.e. the genotype, to find the optimal solution.

29
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0. Find suitable encoding of the individuals.
1. Initialise a random starting population (”generation G(0)”).
2. Evaluate every single individual in the current generation,

using a fitness function.
3. Select individuals for reproduction.
4. Recombine selected ”parent” individuals to create offspring.
5. Mutate the offspring.
6. Replace individuals of the current generation by offspring,

thus creating a new generation.
7. Check termination condition and either terminate the algorithm

or cycle through steps 2. - 7. once more.

Table 4.1: Pseudo-code of a generic genetic algorithm

There exist many different versions of GAs nowadays, all adapted and trimmed to best solve

one special set of problems. The general work-flow of GAs is nonetheless easily explained as it

normally remains unchanged in all varieties (see table 4.1 for a summary): Before to start the GA,

an encoding suitable to the parameters of the problem at hand has to be found. The GA is then

initialised with a number of randomly generated individuals, the starting generation G(0). In the

next step, each individual in G(0) is evaluated by assigning a fitness value: the better an individual

is suited to solve the problem, the higher its assigned fitness. After this evaluation of the current

generation, parents are selected for reproduction. The selection process is governed by the fitness,

so that fitter individuals have a higher probability to reproduce. The information stored in the

selected parent individuals is then recombined and new individuals are created. The offspring is

mutated and replaces individuals of the current population according to the chosen replacement

scheme and a new generation G(1) is formed. In the last step, the termination condition – usually

a maximal number of generations to be created – is checked and the algorithm is either aborted or

the cycle of evaluation, selection, recombination, mutation, and replacement is iterated once more.

The different versions of GAs vary in how the structures emphasised in table 4.1 are implemented.

We will therefore explain them in more detail, including the implementations used to carry out

the investigations described in Chapter 6:

Encoding

In the encoding step, a mapping from pheno- to genoptype and vice versa has to be found. Every

solution is encoded in a string of genes xi, usually called a chromosome, c =< x1, ..., xl >. The l

genes in the chromosome can take on values out of a given alphabet M = {m1, ..., mn}. The most

commonly used alphabets are:

• Binary alphabet

The possible values a gene can take on are Mbinary = {0, 1}. This encoding allows for

efficient use of computational time, as memory access is compact and most programming

languages support operations directly on the binary level. Its main drawback lies with the

fact that the encoding in binary is highly dependent on the positioning of bits: The binary
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decimal binary gray code
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100

Table 4.2: The first nine decimal numbers (left) in their binary (middle) and
gray code representation (right).

representations of two ”adjacent” decimal numbers n and n + 1 mostly differ in more than

one bit, so that small changes in one encoding (e.g. decimal) does not necessarily result in a

small change in the binary code. For an example, consider the numbers ”3” and ”4”. A value

of ”4” is given by the sequence ”100” whereas ”3” is encoded as ”011”, a sequence in which

all significant bits are different. Additionally the different positions in a binary number are

not of equal importance. Leading digits in a binary number correspond to higher powers of

two by definition, so that a change in one of the leading genes of a chromosome can yield a

drastic change in the encoded parameter value. These effects can cause severe problems in

the recombination or mutation of individuals and have to be taken into account by choosing

an appropriate mating and/or mutation routine (see below).

• Gray code

Gray code was developed to overcome one of the drawbacks of binary code stated above.

It uses the same alphabet, Mgray = {0, 1}, to encode decimal numbers, but the translation

follows different rules: Instead of splitting each decimal number in powers of two, they are

encoded such that the gray code representation of two neighbouring decimal numbers differs

always only in one bit. For examples, see table 4.2, where the decimal numbers 0 to 8 are

encoded using both schemes.

Besides the chosen alphabet, also the way in which the information is arranged on the chromosome

has major influence on the performance of the search algorithm. In general, contentually related

information should be stored close together on the chromosome and segments essential to an

individual’s ability to solve the given problem are to be encoded as compact as possible, so that

they are not easily destroyed in mutation or reproduction processes [67]. When encoding in binary,

one possible way of paying respect to these two rules is to order the genes on the chromosome not

by parameter, but by their corresponding power of two: Each decimal parameter is encoded in

its binary representation and those bits of each parameter, that correspond to the same power of

two, are stored next to each other on the chromosome. Figure 4.1 depicts a schematic example of

such an ”importance arrangement”.
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1 0 1 0 00 10 1 110

5 9 12

0 0 0 1 0 10 110 1 0 Importance arrangement

Binary representation

Decimal representation

Figure 4.1: A schematic representation of an ”importance arrangement”. Bits
corresponding to the same power of two in the binary representation of every
parameter are stored next to each other.

The main disadvantage of a genetic algorithm has its origin in the encoding process. Due to the

finite number of genes available, a GA is not converging to the exact global extremum. Additional

refining mechanisms are needed to reach the solution that corresponds to the global extremum

exactly.

Evaluation

In the evaluation step, the ”quality” of every individual is assessed and a value is assigned to each

individual, measuring its ability to approximate the optimal solution. According to this value, the

probability of an individual to be selected for reproduction is determined. Strictly speaking, there

thus exist two different quantities: a rating and a fitness value; the first expresses the quality of an

individual and the latter determines an individual’s chance to partake in the reproduction process

and pass on its genes. Since the fitness is given as a function of – or can even be set equal to – the

rating, the two terms are often used synonymously. There are no constraints on both functions,

although continuous functions are best suited to achieve efficient convergence, since small changes

in the rating and/or fitness thus correspond to small changes in the chromosomes. The actual

form of the rating and fitness function depends strongly on the specific problem as they in general

contain the function to optimise (see Subsection 4.2.2).

Selection

The selection process determines which individuals are used to produce the offspring forming the

next generation. It is governed by the fitness of the individuals in a sense that individuals with

a high fitness have a higher probability to reproduce and the offspring of ”fit” parents are over-

proportionally frequent in the newly generated populations. In this way, the average fitness can

increase from generation to generation.

The two different selection schemes used in our surveys are

• Roulette selection

In this routine, the selection probability pselect(Ii) of individual Ii is directly correlated to

the individuals fitness:

pselect(Ii) =
f(Ii)∑N

j=1 f(Ij)
,
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with f(Ii) being the fitness of the i-th individual Ii and
∑N

j=1 f(Ij) the total fitness of the

population. Strategies how to implement this scheme efficiently can be found in [67].

• Linear ranking

Individuals are ordered according to their fitness and a fixed reproduction probability is

assigned to each individual, depending on their rank in this sequence. No direct correlation

exists between the fitness of an individual and the probability to be selected for reproduction.

Recombination

The recombination procedure – or ”cross-over mechanism”, as it is often called following biological

nomenclature – governs in which fashion information is passed on from one generation to the

next. It determines how new individuals – also called offspring or children – are created from

the selected parent individuals. It thus defines the way in which the search space is sampled and

has to be adapted to both, the specific problem, as well as the chosen encoding to ensure an

efficient performance of the GA. A suitable recombination mechanism allows to reach regions with

an above-average ranking fast and then to keep to such regions by preserving sequences of genes

that lead to especially fit individuals. Common examples of cross-over mechanisms are

• One-point cross-over

Two selected parent chromosomes are cut at the same, randomly chosen point and genetic

information is interchanged to form the chromosomes of two new individuals (see figure 4.2,

top).

• Two-point cross-over

In this case, both chosen parent chromosomes are cut at two arbitrary positions before the

cross-over of genetic material takes place to create new individuals (see figure 4.2, bottom).

• Random cross-over

The random cross-over routine represents a generalisation of the n-point cross-over. It

employs a random assembly vector A to determine the genes a child inherits from each

parent. At the beginning of a recombination step, A, which is of the same length as the

chromosomes, is filled with an arbitrary sequence of genes. The first child C0 is constructed

gene by gene from the parent chromosomes P0 and P1 following the ”rules” posed by the

assembly vector: at every position of a 0 (1) in the assembly vector, the gene is inherited

from parent P0 (P1). If using binary or gray code, the second child C1 is generated from child

C0 via a simple bit-inversion. For a schematic representation of a random cross-over of two

binary or gray coded chromosomes, see figure 4.3, bottom. Of the examples given, this cross-

over routine allows for the highest mobility in search space, although the random ”jumbling”

of genetic material hinders the development of stable, high-quality gene-sequences.
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Figure 4.2: Schematic representations of a one-point cross-over (top) and a
two-point cross-over (bottom) of two binary or gray coded chromosomes. The
two cutting positions are marked by thick lines in both cases.
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Figure 4.3: Schematic representation of a random cross-over of two binary or
gray coded chromosomes. Genes are passed on from the parent chromosomes
P to the children C according to the bits of an assembly vector A. The second
child C1 is given by a simple bit-inversion of child C0.
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Figure 4.4: Schematic representation of a general mutation step (top) and of
an inversion (bottom) in a binary or gray coded chromosome.

Mutation

In a mutation step, genes are changed at random to a different value of the chosen encoding

alphabet M. Every gene has a certain probability pmutate to mutate, typically ranging from

pmutate = 0.001 − 0.01. Its function is to reintroduce lost genetic material and thus to avoid

inbreeding. It is also essential to the GA’s ability to escape local extrema as it averts premature

convergence to a local minimum. For an example of a general mutation step, see figure 4.4, top.

Common mutation routines contain:

• Uniform mutation

Every gene in the chromosome has the same probability be to mutated. Normally, pmutate is

a fixed, external parameter, although there do exist GAs that use a uniform mutation where

the probability changes with increasing number of generations produced.

• Position-dependent mutation

Position-dependent mutation is a variation of the uniform mutation. Instead of one proba-

bility value pmutate for all genes, every gene xi in the chromosome is assigned an individual

mutation probability pmutate(xi). It is often employed together with binary encoding, as it

allows to pay respect to the varying importance of digits in a binary number.

• Inversion

This procedure mimics a mutation process known from natural biological evolution, namely

the inversion of whole sequences of genes on a chromosome. An inversion procedure is

given by the following rules: first, choose two arbitrary genes xi and xj with i ≤ j on the

chromosome. Then invert the sequence between xi and xj so that

xnew
i+n = xold

j−n , ∀n ≤ j − i .
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For a schematic representation of an inversion on a binary or gray coded chromosome, see

figure 4.4, bottom.

Replacement

The replacement scheme determines which individuals form a new generation G(n + 1). The

possible candidates to choose from are the individuals of the generation G(n), their mutated and

their unmutated offspring. The various schemes differ in the number of individuals they accept

from each of these three populations and the criteria used for choosing them.

• Generational replacement

Generational replacement is the most simple replacement scheme possible. All individuals of

generation G(n) are replaced by their mutated offspring to form generation G(n+1). Because

the whole population is replaced disregarding the respective quality of the individuals, both,

maximum and average rating can decrease from one generation to the next, slowing down

convergence. Despite this drawback, generational replacement is widely used as it helps to

avoid premature convergence due to a too homogeneous gene pool. It makes it impossible

for a small number of fit individuals to dominate populations from an early stage on.

• Elitism

Elitism tries to overcome the disadvantages of generational replacement by including the best

m individuals of generation G(n) in the next generation G(n + 1). The maximum rating in

the population is thus guaranteed to monotonically increase. The number of best individuals

to pass on unchanged from one generation to the next is usually small (m ≈ 1). Problems

occurring because of lacking diversity in the gene pool are of course enhanced by elitism.

Additional information on the general concepts of GAs can be found in [26, 31, 67].

4.2 Genetic algorithms and solidification

When investigating the phase behaviour of a given system, we are confronted with the task of

determining its equilibrium states for varying values of the different thermodynamic quantities.

Concepts based on statistical mechanics like liquid state theories [22], density functional theory

[20] and computer simulations [68] provide reliable information on a system’s thermodynamic

properties for a broad range of state points. To explore the whole phase diagram, it is also

necessary to determine the ordered configurations a system adopts on freezing. The conventional

approach to this task relies heavily on the experience and intuition of the investigator: A set of

candidate structures is selected, the thermodynamic potential corresponding to each structure is

calculated via suitable methods and the candidate with the lowest value of the thermodynamic

potential is taken to be the stable equilibrium configuration at the specific state point. Especially

for systems that tend to show a broad variety of complex structures, this procedure, based on
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a biased preselection of configurations, is bound to fail as it is extremely likely that relevant

structures are not included in the preselected set and are therefore missing in the phase diagram.

Another approach of using computer simulations, namely a simulated annealing technique [69,70],

is time-consuming and runs the risk of getting trapped in local minima due to the rough and

complex search space of the problem. Additionally, computer simulations most often require some

input concerning the expected structure – e.g. to determine the shape of the simulation box – to

work efficiently. Thus, also simulation techniques are often biased in their search for an ordered

equilibrium structure.

Knowing about this drawback of conventional methods, GAs were introduced as an alternative,

independent approach to the problem of finding ordered equilibrium structures in condensed matter

[27–29, 71]. They are particularly suited to deal with rough, complex and/or high-dimensional

search spaces, making them less time consuming than most computer simulations. However, the

more relevant feature of a GA-based search strategy is, that it allows for an unbiased search for the

optimal ordered structure, as crystal lattices can be parametrised and encoded in a very general

way (see Subsection 4.2.1). The only constraint posed on the search stems from the limited number

of parameters a GA can optimise efficiently. Using a GA thus minimises the risk of overlooking

suitable structures.

Dieter Gottwald introduced a GA-based search strategy able to predict ordered equilibrium

structures for systems of fixed particle density, requiring only the particle interactions as sole

input [30, 31]. Remarkable results for three-dimensional soft systems like ionic microgels [34,

35], amphiphilic dendrimers [13, 72, 73], and star polymers [30] were obtained: Not only was it

possible to correct established phase diagrams, the genetic algorithm was also able to find highly

asymmetric, open structures to be stable equilibrium structures. In order to investigate hard-core

particles in three dimensions, the algorithm was adapted by Gernot Pauschenwein and tested on

a three-dimensional square-shoulder system [74,75].

When the same search strategy was to be employed for two-dimensional systems for the present

work, a number of changes became necessary to ensure the algorithm’s capacity to reliably find

the global minimum representing the equilibrium lattice structure: The parametrisation of two-

dimensional lattices presented in [31] was refined and adapted to the special geometries of the

systems to investigate. Furthermore, the algorithm was adapted to deal with systems of constant

pressure. In the following, all extensions are described in detail, starting with the parametrisations

of the various (quasi-) two-dimensional lattices in the following subsection.

4.2.1 Parametrisation of lattice structures

The various parameterisations presented in this chapter are all based on the general description

of two-dimensional lattices proposed in [31]. To facilitate discussion, we therefore repeat this

”standard” description of two-dimensional lattices at this point.
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σ

b

a

φ

Figure 4.5: Example of a general two-dimensional lattice with the two lattice
vectors a and b spanning the unit cell. The angle between the lattice vectors
φ, acting as a parameter in the chosen description, and the length scale σ are
also depicted.

4.2.1.1 One-component systems

A general, two-dimensional lattice can be described by two lattice vectors a and b and np vectors

Bi (i = 1, ..., np) that determine the positions of the particles in the unit cell, as described in

section 3.3.

The two lattice vectors can be parametrised as

a = a

(
1

0

)
, b = ax

(
cosφ

sin φ

)
, (4.1)

with
a

σ
=

(
np

ησ2x sin φ

)

fixing the overall size of the lattice, σ being a problem-specific length scale, usually the particle

diameter (see figure 4.5), and η the particle area density. The two parameters used are the length

ratios of the two lattice vectors,

x =
|b|
|a| ,

and the angle φ between the primitive vectors a and b (see figure 4.5).

The position vector of the first particle in the unit cell can be set to

B1 =

(
0

0

)

without loss of generality. The vectors of the remaining np − 1 particles in the cell are given as

linear combinations of the two lattice vectors a and b,

Bi = αia + βib , i = 2, ..., np .
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In this way, the unit cell of a general, two-dimensional lattice is described by the nq = 2 +

2(np − 1) parameters x, φ, α1, β1, ..., αnp , βnp . Requiring a to be the longer of the two vectors

spanning the unit cell and all np particles to lie inside the cell spanned by a and b leads to the

following constraints

0 < x ≤ 1 , 0 < φ ≤ π

2
(4.2)

0 ≤ αi < 1 , 0 ≤ βi < 1 with i = 1, . . . , np . (4.3)

To facilitate encoding, the real valued parameters are translated to integer numbers, using the

scheme described in [31]:

x =
mx + 1

2ln
,

φ =
π

2

mφ + 1

2la
,

αi =
mαi

2ln
,

βi =
mβi

2ln
.

The integers mx, mφ, mαi and mβi are then converted to binary or gray code (see Section 4.1)

before they are encoded and stored in a chromosome. Depending on whether the quantity is an

angle or not, ln or la bits are used for encoding the corresponding integer. This encoding scheme

is used, independent of the chosen parametrisation of lattices.

Since the choice of lattice vectors is not unique, different individuals may translate to the same

lattice structure, thus diminishing the variety in a population and reducing the performance of the

algorithm significantly. To guarantee an efficient search algorithm, a mechanism has to be included

which reduces the number of parameter sets that translate to the same lattice and which allows

for an unambiguous mapping between geno- and phenotype. A way to achieve this unambiguity is

the strategy described in [31], where each set of lattice vectors found by the algorithm is modified

such that the circumference of the described unit cell reaches a minimum, thus minimising the

existing ambiguities. The utilised transformations of vector sets are

(a,b) → (a ± b,b) (4.4)

(a,b) → (a,b ± a) . (4.5)

Instead of employing an iteration of transformations of the form (4.4) and (4.5) as described in [31],

it is also possible to reduce the search space of the algorithm a priori so that it only contains

unambiguous configurations. As explained in appendix A, the constraint on the parameters x and

φ that correspond to the usage of a unit cell of minimal circumference can be written as

2 cosφ ≤ x , (4.6)



40 CHAPTER 4. THEORETICAL TOOLS I: GENETIC ALGORITHMS

x0 1

0

π
2

φ

Figure 4.6: Reduced search space due to unambiguous lattice parametrisation. The region of (x, φ)-
pairs corresponding to unit cells with minimal circumference is coloured blue.

leading to a reduction of the search space as depicted in figure 4.6.

To implement the constraint posed by (4.6), the domains of the parameters change from (4.2)

and (4.3) to

0 < x ≤ 1 , arccos
(x

2

)
≤ φ ≤ π

2
(4.7)

0 ≤ αi < 1 , 0 ≤ βi < 1 , (4.8)

with i = 1, . . . , np .

4.2.1.2 Systems with constant pressure

For calculations in the NPT-ensemble, i.e., if the external pressure P on the system is fixed instead

of the particle number density η, the latter enters as an additional parameter to be optimised. It

is encoded in the chromosome via the quantity σ/a, which correlates to the number density as

η =
np

σ2x sin φ

(σ

a

)2

, (4.9)

with σ/a in the range

0 ≤ σ

a
≤ 1 . (4.10)
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4.2.1.3 Hard-core systems

If the particles in a system interact via a potential of the form

Φ(r) =





∞ ∀r ≤ σ

Φ̃(r) else
, (4.11)

i.e. if the particles are impenetrable hard spheres, the system is not allowed to take on config-

urations containing overlapping particles. The basic parametrisation of two-dimensional lattices

as described above does not exclude such ”forbidden” configurations a priori. Due to the highly

stochastic character of GAs, our search algorithm is likely to produce large numbers of useless,

forbidden (or ”illegal”) individuals, slowing down convergence, if not preventing it completely.

There exist two conceptually different strategies to guarantee the efficiency of the algorithm

in this case: first, by excluding all illegal structures from search space by finding a suitable

parametrisation of the lattice, and second, by enabling the GA to distinguish between different

degrees of overlap, so that the undesired configurations are gradually ruled out in the evolutionary

process. A combination of both approaches has been opted for in this work: For the primitive

lattice – i.e. concerning the parameters x and φ – the additional constraints due to hard-core

exclusion are taken into account a priori. Restraining the cores of the particles from overlapping

is equivalent to demanding all possible vectors x in the lattice to be larger than the particle

diameter σ,

|x| = |χa + ξb| ≥ σ , ∀χ, ξ ∈ Z . (4.12)

Translating the conditions given in (4.12) to constraints on the parameters x and φ leads to the

porous search space of allowed configurations depicted in red in figure 4.7. If we combine these

conditions with (4.6), that was introduced to reduce the ambiguity of the parametrisation, we see

that most of the constraints posed in (4.12) are superfluous. The only constraint, that remains

relevant as a consequence of relation (4.12), is the one corresponding to the curve that connects

the points (x, φ) = (0, 0) and (1, π/2) in figure 4.7,

|b| ≥ σ . (4.13)

This constraint can be written in terms of x and φ as

x ≥ ησ2 sin φ

np
,

leading to the following domains of the two parameters

π

3
≤ φ ≤ min

[
arcsin

(
np

ησ2

)
,

π

2

]
, (4.14)

max

(
2 cosφ,

ησ2 sin φ

np

)
≤ x ≤ 1 , (4.15)
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π
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Figure 4.7: Reduced search space including constraints due to the unambiguity of the lattice
parametrisation (blue) and the hard core conditions (red) for ησ2 = 1.0. The remaining legal
search space is coloured violet.

as x and φ can no longer be chosen independently. The reduced search space that results from

this intersection of the two conditions (4.6) and (4.13) is coloured violet in figure 4.7.

For the parameters αi and βi, which fix the positions of additional particles in the unit cell, the

hard-core condition was not implemented directly in our parametrisation. Instead, the hard-core

in the interaction potential (see equation (4.11)) was softened to a linear ramp

Φ(r) = Φ0(2 − r

σ
) ∀ r ≤ σ

with Φ0 being a sufficiently large constant, typically Φ0 ∼ O(103). Thus, configurations in which

particles overlap only slightly are rated higher than those structures with large overlaps, and

inept structures can be ruled out step by step in the evolutionary cycle of the GA. For two-

dimensional lattices with a maximum of eight particles per unit cell, this workaround approach to

hard-core systems has proven to be efficient and a full implementation of the hard-core exclusion

was refrained from.

4.2.1.4 Cluster-biased lattices

For one-component systems that are known to exhibited clustering, the standard parametrisation

of Section 4.2.1.1 was altered in the following way: We interpret the clustered lattice as a standard

two-dimensional lattice whose ns lattice sites are not occupied by single particles, but by regular

dimers or triangular trimers. Thus, the parametrisation described in 4.2.1.1 can be utilised for
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σ

b

a

φ

θd

Figure 4.8: Example of a clustered lattice, in which each cluster contains three
particles. The additional parameters d, the separation of particles in the cluster
and θ, the tilting angle of the cluster are indicated in the figure.

the underlying structure, but additional parameters are introduced to determine the shape and

respective orientation of the clusters: a tilting angle θi of the cluster at site i, i = 1, ..., ns in the

unit cell and the separation of particles in the cluster d (see figure 4.8).

As only clustered lattices are of interest, the interparticle distance d is not allowed to take on

the largest distance in the unit cell, i.e. |a + b|, but is limited to the length of the smaller lattice

vector b. In the case of soft particles, the additional parameters of cluster-biased lattices read

0 ≤ d < xa , 0 ≤ θj ≤ π , (4.16)

with j = 1, ..., ns.

If hard-core particles are to be considered, these domains change to

σ < d < xa − σ , 0 ≤ θj ≤ π . (4.17)

The main advantage of the cluster-biased parameterisation is that it allows to describe unit

cells with np ≥ 2 with a smaller number of parameters as the standard parametrisation of two-

dimensional lattices given in Section 4.2.1.1: In the case of the standard description, 2np param-

eters are necessary to fix the positions of np particles in the unit cell. Using the cluster-biased

parametrisation with dimers at the ns sites of the unit cell, we need 2ns parameters to determine

the underlying two-dimensional lattice and ns + 1 to describe the dimers. Since the total number

of particles in the cell is twice the number of available sites, np = 2ns, 3np/2 + 1 parameters are

used to describe a lattice with np particles per unit cell. Therefore, the cluster-biased description

and the standard parametrisation need the same number of parameters to describe the lattice if

np = 2, namely 2 · 2 = 4. In the case of np > 2, the cluster-biased parametrisation manages to



44 CHAPTER 4. THEORETICAL TOOLS I: GENETIC ALGORITHMS

standard parametrisation: 2np , ∀np ∈ N

cluster-biased (dimers): 3
2np + 1 , ∀np ∈ {2, 4, 6, . . .}

cluster-biased (trimers): np + 1 , ∀np ∈ {3, 6, 9, . . .}

Table 4.3: Comparison of the numbers of parameters necessary to describe
a lattice with np particles in the unit cell, using the standard parametrisation
introduced in Section 4.2.1.1 and the two versions of the cluster-biased descrip-
tion.

describe the lattice with fewer parameters.

If the sites in the cell are populated by triangular trimers instead of dimers, this advantage

gets even more pronounced. We again need 2ns +(ns +1) parameters for the whole lattice, which

in the case of trimers, contains np = 3ns particles in the unit cell. We therefore need only np + 1

parameters, to describe a lattice with np particles per cell (see table 4.3 for a summary).

4.2.1.5 Binary mixtures

In a binary mixture, two different particle species, A and B, populate the sites of an ordered

equilibrium structure. A binary mixture is characterised by the concentration C of one of the two

species, e.g. C = nB/(nA + nB). Since a unit cell of an ordered structure can only contain an

integer number of each particle species, only non-primitive lattices, i.e. lattices with more than one

particle in the unit cell (np ≥ 2) occur in this case. We identify the first nA particles in the cell to

belong to species A and the remaining nB = np − nA particles to be of species B. No additional

parameters are necessary to describe the lattice. The random case, where the different sites in

the crystal lattice are not associated with a species but the two sorts of particles are randomly

distributed, was not considered.

4.2.1.6 Quasi-planar geometries

In Section 2.3, we introduced a system, in which the particles are allowed to detach from the strict

two-dimensional geometry. We choose the two-dimensional lattice to lie in the (x, y)-plane, so that

the particles’ deviation is perpendicular to the z-axis. To describe this system, we employ the

basic parametrisation of two-dimensional lattices, but include np additional parameters zi ∈ [0, 1],

that determine each particle’s deviation χi from the plane:

χi = zih , i = 1, ..., np ,

with h the maximum deviation possible (see figure 4.9, top).

In the case that the particles exclusively populate the bottom (χi = 0) and top positions

(χi = h), the system can also be described using the parametrisation of layered systems introduced

in [31]. In this case, the structure is formed by nl monolayers, all of which exhibit the same lattice

structure and are shifted with respect to each other. The layers are chosen to lie perpendicular
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χi

h

χ̃1

χ̃2

χ̃3

h

Figure 4.9: Sketches of a quasi-planar lattice (top) and of a lattice structure
parametrised using two-dimensional layers (bottom). The planes of the differ-
ent layers in the bottom picture are marked by straight lines; particles belonging
to different layers have different colour.

to the z-axis and are described using the basic parametrisation of two-dimensional lattices. The

mutual displacements of the nl layers are given by nl − 1 interlayer vectors ci, connecting the

origins of subsequent layers,

ci = αia + βib + χ̃i




0

0

1


 , i = 1, ..., nl − 1 .

a and b are the lattice vectors of the two-dimensional lattice in each layer and χ̃i is the displacement

of the i-th layer from the (i − 1)-th layer in z-direction (see figure 4.9, bottom), so that

nl−1∑

i=1

χ̃i = h .

Instead of the χ̃i, the quantities zi ∈ [0, 1), i = 1, .., nl−2 are introduced as parameters to simplify

encoding. These zi are related to the displacements χ̃i via

χ̃i = zi

(
h −

∑i−1
j=1 χ̃j

)
, i = 1, ..., nl − 2 and

χ̃nl−1 = h −∑nl−2
j=1 χ̃j .

To compare the two parametrisations presented in this section for efficiency, we again determine

the number of parameters used in both descriptions. In the first case, 3np parameters describe the

positions of np particles in the unit cell: 2np from the standard description fixing the position of

the particles in the plane and np parameters for the position in z-direction. In the case of a layered
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lattice, the total number of parameters is 2n2D + 2(nl − 1) + nl − 2 : 2n2D are needed to describe

the two-dimensional lattice structures of the layers, 2(nl − 1) determine the components of the

interlayer vectors in the x, y-plane and nl−2 parameters fix the components of these vectors in the

z-direction. The layer-parametrisation can therefore describe a unit cell containing np = n2Dnl

particles with only 2n2D + 3nl − 4 parameters, making it the more efficient description.

4.2.2 The fitness function

We employ a fitness function similar to the one proposed in [31] to evaluate the individuals. In

the case of a fixed particle number density η, the fitness of individual I is given by

f(I) = exp

(
1 − F̃ (I)

F̃0

)
. (4.18)

F̃ (I) stands for the the free energy per particle of the lattice structure represented by individual I
and F̃0 is the free energy per particle of a suitable chosen reference structure, usually a hexagonal

lattice of the same particle density. At zero temperature, the free energy is simply given by the

lattice sum of the crystal, as the entropic contribution to the free energy vanishes (see section

3.3.2).

If calculations are conducted in an NPT -ensemble, i.e., for fixed pressure P , the Gibbs free

energy G(N, P, T ) acts as a thermodynamic potential, and the equilibrium structure is charac-

terised by a minimum in G(N, P, T ). At T = 0, the Gibbs free energy reduces to G = U + P/η,

with η the particle number density of the crystal and U its lattice sum (see section 3.3.2). The

form of the fitness function remains unchanged,

f(I) = exp

(
1 − G̃(I)

G̃0

)
. (4.19)

G̃(I) and G̃0 are the Gibbs free energies per particle of individual I and of the reference structure,

respectively.



Chapter 5

Theoretical Tools II:

Phonon band structures

Besides the static equilibrium configurations, we are interested in the dynamic properties of the

investigated systems, as the motion of the particles in the ordered structure accounts for a number

of effects and properties, e. g. the thermal conductivity of a material, its elastic properties, and

its melting behaviour. Also the propagation of sound through the solid is closely connected to the

dynamics of the system.

In this chapter, we summarise the tools necessary to study the dynamics of an ordered solid

structure, focusing on the calculation of the dispersion relation, or phonon band structure, for a

given two-dimensional system. We start with the framework of the classical theory of harmonic

crystals, presenting the formalism that leads to the dispersion relation [61,76,77], before discussing

the changes necessary to describe colloidal crystals [78–80].

5.1 Basic concepts of harmonic lattice dynamics

In order to investigate the dynamics of a given system, we have to consider finite temperature, as

the description of solid structures as given in section 3.3 cannot account for various of a materials

properties. Although the equilibrium structures are identified for zero temperature in this thesis,

we can assume that at sufficiently low temperature, T ∼ 0, these configurations will prevail as

stable equilibrium structures and we can determine their dynamics.

We have chosen to investigate the dynamics of our systems within the theory of harmonic

crystals, which is based on two assumptions:

1. the movement of the particles in the ordered structure is given by oscillations around their

respective lattice sites, which are identified as the average position of the particles in the

structure.

47
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2. the deviation of a particle from its mean position shall be small compared to the average

spacing between neighbouring sites in the lattice.

With these two assumptions, the Hamiltonian of the system, which governs the dynamics of

all constituent particles, can be simplified to the harmonic approximation of lattice dynamics and

every motion possible to the particles in the lattice can be described as a superposition of a small

set of harmonic oscillations – the so-called normal modes of the system.

5.1.1 The harmonic approximation

The Hamiltonian of a system of N particles is given by the sum of kinetic and potential energies:

H(rN ,pN ) =
∑

n,ν

p2
nν

2Mν
+ V (rN ) , (5.1)

where pnν is the momentum of the ν-th particle in the n-th unit cell of the lattice structure. The

index ν thus runs from 1 to np, the total number of particles in one unit cell (see section 3.3).

We will also introduce an index i to distinguish the three Cartesian components of vector-valued

quantities in the following.

If the interactions between particles are described by the radially symmetric pair potential

Φ(r), the potential energy V (rN ) is represented by the interactions between all particles in the

lattice,

V (rN ) =
1

2

∑

nν

∑

n′ν′

Φ(|rnν − rn′ν′ |) . (5.2)

As the particles are allowed to oscillate around their associated lattice site, the actual position

of a particle rnν (see figure 5.1), can be written as

rnν = Rnν + unν , (5.3)

so that the deviation from the lattice site at Rnν is given by the vector unν . With (5.3), equation

(5.2) becomes

V (rN ) =
1

2

∑

nν

∑

n′ν′

Φ(|Rnν − Rn′ν′ + unν − un′ν′ |) . (5.4)

According to our second assumption – the deflection unν is small for all particles – the potential

energy (5.4) can be expanded following Taylor’s theorem:

V (rN ) = V0 +
∑

nνi

knνiunνi +
1

2

∑

nνi

∑

n′ν′i′

knνi,n′ν′i′unνiun′ν′i′ + O(u3) , (5.5)

with

V0 =
1

2

∑

nν

∑

n′ν′

Φ(|Rnν − Rn′ν′ |)



5.1. BASIC CONCEPTS OF HARMONIC LATTICE DYNAMICS 49

Rnν

unν

rnν

0

Figure 5.1: Schematic representation of a two-dimensional lattice with the av-
erage position of a particle in this lattice given by Rnν , the displacement unν

and the resulting, actual position rnν .

being the potential energy of the equilibrium structure at rest, and the coupling parameters

knνi =
∂V (rN )

∂unνi

∣∣∣∣
u=0

, (5.6)

knνi,n′ν′i′ =
∂2V (rN )

∂unνi∂un′ν′i′

∣∣∣∣
u=0

. (5.7)

The parameters knνi corresponds to individual Cartesian components i of the force exerted on the

particle labeled nν by all other particles at their respective equilibrium positions. Since there is

by definition no net force acting on the particles in equilibrium, the coupling parameters knνi have

to vanish for all values of n, ν, and i,

knνi = 0 , ∀ n, ν, i .

Taking the translational invariance of the lattice and its symmetric properties into account, one

of the indices n or n′ is superfluous in the knνi,n′ν′i′ : the properties of the lattice have to be left

unchanged if the whole lattice is shifted, e.g. by a lattice vector Rn′′ ,

knνi,n′ν′i′ = kn+n′′νi,n′+n′′ν′i′ .

If we choose n′′ = −n′, we see that knνi,n′ν′i′ is only dependent on the difference n − n′,

knνi,n′ν′i′ = kn−n′νi,0ν′i′ , (5.8)

reflecting the translational invariance of the lattice structure. Following the definition of the

knνi,n′ν′i′ in equation (5.7), we can express the coupling parameters in terms of the pair potential
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Φ(r):

knνi,n′ν′i′ =
riri′

r2

[
1

r

∂Φ(r)

∂r
− ∂2Φ(r)

∂r2

]
− 1

r
δii′

∂Φ(r)

∂r
, (5.9)

with

ri = Rnνi − Rn′ν′i and r′i = Rnνi′ − Rn′ν′i′ .

For sufficiently small deviations u, the anharmonic terms O(u3) can be neglected in the ex-

pansion of the potential energy in (5.5), and we arrive at the harmonic approximation for the

Hamiltonian:

H(rN ,pN ) =
∑

n,ν

p2
nν

2Mν
+ V0 + Vharm(rN )

with

Vharm(rN ) =
1

2

∑

nνi

∑

n′ν′i′

knνi,n′ν′i′ unvi un′ν′i′ . (5.10)

5.1.2 Normal modes and dispersion relations

Within the classic theory of harmonic lattices, the motion of every particle in a structure can be

described by a superposition of a small set of ”elementary waves” or normal modes characteristic

to the system. To determine the normal modes of a given lattice consisting of np particles in the

unit cell and determined by the lattice vectors {Rnν}, we start with the harmonic approximation

of the system’s Hamiltonian,

H(uN ,pN ) =
∑

nνi

p2
nνi

2Mν
+ V0 +

1

2

∑

nνi

∑

n′ν′i′

knνi,n′ν′i′unνiun′ν′i′ . (5.11)

By introducing the canonic variables

πnνi =
pnνi√
Mν

and snνi = unνi

√
Mν

we can rewrite equation (5.11) as

H(sN , πN ) =
∑

nνi

π2
nνi

2
+ V0 +

1

2

∑

nνi

∑

n′ν′i′

Dnνi,n′ν′i′ snνisn′ν′i′ , (5.12)

where we identify

Dnνi,n′ν′i′ =
knνi,n′ν′i′√

MνMν′

(5.13)

as the dynamical matrix of our system.

Hamilton’s equations of motion (see chapter 3) lead to 3N partial differential equations to

describe the movement of the N particles in the system,

∂2snνi(t)

∂t2
= −

∑

n′ν′i′

Dnνi,n′ν′i′ sn′ν′i′(t) , (5.14)
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where the time-dependence of snνi, sn′ν′i′ is now explicitly marked. We solve these equations by

using an ansatz of the form of simple plane waves – the normal modes:

snν(t) = cνeiqRn−iωt , (5.15)

where cν = cν(q) is the polarisation vector and ω = ω(q) is the frequency of the normal mode,

both yet undetermined, and q is the wave vector of the plane wave.

Inserting relation (5.15) in equation (5.14) yields

ω2cνie
iqRn =

∑

n′ν′i′

cν′i′Dnνi,n′ν′i′ eiqRn′ . (5.16)

Due to the definition of the dynamical matrix in equation (5.13), Dnνi,n′ν′i′ has to share the

symmetry properties of the coupling parameter knνi,n′ν′i′ :

Dnνi,n′ν′i′ = Dn−n′νi,0ν′i′

in analogy to equation (5.8). We can therefore define the Fourier-transform of the dynamical

matrix,

D̃νi,ν′i′(q) =
∑

n′

Dnνi,n′ν′i′e
−iq(Rn−Rn′) , (5.17)

which is independent of the index n and allows us to write the equations of motion from equation

(5.16) as

ω2cνi =
∑

ν′i′

D̃νi,ν′i′(q)cν′i′ . (5.18)

In this way, we retrieve 2np relations, from which the frequencies ω(q) and polarisation vectors

cν(q) of the normal modes can be extracted as the eigenvalues and eigenvectors of the Fourier-

transformed dynamical matrix.

From equation (5.17) we see that the Fourier-transform of the dynamic matrix is periodic in

q-space:

D̃νi,ν′i′(q + Qn) = D̃νi,ν′i′(q) ,

where Qn is a vector of the reciprocal lattice. The eigenvalues ω(q) and the eigenvectors cν(q)

are fully determined by the Fourier-transform of the dynamical matrix and share its periodicity,

ω(q + Qn) = ω(q) and cν(q + Qn) = cν(q) .

As the first Brillouin zone is a smallest repeat unit of the reciprocal lattice and reflects its

symmetry, it is sufficient to determine the dispersion relations ω(q) and the polarisation vectors

cν(q) only for wave vectors inside the first Brillouin zone in order to define both, ω(q) and cν(q),
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Figure 5.2: Reciprocal lattice of a square Bravais lattice (left) and of a hexag-
onal Bravais lattice (right). The first Brillouin zone is marked by broken lines
in both cases, the full line encloses the irreducible section of the respective zone
(see text).

in the entire reciprocal space. In addition, we can define a so-called ”irreducible section” within

the first Brillouin zone, which represents the smallest repeat unit of the Brillouin zone itself (see

figure 5.2). The border of this irreducible section usually links the points of high symmetry and

runs along the symmetry lines present in the Brillouin zone [77]. By convention, phonon band

structures are presented for paths along this border.

The 2np curves for ω(q) forming the phonon band structure of the given lattice can belong to

two fundamentally different sorts of branches (see figure 5.3 for an example): There always exist

two acoustic branches, where the frequencies vanish in the limit of long wave lengths |q| → 0,

and which correspond to a collective movement of all particles in the lattice. If the considered

structure contains more than one particle in the unit cell, i.e. if np > 1, the remaining 2np − 2

branches are so-called optical branches, which are characterised by a finite frequency at |q| = 0.

In an oscillation corresponding to an optical branch of the phonon band structure, the particles

in the unit cell are deflected such that the centre of mass of the unit cell remains fixed.

5.2 On the lattice dynamics of colloidal crystals

Although colloidal dispersions often act as suitable model systems for conventional, ”atomic” ma-

terials, the lattice dynamics of a solid colloidal dispersion crucially differs from the respective

behaviour of an atomic system. The main reason for these differences lies in the special setup of a

colloidal dispersion: a colloidal solid – or colloidal crystal as it is also called – consists of macro-

scopic particles forming a periodic structure while suspended in a microscopic solvent. Contrary

to the classic atomic theory of harmonic crystals, the dynamics of a colloidal crystal is not fully

determined by the particle interactions and the form of the lattice structure, but the influence of

the solvent on the particles’ motion has to be taken into account as well.
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Figure 5.3: The phonon band structure of a hexagonal lattice with three particles
per unit cell (left), interacting via an ideal dipole-dipole potential. The corre-
sponding structure is shown on the top, right; the chosen unit cell is marked
by a broken line. The reciprocal lattice of the structure is shown on the bot-
tom right, with the first Brillouin zone (broken line) and the irreducible path
along which the band structure was calculated (full line). The points of special
symmetry are also marked (Γ, M, and K).

The presence of the solvent has various effects: it introduces friction, and thus a damping

of the lattice vibrations, and it allows for an exchange of momenta between particles, leading to

hydrodynamic forces. There exist various models to describe and derive the dynamical behaviour

of colloidal crystals, which consider the influence of the solvent to various extent, e.g. simple

models treating the colloidal dispersion as a spring-bead-lattice immersed in a viscous medium [79],

descriptions including Stokes friction to the standard treatment known from solid state theory

[80, 81], or theoretical approaches that treat both influences on the particles motion, friction and

hydrodynamic forces [78, 82, 83].

By employing these models, it can be shown that due to these additional forces acting on the

particles in the colloidal solid, no modes travelling through the colloidal crystal can exist. The

typical lattice vibrations are strongly damped, as the ratio of the frequencies of the normal modes

ω(q) over the also wave-vector dependent friction factors [78], Λ(q), is usually very small,

ω(q)

Λ(q)
∼ 10−3 − 10−4 .

The travelling phonon modes of the classical, harmonic crystal are thus transformed into normal

relaxation modes [78, 79, 84–87], and an arbitrary movement of the particles in a colloidal crystal

is described as a superposition of these relaxation modes.
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In our investigations on the dynamics of solid colloidal systems, we focus on the calculation of

the phonon band structure. The dispersion curves ω(q) are still fully determined by the interpar-

ticle potential and the lattice structure, so that despite all the changes necessary in the description

of the dynamics of colloidal crystal, the phonon band structures retain their role as an important

source of information on the system’s properties.

In experiments, there exist various techniques to determine the phonon band structure of

a colloidal crystal. Most of these approaches depend on an accurate model of the particles’

movement [78, 88, 89], as the dispersion relations are deduced from the decay rate of the auto-

correlation function of the normal modes. There are some techniques though, that circumvent

the complex problem of modelling the different influences on the particle dynamics through the

extensive use of video microscopy: instead of recording dynamical data, the dispersion curves are

directly accessed via the measurement of spatial correlations [80, 87, 90], rendering the complex

problem of modelling the influences of the solvent on the colloidal particles superfluous.



Chapter 6

Results

6.1 Square-shoulder systems

The two-dimensional square-shoulder system presented in section 2.1 has been investigated in the

past by various different methods [12, 15, 25, 32, 33]. In these studies, a remarkably rich variety of

stable ordered configurations was discovered, where the particles were found to arrange in often

highly asymmetric structures, despite the radially symmetric interaction potential (see section 2.1,

equation (2.1)).

Knowing about the deficiencies in identifying complex particle configurations of the conven-

tional search algorithms that have been employed in these previous works [12, 15, 25, 32, 33], GA-

based optimisation techniques as described in chapter 4 were introduced in this thesis to provide

a reliable and systematic survey of the square-shoulder system’s strategies to form stable ordered

configurations.

In this section, we present the results of our investigations on the equilibrium structures of the

two-dimensional square-shoulder system.

6.1.1 Ordered equilibrium structures

We investigate the formation of ordered structures in the system by systematically varying the

pressure P for five different values of shoulder width, λ = 1.5σ, 3σ, 5σ, 7σ, and 10σ, where σ is

the diameter of the impenetrable core of the particles. All calculations are performed in an NPT -

ensemble, so that the equilibrium structures are characterised by a minimal Gibbs free energy (cf.

section 3.2),

G = U − ST + PA , (6.1)

where U is the internal energy of the structure, S the system’s entropy, T is the temperature,

P the applied external pressure, and A the area of the system. As we choose to investigate the

zero-temperature phase diagram of the square-shoulder system, the entropic contribution to the

55
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Gibbs free energy vanishes, due to the constraint T = 0 (cf. section 3.3.2).

Instead of the Gibbs free energy given in equation (6.1), we use the Gibbs free energy per

particle in standard reduced units in our investigations:

G∗ =
G

Nε
= U∗ +

P ∗

ησ2
, (6.2)

where U∗ = U/(Nε), P ∗ = (Pσ2)/ε, and η = N/A is the particle area density of the system, with

N being the number of particles present. In order to compare the results for the different values

of λ, we additionally scale all thermodynamic quantities with the maximal internal energy U∗
max

obtained for each shoulder width.

To find the global minimum of the Gibbs free energy for every pressure value and shoulder

width λ, we employ genetic algorithms, as they were introduced in section 4.2. The ordered lat-

tice structures were either parametrised using the standard description of crystal lattices or via a

cluster-biased parametrisation according to section 4.2.1. As the investigated particles exhibit an

impenetrable hard core, the parametrisations were adapted accordingly (see section 4.2.1.3).

The special form of the interaction potential (2.1) leads to characteristic forms of U∗ and G∗

as functions of P ∗: each structure is characterised by its number of corona overlaps, so that the

internal energy U∗ of this structure has a fixed rational value, given by the number of corona

overlaps per particle. As long as the structure does not change, the internal energy is the same,

irrespective of the applied pressure. The same is true for the particle area density: as long as the

structure remains the same, the density retains its value. The corresponding Gibbs free energy

G∗(P ∗) of a single structure is therefore given by a straight line of slope 1/η in a G∗-P ∗-diagram

according to equation (6.2). We can identify two limiting structures in this context, which occur

for all values of the shoulder width λ: at very low pressure, the system will arrange so that discs

of diameter λ form a hexagonally close-packed structure. As no overlaps of coronas occur in this

configuration, the internal energy vanishes, U∗
low = 0, and we can write

ηlow =
N

Ahex(λ)
=

2√
3λ2

for the particle area density. The configuration of maximal internal energy and density is encoun-

tered at high values of the pressure and is given by another hexagonally close-packed structure,

where the hard core of each particle is in direct contact with its six nearest neighbours. The

internal energy thus reaches its maximal value, U∗
high = U∗

max(λ) and the particle area density of

this incompressible structure can be written as

ηhigh =
N

Ahex(σ)
=

2√
3σ2

.

As ηlow and ηhigh are the minimal and maximal values of the particle area density, all minimum
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energy configurations (abbreviated ”MECs”, ”MEC” in singular) for a given shoulder width λ have

to be located on straight lines of slope 1/η with

1

ηmax
≤ 1

η
≤ 1

ηmin
,

in an G∗-P ∗-diagram. It is this fact we use to construct an algorithm for a systematic scan along

the pressure axis: we first determine the pressure value which corresponds to the intersection point

of the two lines representing the above discussed limiting cases in the G∗-P ∗-diagram. For this

pressure value, a GA is then employed, leading to a configuration of lower Gibbs free energy. This

Gibbs free energy of the newly found structure is again represented by a straight line which can

be intersected with the previous lines, yielding two new pressure values. At these values, GA runs

are again performed. By iterating this procedure, we are able to investigate the whole pressure

regime efficiently, without risking to miss a MEC due to an inappropriately spaced pressure grid.

The Gibbs free energy G∗ = G∗(P ∗) is obtained as a sequence of intersecting straight lines over

the entire pressure range (see references [74, 75] for further details).

We start with our survey at a shoulder width of λ = 1.5σ and show the MECs proposed

by the GA in figure 6.1: at very low pressure, the particles were found to populate an ideal

hexagonal lattice, avoiding overlapping coronas. Upon compression, the system must pay tribute

to the reduced space in terms of an energy penalty, i. e. via a first overlap of shoulders, and lane-

formation emerges as an energetically convenient solution. Along the lanes, particles are in direct

contact, forming a one-dimensional close-packed arrangement. Parallel lanes try to avoid corona

overlap and the shoulder width λ serves as a spacer (see magnified view in figure 6.1). As the

pressure is further increased, new strategies are required to arrange particles in an energetically

favourable way. While particles still prefer alignment along lanes, the internal arrangement is

modified: rather than forming straight lines, the lanes are now zig-zag shaped, which is a tradeoff

between the reduced available space and the energetic penalty due to additional corona overlaps.

Neighbouring lanes are arranged in a way that each particle is now in direct contact with three

others (see magnified view in figure 6.1). These staggered lanes can also be viewed as ring-like

structures where six particles form elongated rings with λ fixing the width of the cage. Further

compression causes the system to collapse into the hexagonally close-packed structure, where each

particle is in direct contact with its six nearest neighbours.

Figure 6.2 displays the corresponding thermodynamic properties G∗(P ∗) and U∗(P ∗), where

the characteristic features mentioned above are clearly visible: the internal energy appears as

a distinct sequence of flat plateaus, each representing one of the MECs found, whereas the in-

dividual line segments, which compose the Gibbs free energy are also easily recognised in the

G∗-P ∗-diagram.

As we proceed to a shoulder width of λ = 3σ, the system develops completely different strate-
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Figure 6.1: Complete sequence of MECs for the square-shoulder system of
shoulder range λ = 1.5σ. Red spheres mark the particles’ hard cores, whereas
the repulsive shoulders are depicted as grey coronas. Configurations correspond
(from left to right and from top to bottom) to pressure values indicated in figure
6.2 by vertical arrows.
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max

U*/U*
max

P ∗/U∗
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Figure 6.2: Gibbs free energy (black line), G∗, and internal energy (red line),
U∗, as functions of P ∗ for a system of shoulder range λ = 1.5σ, all scaled
with U∗

max
= 3, the internal energy of the hexagonally close-packed structure.

Vertical arrows indicate MECs depicted in figure 6.1. Broken lines indicate
limiting cases of MECs (see text).
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Figure 6.3: MECs for the square-shoulder system of shoulder range λ = 3σ.
Configurations correspond (from left to right and from top to bottom) to pres-
sure values indicated in figure 6.4 by vertical arrows. The sequence shown here
is a representative selection from the MECs found. The full sequence can be
found in appendix B.
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Figure 6.4: Gibbs free energy (black line), G∗, and internal energy (red line),
U∗, as functions of P ∗ for a system of shoulder range λ = 3σ, all scaled
with U∗

max
= 15, the internal energy of the hexagonally close-packed structure.

Vertical arrows indicate MECs depicted in figure 6.3. Broken lines indicate
limiting cases of MECs (see text).
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gies to form MECs as the pressure is increased, leading to a considerably broader variety of different

structures. The configurations shown in figure 6.3 capture the general trends observed by present-

ing a selection from the full sequence of MECs found, whereas the corresponding thermodynamic

properties are displayed in figure 6.4.

The hexagonal pattern imposed by the non-overlapping coronas, which is observed for very

low pressure values only and not displayed in figure 6.3, is soon superseded by a novel strategy,

namely the formation of clusters. At low pressure, dimer- and trimer-clusters are observed to

form distorted hexagonal lattices, where the degree of distortion is imposed by the shape of the

clusters. In this way, the dimers form a strongly distorted lattice, whereas the trimers sit on an

almost ideal hexagonal structure. As the system is further compressed, the formation of clusters

becomes energetically less attractive and lane-formation sets in. In the beginning, each lane is

built up by a single, linear chain of particles, resembling the first lane scenario encountered for

λ = 1.5σ, but for increasing pressure, the internal architecture of the lanes gets more complex:

besides the lanes formed by single chains of particles mentioned above, we observe a dense dimer

phase, that can easily be interpreted as a lane-like scenario, a striped phase of double chains and

pearl-necklace structures. As the pressure is increased further, the system collapses to close-packed

structures characterised by a compact distribution of particles, until the high pressure limit of a

hexagonally close-packed structure is finally reached, where the hard core of each particle is in

direct contact with its six nearest neighbours.

This considerably richer wealth of MECs encountered for λ = 3σ is reflected by the increased

number of energy levels in the plot U∗ vs. P ∗ and the number of intersecting straight line segments

in the G∗-P ∗-diagram in figure 6.4. The complete sequence of stable structures identified with the

GA can be found in appendix B.

For λ = 5σ, the general trends already observed in the previous cases of λ = 1.5σ and 3σ get

more pronounced (see figure 6.5). Again, the structures presented in figure 6.5 are a representative

selection from the complete sequence of MECs found for λ = 5σ, which is displayed in full detail

in appendix B. Figure 6.6 displays the behaviour of the Gibbs free energy, G∗, and the internal

energy per particle, U∗, for increasing pressure.

The low pressure regime is populated by clusters, arranged on an underlying distorted hexag-

onal lattice. As the pressure increases, those aggregates become larger until they reach a size of

four particles. Upon further compression, the system again prefers to form lane-like structures of

various shapes: we observe striped phases with up to four particles per lane as well as parallel

zig-zag-shaped lanes. The increasing complexity of the inner structure of the lanes makes simple

energetic explanations in terms of overlapping coronas hard to perceive, but the magnified views

in figure 6.5 give evidence that the formation of the different lane structures is an efficient strategy

to avoid an overlap between the coronas of particles belonging to neighbouring lanes. Above a

certain pressure threshold, the formation of lanes is no longer energetically favourable and the
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Figure 6.5: MECs for the square-shoulder system of shoulder range λ = 5σ.
Configurations correspond (from left to right and from top to bottom) to pres-
sure values indicated in figure 6.6 by vertical arrows. The sequence shown here
is a representative selection from the MECs found.
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Figure 6.6: Gibbs free energy (black line), G∗, and internal energy (red line),
U∗, as functions of P ∗ for a system of shoulder range λ = 5σ, all scaled
with U∗

max
= 42, the internal energy of the hexagonally close-packed structure.

Vertical arrows indicate MECs depicted in figure 6.5. Broken lines indicate
limiting cases of MECs (see text).
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system collapses to compact configurations with a dense distribution of particles, like the square

lattice shown in figure 6.5.

Additionally, we encounter a phenomenon, that can be interpreted as a first observation of a

narrow cross-over region from cluster-populated lattices to striped phases: single particles arrange

in chains with two different inter-particle separations along the lane (cf. appendix B).

The complexity of internal arrangements increases further in all three types of encountered

structures – clusters, lanes and compact arrangements – as the shoulder width changes to λ = 7σ.

Figure 6.7 shows a representative collection of the already considerably large number of MECs

proposed by the GA (see appendix B for the full sequence of stable configurations). The internal

and Gibbs free energy per particle as a function of the pressure, U∗(P ∗) and G∗(P ∗), are displayed

in figure 6.8.

Starting from the low density hexagonally close-packed structure, which is not depicted in

figure 6.7, we observe clusters of growing size for increasing pressure: the dimers shown in figure

6.7 are soon superseded by trimers, and later by clusters consisting of four, six, or even eight

particles. The eight-particle clusters are of an almost circular shape as can be seen in the magnified

view in figure 6.7 and thus allow for an arrangement very close to the energetically favoured

hexagonal configuration. Although the eight-particle cluster structure was found to be stable over

a comparatively large range of pressure values (see figure 6.8), we however have to note that the

occurrence of this particular cluster size is possibly due to the chosen parametrisation of lattices:

the cluster-biased parameterisation as introduced in section 4.2.1 favours the formation of clusters

consisting of six or eight particles, whereas clusters of seven particles, which allow for perfectly

symmetric aggregates even closer to the preferred circular shape, are not available to the cluster-

biased parameterisation and can enter the survey only via calculations employing the standard

description of two-dimensional lattices (cf. section 4.2.1).

Similar to the cluster phases, also the lane-like structures increase in complexity as the shoulder

width increases to λ = 7σ: arrangements of lanes that are two, three, four and six particles wide are

found in the intermediate pressure regime, displaying a broad variety in their internal architecture.

Surprisingly, structures consisting of single-particle chains fail completely to show up among the

discovered MECs.

Furthermore, we can now distinguish two different cross-over regions for systems of shoulder

width λ = 7σ: first, a cross-over regime from the clustered phases to the lane-like scenarios similar

to the one observed for systems with λ = 5σ, where dimers arrange in lanes with the inter-dimer

distance within one lane gradually decreasing as more pressure is applied to the system. Second,

we observe a cross-over from lane-like structures to the compact configurations encountered at

high pressure values, as dense particle distributions are found to alternate with phases exhibiting

distinct stripes.



6.1. SQUARE-SHOULDER SYSTEMS 63

Figure 6.7: MECs for the square-shoulder system of shoulder range λ = 7σ.
Configurations correspond (from left to right and from top to bottom) to pres-
sure values indicated in figure 6.8 by vertical arrows. The sequence shown here
is a representative selection from the MECs found.
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Figure 6.8: Gibbs free energy (black line), G∗, and internal energy (red line),
U∗, as functions of P ∗ for a system of shoulder range λ = 7σ, all scaled
with U∗

max = 84, the internal energy of the hexagonally close-packed structure.
Vertical arrows indicate MECs depicted in figure 6.7. Broken lines indicate
limiting cases of MECs (see text).
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Finally, for λ = 10σ, the largest shoulder width investigated, the strategies of the system to

arrange particles in energetically favourable configurations seems to be similar to the previous cases

at first sight: the hexagonal pattern of minimum density, which is not included in the selection of

MECs shown in figure 6.9, is soon replaced as the system prefers the formation of clustered lattices.

The formation of lanes of increasingly complex inner structure is preferred at intermediate and

high pressure values, and the cross-over regions, first from cluster-shaped particle arrangements

to lane-like structures and second from lanes to the compact regime are both visible and more

pronounced as in the previous cases.

The differences between the MECs of the comparatively large shoulder length of λ = 10σ and

those obtained for the intermediate values discussed above, are of subtle nature and concern the

internal arrangement of particles in the structures: although the growing cluster arrangements are

located on slightly distorted hexagonal lattices as in the previous cases, the system’s strategy to

form MECs has changed, as we observe that inside a cluster the cores of the particles sometimes

arrange in a disordered fashion (see magnified views in figure 6.9 and Appendix B), while for

intermediate values of λ only clusters with an ordered internal particle arrangement occur. The

reason for this change is obviously the following: once λ is sufficiently large to support cluster-

formation, the system tries to arrange particles in clusters shaped as circular as possible. In

turn, this guarantees that the underlying structure is close to the energetically most favourable

hexagonal lattice. For intermediate shoulder widths, where the core region still represents a

considerable fraction of the particle diameter, the system has to proceed rather carefully to fulfil

this requirement, leading to an ordered arrangements of the cores. For λ = 10, however, the

core region is nearly negligible with respect to the corona width. Now both regular and irregular

particle arrangements inside the core can lead to circular-shaped clusters of the same size, having

practically the same G-value (see figure 6.10).

If we extrapolate these results to even larger values of λ – or, equivalently, to a vanishing

core – and briefly switch to three dimensions, we arrive at another soft matter model system

that has been studied in detail in literature: the penetrable sphere model (PSM) [91]. Among

the remarkable, well-documented features of this system is its ability to form cluster phases: at

sufficiently high densities clusters of overlapping particles populate the lattice sites of a regular

fcc lattice [92]. Detailed simulations of a closely related system that also shows clustering [13]

have revealed that the internal structure of the clusters is completely random. These observations

are consistent with our results in the sense that an increasing corona width (or, equivalently, a

vanishing core) favours formation of disordered clusters of particles, which in turn populate sites

of regular lattices. Obviously, first precursors of this phenomenon occur in systems of shoulder

width λ = 10σ [73, 93].
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Figure 6.9: MECs for the square-shoulder system of shoulder range λ = 10σ.
Configurations correspond (from left to right and from top to bottom) to pres-
sure values indicated in figure 6.10 by vertical arrows. The sequence shown
here is a representative selection from the MECs found.
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Figure 6.10: Gibbs free energy (black line), G∗, and internal energy (red line),
U∗, as functions of P ∗ for a system of shoulder range λ = 10σ, all scaled with
U∗

max = 180, the internal energy of the hexagonally close-packed structure.
Vertical arrows indicate MECs depicted in figure 6.9. Broken lines indicate
limiting cases of MECs (see text).
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6.2 Binary mixture of dipolar colloids

In this section we investigate the minimum energy configurations formed by a binary mixture of

dipolar colloids. The two involved particle species differ in size and thus in their dipole moment,

leading to distinctly different potentials acting between the species (cf. section 2.2). After pre-

senting the results obtained with our search strategy based on genetic algorithms, we compare

our findings to experimental data and to structures discovered in simulations. The last part of

this section is dedicated to the phonon band structures of the found equilibrium configurations;

in particular we focus on the influence of the system parameters on the functional form of the

dispersion relations.

6.2.1 Ordered equilibrium structures

The two parameters to be varied when investigating the ordered equilibrium structures of the

dipolar binary mixture are the particle size ratio z = RB/RA and the concentration of small

particles in the system, C = nB/(nA + nB) (cf. section 2.2), where A labels the bigger particle

species and B the smaller one. ni is the number of particles of species i in the system. Here we

consider structures with a particle area density ησ2 = (nA + nB)/A = 0.6, a value for which we

believe the average inter-particle distance to be still large enough to guarantee that the interactions

are close to the ideal dipole-dipole behaviour (cf. section 2.2).

Due to practical reasons we have limited the number of particles per unit cell to np = nA+nB =

8, as the computational cost increases substantially with the number of particles and the GA-search

is not able to find the global minimum of the free energy reliably if too many parameters are to

be optimised. Thus, we can investigate values for the concentrations of the smaller particles, C,

in the range of C = 1/8, . . . , 7/8. For particular fixed C-values we could therefore perform inde-

pendent GA-runs for a given state point using unit cells of different size: for instance, a system

with C = 1/2 could be realised using 2, 4, 6 or 8 particles per cell. Finally, we have also included

the case C = 2/9 (i. e., nA + nB = 9) in our investigations, since this particular ratio is known to

give rise to highly asymmetric structures [94].

In order to guarantee a high reliability of our method, each state point (characterised by

concentration C and particle size ratio z) is considered in a two-step process: First, several inde-

pendent GA-runs are performed with a cutoff radius rc of considerable size (see below). These

obtained structures and their respective energies are compared. The lattice with the overall lowest

free energy is re-considered in the second step, but now with an even larger cutoff radius. The

structure that emerges from this search is then taken as the MEC for this particular state point.

This rather high numerical effort might seem exaggerated at first sight, but we have good reasons

for this strategy: the large number of parameters that characterises a two-dimensional lattice leads

to a rough energy landscape and the slowly decaying potential is responsible for the sensitivity
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of the fitness function to the numerical parameters. Thus, GA-runs carried out for one state

point using a moderate cutoff radius do not necessarily converge to the same energetic minimum,

which forces us to suitably adapt the algorithm’s parameters (i.e. the mutation rate, the number

of individuals per generation etc.). Furthermore, performing identical runs provides additional

information on the roughness of the energy landscape in the immediate surrounding of the found

energy minimum and makes degenerate structures accessible (see below).

We used the following values for the numerical parameters in our investigations: In every run

200 generations were calculated, consisting of 1000 individuals each. The mutation rate was set

to pm = 0.01. For the encoding step we use twelve bits to encode a number, i.e. for the lattice

parameters x, αi, and βi, and six bits for the angle φ (cf. section 4.2.1), as our numerical tests have

given evidence that a larger number of genes does not increase the efficiency of the GA. Due to

the slow decay in the inter-particle potentials, we have used in the first search step outlined above

a cutoff radius, rc = 200σA for the evaluation of the lattice sum. This value for rc guarantees even

at high densities that an increase of rc by 10% leads to a relative change of the lattice sum of less

than 0.01%. For the second step in our search strategy, i.e., for the overall best structure, a cutoff

rc = 1500σA was used.

In figures 6.11-6.14 we present the minimum energy configurations obtained with the GA-based

search strategy described above for our mixture of dipolar colloids. For clarity we show our results

on four different panels: Figure 6.11 shows the structures for concentrations of small particles

C ≤ 1/2 and particle size ratios z ranging from 0.1 to 0.41. Figure 6.12 contains the structures for

the size ratios up to z = 0.9 at the same concentrations of small particles. Figures 6.13 and 6.14

show the minimum energy configurations obtained for C > 1/2. Structures of z-ratios marked by

a star in figures 6.11 and 6.13 were originally obtained for n = 2 and rescaled using relation (2.9).

All shown configurations are of a particle area density of ησ2 = 0.6.

The main general trend to be observed for all investigated concentrations is the system’s

tendency to form lanes at large particle size ratios (z ≥ 0.5, for examples see especially figure 6.14,

(a)-(o)). This inclination to stripe-like structures might indicate a region of phase separation, a

phenomenon not directly accessible due to our search algorithm’s inherent restriction to periodic

structures.

At z = 0.8 and above, the difference in size between the two particle species is no longer

pronounced enough to produce distinctive deviations from a compact hexagonal lattice (see figure

6.12 (m)-(t) and figure 6.14 (p)-(y); the different colouring of the particles can be misleading to

the eye in this respect). Additionally, the GA experiences difficulties in finding the global energy

minimum as the energy-landscape flattens out due to the potentials getting increasingly alike. We

will therefore exclude the results obtained for particle size ratios larger than z = 0.7 from the

following discussion, and we will also omit the many degenerate structures, i.e. structures that
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differ in their arrangement of particles but correspond to the same energy, found for z ≥ 0.8 from

our survey.

Results for C ≤ 1/2

We start a more detailed discussion with the lattices obtained for C ≤ 1/2 as their common fea-

tures are easily visible. Increasing the concentration of small particles C results in decreasing the

size of the area occupied by a hexagonal lattice formed only by the large particles. The particle

size ratio z on the other hand influences the form of the cage, the large particles build around

the small ones. If z is small, the small particles are incorporated into the hexagonal lattice of the

large ones without disturbing their immediate surrounding (z = 0.1− 0.2, see figure 6.11, (a), (b),

(e), (f), (i), and (j)) so that they populate the centres of equilateral triangles of large particles.

As z increases, the influence of the size of the small particles on their surrounding becomes more

pronounced and the triangles of large particles around the small ones are distorted; first to a rhom-

boid (z = 0.28, figure 6.11, (m) and (n)) and then to a square with the small particle sitting at the

centre (z = 0.3296−0.5, figure 6.11, (q) to (x), and figure 6.12, (a) to (d)). Finally, the square cage

formed by the large particles then deforms to a rectangle (for examples see figure 6.12, (e), (f), (g),

(i), and (j)), until it finally meets the requirements to fit into a hexagonal lattice and, for z ≥ 0.8,

we arrive at the compact case (see figure 6.12, the rectangle is clearly visible in (m), (n), and (q)).

In the case of C = 1/3 and 1/2, an additional phase appears for small values of z (z ≤ 0.28).

The triangular cages of the large particles arrange next to each other in alternating orientation,

and stripes of small particles, meandering through a slightly deformed hexagonal lattice of large

ones, emerge. We believe that similar ground states are to be expected for C = 1/7 and 1/5, but

which were inaccessible to our survey due to the limitation to a maximum of eight particles per cell.

We would like to point out that all the various structures displayed in figures 6.11 and 6.12

are built up by only a small number of different lattice elements or ”tiles”: an equilateral triangle

of large particles, possibly decorated by a small one in its centre (see figure 6.11 (a) or (b) for

examples), a lozenge of large particles containing a pair of small ones, which is aligned along the

longer diagonal (e.g. figure 6.11, (d)), a large rectangle or square decorated by a small particle

(e.g. figure 6.12, (i) or (c)), and an distorted hexagon with two small particles inside (figure 6.12,

(h), (k), and (l)). We believe that this occurrence of ”tiled” phases might be an indicator of the

occurrence of so called ”random tiling” phases [94] or even quasi-periodic structures – both are

scenarios inaccessible to our search strategy.

Results for C > 1/2

General trends for mixtures with an abundance of small particles in the unit cell (C > 1/2) are

harder to perceive as the structures get more complex with increasing C, though common features

can be identified: at the very low value of z = 0.1, the small particles tend to group into small



6.2. BINARY MIXTURE OF DIPOLAR COLLOIDS 69

(c) (d)

(h)(g)(f)

(k) (l)(j)(i)

(e)

(a)

=1/5C =1/3C =1/2C

= 0.1z

z

z

=1/7C

= 0.16 (*)

= 0.2

= 0.3296

(r)(q) (t)(s)

z

= 0.41 (*)

(v)(u) (x)(w) 

z

= 0.28 (*)

(n)(m) (p)(o)

z

(b)

Figure 6.11: Found minimum energy configurations for C ≤ 1/2 and z ≤ 0.41.
The particles are not drawn to scale. Particle size ratios marked by a (*) were
originally considered for n = 2 and rescaled using relation (2.9).
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Figure 6.12: Found minimum energy configurations for C ≤ 1/2 and z > 0.41.
The particles are not drawn to scale.
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Figure 6.13: Found minimum energy configurations for C > 1/2 and z ≤ 0.41.
The particles are not drawn to scale. Particle size ratios marked by a (*) were
originally considered for n = 2 and rescaled using relation (2.9).
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Figure 6.14: Found minimum energy configurations for C > 1/2 and z > 0.41.
The particles are not drawn to scale.
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clusters of various shape and occur as isolated single particles, populating the interstitials of an

ideal hexagonal lattice of the large particles. As z increases, the formerly distinct groups of small

particles merge (0.1 < z ≤ 0.41), until finally stripe-like structures emerge (0.41 < z ≤ 0.7).

We want to pay closer attention to how these complex structures form by discussing the

obtained sequences in more detail. Because of the small unit cell involved, the general trend is

clearly reflected in the sequence at C = 2/3: We start out with isolated single particles at the

interstitials of the large particles’ hexagonal lattice (z = 0.1 − 0.2, figure 6.13, (a), (f), and (k)).

If the small particles increase in size, two of them approach each other, first forming a distinct

pair (z = 0.28 and 0.3296, figure 6.13, (p) and (u)) and then – by a small change in the relative

orientation of the originally parallel aligned dimers – pairs from adjacent cells combine to zig-zag

shaped lanes (z = 0.41 − 0.6, figure 6.13, (z) and figure 6.14, (a) and (f)).

For the next higher concentration of small particles, C = 5/7, the obtained sequence is consid-

ered much more complex. At very small particle size ratios, we find dimers in addition to isolated

single small particles located at the interstitials of the hexagonal lattice of large particles (z = 0.1,

figure 6.13, (b)). Increasing the size of the small particles leads to one single particle joining the

adjacent dimer and elongated trimers emerge for z = 0.16 and z = 0.2 (figure 6.13, (g) and (l)).

With further increase in size, every trimer is joined by two additional single particles to form

zig-zag shaped pentamers (z = 0.28 and 0.3296, figure 6.13, (q) and (v)), which, in turn, merge to

form lanes (z ≥ 0.4). As soon as neighbouring pentamers are close enough to merge, they ”share”

the particles at their respective ends and an additional, less populated lane of small particles

emerges (z = 0.41, figure 6.13, (aa)). At size ratios from z = 0.5 to z = 0.7, rearrangements occur

within the lanes, but the overall, stripe-like structure remains.

For C = 7/9, we encounter ”cup-like” structures, where every large particle is surrounded by

a ring segment of small particles (see figure 6.13, (r), (w), and (bb) for examples). The ”cups”

have their origin in the deformation of zig-zag-shaped heptamers, formed at low particle size ratios

(z = 0.2, figure 6.13, (m)): increasing z first leads to a bending of the initially straight parts of

the heptamers around the large particles in their surrounding (z = 0.28, figure 6.13, (r)). At a

further increase of z neighbouring heptamers of small particles join together, thus forming the

above mentioned cup-like arrangement of small particles around each of the large ones (z = 0.3296

and z = 0.41, figure 6.13, (w) and (bb)). At z = 0.5 and above, the cup-like features disappear and

we arrive at a normal, lane-like lattice for z = 0.5 and z = 0.6, where neighbouring lanes formed by

the small particles alternate in width and we can distinguish a hexagonal pattern in these stripes

of small particles (see figure 6.14, (c) and (h)). For z = 0.7, we observe the arrangement of large

particles into distinct pairs, as the lanes formed by the small particles are now interconnected (see

figure 6.14, (m)).

This occurrence of ”cups” can be interpreted as a precursor of the formation of rings, encoun-

tered for the concentrations C = 4/5 and C = 6/7. For C = 6/7, the rings of small particles

surrounding the positions of the large ones, which in turn form a more or less ideal hexagonal
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lattice, are already recognisable at very low values of z and remain stable over a long range of

particle size ratios (z = 0.1 − 0.3296, figure 6.13, (e), (j), (o), (t), and (y)). The transition to the

stripe-like phases takes place via a deformation of the underlying hexagonal lattice of the large

particles (z = 0.41, figure 6.13, (dd)), to a slightly distorted square lattice at z = 0.5 (figure

6.14,(e)). This transformation is accompanied by a reduction of the number of small particles

surrounding a large one from twelve (z ≤ 0.3296), to ten (z = 0.41), and finally to nine at z = 0.5.

At particle size ratios larger than z = 0.5, the system exhibits distinct stripes of large and small

particles (see figure 6.14, (j) and (o)).

In the other case, at C = 4/5, we also observe the formation of small particle rings (z =

0.41 − 0.6, figure 6.13, (dd) and figure 6.14, (d) and (i)). This time they are not visible at

small particle size ratios, but are preceded by a sequence of zig-zag-shaped or pearl-necklace lanes

(z = 0.16 − 0.3296). Like at C = 6/7, the number of small particles forming a ring also becomes

smaller at this concentration as z increases, starting with nine particles at z = 0.41 and z = 0.5

and diminishing to eight particles per ring at z = 0.6. For even higher values of z, the stripe

scenario is realised once more.

Comparison to a hard-disc mixture

In an effort to understand the mechanisms leading to the observed minimum energy configurations,

we compare our findings to the phase diagram of a hard disc mixture [94]. All of the ordered,

periodic structures found to be stable in this study are also present in our current survey on

dipolar colloids (see figure 6.15). Almost all of these lattices were found at z-values closest to the

structures’ ”magical” values z∗, for which all neighbouring particles are in direct contact in the

high-density, close-packed unit cell. For the parameter sets available through [94] and using the

terms coined therein for the different lattices, we observe the following for the dipolar colloids:

At C = 1/2, the S1-structure is obtained for z = 0.3296, 0.41, and 0.5 and the H2-structure

for z = 0.6 and 0.7. At C = 2/3, the dipolar mixture forms T1-like structures at z = 0.1 − 0.3296

and H1-lattices at z = 0.41 − 0.6. An example of an H3-structure is found at C = 7/9, z = 0.8.

S2 occurs for C = 4/5, z = 0.6, while for C = 6/7, we encounter T2-structures in the range of

z = 0.1 − 0.3296 (see table 6.1 for a summary).

Most differences occur because our method of investigation does not allow for non-periodic

lattices like ”lattice gas phases”, ”random tiling phases” or the possibility of a phase separation –

all phenomena which were included in the survey of Likos and Henley [94]. Nonetheless, there are

also cases in which the mixture of dipolar colloids shows a behaviour undiscovered in the hard-disc

system: For low and intermediate values of z, the H3-structure (C = 7/9) is stable in the case of

the hard-disc mixture [94]. The dipolar mixture shows distinctly different lattices throughout the

whole range of particle size ratios (see figure 6.13, (c),(h), (m), (r), and (bb)), all of which were

explicitly checked against the H3-structure and proved to be of lower energy. At C = 4/5, instead

of the S2 structure occuring for hard-discs, the dipolar mixture shows two different structures at
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S1 H2 T1

H3 S2 T2

H1

Figure 6.15: Equilibrium structures of the dipolar binary mixture (large pic-
tures) with the corresponding stable lattices of the hard-disc system (small pic-
tures [94]). Symbols refer to the structures listed in table 6.1. A possible choice
of the unit cell is marked in both cases.

C structure z-values (dipolar colloids) z-interval (hard-discs) [94] z∗ [94]

1/2 S1 0.3296, 0.41, 0.5 [0.392, 0.414] 0.414
1/2 H2 0.6, 0.7 (0.414, 0.438]∪ [0.627, 0.646] 0.637
2/3 T1 0.1, 0.16, 0.2, 0.28, 0.3296 [0, 0.312] 0.155, 0.281
2/3 H1 0.41, 0.5, 0.6 [0.517, 0.546] 0.533
7/9 H3 0.8 (0.101, 0.110]∪ (0.378, 0.408] 0.386
4/5 S2 0.3296, 0.6 (0.101, 0.123]∪ [0.193, 0.245] 0.216, 0.62
6/7 T2 0.1, 0.16, 0.2, 0.28, 0.3296 [0, 0.157]∪ [0.315, 0.354] 0.101, 0.349

Table 6.1: Comparison of the particle size ratios z for which certain structures
were found for dipolar colloids (column 3) and in the hard-disc system (column
4). In the fifth column the ”magical” particle size ratios z∗ for each structure
are given (see text).
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group I I I I I II II II II
z 0.1 0.28 0.3296 0.41 0.41 0.1 0.2 0.41 0.6
C 1/5 1/7 2/3 2/3 4/5 1/2 1/2 1/3 7/9

Table 6.2: Table of those values of the particle size ratio z and the concentration
of small particles C for which degenerate structures were found for the binary
mixture of dipolar colloids. The top row indicates the group of degenerate
structures to which the individual cases belong to (see text).

low z, both unique to the system: A hexagonal lattice of large particles with small dimers sitting

at the interstitials (figure 6.13,(d)) and zig-zag-shaped lanes of small particles running through a

hexagonal lattice of large particles (figure 6.13, (i)).

Degenerate structures

The method of investigation as introduced in the opening remarks of this section allows us to

identify degenerate structures, i.e. configurations which differ in the arrangement of particles

while corresponding to the same (minimal) value of the Helmholtz free energy.

As the numerical accuracy of our investigation procedure is mainly determined by the chosen

cutoff radius in the calculation of the free energy, we define two structures to be energetically

degenerate if the difference in their Helmholtz free energies per particle, ∆F , is of the same order

of magnitude as the error due to the employment of a finite cutoff. Thus, two structures are

considered degenerate, if their difference in energy is ∆F
<∼ 10−6εI, where εI refers to the energy

scale of the system. ∆F thus corresponds to about 0.01% of the free energy per particle of the

configurations in question.

In total, we encounter degenerate structures at nine of the 108 combinations of particle size

ratio z and concentration C that were investigated (see table 6.2), excluding those configurations

found at z = 0.8 and z = 0.9, where the difference between the particle species becomes very small

and the GA experiences difficulties in identifying the global minimum of the Helmholtz free energy.

These nine occasions of degeneracy can be divided into two groups: in the first group, labeled

”I” in table 6.2, the additional structures resemble a particle arrangement previously encountered

for a smaller or larger particle size ratio. The additional structure thus indicates a cross-over

from one structure to another as the particle size ratio z changes. The second group, labeled ”II”

in table 6.2, consists of completely new configurations, which are not encountered at any other

combination of z- and C-values.

The members of the first group are shown in figure 6.16, where in each respective panel on

the right hand side, we see the structures already included into the overview of figures 6.11 to

6.14, while the additional, degenerate configurations are shown on the left hand side: for z = 0.1

and C = 1/5 (see figure 6.16, (a)), we find two configurations, which can be considered as tilings
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formed by two different types of equilateral triangles of large particles. The first type is decorated

by a small particle at its centre, the other tile is empty. In the first tiling, the two types of triangles

share one corner, thus giving rise to distinct lanes of small particles running through the hexagonal

lattice formed by the larger species (see figure 6.16, (a), left panel). In the other tiling, the two

types of triangles share an edge, thus preventing the formation of lanes of small particles (see

figure 6.16, (a), right panel). We interpret the first configuration as a strongly distorted precursor

of the arrangement of rectangular cages encountered for intermediate and large values of z (cf.

figure 6.11, (m), (q), (u) and figure 6.12, (b), (f), (j), and (n)).

For a particle size ratio of z = 0.28 and a concentration of C = 1/7, the two structures that were

found to share the lowest free energy represent analogons to the minimum energy configurations

obtained for z = 0.2 and z = 0.3296. In one structure (see figure 6.16, (b), left panel), the small

particles do not distort their surrounding equilateral triangle of large particles like at the smaller

particle size ratio of z = 0.2 (see figure 6.11, (i)). The small particles of the other structure (see

figure 6.16, (b), right panel) sit at the centre of large rhombi and again form distinct lanes, thus

being comparable to the arrangement found at z = 0.3296 (see figure 6.11, (q)).

The degenerate structures encountered at a concentration of C = 2/3 for particle size ratios

of z = 0.3296 and z = 0.41 (see figure 6.16, (c) and (d)) forge a link between the distinct

dimer configuration of small particles discovered at z = 0.28 (see figure 6.13, (p)) and the zig-

zag shaped small-particle lanes that were found at z = 0.5 and z = 0.6 (see figure 6.14, (a)

and (f)): at z = 0.3296, the formation of pairs with alternating orientation (figure 6.16, (c),

left) is energetically as favourable as the strictly parallel orientation of the dimers (figure 6.16,

(c), right): concomitantly, the hexagonal lattice formed by the large particles compensates for

this alignment in the second case by a considerably stronger distortion. At z = 0.41, C = 2/3,

structures displaying distinct four-particle aggregates (figure 6.16, (d), left) and zig-zag lanes of

small particles (figure 6.16, (d), right) are of the same energy, once more illustrating the transition

from aligned dimers (see figure 6.13, (p) and (u)) to zig-zag shaped lanes of small particles (see

figure 6.13 (z) and figure 6.14 (a) and (f)).

Finally, the degenerate structures obtained for z = 0.41, C = 4/5 display the cross-over from

the pearl-necklace configuration encountered at z = 0.3296 (cf. figure 6.13, (x)) and figure 6.16,

(e), left) to the ring-like arrangements (figure 6.16, (e), right), which occur at higher particle size

ratios (cf. figure 6.13, (cc) and figure 6.14, (d)). The formation of rings of small particles leads

to a substantially modification of the lattice formed by the larger species, which changes from a

rectangular structure to a hexagonal arrangement.

Pictures of the structures belonging to the second group of degenerate configurations are shown

in figure 6.17. For a particle size ratio of z = 0.1 and a concentration C = 1/2, we find two

configurations corresponding to the same minimal free energy. One structure shows stripes of

small particles meandering through a hexagonal lattice formed by the larges one (see figure 6.17,
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(a) z = 0.1, C = 1/5 (b) z = 0.28, C = 1/7

(c) z = 0.3296, C = 2/3 (d) z = 0.41, C = 2/3

(e) z = 0.41, C = 4/5

Figure 6.16: Degenerate structures found for the dipolar mixture of particle
belonging to group I (see text and table 6.2).

(a) z = 0.1, C = 1/2 (b) z = 0.2, C = 1/2

(c) z = 0.41, C = 1/3 (d) z = 0.6, C = 7/9

Figure 6.17: Degenerate structures found for the dipolar mixture of particle
size ratios z = 0.1 to z = 0.6 and concentrations C = 1/2 to 7/9, belonging to
group II (see text).
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(a), right panel), in the other, small particles arrange in groups of three particles, surrounding

a large one in the form of a small arc (see figure 6.17, (a), left panel). Both configurations can

be interpreted as variations of the same tiling, where the basic module consists of six equilateral

triangles of large particles forming a hexagon. In both cases, three neighbouring triangles in each

hexagon are decorated by a small particle in their centre. The emergence of the two different

structures depends solely on the orientation of neighbouring hexagon-shaped tiles.

At the same concentration of small particles but for the slightly higher particle size ratio of

z = 0.2, we encounter three energetically degenerate structures sharing the common feature of

small particle lanes embedded in a hexagonal lattice of their larger counterparts. In the structure

which was already included in the previous discussion in figure 6.11 (cf. section 6.2), neighbouring

lanes of small particles are separated by a single stripe of undecorated rhombohedral unit cells (see

figure 6.17, (b), right). In the other two configurations, the meandering stripes of small particles

are farther apart, as two lanes of rhombohedral unit cells fit between the zig-zag-shaped stripes

of small particles. Both of these structures also exhibit a single lane of isolated small particles in

addition to the zig-zag-shaped lane; in one case, the isolated single lane is directly adjacent to the

zig-zag-shaped arrangement, so that the impression of connected pentamers or cup-like structures

emerge, which partially surround the large particles (see figure 6.17, (b), left panel), in the other

case, the single stripe of isolated particles is distinctly separated from the zig-zag-shaped lane (see

figure 6.17, (b), middle panel).

In the case of z = 0.41 and C = 1/3, both structures are built using the same two types of

tiles: a square unit cell of large particles decorated with a small particle at its centre and an

empty rhombohedral unit cell of large particles. In one structure, the rhombohedral unit cells

are arranged parallel to each other, giving rise to a pattern of distinct alternating lanes of square

and rhombohedral unit cells (see figure 6.17, (c), right panel. One of the rhombohedral lanes is

emphasised in the picture.) The other structure can also be interpreted as an arrangement of

alternating square and rhombohedral lanes, but in this case, the orientation of the tiles changes

along the lanes, which obscures the pattern. Tiles belonging to one lane are of the same type

and are connected via opposite corner points only (see figure 6.17, (c), left panel. One of the

rhombohedral lanes is again highlighted in the picture.).

In the last case of degenerate structures discussed here, encountered for z = 0.6 and C = 7/9,

the particles are again arranged in distinct lanes in the two configurations. The difference be-

tween the two degenerate structures lies with the width of the lanes consisting of small particles

and the associated accommodation of these changes by the lattice of the large particles: In one

case (see figure 6.17, (d), right panel), we observe double zig-zag-shaped lanes alternating with

a pearl-necklace-like configuration of small particles. In the other case (see figure 6.17, (d), left

panel), the small particle arrange in a sequence of single zig-zag-lanes and lanes of interconnected

hexagons.
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Summarising, the occurrence of degenerate tilings is observed in five of the in total nine cases

of energetically degenerate structures, namely in the structures shown in figure 6.16, (a) and (b),

and in figure 6.17, (a), (b), and (c). We interpret this repeated appearance of differently tiled

phases that correspond to the same minimal free energy as a strong indication that the random

tiling phases mentioned in reference [94] might be observed at those state points.

6.2.2 Comparison to simulations and experiments

We have chosen to investigate this binary mixture of dipolar colloids because of its realisability in

experiments. As stated in section 2.2, there exist two different experimental setups for our model

system: in system I, polystyrene particles are used, which float at an oil-water interface to ensure

the two-dimensional geometry of the setup. The particles are of two different sizes and interact

via an induced, effective dipole-dipole potential (cf. equations (2.4) to (2.6)) [40–42, 53]. System

II consists of super-paramagnetic colloids, interacting via an ideal dipole-dipole potential, as an

external magnetic field is employed to induce dipole moments perpendicular to the plane of the

monolayer in the particles (see equation (2.8)). Like in system I, the particles are confined to an

interface by gravity in order to provide their arrangement in monolayers. This time the interface

is given by the surface of a pending water droplet [43–47]. In section 2.2, we have shown that

these two systems are equivalent if the average spacing between particles is sufficiently large, i.e.

if the particle area density is sufficiently low.

We compare the minimum energy configurations identified with the GA for system I to molec-

ular dynamics simulations of this system [42] and to experimental data obtained from a realisation

of system II [47, 95].

Comparison to molecular dynamics simulations

We start our discussion by comparing our results presented in the previous section to the structures

obtained by T. Stirner and J. Sun for system I [42]. These authors employed molecular dynamics

simulations (abbreviated ”MD simulation”) to determine the configuration corresponding to the

global energy minimum, mimicking in detail the experimental setup of system I as it is described

above. They investigated the system at different concentrations of small particles, namely C = 2/3,

C = 6/7 and C = 7/8. As we did not include systems with a concentration of C = 7/8 in our

survey, we will not discuss this case in the following.

In the simulations study [42], the particle size ratio z was fixed to z = 0.32963, as the diameters

of the two particle species were restricted to the two values readily available to experimentalists,

σA = 2.7µm and σB = 0.89µm. Instead of changing the particle size ratio, Stirner and Sun

investigated two different interaction regimes: a so-called strong interaction regime, where the

exponent n in the interaction potentials given in (2.4)-(2.6) was set to n = 3, and a so-called weak

interaction regime with n = 2, where the dipole moment of each particle scales with its surface

area. Furthermore, the average distance between large particles was fixed to dA = 6 µm ≈ 2.2σA,
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z = 0.41, C = 6/7

z = 0.3296, C = 6/7

z = 0.3296, C = 2/3

Figure 6.18: Comparison of results obtained for a binary mixture of colloids in-
teracting via an effective dipole-dipole interaction. The pictures were obtained
for different particle size ratios and concentrations as indicated. Structures in
the left column were found in molecular dynamics simulations (pictures were
taken from reference [42]), those in the right column were identified using the
GA-based search technique.

irrespective of the concentration of small particles in the system. For C = 2/3, an average distance

between large particles of dA = 2.2σ corresponds to an overall, dimensionless particle area density

of ησ2
A ≈ 0.70, whereas for C = 6/7, this value changes to ησ2

A ≈ 1.64.

In the case of the strong interaction regime characterised by n = 3, we find good overall agree-

ment between the structures found to be stable in simulations and those identified as minimum

energy configurations by the GA: for C = 2/3, the GA and the simulations find large particles

occupying an ideal hexagonal arrangement, where each equilateral triangle of this lattice has a

small particle at its centre (see figure 6.18, top row). At C = 6/7, the MD simulations reveal

a configuration where the large particles again form a hexagonal pattern, but each equilateral

triangle of large particles is occupied by an inverted triangle of small particles. Thus, ring-like

arrangements of twelve small particles are formed around each large one – a configurations that

coincides well with the structure obtained with the GA (see figure 6.18, middle row).

As mentioned above, Stirner and Sun also provide results for their so-termed weak interaction
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regime in [42]. Since they claim that no changes in the found structures occur if varying the

particle coverage – and thus the particle area density – in their simulations, we are safe to assume

that the simulations operate in the ”ideal dipole limit” and relation (2.9) holds true to ”translate”

between the two interaction regimes, n = 2 and n = 3. Thus, simulations conducted for z = 0.3296

and n = 2 correspond to z = 0.41 in the strong interaction regime and comparisons to our findings

presented in figures 6.11 to 6.14 are possible. For the weak interaction regime (n = 2), Stirner and

Sun only provide us with structures obtained at concentrations C = 6/7 and C = 7/8, and as stated

above, we exclude the latter from the following discussion. For C = 6/7, the simulations show a

largely disordered structure as the minimum energy configuration in contrast to the well ordered

structure identified with the GA (see figure 6.18, bottom row). We believe this to have several

reasons: first, disordered structures are inaccessible to the applied GA-based search method.

Second, the MD simulations were performed at finite temperature in contrast to our technique,

which operates at T = 0. Even if the ratio of potential to kinetic energy was quite large in the

simulations, F/(NkBT ) = 5 ·102 [42], the temperature applied to the system could already be high

enough to ”melt” the ordered equilibrium structure proposed by the GA for T = 0. This might

even more be the case, since the much weaker interacting small particles are supposed to enter

the liquid state at lower temperatures than their large counterparts. Yet another reason for the

disagreement could stem from the starting configuration used in the simulation, which puts a bias

on patterns with a homogeneous distribution of small particles: each simulation was started from

a configuration with 121 large particles arranged on an ideal hexagonal lattice and the appropriate

number of small particles distributed evenly inbetween. It is probable that the employment of such

a starting configurations hinders the emergence of a structure with an anisotropic distribution of

small particles, like the one identified with the GA and shown in figure 6.18.

Comparison to experimental data

Besides the MD simulations of T. Stirner and J. Sun, we also compare the results presented

in section 6.2.1 to experimental data provided by F. Ebert et al. for system II [47, 95]. They

investigated a binary mixture of super-paramagnetic colloids for different values of the system

temperature in order to study its vitrification. The formation of locally ordered structures or

crystallites was observed despite the globally disordered state of the system. These crystallites are

believed to have their origin in the non-additivity of the interaction potential and the consequential

partial clustering of the small particles in the system [54,96]. The locally ordered regions are known

to play a major role in the glass transition as their occurrence hinders the emergence of long range

order in the system [97]. It is the structure of these stable crystal grains that we compare our

findings to in the following.

The magnetisation ratio of the super-paramagnetic particles in use in the experiments was

m = χB/χA ≈ 0.1, where χi is the susceptibility of species i. This value of the magnetisation

ratio corresponds to a particle size ratio of approximately z = 0.398 at n = 3 in the description
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(a) (b)

(c) (d)

Figure 6.19: Comparison of stable crystallites found in experiments (a,c) to
the GA-identified structure (b,d) at the corresponding values of z = 0.41 and
the matching concentrations, C = 1/2 (top row) and C = 1/3 (bottom row).
(Snapshots from experiments by courtesy of F. Ebert.)
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(a) (b)

Figure 6.20: Comparison of (a) stable crystallites found in experiments to
(b) the GA-identified structure at the corresponding values of z = 0.41 and
C = 2/3. (Snapshots from experiments by courtesy of F. Ebert.)

of system I (cf. relation (2.9)). The percentage of small particles in the system varied between

29% to 45%. Video microscopy and standard image processing were utilised in the experiment to

analyse the behaviour of the system [47]. The dimensionless interaction strength

Γ =
Emagn.(B)

NkbT
,

representing the inverse temperature of the system, was controlled via the strength of the external

magnetic field B and set to values between Γ ≈ 220 and Γ ≈ 554 [47].

Ebert et al. report two patterns to be predominant in their samples, irrespective of the overall

concentration of small particles in the system: first, a hexagonal structure consisting of large

particles only, and, second, the arrangement of large particles into squares, with a small particle

at the centre. The individual crystallites exhibit either a hexagonal lattice formed by the large

species only, a square structure, or an alternating composition of hexagonal and square unit cells,

so that the local concentration of small particles in the crystal grains is either C = 0 for the

hexagonal lattice of large particles, C = 1/2 for the square arrangement or C = 1/3 for the

alternating configuration. Besides crystallites consisting of the two unit cells described above,

zig-zag shaped lanes of small particles occur in the sample. Although these small particle chains

are mostly rather short – usually four to eight small particles form a chain – they represent a

distinct feature of the system. Despite the partial clustering, no other crystal grains consisting

predominantly of small particles occur in the sample, as regions with a large majority of small

particles are unlikely to form, due to the overall concentration of small particles C being well

below 1/2 in all experiments.

The particle size ratio which was investigated with the GA and most closely corresponds to

the magnetisation ratio used in the experiments, is z = 0.41. When comparing the experimental

data to the configurations identified by the GA for z = 0.41, we find good overall agreement in

the structures found to be stable. The predominance of the two patterns – a hexagonal lattice
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of large particles only and the square configuration with the small particle at its centre – and its

independence from the overall concentration of small particles in the sample is generally in accord

with the results obtained with the GA-based search technique, as all configurations identified with

the GA which are of a concentration C ≤ 1/2 consist of these to types of cells (cf. figure 6.11).

Furthermore, each structure found in the individual stable crystallites corresponds to a minimum

energy configuration identified with the GA: the square lattice, with the small particles sitting

at the centre of each square was found for C = 1/2, the alternating sequence of hexagonal and

square unit cells was identified for C = 1/3 (see figure 6.19), and the hexagonal structure is known

to be the minimum energy configuration of a one component system, whose constituent particles

interact via a dipole-dipole interaction [53]. Also the zig-zag chains of small particles have their

representation in a minimum energy configuration obtained with the GA, as they closely resemble

the structure the GA predicts to be stable for C = 2/3 (see figure 6.20).

6.2.3 Phonon band structures

Phonon band structures of colloidal dispersions have received intensive interest currently, especially

in regard to the tuneability of the dispersion curves and the associated possibility of designing

the elastic properties of a material [80, 90, 98–100]. In this section, we focus on the phonon

band structures of the binary mixture of dipolar colloids and study the influence of the system

parameters on the layout of the dispersion curves.

Under the assumption that the average particle separation is large enough to allow for de-

scribing the interaction by an ideal dipole-dipole potential, the following three parameters affect

the phonon band structure: the susceptibility ratio m = χB/χA and the concentration of small

particles C control the ground state of the system and thus have major influence on the dispersion

curves. The mass ratio M = MB/MA of the two particle species involved is the third crucial

parameter in this context, as two systems with identical minimum energy configurations but dif-

ferent mass ratios exhibit different phonon band structures (cf. section 5.1.2).

With future applications in mind, we restrict our investigations to those values of the suscepti-

bility ratio and concentration that correspond to ground states verified in experiments, m ≈ 0.108

and C = 1/3, 1/2, and 2/3. Besides the value known from experiments [47], we investigate the

phonon spectra at two other values of the mass ratio M , which reflect the two general methods to

prepare magnetic colloidal particles [101]:

• M ≈ 0.2409, the value known from experiments.

• M ∼ m, corresponding to magnetic colloids produced via encapsulation: paramagnetic

nano particles are incorporated into the growing colloid, yielding susceptibilities χA and χB

proportional to the volume of the particle, i. e. χi ∼ R3
i , where Ri denotes the radius of a

particle of species i. Since the mass of each particle also directly relates to the its volume,
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Mi ∼ R3
i , it is justified to assume that the mass ratio M is proportional to the susceptibility

ratio, i. e. M ∼ m in this case.

• M ∼ m3/2, which relates to super-paramagnetic colloids produced via coating processes: the

magnetic component is contained in a layer on the particle’s surface, so that the susceptibility

χi of a colloid of species i scales with its surface area, χi ∼ R2
i . As the mass is proportional

to the volume of the particle, we obtain M ∼ m3/2 as the relation between mass ratio M

and the susceptibility ratio m.

Figures 6.21, 6.22, and 6.23 contain the band structures ω2
∗(q) of the stable particle arrange-

ments identified at m ≈ 0.107 and C = 1/3, 1/2, and 2/3 for decreasing values of the mass ratio,

(a) M = 0.2409, (b) M ∼ m = 0.107, (c) and M ∼ m3/2 ≈ 0.035. The respective minimum

energy configurations are also depicted in the figures (see figures 6.21 to 6.23, (d)) together with

their corresponding reciprocal lattices (see figures 6.21 to 6.23, (e)). The paths along which the

phonon band structures are calculated encircle the irreducible sections of the respective first Bril-

louin zones (cf. section 5.1.2), and are marked in the pictures of the reciprocal lattices. Reduced

units are used throughout the entire discussion, so that the dispersion curves ω2
∗(q) correspond to

the frequencies ω(q) via ω2
∗(q) = ω2(q)σ2

AMA/εII, where εII is the energy scale of the system and

σA corresponds to the diameter of the larger particle species (cf. section 2.2).

In every band structure, we observe 2np individual branches, where np is the number of particles

in the chosen unit cell. Two of these bands are acoustic, 2(np − 1) are optical branches. We start

our discussion of the phonon band structures with the results obtained for a susceptibility ratio

of m ≈ 0.107 and a concentration of small particles C = 1/3 (see figure 6.21). At a mass ratio

of M ≈ 0.2409, the in total six branches of the band structure are distributed evenly over a

small frequency range, from ω2
∗ = 0 to a maximum value of ω2

∗ ≈ 6.8. Decreasing the mass

ratio to M ≈ 0.107 widens the frequency range covered by the band structure, as frequencies

up to ω2
∗ ≈ 11.0 are reached by the topmost branches. The two topmost dispersion curves also

detach from to rest of the spectrum, thus giving rise to a distinct gap in the band structure and

yielding the system ”opaque” to vibrations of frequencies in the range of ω2
∗ ≈ 5.7 to 9.4. An

additional effect of the decrease in the mass ratio is observed in the flattening of the detached

optical branches, leaving the frequencies of the corresponding normal modes more insensitive to

changes in the wave vector q. Further enhancing the asymmetry in the mass of the two involved

particle species to M ≈ 0.035 considerably widens the observed gap – from ω2
∗ ≈ 5.7 to 27.4 – and

even higher frequencies are covered by the phonon spectrum, the maximum value being ω2
∗ ≈ 29.5.

In addition, the topmost two optical branches that decouple from the rest of the band structure

appear again considerably flattened as the mass ratio is further decreased.

The dispersion curves obtained for m ≈ 0.107 and C = 1/2 in general follow the trends observed

for the previous system (see figure 6.22): at M ≈ 0.2409, the phonon band structure consisting of

four branches is rather compact with a maximum frequency value of ω2
∗ ≈ 4.3 and no gaps occur
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Figure 6.21: Phonon spectra obtained for the binary mixture of dipolar colloids
for m ≈ 0.107 and C = 1/3 at three values of the mass ratio, (a) M = 0.24,
(b) M ∼ m ≈ 0.107, and (c) M ∼ m3/2 ≈ 0.035. The two small pictures show
(d) the stable particle arrangement with the chosen unit cell (full line), and (e)
the corresponding reciprocal lattice with the first Brillouin zone (dashed line)
and the path along which the band structures were calculated (full line).
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Figure 6.22: Phonon spectra obtained for the binary mixture of dipolar colloids
for m ≈ 0.107 and C = 1/2 at three values of the mass ratio, (a) M = 0.24,
(b) M ∼ m ≈ 0.107, and (c) M ∼ m3/2 ≈ 0.035. The small pictures show (d)
the stable particle arrangement with the chosen unit cell (full line), and (e) the
corresponding reciprocal lattice with the first Brillouin zone (dashed line) and
the path along which the band structures were calculated (full line).
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Figure 6.23: Phonon spectra obtained for the binary mixture of dipolar colloids
for m ≈ 0.107 and C = 2/3 at three values of the mass ratio, (a) M = 0.24,
(b) M ∼ m ≈ 0.107, and (c) M ∼ m3/2 ≈ 0.035. The small pictures show (d)
the stable particle arrangement with the chosen unit cell (full line), and (e) the
corresponding reciprocal lattice with the first Brillouin zone (dashed line) and
the path along which the band structures were calculated (full line).
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in the spectrum. Lowering the mass ratio to M ≈ 0.107 again opens a distinct gap in the band

structure (see figure 6.22, (b)), as the two optical branches decouple from the acoustic bands and

no normal modes exist that can pick up vibrations with frequencies between ω2
∗ ≈ 3.3 and 5.2.

The topmost branch reaches a maximal frequency of ω2
∗ ≈ 7.0. A further decrease in the mass

ratio to M ≈ 0.035 widens the gap even more as the optical branches move to higher frequencies,

the maximal value being ω2
∗ ≈ 18.0. The gap thus encompasses all frequencies in the range from

ω2
∗ ≈ 3.3 to 15.9. Also in the case of C = 1/2, the optical branches appear less modulated as the

mass ratio decreases.

At m ≈ 0.107 and C = 2/3, the phonon band structures consist of six branches and exhibit a

small variation of the trends observed so far (see figure 6.23): the first band structure, determined

for M ≈ 0.2409 and shown in figure 6.23 (a) is again the most compact structure overall, as it

only covers frequencies from ω2
∗ = 0 to ω2

∗ ≈ 2.5. The frequency range broadens with a decrease

of the mass ratio, first to ω2
∗ ≈ 4.7 at M ≈ 0.107, and then to ω2

∗ ≈ 13.0 at M ≈ 0.035. A

relatively small gap is only observed in the case of M ≈ 0.035, where all four optical branches

detach from the rest of the band structure, leaving frequencies from ω2
∗ ≈ 1.4 to 3.1 uncovered

by the dispersion curves, so that the gap is located at relatively low frequencies, compared to the

corresponding band structures determined for C = 1/3 and C = 1/2. We also observe the optical

branches to be less flat than in the previous two cases.

Although not observed in experiments, we include the particle arrangement found for m ≈ 0.018

and C = 5/7 into our discussion, as its phonon band structure exhibits the above mentioned fea-

tures in a particularly pronounced fashion (see figure 6.24): the dispersion curves comprise a

number of isolated, almost completely flat branches that give rise to seven gaps of considerable

size. As the mass asymmetry is already very strong in the two investigated cases, M ∼ m ≈ 0.018

(figure 6.24, left panel, top) and M ∼ m3/2 ≈ 0.0024 (figure 6.24, left panel, bottom), the same

band structure is observed for both values of the particle mass ratio.

In summary, we believe the susceptibility ratio m and the concentration of small particles C

to have distinct influence on the overall appearance of the phonon band structures as the ground

state of the system is defined by these two parameters. The positioning and number of eventual

gaps seems to be connected to the number of small particles, nB, and thus to the value of C, as

the observed gaps in the phonon band structure are formed by 2nB optical branches decoupling

from the rest of the band structure in all investigated cases.

The mass ratio M on the other hand affects the frequency range covered by the dispersion

curves, as an increasing asymmetry in the mass of the two particle species is observed to lead

to higher maximal frequencies in the phonon spectra. However, this influence on the frequency

seems to be non-uniform, since gaps in the phonon band structure open and close upon changes

in the mass ratio. Furthermore, the value of M is found to have an effect on the modulation of

the optical branches, yielding almost completely flat bands at small values of M .
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Figure 6.24: Phonon band structures (left panels) obtained for the binary mix-
ture of dipolar colloids at m ≈ 0.018 and C = 5/7, for two values of the particle
mass ratio, M ∼ m (top) and M ∼ m3/2 ≈ 0.0024 (bottom). The small pic-
tures show (a) the particle arrangement with the chosen unit cell marked by a
full line and (b) the corresponding first Brillouin zone (dashed line) with the
path along which the dispersion curves were calculated (full line). The points
of special symmetry are also marked in panel (b).
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6.3 Quasi-planar dipolar colloids

A one-component system of dipolar particles confined to a planar cell of variable thickness is the

centre of our attention in this section. The impenetrable particles interact via a dipole-dipole

potential, which is either purely repulsive, softened repulsive or attractive at short distances,

depending on the cell thickness D (see section 2.3). By employing our optimisation technique

based on genetic algorithms, we study the equilibrium structures of this system at the cross-over

from two to three dimensions by varying the particle density for a number of different values of D.

After presenting the configurations identified by the genetic algorithm, we set our investigations

in a larger context by comparing the results to data obtained in experiments and Monte Carlo

simulations.

6.3.1 Ordered equilibrium structures

We analyse the system’s strategies to arrange particles in the energetically most favourable pat-

tern for varying particle volume density ρσ3 and six different values of the cell thickness, D =

σ + h = 1.2σ, 1.445σ, 1.55σ, 1.6σ, 1.8σ, and 2σ, with σ denoting the hard-core diameter of the

particles and h being the maximal vertical displacement between two particles in the system. The

investigated density region ranges from ρσ3 = 0.5 to ρσ3 = 2.0, with a step size of ∆ρσ3 ≈ 0.08.

As all calculations are performed in an NV T -ensemble, the equilibrium structure at a given value

of the particle volume density corresponds to a global minimum in the Helmholtz free energy.

The six different values of the cell thickness that were investigated cover all interaction regimes

discussed in section 2.3: D = 1.2σ and 1.445σ correspond to the purely repulsive regime of the

interparticle potential; in the case of D = 1.2σ, the interaction still closely resembles the potential

known from two-dimensional dipole-dipole interactions, whereas at D = 1.445σ we are close to

the cross-over to the regime of relative attraction. At a cell thickness of D = 1.55σ, the potential

has a region of relative attraction adjacent to the impenetrable hard core of the particle, and at

D = 1.6σ and 1.8σ, the cell is wide enough to allow for an attractive interaction between particles

at close distances. At the sixth investigated cell thickness, D = 2σ, two colloidal particles are able

to arrange on top of each other, resembling the formation of lanes parallel to the external field, a

behaviour well known from three dimensional systems of dipolar particles (cf. section 2.3).

The investigation on the minimum energy configurations of the quasi-planar system is per-

formed in two steps: first, we use a parameterisation that includes the vertical displacements zi

of all np particles in the unit cell as parameters to optimise, in order to determine the vertical

arrangement of the particles (cf. section 4.2.1.6). These preliminary calculations showed that all

particles keep to either the very top or bottom of the cell without any particles populating interme-

diate vertical positions, i. e. zi = 0 or h for all i = 1, . . . , np. Knowing about this particular vertical
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(a) (b)

Figure 6.25: Minimum energy configurations of a quasi-planar system of dipo-
lar colloids at a cell thickness of D = 1.2σ and two particle volume densities,
(a) ρσ3 = 0.5 and (b) ρσ3 = 2.0. The different vertical positions of the parti-
cles are colour-coded: blue particles are located at the bottom of the cell, white
particles at the top.

distribution, we decide to employ the more efficient layer parametrisation in the second step of

the investigation, where each structure is described as a stacking of nl identical two-dimensional

layers (see section 4.2.1.6). We considered systems of up to four layers, i. e. nl = 4, and the

distance between the outermost two of these layers was fixed to the maximal displacement h. In

addition, we limit the number of particles per unit cell to np = 6 in each layer, with an exception

for systems with a cell thickness of D = 1.445σ, where the maximum number of particles in the

unit cell of a two-dimensional layer is set to np = 8.

In an effort to check the convergence and reliability of our algorithm, ten to forty independent

runs are performed for every state point; the actual number of runs depends on the number of pa-

rameters to optimise. The Helmholtz free energies of the structures obtained in these independent

implementations of the GA are then compared in a second step to determine the final configuration

of minimal energy for the given state point (cf. the procedure employed in the investigations of the

binary mixture of dipolar colloids in section 6.2). Due to the long range nature of the interaction

potential (2.10), we have extended the lattice sums to distances as large as 500 times the particle

diameter in each of the independently performed calculations.

Among the six values of the cell thickness that were investigated, we identify two limiting cases,

for which no structural change is observed in the entire density range: the first, where D = 1.2σ,

closely resembles the two-dimensional setup since the particles can vertically deviate from the

plane only to a small extent. The particles at the top and at the bottom of the cell arrange in two

rectangular structures which are mutually displaced, leading to an almost ideal hexagonal lattice

in top view (see figure 6.25), as was to be expected for a quasi-planar system that close to the

two-dimensional case. In the second limiting case, D = 2σ, the cell is wide enough to allow for two

particles to arrange on top of each other. These vertical dimers arrange on the sites of an ideal

hexagonal lattice (see figure 6.26). In terms of stacked layers, the identified structure consists of
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(a) (b)

Figure 6.26: Minimum energy configuration of a quasi-planar system of dipo-
lar colloids at a cell thickness of D = 2.0σ and a particle volume density of
ρσ3 = 2.0. Picture (a) shows the structure in top view, picture (b) the same
structure in side view. The different vertical positions of the particles are
colour-coded: blue particles are located at the bottom of the cell, white particles
at the top.

two congruent hexagonal lattices with coinciding origins, placed at the top and bottom of the cell,

respectively.

For all other values of the cell thickness, the obtained sequences of minimum energy configu-

rations consist of a number of different structures. We start our discussion with the arrangements

found to be stable for a cell thickness of D = 1.445σ; examples of the obtained configurations for

increasing density are shown in figure 6.27. The configurations at the low end of the investigated

density range can be viewed as a centred rectangular lattice, where the particles at the centre

and at the corners of each rectangle populate opposite vertical positions (see figure 6.27, (a)). As

the density increases, the centred rectangular lattice deforms to a square structure with the same

vertical positioning of particles as in the preceding case (see figure 6.27, (b)). The square lattice is

observed to be stable in the comparatively large density range from ρσ3 = 0.583 to ρσ3 = 1.116.

Further increase of the density leads the system to change its strategy to arrange particles and

formation of pairs – one particle in the pair located at the bottom of the cell and one at the top

– is identified as the energetically favoured configuration (see figure 6.27, (c)). The particles at

the bottom of the cell form a centred rectangular lattice as do their counterparts in the top layer

where the sub-lattice is displaced along the direction of the smaller edge of the rectangle. The ar-

rangement of particles to dimers is observed in the density range from ρσ3 = 1.25 to ρσ3 = 1.417.

We interpret this occurrence of dimers as a precursor to the lane-like configuration that is found to

be stable from ρσ3 = 1.5 onwards, where particles at the top and bottom positions alternate along

the lane. Neighbouring lanes are out of registry by one effective particle diameter σe (see figure

6.27, (d)), so that in a top view, the structure resembles a square lattice which is compressed along

one lattice vector and stretched in the direction of the other as far as possible. If we alternatively

describe this structure as an arrangement of stacked layers, the lanes are built by two layers of a

centred rectangular lattice, which are shifted by an effective particle diameter σe along the shorter
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(a) ρσ3 = 0.5 (b) ρσ3 = 1.083

(c) ρσ3 = 1.25 (d) ρσ3 = 1.667

(e) ρσ3 = 1.916 (f) ρσ3 = 2.0

Figure 6.27: Exemplary pictures of the minimum energy configurations of a
quasi-planar system of dipolar colloids at a cell thickness of D = 1.445σ. The
different vertical positions of the particles are colour-coded: blue particles are
located at the bottom of the cell, white particles at the top.
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edge of the rectangle. At the high end of the investigated density regime, i. e. at ρσ3 = 1.916,

the two layers forming the lane-like arrangement are shifted with respect to each other along the

larger edge of the rectangle and staggered chains appear in consequence (see figure 6.27, (e)). We

believe that this displacement of particles in a lane increases with the density until a honey comb

lattice, like the one observed at ρσ3 = 2.0 is formed. In the honey comb structure, each particle

has three nearest neighbours (see figure 6.27,(f)) – a number compatible with the energetically

favoured up-down positioning of neighbouring particles.

The minimum energy configurations obtained for larger values of the cell thickness, D = 1.55σ,

D = 1.6σ, and D = 1.8σ where the interaction potential has attractive components, resemble in

general the sequence discussed above for D = 1.445σ. Representative collections of the structures

identified as MECs are shown in figures 6.28, 6.29, and 6.30. In these sequences of structures,

we do observe the following changes though: rectangular or square lattices do not occur in the

entire investigated density range for all three D-values. Additionally, the density region in which

the formation of dimers is observed as the energetically most favourable arrangement gradually

shrinks and moves to lower values of ρσ3: we obtain stable dimer configurations in cells of thickness

D = 1.55σ at ρσ3 = 0.50, 0.5833, 0.667, and 0.75; for a cell thickness of D = 1.6σ, dimers

are obtained as the most favourable arrangement only at ρσ3 = 0.5, and for systems of a cell

thickness D = 1.8σ, no dimer-phase is observed at all. Furthermore, arrangements of lane segments

consisting of four particles appear among the observed structures for low values of the volume

density as soon as the cell is wide enough for the interaction potential to display an attractive region

adjacent to the hard core, i. e. for D = 1.6σ and 1.8σ (see figures 6.29,(b) and 6.30,(b)). Concerning

the formation of lanes, we observe the density regime for which the arrangement in alternating

chains is the most favourable configuration to broaden and move to gradually lower values of

the particle volume density at the same time: the GA identifies lanes as the minimum energy

configuration for D = 1.55σ at all investigated density values from ρσ3 = 0.833 to ρσ3 = 1.5. For

cells of a thickness D = 1.6σ, lane-formation is first observed at ρσ3 = 0.667, and the arrangement

in straight lanes persists until the onset of staggering at ρσ3 = 1.5. At D = 1.8σ, structures

consisting of straight lanes appear for particle volume densities between ρσ3 = 0.583 and 1.667.

For all three systems, the honey comb lattice is approached at high values of the particle volume

density. The structure is clearly visible for D = 1.55σ and 1.6σ (see figures 6.28, (d) and 6.29, (d)),

whereas the configuration obtained at the highest value of the particle volume density ρσ3 = 2.0

for D = 1.8σ shows only the first inklings of the honey comb lattice (see figure 6.30, (d)).

6.3.2 Comparison to experiments and simulations

We compare the structures identified by the GA as minimum energy configurations to the arrange-

ments observed in experiments and Monte Carlo simulations on quasi-planar systems of dipolar

colloids presented in [9, 10].

The experiments conducted by Osterman et al. utilise super-paramagnetic colloids confined to
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(a) ρσ3 = 0.583 (b) ρσ3 = 1.167 (c) ρσ3 = 1.667 (d) ρσ3 = 2.0

Figure 6.28: Representative examples of the minimum energy configurations
of a quasi-planar system of dipolar colloids at a cell thickness of D = 1.55σ.
The different vertical positions of the particles are colour-coded: blue particles
are located at the bottom of the cell, white particles at the top.

(a) ρσ3 = 0.5 (b) ρσ3 = 0.583 (c) ρσ3 = 1.167 (d) ρσ3 = 1.5

(e) ρσ3 = 2.0

Figure 6.29: Representative examples of the minimum energy configurations
of a quasi-planar system of dipolar colloids at a cell thickness of D = 1.6σ.
The different vertical positions of the particles are colour-coded: blue particles
are located at the bottom of the cell, white particles at the top.

(a) ρσ3 = 0.583 (b) ρσ3 = 1.33 (c) ρσ3 = 1.83 (d) ρσ3 = 2.0

Figure 6.30: Representative examples of the minimum energy configurations
of a quasi-planar system of dipolar colloids at a cell thickness of D = 1.8σ.
The different vertical positions of the particles are colour-coded: blue particles
are located at the bottom of the cell, white particles at the top.
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a thin wedge-shaped cell [9]. An external magnetic field applied perpendicular to the basis plane

of the cell induces magnetic moments in the colloidal particles and guarantees for the character-

istic dipole-dipole interactions (cf. (2.10)). By tuning the strength of the magnetic field B, the

dimensionless interaction strength,

Γ =
Emagn.(B)

kBT
,

where Emagn. is the potential energy, was set to Γ ≈ 400, thus focusing the investigations on the

low-temperature behaviour of the system. Osterman et al. investigated the structures formed at

a cell thickness of D = σ +h = 1.445σ, which corresponds to an interaction close to the cross-over

from the purely repulsive to the attractive regime (cf. section 2.3). The region in the wedge-shaped

cell that exhibits the desired thickness was determined in the following indirect fashion: in the

absence of a magnetic field, the colloidal particles cluster on contact. As the interaction between

the colloids is still purely repulsive at D = 1.445σ, the sought-after region can be identified as the

area where these clusters still fully disintegrate under the influence of the magnetic field [9]. The

thus identified region of the cell was observed with an inverse optical microscope for gradually

decreasing particle area fraction α, which is related to the dimensionless particle volume density

ρσ3 via

α =
πρσ3h

4σ
. (6.3)

In the above equation, h denotes the maximal vertical shift that the particles can obtain in the

cell and σ is the diameter of the colloidal particles.

In addition to the experimental investigations, Monte Carlo simulations (abbreviated ”MC

simulations”) were performed by Dobnikar et al. [9, 10] to provide a better understanding of the

experimentally obtained sequence of structures. As in the experiments, the vertical displacement

of the particles was limited to h = 0.445σ and the emerging configurations were observed for

varying values of the particle area fraction α. Samples of up to 1000 particles were considered

in various simulation box geometries, employing horizontally periodic boundary conditions. The

MC simulations were conducted at two different values of the interaction strength, Γ = 375 and

Γ = 125. The lower value, Γ = 125, was employed in dense systems in order to speed up conver-

gence.

The sequences of configurations obtained in experiments and simulations comprise the following

structures, as illustrated in figure 6.31 (taken from reference [9]) by suitably selected snapshots:

an expanded hexagonal lattice is found at very low densities where the vertical displacements of

the particles seem to be uncorrelated and, in addition, are distributed evenly across the available

range of z = 0 to h = 0.445σ. If the density is increased, the expanded hexagonal lattice is

soon superseded by an expanded square structure, where the particles keep exclusively to the top

and the bottom of the cell. A further increase in density leads to the emergence of short and
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0.03 0.34 0.66 0.89 0.97 1.12 1.55

0.14 0.29 0.57 0.86 1.09 1.29 1.72

Figure 6.31: Pictures of the structures observed for a cell thickness of
D = 1.445σ in experiments (top row) and MC simulations (bottom row) when
varying the particle volume density. Patches of the identified lattices are em-
phasised in some pictures. (Figure taken from [9] and labels changed from
particle area fraction to the corresponding values of the particle volume density
ρσ3 according to equation (6.3)).

long chains of particles instead of the formation of a square lattice. The vertical position of the

particles along the chains alternate between the two extreme positions z = 0 and z = h. As the

density is increased further, these chains interconnect and labyrinthine structures are formed. In

the high density regime, honey comb lattices and dense square structures are observed, where the

respective nearest neighbours occupy opposite vertical positions in the cell, thus maximising the

distance between particles.

Apart from information on the emerging structures, the MC simulations also provide us with

the corresponding energies of the different particle arrangements. Figure 6.32 shows the energy

per particle for the hexagonal and the square phase as they were calculated in reference [9] in units

of ε (cf. section 2.3) and scaled with the particle area fraction α3/2, as a function of the particle

area fraction α. The energy per particle of the arrangements obtained in the MC simulations

is also shown in this figure. Although determined at a different temperature (T = 0), we have

included the energies of the structures identified by the GA into the plot in colour.

The general trends in the formation of stable structures observed in simulations and experi-

ments are well reproduced in our study with the GA-based optimisation technique: with increasing

density, we find square lattices, the arrangement of particles into lanes and the formation of a honey

comb structure in the same sequence as in the experiments and the simulations. Although not

included in the survey presented in reference [9], also the dimer phase was observed as the stable

arrangement between the square lattice and the formation of chains in previous investigations [10].

In addition, we can interpret the centred rectangular structure observed with the GA at low den-

sities (see figure 6.27, (a)) as a transitory state between the square lattice and the disordered

hexagonal phase, the latter inaccessible to the GA due to its disordered nature. The dense square

phase mentioned in [9] might have been missed in our investigation due to an unsuitably chosen

density range.
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Figure 6.32: Energy per particle E∗ in units of ǫ and scaled with the particle
area fraction α vs. the particle area fraction α, obtained for a quasi-planar
system of cell thickness D = 1.445σ. The depicted results are from numerical
optimisations of the hexagonal (broad shaded line) and the square lattice (solid
black line) [9] and from the structures observed in Monte Carlo simulations
(open circles with error bars) [9]. The values for the structures identified to be
stable at T = 0 by the GA are marked by other symbols as indicated.
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It seems that most of the discrepancies between the results obtained by experiments and sim-

ulations and the findings of the GA-approach have their origin in the fact that both, experiments

and simulation were conducted at finite temperature and thus allow for the arrangement of parti-

cles in disordered patterns like the labyrinthine structure or the expanded hexagonal phase with its

uncorrelated vertical positioning of particles. The GA-approach, on the other hand, was restricted

to T = 0 and therefore only included ordered structures into the search for the minimum energy

configuration.





Chapter 7

Conclusions

In this work, we have studied the ordered equilibrium structures of two-dimensional soft matter

systems. To identify the stable particle arrangements, an optimisation technique based on ge-

netic algorithms [26] has been employed, which allowed for an unbiased search among all lattice

structures. Despite of the simple, radially symmetric interactions in all investigated systems, we

have been able to identify a rich variety of often complex and highly asymmetric configurations

– a demonstration of the power of our search strategy to reliably determine the minimum energy

configurations even if confronted with a rugged potential energy landscape.

With the aid of this highly efficient method, we have investigated the solid phases of three

model systems at zero temperature: first, we have studied hard-core particles interacting via

a purely repulsive, step-shaped shoulder of variable width at varying pressure. The identified

minimum energy configurations can be separated into three groups: above a certain width of

the repulsive shoulder, clusters composed of as many as nine particles populating the sites of

ordered lattices have been observed in the low pressure regime. At intermediate values of the

pressure, lane-like structures of various shape emerge, superseding the cluster phases. The third

group of stable patterns, which has been found in the high pressure regime, consist of compact

configurations characterised by a dense distribution of particles. As the shoulder width increases,

the internal arrangement of particles inside the observed clusters appeared less and less ordered,

thus establishing a link to various other models in soft matter physics that exhibit cluster phases

[13, 91, 92].

The variety of ordered structures that has been encountered for the second system – a binary

mixture of dipolar colloids – is even more extensive. Depending on the polarisability ratio of

the constituent particle species and on the composition of the mixture the monolayer has been

observed to order in a vast number of different alloy phases, most of which are highly complex and

exhibit only a low degree of symmetry: as the number of weaker dipoles increase in the system, the

particles arrange in more and more intricate patterns and, depending on the polarisability ratio,
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dipoles group together or form distinct lane-like structures. If the particles of lower polarisability

represent the minority in the system, however, the formed configurations are composed of only

a small set of recurrent lattice elements or ”tiles”. Since different tilings with approximately the

same energy have been discovered in our survey, randomly tiled phases [94] might be among the

ground states of the binary mixture of dipolar colloids. In an effort to understand the mechanisms

leading to this immense diversity of non-trivial structures and to investigate the influence of the

interactions on structure formation, we have compared our findings to the stable configurations

of a binary hard-disc mixture [94], revealing that even in dilute systems, packing arguments play

an important role in how particles are arranged to energetically favourable configurations. In

addition, two different experimental realisations [40, 41, 47, 95] of our model system provide us

with the possibility to verify our results. Although the dynamics of crystal growth impedes the

formation of extended crystals, and only locally ordered structures emerge in experiments, we have

been able to confirm several patterns that have been identified with the genetic algorithm-based

method.

As the last system, we have investigated monodisperse dipolar colloids in a horizontally con-

fined cell for different values of the cell thickness and varying density. The system illustrates

the cross-over from two to three dimensions, as particles are allowed to buckle from the strict

two-dimensional setup. The nature of the pair potential acting between colloids is controlled via

the spatial constraints and ranges from the purely repulsive dipole-dipole interactions typical for

two-dimensional systems, to potentials which are attractive at short distances. Independent of

the density and the cell thickness, particles have been observed to keep to either the top or the

bottom positions in the cell, thus maximising the distance between nearest neighbours in the

emerging structure. Since only a small number of ordered configurations is compatible with this

preferred up-down arrangement of particles, the identified sequences of minimum energy config-

urations show a much smaller diversity than those observed in the previous cases and consist of

largely the same, recurrent mesophases: square or rectangular lattices have been found at low den-

sities, dimer phases or larger segments of particle chains as well as various lane-like arrangements

populate the region of intermediate density and at high densities, particles have been found to

form honey-comb structures. Where available, results obtained in experiments and Monte Carlo

simulations largely agree with our theoretical predictions. We point out, that at intermediate cell

thickness, where the interaction is still purely repulsive, the sequences of stable structures closely

resemble the minimum energy configurations formed by the square-shoulder system at small val-

ues of the shoulder width – a fact that leads us to the notion the exact functional form of the

interaction potential might be of minor importance in structure formation.

Motivated by a rapidly growing interest and prospective technological applications [80,90,98–

100], we have also investigated the dispersion relations of several of the obtained particle arrange-

ments. Focusing on a few examples, we have been able to demonstrate that the soft matter
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compounds studied in this thesis offer a new way to tune the phonon band structures of soft mate-

rials. By controlling the composition of the mixture and the mass ratio of the two particle species,

multiple phononic gaps have been opened in the band structures, yielding the system ”opaque”

to vibrations within a certain frequency range. In addition, optical branches have been observed

to flatten considerably, if the mass ratio is sufficiently reduced.

Like every PhD thesis, also this work has its loose ends: the phase diagram of the quasi-planar

system of dipolar colloids is currently revised, considering a broader density range and additional

values of the cell thickness in order to fully understand the transitions between the observed solid

phases. Also the promising results obtained in the study of the phononic spectra warrant closer

investigations, as the observed dependencies of the dispersion curves on the system parameters

are in need of further verification.

Due to an increase in the efficiency in the last few years, the implementation of computationally

and conceptually more sophisticated tools to determine the energy of a given system – like density

functional theory [19–21] – can now be considered within reach, so that another logical next step

in our investigations is to extend the search technique to systems at finite temperature.





Appendix A

An unambiguous lattice

parametrisation

Inequality (4.6) is derived in the following way: Let us choose a configuration K, the minimal

description in the above mentioned way. Therefore the transformations ((4.4), (4.5)) cannot yield

a unit cell of smaller circumference. Without loss of generality we can set a,b ≥ 0 and |a| > |b|
and thus only need to take

(a,b) → (a − b,b)

into account. With

a = a(1, 0) , b = ax(cos φ, sin φ)

this leads to

|a| + |b| ≤ |a− b| + |b| →

a2 ≤ (a − ax cosφ)2 + (ax sin φ)2 →

2 cosφ ≤ x ,

because of our first assumption of K being the configuration of minimal circumference.
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Appendix B

Square Shoulder System:

Minimum energy configurations

Full sequence of MECs for λ = 1.5σ

structure U∗ ησ2 stable P ∗-range
(a) 0 0.5132 0.0 – 1.872
(b) 1 0.7071 1.872 – 2.757
(c) 3/2 0.8111 2.757 – 4.089
(d) 3 1.1547 4.089 – ∞

Table B.1: Properties of the MECs proposed by the GA for a square-shoulder
system of shoulder width λ = 1.5σ: the internal energy per particle in reduced
units, U∗, the particle area density ησ2, and the range of pressure values P ∗,
for which the structures were found to be stable (cf. section 6.1). The letters
given in the first column to distinguish the individual structures refer to figure
B.1.
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(a) U∗ = 0 (b) U∗ = 1 (c) U∗ = 3/2

(d) U∗ = 3

Figure B.1: Full sequence of minimum energy configurations found for a
square-shoulder system of shoulder range λ = 1.5σ with their respective in-
ternal energy per particle U∗ in reduced units (cf. section 6.1) .
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Full sequence of MECs for λ = 3σ

structure U∗ ησ2 stable P ∗-range
(a) 0 0.1283 0.0 – 0.2078
(b) 1/2 0.1856 0.2078 – 0.4534
(c) 1 0.2334 0.4534 – 0.7536
(d) 2 0.3380 0.7536 – 2.0834
(e) 7/2 0.4468 2.0834 – 3.1488
(f) 14/3 0.5355 3.1488 – 4.3196
(g) 6 0.6415 4.3196 – 6.3156
(h) 13/2 0.6758 6.3156 – 6.8564
(i) 9 0.8968 6.8564 – 15.5370
(j) 11 1.0138 15.5370 – 33.2379
(k) 15 1.1547 33.2379 – ∞

Table B.2: Properties of the MECs proposed by the GA for a square-shoulder
system of shoulder width λ = 3σ: the internal energy per particle in reduced
units, U∗, the particle area density ησ2, and the range of pressure values P ∗,
for which the structures were found to be stable (cf. section 6.1). The letters
given in the first column refer to the pictures shown in figure B.2.
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(a) U∗ = 0 (b) U∗ = 1/2 (c) U∗ = 1

(d) U∗ = 2 (e) U∗ = 7/2 (f) U∗ = 14/3

(g) U∗ = 6 (h) U∗ = 13/2 (i) U∗ = 9

(j) U∗ = 11 (k) U∗ = 15

Figure B.2: Full sequence of minimum energy configurations found for a
square-shoulder system of shoulder range λ = 3σ with their respective internal
energy per particle U∗ in reduced units (cf. section 6.1).
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Full sequence of MECs for λ = 5σ

structure U∗ ησ2 stable P ∗-range
(a) 0 0.0000 0.0000 – 0.0604
(b) 1/2 0.0748 0.0604 – 0.1571
(c) 1. 0.0982 0.1571 – 0.3372
(d) 7/4 0.1256 0.3372 – 0.7107
(e) 3 0.1613 0.7107 – 0.8153
(f) 4 0.2010 0.8153 – 2.0153
(g) 13/2 0.2678 2.0153 – 2.7117
(h) 17/2 0.3337 2.7117 – 5.1711
(i) 11 0.3979 5.1711 – 7.2312
(j) 44/3 0.4984 7.2312 – 13.4869
(k) 56/3 0.5849 13.4869 – 15.1363
(l) 21 0.6428 15.1363 – 18.1230
(m) 24 0.7194 18.1230 – 21.2024
(n) 27 0.8009 21.2024 – 28.1631
(o) 34 0.9999 28.1631 – 59.6821
(p) 42 1.1547 59.6821 – ∞

Table B.3: Properties of the MECs proposed by the GA for a square-shoulder
system of shoulder width λ = 5σ: the internal energy per particle in reduced
units, U∗, the particle area density ησ2, and the range of pressure values P ∗,
for which the structures were found to be stable (cf. section 6.1). The letters
given in the first column refer to the pictures shown in figure B.3
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(a) U∗ = 0 (b) U∗ = 1/2 (c) U∗ = 1 (d) U∗ = 7/4

(e) U∗ = 3 (f) U∗ = 13/2 (g) U∗ = 4 (h) U∗ = 17/2

(i) U∗ = 11 (j) U∗ = 44/3 (k) U∗ = 56/3 (l) U∗ = 21

(m) U∗ = 24 (n) U∗ = 27 (o) U∗ = 34 (p) U∗ = 42

Figure B.3: Full sequence of minimum energy configurations found for a
square-shoulder system of shoulder range λ = 5σ with their respective internal
energy per particle U∗ in reduced units (cf. section 6.1).
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Full sequence of MECs for λ = 7σ

structure U∗ ησ2 stable P ∗-range
(a) 0 0.0236 0.0000 – 0.0282
(b) 1/2 0.0405 0.0282 – 0.0744
(c) 1 0.0556 0.0744 – 0.1654
(d) 3/2 0.0668 0.1654 – 0.2636
(e) 5/2 0.0895 0.2636 – 0.5245
(f) 15/4 0.1138 0.5245 – 1.5452
(g) 17/2 0.1785 1.5452 – 2.1180
(h) 21/2 0.2157 2.1180 – 3.0214
(i) 25/2 0.2502 3.0214 – 6.4725
(j) 53/3 0.3127 6.4725 – 6.9967
(k) 64/3 0.3740 6.9967 – 11.7793
(l) 65/3 0.3780 11.7793 – 14.3968
(m) 27 0.4395 14.3968 – 14.8260
(n) 55/2 0.4428 14.8260 – 15.1357
(o) 31 0.4974 15.1357 – 27.5137
(p) 109/4 0.5665 27.5137 – 28.5437
(q) 38 0.5693 28.5437 – 29.4987
(r) 125(/3 0.6127 29.4987 – 31.2630
(s) 46 0.6696 31.2630 – 36.3017
(t) 52 0.7529 36.3017 – 48.8709
(u) 54 0.7768 48.8709 – 53.8705
(v) 178/3 0.8415 53.8705 – 71.9874
(w) 81 1.1284 71.9874 – 129.6095
(x) 82 1.1383 129.6095 – 160.2448
(y) 84 1.1547 160.2448 – ∞

Table B.4: Properties of the MECs proposed by the GA for a square-shoulder
system of shoulder width λ = 7σ: the internal energy per particle in reduced
units, U∗, the particle area density ησ2, and the range of pressure values P ∗,
for which the structures were found to be stable (cf. section 6.1). The letters
given in the first column refer to the pictures shown in figure B.4.
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(a) U∗ = 0 (b) U∗ = 1/2 (c) U∗ = 1 (d) U∗ = 3/2 (e) U∗ = 5/2

(f) U∗ = 17/4 (g) U∗ = 17/2 (h) U∗ = 21/2 (i) U∗ = 25/2 (j) U∗ = 54/3

(k) U∗ = 64/3 (l) U∗ = 65/3 (m) U∗ = 27 (n) U∗ = 109/4 (o) U∗ = 31

(p) U∗ = 151/4 (q) U∗ = 38 (r) U∗ = 125/3 (s) U∗ = 46 (t) U∗ = 52

(u) U∗ = 54 (v) U∗ = 178/3 (w) U∗ = 81 (x) U∗ = 82 (y) U∗ = 84

Figure B.4: Full sequence of minimum energy configurations found for a
square-shoulder system of shoulder range λ = 7σ with their respective internal
energy per particle U∗ in reduced units (cf. section 6.1).



APPENDIX B 117

Full sequence of MECs for λ = 10σ

structure U∗ ησ2 stable P ∗-range
(B.5,a) 0 0.0125 0.0000 – 0.0130
(B.5,b) 1/2 0.0207 0.0130 – 0.0391
(B.5,c) 1 0.0282 0.0391 – 0.0767
(B.5,d) 3/2 0.0345 0.0767 – 0.2666
(B.5,e) 5/2 0.0496 0.2666 – 0.3816
(B.5,f) 4 0.0669 0.3816 – 0.4237
(B.5,g) 6 0.0702 0.4237 – 0.5640
(B.5,h) 7 0.0802 0.5640 – 0.7236
(B.5,i) 8 0.0901 0.7236 – 0.9037
(B.6,a) 9 0.1001 0.9037 – 1.6948
(B.6,b) 25/2 0.1262 1.6948 – 1.9126
(B.6,c) 29/2 0.1454 1.9126 – 2.6294
(B.6,d) 33/2 0.1635 2.6294 – 3.2887
(B.6,e) 37/2 0.1816 3.2887 – 6.2722
(B.6,f) 82/3 0.2439 6.2722 – 8.3190
(B.6,g) 92/3 0.2703 8.3190 – 12.9347
(B.6,h) 79/2 0.3315 12.9347 – 19.3908
(B.6,i) 89/2 0.3625 19.3908 – 33.6106
(B.6,j) 53 0.3991 33.6106 – 37.4077
(B.6,k) 220/3 0.5097 37.4077 – 46.8181
(B.6,l) 78 0.5370 46.8181 – 48.4984
(B.7,a) 87 0.5964 48.4984 – 63.8452
(B.7,b) 193/2 0.6545 63.8452 – 70.2321
(B.7,c) 105 0.7108 70.2321 – 82.0690
(B.7,d) 111 0.7498 82.0690 – 85.4410
(B.7,e) 116 0.7842 85.4410 – 113.8668
(B.7,f) 135 0.9011 114.8668 – 133.7881
(B.7,g) 156 1.0495 133.7881 – 227.4269
(B.7,h) 166 1.1003 227.4269 – 327.1034
(B.7,i) 180 1.1547 327.1034 – ∞

Table B.5: Properties of the MECs proposed by the GA for a square-shoulder
system of shoulder width λ = 10σ: the internal energy per particle in reduced
units, U∗, the particle area density ησ2, and the range of pressure values P ∗,
for which the structures were found to be stable (cf. section 6.1). The letters
given in the first column refer to the pictures shown in figures B.5 to B.7.
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(a) U∗ = 0 (b) U∗ = 1/2 (c) U∗ = 1

(d) U∗ = 3/2 (e) U∗ = 5/2 (f) U∗ = 4

(g) U∗ = 6 (h) U∗ = 7 (i) U∗ = 8

Figure B.5: Full sequence of minimum energy configurations found for the
square-shoulder system of shoulder range λ = 10σ with their respective internal
energy per particle U∗ in reduced units (cf. section 6.1).
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(a) U∗ = 9 (b) U∗ = 25/2 (c) U∗ = 29/2

(d) U∗ = 33/2 (e) U∗ = 37/2 (f) U∗ = 82/3

(g) U∗ = 92/3 (h) U∗ = 79/2 (i) U∗ = 89/2

(j) U∗ = 53 (k) U∗ = 220/3 (l) U∗ = 78

Figure B.6: Full sequence of minimum energy configurations found for the
square-shoulder system of shoulder range λ = 10σ with their respective internal
energy per particle U∗ in reduced units (continued from figure B.5).
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(a) U∗ = 87 (b) U∗ = 193/2 (c) U∗ = 105

(d) U∗ = 111 (e) U∗ = 116 (f) U∗ = 135

(g) U∗ = 156 (h) U∗ = 166 (i) U∗ = 180

Figure B.7: Full sequence of minimum energy configurations found for the
square-shoulder system of shoulder range λ = 10σ with their respective internal
energy per particle U∗ in reduced units (continued from figure B.6).
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[9] N. Osterman, D. Babič, I. Poberaj, J. Dobnikar and P. Ziherl, Phys. Rev. Lett., 2007, 99,

248301.

[10] J. Dobnikar, J. Fornleitner and G. Kahl, J. Phys.-Condens. Mat., 2008, 20, 494220.

[11] P. Ziherl and R. Kamien, Phys. Rev. Lett., 2000, 85, 3528.
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[67] E. Schöneburg, Genetische Algorithmen und Evolutionsstrategien, Addison-Wesley Publish-

ing Company, Bonn, Paris, 1994.

[68] D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, London, 2nd

edn., 2002.

[69] S. Kirkpatrick, C.D. Gelatt Jr. and M.P. Vecchi, Science, 1983, 220, 671.

[70] V. Cerny, J. Optimiz. Theory App., 1985, 45, 41.

[71] A.R. Oganov and C.W. Glass, J. Phys.: Condens. Mat., 2008, 20, 064210.

[72] B.M. Mladek, D. Gottwald, G. Kahl, M. Neumann and C.N. Likos, Phys. Rev. Lett., 2006,

97, 019901.

[73] B.M. Mladek, D. Gottwald, G. Kahl, M. Neumann and C.N. Likos, J. Phys. Chem. B, 2008,

111, 12799–12808.

[74] G.J. Pauschenwein and G. Kahl, Soft Matter, 2008, 4, 1396–1399.

[75] G.J. Pauschenwein, Ph.D. thesis, Institut für Theoretische Physik, TU Wien, 2008.

[76] M. Marder, Condensed Matter Physics, John Wiley and Sons, New York, 2000.

[77] H. Nowotny, Theoretische Festkörperphysik II, Institut für Theoretische Physik, TU Wien,

1997.

[78] A.J. Hurd, N.A. Clark, R.C. Mockler and W.J. O’Sullivan, Phys. Rev. A, 1982, 26, 2869.

[79] Y.N. Ohshima and I. Nishio, J. Chem. Phys., 2001, 114, 8649.

[80] H.H. von Grünberg and J. Baumgartl, Phys. Rev. E, 2007, 75, 051406.

[81] M. Hoppenbrouwers and W. van de Water, Phys. Rev. Lett., 1998, 80, 3871.

[82] P.P. Schram, A.G. Sitenkob and V.I. Zasenko, Physica B, 1996, 228, 197.



BIBLIOGRAPHY 125

[83] J.T. Padding and A.A. Louis, Phys. Rev. E, 2006, 74, 031402.

[84] A.J. Hurd, N.A. Clark, R.C. Mockler and W.J. O’Sullivan, J. Fluid Mech., 1985, 153, 401.

[85] J.M. Hofman, H.J. Clercx and P.P. Schram, Physica A, 1999, 268, 326.

[86] J.M. Hofman, H.J. Clercx and P.P. Schram, Physica A, 1999, 268, 353.

[87] P. Keim, G. Maret, U. Herz and H.H. von Grünberg, Phys. Rev. Lett., 2004, 92, 215504.

[88] R. Piazza and V. Degiorgio, Phys. Rev. Lett., 1991, 67, 3868.

[89] Z. Cheng, J. Zhu, W.B. Russel and P.M. Chaikin, Phys. Rev. Lett., 2000, 85, 1460.

[90] J. Baumgartl, M. Zvyagolskaya and C. Bechinger, Phys. Rev. Lett., 2007, 99, 205503.

[91] C.N. Likos, M. Watzlawek and H. Löwen, Phys. Rev. E, 1998, 58, 3135.
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