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Kurzfassung

Bringt man eine Flüssigkeit mit einem porösen Medium in Berührung, so wirkt sich
dies tiefgreifend auf die Eigenschaften der Flüssigkeit aus. Dieses Phänomen spielt
beispielsweise bei der Förderung von Erdöl oder der Bewegung von Eiweißmolekülen
in Zellplasma eine maßgebliche Rolle. Bei zahlreichen Vorgängen dieser Art bewegt
sich die Flüssigkeit „langsam“ hinsichtlich der Umordnung ihrer Teilchen, was von
besonderer Bedeutung im Zusammenhang mit porösen Medien ist, da diese eine sol-
che Flüssigkeit nicht nur verlangsamen, sondern unter Umständen auch beschleuni-
gen können. Welche dieser beiden Möglichkeiten tatsächlich eintritt, hängt dabei von
den Eigenschaften der Flüssigkeit und des Mediums sowie von den äußeren Bedingun-
gen ab. In dieser Arbeit befassten wir uns mit diesem Effekt sowie darüber hinaus
mit den dynamischen Eigenschaften von Flüssigkeiten in porösen Medien im Allge-
meinen. Unsere Untersuchungen basierten auf umfangreichen Computersimulationen
eines vereinfachten Modells, in dem sich die Teilchen einer Flüssigkeit durch ein porö-
ses Medium aus ungeordneten, räumlich fixierten Teilchen bewegten. Die im Rahmen
dieses Modells verwendeten Teilchen wurden dabei nach dem Vorbild kolloidaler Sus-
pensionen modelliert und wechselwirkten mittels besonders einfacher Kräfte. Bei der
Erforschung dieser Modellsysteme widmeten wir uns insbesondere dem sogenannten
Glasübergang, bei dem das Abkühlen einer Flüssigkeit bewirkt, dass die Umordnung
ihrer Teilchen bei einer Temperatur weit über dem Nullpunkt vollständig zum Erlie-
gen kommt. Dies ist gleichbedeutend mit der Bildung eines amorphen Festkörpers.
Der Glasübergang bot sich aus zwei Gründen als Studienobjekt an: Einerseits ist trotz
jahrzehntelanger Forschung noch immer nicht genau bekannt, welche physikalischen
Mechanismen diesen Übergang verursachen; andererseits trifft ein vor wenigen Jahren
ausgearbeitetes theoretisches Konzept umfassende Voraussagen zu Glasübergängen in
unserem Modell. Unsere Arbeit förderte zahlreiche aufschlussreiche Ergebnisse zuta-
ge: Unter anderem konnten wir ungewöhnliche Glasübergänge identifizieren, atypische
Teilchenbewegungsarten beobachten und die Porenstruktur des Modellmediums im
Detail charakterisieren. Darüber hinaus konnten wir wesentliche Einblicke in die physi-
kalischen Zusammenhänge gewinnen, die unseren Beobachtungen zugrunde liegen, wo-
durch unsere Erkenntnisse signifikant zum Verständnis der dynamischen Eigenschaften
von Flüssigkeiten in porösen Medien beitragen.





Abstract

Confining a liquid to a disordered medium may drastically change the physical proper-
ties of the liquid. This impact of confinement is crucial to processes like the extraction
of mineral oil from porous rocks or the motion of proteins in cytoplasm. In those cases,
as in many others, the relevant feature of the confined liquid is its slow dynamics, i.e.,
the slow propagation of its particles. It is therefore intriguing that depending on the
details of the system, the introduction of confinement may accelerate a liquid’s dynam-
ics—or decelerate it. This work aims at elucidating this phenomenon in particular, and
the dynamics of liquids in disordered media in general. We approach this challenge
by means of extensive computer simulations of a model in which the particles of a
liquid permeate a medium of immobile, disordered particles. We consider this model
for particularly simple particles as they occur in nature in the form of colloids, i.e.,
nano- to micrometer-sized particles in a solute. In our study of the model, we devote
special attention to its glass transitions, i.e., to the phenomenon that upon cooling or
compressing a liquid, its particles entirely cease to propagate and a disordered solid
is formed at a nonzero temperature. We focus on this issue for two reasons: firstly,
the nature of the glass transition is still a matter of debate, and secondly, a recently-
developed theoretical framework makes detailed predictions for this transition within
our model. As the principal achievements of our work, we unveiled unconventional
glass transitions in the model, exposed unusual types of particle propagation in it, and
characterized in detail the pore structure of its confinement. Together with the insights
we gained on the underlying physical mechanisms, our findings contribute significantly
to a deeper understanding of the dynamics of liquids in disordered media.





“With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk.”

John von Neumann
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Preface

The first thing to take care of when writing a thesis, they say, is the acknowledgments.
Because once the work is done, you won’t feel like thanking anyone anymore. I dared
to schedule this task to the very end, and yet I am still widely aware of the fact that
no thesis is the feat of just one person. Therefore, before commencing the scientific
part of this work, I would like to credit those people without who this thesis would
not have been possible.

Above all I would like to thank my parents, Elisabeth and Dieter, who made me
the curious person that I am. On countless occasions, they encouraged my interest
in so many different things—be it science, computers, languages, sports, music, or
theater. Of my many memories of them, let me recount just this one: the nights when
my father would go out with me to stargaze. I cherish those nights not because of
the things we saw—we only had field glasses at our hands—but because of the shared
fascination, the time spent together. I felt understood. I still do.

Then of course school. I am fortunate to have been educated, over the years, by
many excellent teachers, particularly in physics, biology, geography, politics, history,
and English. Pivotal in my eventual decision to take up the study of physics was Peter
Stock, whose physics, mathematics, and computer science lessons and whose support
I enjoyed for years. My serious advice to those seeking to attract pupils to science:
look out for teachers knowing how to marvel and motivate like he does.

Following my undergraduate studies in Stuttgart, I moved to Lawrence, Kansas,
where I spent an unforgettable time as a graduate student. It was there that I encoun-
tered teachers as terrific as Jack Shi, Doug McKay, Steve Shawl, and Tom Cravens,
and it was also there that for the first time I was offered the opportunity to blend
physics research with my other favorite pastime, computers.

Kansas also turned out to be the place where I would meet the most important
person of my life—my wife Lina. In our years since then, we have stood side by side
in dire times and have shared the blissful ones. It is in large parts because of your
encouragement that I eventually found the will and strength to complete this thesis.
You complete me. And you don’t know how much I admire your resilience.

When we moved to Vienna, I decided I wanted to emphasize working with com-
puters. For this purpose, I took the step to switch to the field of condensed-matter
physics. My door-opener to the field was Franz Vesely, who I am glad to count among
the reviewers of this thesis. I vividly remember his fascination with the algorithm that
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later would wind up being at the heart of this thesis, and it is because of him that I
became convinced to have chosen the right field.

In the further pursuit of my studies, fortune had it that I took up working with
Gerhard Kahl, who at the time was just about to embark on the project that the lion’s
share of this thesis would be based on. Gerhard, who I have now been working with
for over five years and who I immensely value, is not only masterful at establishing
an environment of scientific appreciation (not just for me, but for everyone under his
radar), but he also provided much moral support in times of personal hardship.

Joining Gerhard’s project shortly after myself was Daniele Coslovich, who I con-
sider my mentor in terms of glassy physics and of many other things. I profited so
much from his extensive knowledge and critical thinking, and I greatly enjoyed spar-
ring opinions with him over a vast range of topics, scientific or not. Hard-working and
ever-open to new ideas and tools as he is, I have very much missed the dynamics in
our office since he left.

Last but not least there are the many other members of the Soft Matter Theory
group who have made the sometimes long hours at the TU bearable and enjoyable.
Dieter Schwanzer, with whom at times I would spend hours chit-chatting about the
latest computer stuff and who is the good heart of the group. Giannis Georgiou,
Martina Lechner, and Ismene Kolovos, my dear office mates who were most always
more industrious than I and who took good care of the plants when I happened to be
away. Moritz Antlanger and Julia Fornleitner, with whom I just felt at ease to talk
about just about anything. As well as all the others, Andi Tröster, Camille Jouvie,
Cecilia Bores, Emanuela Bianchi, Gernot Pauschenwein, Günther Doppelbauer, Lukas
Strauss, Mario Kahn, Marta Montes, Silvano Ferrari, and Ulf Pedersen, thank you for
giving me that sense of belonging.

Now for some more technical issues. As alluded to in the above, much of this thesis was
carried out in the framework of an externally funded project. The agency providing
the funding was the FWF (the Austrian Science Fund), P19890-N16 having been the
project numberP.1, and my position was that of a project assistant (“Projektassistent”).
Over the course of this project, I have had the privilege to be the principal author of
four original scientific publications, which at the time of this writing have received a
total of 59 citations according to the ISI Web of ScienceP.2:

(i) Jan Kurzidim, Daniele Coslovich, and Gerhard Kahl.
Single-Particle and Collective Slow Dynamics of Colloids in Porous Confinement.
Physical Review Letters 103, 138303 (2009).

(ii) Jan Kurzidim, Daniele Coslovich, and Gerhard Kahl.
Impact of random obstacles on the dynamics of a dense colloidal fluid.
Physical Review E 82, 041505 (2010).

P.1http://www.fwf.ac.at/de/abstracts/abstract.asp?L=D&PROJ=P19890

P.2http://apps.webofknowledge.com

http://dx.doi.org/10.1103/PhysRevLett.103.138303
http://dx.doi.org/10.1103/PhysRevE.82.041505
http://www.fwf.ac.at/de/abstracts/abstract.asp?L=D&PROJ=P19890
http://apps.webofknowledge.com
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(iii) Jan Kurzidim and Gerhard Kahl.
Accessible volume in quenched-annealed mixtures of hard spheres: a geometric decomposition.
Molecular Physics 109, 1331 (2011).

(iv) Jan Kurzidim, Daniele Coslovich, and Gerhard Kahl.
Dynamic arrest of colloids in porous environments: disentangling crowding and confinement.
Journal of Physics: Condensed Matter 23, 234122 (2011).

Further, I participated in a publication that was cited another four times:

(v) Dieter Schwanzer, Daniele Coslovich, Jan Kurzidim, and Gerhard Kahl.
Effects of porous confinement on the structural properties of the Gaussian core model.
Molecular Physics 107, 433 (2009).

Finally, concurrent to the preparation of this thesis, I served as the co-author of a text-
book for students of the Ukrainian language. While topically entirely unrelated to the
thesis, I feel that mentioning the textbook is justified given the delay it caused to the
completion of this work. For the unlikely case of potential buyers, the bibliographical
information of the textbook reads:

(vi) Lina Klymenko and Jan Kurzidim.
Разом: Ukrainisch für Anfängerinnen und Anfänger.
(Verlag Holzhausen, Vienna, 2012).

From the organizational point of view, the thesis is divided into four major parts:

(1) a background chapter introducing all relevant physical aspects,
(2) a methods chapter describing in detail the utilized procedures,
(3) a results chapter largely recounting the findings of articles –, and
(4) an appendix containing two vital proofs.

The appendix is included in the list for the reason that the proofs therein are crucial
to the validity of parts of this work. The proofs address an issue that I uncovered
only after all of the above-listed journal articles had already been published and that
threatened the justification of some of the conclusions in the articles. Fortunately,
according to the proofs, all conclusions in question eventually remain valid.

Over the process of compiling the thesis, I gradually evolved its design towards
being self-contained. This essentially is a response to two impulses. On the one hand,
to some degree I sought to vindicate the nonexistence of my Master’s thesis. On
the other hand, I simply gave in to my perfectionist nature and to my urge to be
educational. The result is visible in the background chapter, and even more so in
the methods chapter, in that those chapters are quite extensive—considerably more
so than corresponding chapters in most comparable Ph.D. theses. Following the same
impulses, I chose to include various references to Wikipedia articles so as to equip
the reader with as much general background information as possible. Notably, these
references are not intended to back up information directly relevant to the research
of this work—this kind of justification is duly provided by numerous references to
scientific journal articles.

http://dx.doi.org/10.1080/00268976.2011.556579
http://dx.doi.org/10.1088/0953-8984/23/23/234122
http://dx.doi.org/10.1080/00268970902845321
https://shop.verlagholzhausen.at/hhshop/-Ukrainisch-fuer-Anfaengerinnen-und-Anfaenger.htm
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So now, looking back at the past years, at all the programming and debugging,
the conferences and classes, and the writing of articles and this work, I believe my
time being a doctorate student has been productive and well spent. I hope that you,
the reader, will agree, and that when studying this thesis you will find it sound if you
review it, enlightening if you seek information in it, and entertaining if you just browse
it. Or ideally, all of that.

Jan Kurzidim, in June 2013



Chapter 1

Background

In this chapter, we provide the inclined reader with an overview of what motivated the
present work. Since the core part of this investigation is concerned with simulations—
the natural habitat of which is a computer’s hardware—, it is vital to put the data
therefrom into the context of physics. For this purpose, we will first introduce the
concepts of colloids, glasses, and porous confinement from the perspectives of theory,
experiment, and simulation; then, we will lay out the details of the system investigated
in this work; and finally we will discuss the previous theoretical work on the basis of
which the original goals of this work were formulated.

1.1 Colloids

Colloid, any substance consisting of particles substantially larger
than atoms or ordinary molecules but too small to be visible to
the unaided eye.

Encyclopedia Britannica1.1

The first of the concepts underlying this work is that of “colloids”. Historically, the
term was coined by the Englishman Thomas Graham, who in 1861 worked on the
diffusion of substances through a membrane [105]. In his study, he associated the
properties “low diffusibility” and “gelatinous” with materials such as “starch, dextrin
and the gums, caramel, [...], gelatine, [and] vegetable and animal extractive matters”.
Biased by his choice of materials, he identified the organic nature as their distinguishing
feature, which prompted him to name the class of materials by a compound term of
the two Greek words κόλλα (glue) and είδος (kind)—“sticky stuff” [172].

In the modern definition, the term colloid refers to a peculiar type of mixture of at
least two materials: “dispersed substances” that form small particles, and a “dispersion
medium” in which the particles are immersed [124, 172, 226]. The particles1.2 are

1.1http://www.britannica.com/EBchecked/topic/125898/colloid

1.2Depending on the context, the short-hand term “colloid” may refer to a colloidal substance as a
whole or to a single colloidal particle.

http://www.britannica.com/EBchecked/topic/125898/colloid
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gas
none

(gases are miscible)
liquid aerosol

fog, mist, sprays

solid aerosol

smoke, dust,
granular media

liquid
foam

whipped cream,
shaving cream

emulsion

milk, mayonnaise,
hand cream

sol

blood, clay, ink,
paint, proteins

solid
solid foam

styrofoam, pumice,
bird bones

gel

gelatin, jelly
solid sol

colored glass

Table 1.1: Classification of colloidal systems. Common names and examples
of colloidal systems for different thermodynamic phases of the dispersion medium
(the host) and the dispersed substance (the small particles). (Derived from Ref.
[124] and Footnote 1.3.)

usually considered colloidal if they are large enough for quantum effects to be negligible,
but small enough for the mixture to be stable. Depending on the system at hand, this
allows sizes of colloidal particles between 1 nm and 10 µm—much larger than atoms,
but much smaller than the resolution of the naked eye (“mesoscopic”). The other key
feature of colloidal systems is that at length scales smaller than the size of the colloidal
particles, both the dispersed substance and the dispersion medium can be considered
homogeneous.

In the general case, the dispersed substance and the dispersion medium can take
on any of the classical states of matter, i.e., be gaseous, liquid, or solid [124]. Ta-
ble 1.1 gives an overview over the possible combinations along with some prominent
examples. As the table evidences, colloids are vital to a plethora of contexts such as
the environment (pollution), the chemical industry (coatings, materials, cosmetics),
the food industry, the geological sciences (volcanism, mineralogy), and last but not
least biology, where it is safe to say that we are colloids1.4. The definition of colloids
also overlaps with the notion of “soft matter”, a wide class of solid materials charac-
terized by its extraordinarily small resistance to macroscopic mechanical deformation.
Over the course of the most recent decades, this material class has been the subject of
a steadily-increasing level of scientific interest (see for instance the witty Nobel lecture
given by de Gennes in 1992 [59])1.5.

1.3http://en.wikipedia.org/wiki/Colloid

1.4In analogy to the astrophysical dictum “we are stardust”.

1.5It is of little coincidence that “soft matter” also inspired the name of the scientific group that the
author is a member of.

http://en.wikipedia.org/wiki/Colloid
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Figure 1.1: Coarse-graining schematic. Left: artist’s rendition of a ∼2 nm
diameter gold sphere immersed in water. Right: conception of a pertinent coarse-
grained picture of the particle and the solvent. In both images, parts of the water
are cut away to render the gold sphere visible. (Source: author’s work.)

1.1.1 Coarse-grained picture

So why are colloids interesting? They are because their macroscopic behavior is
determined largely by their mesoscopic properties, i.e., by the statics and dynamics
of the dispersed particles within the dispersion medium [124, 172, 226]. Therefore,
it is sensible to attempt to describe a colloid using only these mesoscopic properties.
The precondition for such a “coarse-grained” picture to be valid is that the dispersed
particles do not merge or split, that they can be clearly distinguished from each other
and from the dispersion medium, and that they (and the surrounding medium) are
internally homogeneous on the length scale of the size of the particles. These conditions
are met in particular by many sols, i.e., solid particles suspended in a liquid medium
(cf. Table 1.1).

For such colloids, the atomic structure of the particles and of the solvent can be
neglected, and each particle can be characterized by only a few attributes—a procedure
also known as “averaging out the internal degrees of freedom” [172]. Depending on the
specifics of the system, a colloidal particle may for instance be regarded as a spherically
symmetric object (visualized in Fig. 1.1 for the example of a gold nanosphere) which
is then identified only by a mass and by the location and the velocity of its center of
mass. In other cases, a more suitable description might be obtained by also taking into
account properties such as an orientational vector (as for instance in “patchy particles”
or “liquid crystals”; see [30, 60, 102]) or a magnetization vector.

The coarse-grained picture greatly facilitates investigations of the collective be-
havior of the colloidal particles, i.e., of their arrangement and their dynamics [5, 9,
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214, 286]. A typical object of interest is the “thermodynamic phase” (solid, liquid,
gaseous) that their arrangement corresponds to in analogy with atomic or molecular
substances. Like for the latter substances, the thermodynamic phase of a colloid de-
pends upon the external conditions (temperature, pressure, etc.), the properties of the
constituent particles (e.g., their mass), and the interactions between these particles.

Interactions in colloidal systems may be very complex. As in atomic systems,
the behavior of each colloidal particle depends in principle upon the properties all
other colloidal particles [9, 115]. However, the interactions between colloidal particles
may be very different from interactions between atoms or simple molecules, which is
due to the internal structure of colloidal particles. Additionally, their interactions are
significantly influenced by the dispersion medium. In brief, the most important types
of forces on colloidal particles can be divided into two groups [124, 172, 226].

Firstly, there are forces between particles that are also known from atomic systems,
for instance

• steric repulsion (“excluded volume”),
• electrostatic forces, and
• induced dipole (“van der Waals”) forces.

These forces are consequences of the Pauli exclusion principle1.6, of charges on the
particles, and of the distribution of the charges on the particles, respectively.

Interactions of the second group are original to colloidal systems and follow from
the structure of the particles and in particular from the presence of the solvent. They
include for example

• “kicks” from fast solvent molecules,
• viscous drag of the solvent, and
• hydrodynamic forces from solvent flow.

Here, molecule kicks and viscous drag are usually subsumed under the notion of “Brow-
nian motion” [9], and solvent flow usually results from the movement of particles (but
may also be externally imposed) [123].

1.1.2 Colloids in experiments

In experiments, the examining of colloidal systems is greatly facilitated by two features
of their particles:

(i) Colloidal particles are large—frequently large enough to scatter
ordinary light, so that expensive observation techniques involving
electron or neutron beams are superfluous.

1.6http://en.wikipedia.org/wiki/Pauli_exclusion_principle

1.7http://en.wikipedia.org/wiki/Scanning_electron_microscope

1.8http://weitzlab.seas.harvard.edu/gallery.html

http://en.wikipedia.org/wiki/Pauli_exclusion_principle
http://en.wikipedia.org/wiki/Scanning_electron_microscope
http://weitzlab.seas.harvard.edu/gallery.html
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Figure 1.2: Microscope images of colloidal systems. Left: snapshot from
a typical fluorescence confocal microscopy video. Right: example of a scanning
electron microscopy view, which in comparison is more detailed but inherently
static1.7. (Both images: Experimental Soft Condensed Matter Group, Harvard
University1.8.)

(ii) Colloidal particles are slow, with relevant events taking place on
the second or even minute scale (not nano- or picoseconds, as
in atomic systems), meaning that it is viable to record ordinary
videos [215].

This allows to observe colloids for instance using dynamic light scattering [23, 27,
36, 211, 215, 265] or confocal fluorescence video microscopy [56–58, 140, 277, 279].
By the latter, for example, hundreds of particles can be tracked simultaneously in
real space, and the resulting information can be examined with the same methods as
computer simulation data (cf. Sec. 2.5), thereby establishing an important link between
simulation and experiment.

An even more appealing feature of colloids is the possibility to modify the particles
themselves (and/or the solvent) on an atomic level in order to change the overall
properties of a system. This way, if desired, it is even possible to design (“tailor”)
colloidal systems to fit particular purposes [84, 172]. Such a changing of particles is
entirely unknown in systems of atoms and simple molecules. The tailorability may be
used for instance to mimic atomic systems using colloidal particles; however, its real
appeal lies in the wealth of complex systems with exotic properties that can be created
this way [59, 84].

Finally, in colloidal systems it is nowadays possible not only to modify the inter-
nal structure of all particles, but also to manipulate them individually. This is accom-
plished for instance using so-called “optical tweezers”—laser beams, essentially—which
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Figure 1.3: The hard-sphere potential. Poten-
tial energy UHS

ij (rij) of two isolated hard spheres i
and j depending on their distance rij as given
in Eq. (1.1). The hard-sphere potential implies
that the distance between i and j cannot be less
than Hij , the latter being given by Hij = Ri +Rj
in the case of additive hard spheres [Eqs. (1.2)
and (1.3)].

rij

+∞Uij
HS(rij)

0
0

Hij

allow for instance to relocate particles, or, more sophisticated, to measure the actual
forces between colloidal particles [14, 56, 109]1.9.

1.1.3 Hard spheres

In most theoretical and simulational investigations of colloidal systems, relatively-
simple particle interaction models are employed to deduce a system’s overall behav-
ior [172]. This reflects the coarse-grained picture of colloids. In this work, we made
extensive use of the so-called “hard-sphere” (HS) model, which we shall introduce in
the following.

1.1.3.1 Definition

In the HS model, as in many other models of colloids, a particle i at some time t is
represented by a small set of properties, γi(t). The γi(t)’s of HS particles include only
a position vector ri(t), a momentum vector pi(t), and a time-independent mass mi.
The forces acting on HS particles—and therefore the evolution of their γi(t)’s—result
from the following assumptions.

(1) It is assumed that the force Fi(t) on particle i at the time t can be ex-
pressed as the gradient ∇ri(t)U(r, t) of a scalar potential that i moves in.

(2) It is assumed that this potential arises solely from pairwise interactions
between the particles, i.e., that U(ri(t), t) =

∑

j 6=i Uij(γi(t),γj(t)).

(3) It is assumed that the pair potential depends only upon the distance
between i and j, meaning that Uij = Uij(rij) where rij = rij(t) = |rj(t)−
ri(t)|. This implies translational and rotational invariance of the system.

1.9One of the fathers of optical tweezers, Steven Chu, received not only the 1997 Nobel prize for this
innovation, but is nowadays one of the most prominent voices of science due to his being the current
Secretary of Energy of the United States1.10.

1.10http://www.energy.gov/organization/dr_steven_chu.htm

http://www.energy.gov/organization/dr_steven_chu.htm


1.1. Colloids 11

(4) It is assumed, as sketched in Fig. 1.3, that the potential follows the form

UHS
ij (rij) =







+∞ for rij ≤ Hij
0 for rij > Hij

. (1.1)

Two particles i and j interacting according to these assumptions experience a force only
if rij = Hij . Since, moreover, achieving rij < Hij would require an infinite amount of
energy, the involved particles represent infinitely-hard bodies of spherical shape—hard
spheres.

The HS potential is particularly simple in that it involves only one parameter—
Hij. However, in a system of N particles, there are still as many as N(N−1)/2 such
parameters. For further simplification, it is common to express the Hij ’s in terms of
properties associated with the individual particles instead of particle pairs. This is
achieved by assigning N−1 “radii” R(j)

i to each particle i, and by defining that

Hij = R
(j)
i +R

(i)
j . (1.2)

At first, this may seem a needless complication since it doubles the number of param-
eters. However, one may for instance require that

R
(j)
i = Ri , (1.3)

i.e., that each particle be associated with just a single radius. Hard spheres obeying
Eq. (1.2) and Eq. (1.3) are said to be “additive” [266]. A collection of additive hard
spheres is called “polydisperse” if each Ri has a unique value, and “monodisperse” if
all Ri’s are equal [229]. The monodisperse case is particularly appealing due to its
exceptional simplicity, and was employed throughout this work.

Finally, it is noteworthy that UHS
ij does not depend upon an orientational vec-

tor. This is tantamount to considering nonrotating particles, which is important for
the derivation of the dynamic interactions in the HS model (cf. Sec. 2.2.1.4). Also,
since UHS

ij does not depend upon any particle’s momentum, it does not account for
hydrodynamic effects.

1.1.3.2 Basic properties

In some HS systems, it is sensible to divide the particles into S “species” according to
the values of the HS interaction parameters. In this case, it is common to associate
each particle i with S radii {R(1)

i , . . . , R
(S)
i }, and to re-express Eq. (1.2) as

Hij = R
(t)
i +R

(s)
j (1.4)
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Figure 1.4: Redefinition of hard-
sphere radii. Mixture of two hard-
sphere species (red and green disks).
For the interaction between red and
green particles, only the sum of the radii
is relevant, which renders panels (a)–(c)
equivalent for the inter-species interac-
tion. The hard-sphere radii of the intra-
species interaction (red–red and green–
green) are not depicted.

(a) (b) (c)

where particles i and j belong to species s and t, respectively. For interactions between
particles of the same species, Eq. (1.4) then simply reverts to Eq. (1.3). For interactions
between two distinct species s and t, however, the HS radii may be redefined as

R̃
(t)
i = R

(t)
i + b(st) and

R̃
(s)
j = R

(s)
j − b(st) ,

(1.5)

the only restriction in the choice of b(st) being that all R̃(t)
i and R̃(s)

j have to be positive.

Since the sums R̃(t)
i +R̃(s)

j and R(t)
i +R(s)

j are identical by construction, none of the Hij ’s

are altered by the substitutions R(t)
i → R̃

(t)
i and R

(s)
j → R̃

(s)
j .

A geometric interpretation of this procedure is provided in Fig. 1.4, which shows an
HS system with two distinct particle species encoded in red and green color. The only
difference between panels (a), (b), and (c) lies in the inter-species radii of the particles.
As is evidenced by the lack of overlaps between particles of distinct species in all panels,
the radii of a green and a red particle always add up to the same value. The “overlaps”
between particles of the same species are irrelevant since the green–green and red–red
interactions are based on HS radii that are not shown. Figure 1.4 thus underscores the
validity of replacing inter-species radii according to Eq. (1.5). This property will be
made extensive use of in the context of characterizing the geometry of porous matrices
(see Sec. 2.4 and Ref. [146]).

Another interesting feature of HS systems is their vanishing potential energy, U =
0. If the particles are subject to Newtonian motion, then the system can be described
by a Hamiltonian of the form H = K +U = E, where E is the system’s total energy
and K its kinetic energy. In this case, U = 0 yields E = K =

∑N
i=1 p2

i /2mi, where mi
is the mass of particle i and pi is its momentum. This entails that the particles
move along straight lines at all times, except for infinitesimal time spans during which
“impulse interactions” take place (see Sec. 2.2.1.1). The physics of these interactions
is invariant under a rescaling of time, as can be seen from Eq. (2.26) where prefixing
a factor a to each velocity on the right-hand side is tantamount to multiplying the
entire right-hand side with a. Moreover, using pi = mivi from your physics 101 class,
the relation

∑N
i=1 mi(avi)2/2 = a2E can be seen to hold, meaning that rescaling time
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is equivalent to changing the total energy. Since E, via the equipartition theorem1.11,
also defines a temperature, T = 2E/3NkB (where kB is Boltzmann’s constant), this
time rescaling invariance has gained HS systems the label “athermal” [227]1.12,1.13.

Molecular dynamics (MD) simulations of hard spheres are typically carried out
in the NV E—or “microcanonical”—ensemble (cf. Sec. 2.2). This means that E in
these systems is one of the external parameters. However, since the actual value
of E is irrelevant (see above), the only genuine control parameters in microcanonical
HS systems are the particle number N and the volume V . Consider further that
the actual size of the system is usually uninteresting, and that both N and V are
proportional to the system’s size. This means that microcanonical HS systems are in
fact controlled only by the ratio of N and V , i.e., only by one external parameter.
In HS-MD simulations, this ratio is commonly represented indirectly by the volume
fraction φ, i.e., by the fraction of volume covered if each particle i is identified with a
sphere of radius Ri [see Eqs. (1.2) and (1.3)]. Since by definition hard spheres do not
overlap, the volume fraction—or “packing fraction”—evaluates to

φ =
1

V

N
∑

i=1

4π

3
R3
i =

π

6
ρ σ3 , (1.6)

where ρ = N/V is the number density of the particles. For the second equality in
Eq. (1.6), it was assumed that Ri = σ/2 for all i, meaning that the particles are
monodisperse (cf. Secs. 1.1.3.1 and 2.5.1.6).

1.1.3.3 Significance

Monodisperse HS systems display a variety of features known from real colloids. Most
notably, this includes a fluid and a crystal phase along with a fluid–crystal phase
transition and the possibility for these phases to coexist [5, 201, 286]. Of particular
importance to the present work is the fact that HS fluids also exhibit slow dynamics
(i.e., glassy behavior; see Sec. 1.2) if prepared suitably [214].

1.11The equipartition theorem holds in thermal equilibrium and reads T = 2E/nNkB, where n is
the number of degrees of freedom (DOFs) of one of the constituent particles. Typical DOFs are the
translation, rotation, or vibration of a particle. The actual number of DOFs depends on the nature
of the particles as well as on the overall energy of the system and its dimensionality [108, 238]. In
the case of hard spheres it is n = 3 since only translation is relevant and the dimensionality is three.

1.12The notion of athermality continues to persist when considering Brownian [9, 38, 85] instead of
Newtonian motion. In this case, however, changing the total energy rescales the time coordinate only
for time-averaged quantities (see Secs. 2.1.2 and 2.5.1). The reason for this is that Brownian systems
are not described by a Hamiltonian, which in turn is owed to the fact that a given initial phase-space
point does not give rise to a unique phase-space trajectory [9, 226].

1.13In contrast to the total energy, thermodynamic variables such as the pressure or the chemical
potential constitute genuine control parameters in HS systems. However, the definition of these
quantities is nontrivial in HS systems [115].
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The HS model is excellently suited to study the local particle arrangement in
high-density (or high-pressure) condensed-matter systems [115]. This is due to the
fact that under these conditions, the average distance between neighboring particles is
short and steric repulsion—if present—is the dominant force (cf. Sec. 1.1.1). This was
demonstrated famously in 1971 by Weeks, Chandler, and Andersen [115, 267, 278] for
the Lennard-Jones (LJ) potential1.14. Conversely, this implies that the HS potential
is less suited for the modeling of systems in which other forces are significant (cf.
Sec. 1.1.1).

HS systems are appealing also due to the availability of statistical-mechanical
methods to theoretically evaluate their properties. One of these properties is the ra-
dial distribution function (cf. Sec. 2.5.2.1 and Ref. [280]), which can be approximated
for instance using the “Ornstein-Zernike” (OZ) equations [202] in combination with
the “Percus-Yevick” (PY) closure [210]. This approximation gives way to more sophis-
ticated analyses concerned with the dynamics of HS systems (see Sec. 1.4.2). Further,
it is possible to obtain the equation of state for HS systems—for instance via the
OZ–PY scheme as above [280] or, to a higher precision, by the “Carnahan-Starling”
approximation [44]. This fact will be used in Sec. 2.5.4.1.

Finally, the HS model is of significance due to the possibility to not only select but
to also engineer HS-like colloids (cf. Sec. 1.1.2). Such colloids are typically prepared
from a “latex”1.16, i.e., from a suspension of solid polymeric particles in a liquid. In
many studies [13, 40, 214], these particles are composed of poly(methyl methacrylate)
(“PMMA”), a material also known as “Plexiglas”1.19. The particles can be prepared
such that they well approximate spheres and that they show diameter variations of
less than 10%. The average diameter of the particles is typically chosen from the range
of 50 to 300 nm, which allows for light scattering experiments (cf. Sec. 1.1.2).

1.14The Lennard-Jones (LJ) potential, or 12–6 potential, is one of the most widely used model
potentials in condensed-matter physics, with over 10 000 hits on Thomson–Reuter’s publication
database “ISI Web of Science” (see Footnote P.2). The LJ two-body potential is defined as
ULJ = 4ε[(σ/r)12 − (σ/r)6], where ε is an energy parameter, σ a distance parameter, and r is the
inter-particle distance. The potential features strong repulsion at short distances and mild attraction
at longer distances, and is a good model for noble gases. Notably, “Lennard-Jones” is the surname
of a single person, namely Sir John Lennard-Jones1.15.

1.15http://en.wikipedia.org/wiki/John_Lennard-Jones

1.16In colloquial speech, the term “latex”1.17 commonly refers to an elastic material. In science and
technology, however, the term designates a material that can be processed to yield an “elastomer”1.18.
Whereas nowadays most latices are chemically engineered, historically latices were harvested in the
form of plant saps as occurring for instance in the Pará rubber tree or the dandelion (German
“Löwenzahn”). In a side note, the plural of latex (“latices”) should not to be confused with the plural
of lattice (“lattices”).

1.17http://en.wikipedia.org/wiki/Latex

1.18http://en.wikipedia.org/wiki/Elastomer

1.19http://en.wikipedia.org/wiki/Pmma

http://en.wikipedia.org/wiki/John_Lennard-Jones
http://en.wikipedia.org/wiki/Latex
http://en.wikipedia.org/wiki/Elastomer
http://en.wikipedia.org/wiki/Pmma
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1.2 Glasses

“The deepest and most interesting unsolved problem in solid state theory is
probably the theory of the nature of glass and the glass transition. This
could be the next breakthrough in the coming decade. The solution of the
problem of spin glass in the late 1970s had broad implications in unexpected
fields like neural networks, computer algorithms, evolution, and computational
complexity. The solution of the more important and puzzling glass problem
may also have a substantial intellectual spin-off. Whether it will help make
better glass is questionable.”

Philip W. Anderson, 1977 Nobel laureate
[Science 267, 1615–1616 (1995)]

The fundamental nature of “glass” has, for several decades now, been the subject of
intense theoretical, simulational, and experimental research. Yet, despite these efforts,
glasses continue to elude a coherent understanding. An important objective of this
work is to contribute to the grand picture of what glass actually is. Since over the years
a multitude of pertinent theoretical concepts have been developed, it is well beyond
the scope of this work to elaborate on, or even touch upon, all of these concepts. In
this background section, we will therefore first introduce some general information
about glasses, and subsequently focus on the specific aspects that are relevant to the
scientific approach of this work.

1.2.1 History and applications of glass

Let us start out with a brief summary of the history and applications of materials
called “glass”. Glasses have been invaluable for mankind throughout almost its en-
tire existence1.20. In the stone age, for instance, the volcanic glass obsidian1.21 was
treasured for its sharp and durable edges (upon fracturing) and its specular surface
(upon polishing). Between 4000 and 3000 BC in Mesopotamia, glass was for the first
time produced artificially, mainly to manufacture small vessels and jewelery. Around
1 AD in the Roman Empire, the technique of glass blowing1.22 was invented, which
allowed to craft large vessels and, for the first time, glass windows. In medieval Europe,
stained-glass windows came to be one of the main pictorial arts. The fabrication of
window glass culminated in the mid-20th century with the float glass1.23 process, in
which molten glass is floated over a bed of liquid metal to obtain extremely flat sheets
of glass.

1.20http://en.wikipedia.org/wiki/History_of_glass

1.21http://en.wikipedia.org/wiki/Obsidian

1.22http://en.wikipedia.org/wiki/Glassblowing

1.23http://en.wikipedia.org/wiki/Float_glass

http://dx.doi.org/10.1126/science.267.5204.1615-d
http://en.wikipedia.org/wiki/History_of_glass
http://en.wikipedia.org/wiki/Obsidian
http://en.wikipedia.org/wiki/Glassblowing
http://en.wikipedia.org/wiki/Float_glass
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(a) (b)

(c)
(d)

(e)
(f)

(g)

Figure 1.5: Historic and modern applications of glass. Panel (a): the volcanic
glass obsidian, used in stone-age cutting tools. Panel (b): a Roman-age drinking
cup. Panel (c): a medieval stained-glass window (Strasbourg Cathedral). Panel
(d): a modern building façade of flat-glass panes. Panel (e): eyeglasses. Panel (f):
glass wool, for fireproof thermal insulations. Panel (g): optical fibers, for high-
speed data transmission. (All images: Wikimedia.)

As early as around 500 BC in Egypt and Greece, glass was used for optical
lenses1.24, initially probably as burning and/or magnifying glasses. Yet, only by the
late 13th century AD in Italy, lenses were also used as eyeglasses. It was first in the
early 1600s in the Netherlands that multiple lenses were combined into microscopes
and telescopes. In the mid-19th century, J. Tyndall popularized optical fibers1.25—light
“conductors” by the principle of total internal reflection—, which nowadays are widely
used to transmit digital information by modulating the conducted light. The 19th cen-
tury also saw the invention of glass wool1.26, a lightweight material in which thin glass
fibers are arranged in a texture similar to wool. Glass wool is inflammable and a very
poor heat conductor and therefore excellent for heat insulation of buildings and pipes.
A mid-20th century invention, finally, is fiberglass1.27, a class of extremely robust and
lightweight compound materials in which a plastic polymer is reinforced by glass fibers.

1.24http://en.wikipedia.org/wiki/Lens_%28optics%29

1.25http://en.wikipedia.org/wiki/Optical_fiber

1.26http://en.wikipedia.org/wiki/Glass_wool

1.27http://en.wikipedia.org/wiki/Fiberglass

http://en.wikipedia.org/wiki/Lens_%28optics%29
http://en.wikipedia.org/wiki/Optical_fiber
http://en.wikipedia.org/wiki/Glass_wool
http://en.wikipedia.org/wiki/Fiberglass


1.2. Glasses 17

1.2.2 Supercooling

We now take on the question of what glass actually is. Let us start by considering the
two materials “quartz”1.28 and “fused quartz”1.29. Under standard conditions (0 ◦C,
1 bar) these materials are quite similar, but they differ slightly in various properties
such as their density, thermal expansion, tensile strength, and refractive index1.30.
It is the very existence of this difference that is surprising since both materials are
composed purely of SiO2 (silicon dioxide)1.31. How can this be? According to classical
thermodynamics, for every set of external conditions (temperature, pressure, etc.) a
substance in thermal equilibrium can assume only one1.33 thermodynamic “phase” [108,
238]. Therefore, it is impossible that both quartz and fused quartz represent stable
states of SiO2. Yet, both quartz and fused quartz exhibit unchanged properties over
very long times—even over the course of centuries.

The key difference between quartz and fused quartz is that the latter results from
a process called “supercooling” [101, 104, 288] while the former is in fact the stable
phase of SiO2 under standard conditions. So what is supercooling? Suppose that a
substance is equilibrated and present in its liquid (or fluid1.34) phase. Suppose further
that in this situation the external conditions are changed in a way that the stable
phase of the substance would now be the crystal phase. The substance will of course
immediately start to react to this change, but since in any substance the velocities
of the constituent particles are finite, this reaction cannot be completed immediately.
From this it can be inferred that if the change of the external conditions occurs “fast
enough”, the substance will remain liquid-like for some (possibly very extended) time
before the crystalline state prevails. Since the changed conditions usually involve a
decrease in temperature1.36, the itinerant liquid state is called a “supercooled liquid”.

1.28http://en.wikipedia.org/wiki/Quartz

1.29http://en.wikipedia.org/wiki/Fused_quartz

1.30http://www.azom.com/article.aspx?ArticleID=1114

1.31Silicon dioxide constitutes the main component of most materials that are commonly referred to
as “glass”. This in particular includes “soda-lime glass”, which is omnipresent in windows and food
containers [104]1.32. Fused quartz can therefore be considered a good representative of “glass”.

1.32http://en.wikipedia.org/wiki/Soda-lime_glass

1.33Under certain external conditions, it is also possible that multiple thermodynamic phases of a
substance co-exist. In this case, each involved phase represents the single stable phase for some other
set of external conditions, and the fractions of the substance occupied by the different phases are
fixed by the external conditions [108, 238].

1.34Some substances do not exhibit “liquid” and “gas” as distinct thermodynamically-stable phases.
In such substances, which notably include hard-sphere systems (cf. Sec. 1.1.3), the thermodynamic
phase least resistant to shear is commonly called the “fluid” phase1.35.

1.35http://en.wikipedia.org/wiki/Fluid

1.36Depending on which external parameters are controlled with the least effort in the system of
interest, supercooling may alternatively refer to an increase of the pressure or the density. In systems
of hard spheres—the subject of this work—, the relevant parameter is the density (cf. Sec. 1.1.3.2).

http://en.wikipedia.org/wiki/Quartz
http://en.wikipedia.org/wiki/Fused_quartz
http://www.azom.com/article.aspx?ArticleID=1114
http://en.wikipedia.org/wiki/Soda-lime_glass
http://en.wikipedia.org/wiki/Fluid
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This obviously raises the question of how fast “fast enough” is. The answer to
this question requires an understanding of the process by which a supercooled liquid
is transformed into a crystal. In most substances, this process goes by the name of
“nucleation and growth” [11, 32, 92, 141, 233]1.37, which, in brief, involves a sequence of
two phenomena: First, “nuclei” (small crystalline regions) are spontaneously formed
and dissolved due to random positional fluctuations of the substance’s particles. Then,
once “critical nuclei” (nuclei large enough to be stable) are formed, these nuclei grow
since larger nuclei are energetically more favorable1.38. This way, eventually the entire
substance is transformed into crystalline structures.

In the present context, the most relevant aspect of nucleation and growth is the
average time τnucl required to form a critical nucleus in the given amount of supercooled
liquid. The reason for this is twofold: for times t shorter than τnucl there is no1.39

critical nucleus and therefore no growth, and the volume of the noncritical nuclei is
typically tiny compared to the overall volume of the supercooled liquid. Therefore,
the supercooled liquid is effectively stable (“metastable”) for t < τnucl. This is the
canonical notion of “quasi-equilibrium”, in which a metastable phase is considered
indistinguishable from true equilibrium despite the exclusion of the actually stable
arrangement (see, e.g., Refs. [1, 26, 31, 62, 71, 138, 154, 241], and compare with
Sec. 2.5.5).

Finally, consider that a liquid is in a supercooled state only if it assumes a tempera-
ture below the melting temperature Tm. However, before this state can be attained, the
liquid has to be prepared above Tm since only in that temperature regime it is thermo-
dynamically stable. Therefore, the desired temperature Ttarg of the supercooled liquid
always has to be established by cooling, and cooling inherently requires some nonzero
time τcool. Consequently, the liquid is supercooled also for some time before Ttarg is
reached, which means that for this time it is susceptible to the formation of critical
nuclei. Thus, if a supercooled liquid is to be established at Ttarg, then the cooling
process needs to be controlled such that τcool is short enough for no1.39 critical nucleus
to form during cooling.

In conclusion of the above, it is clear that supercooling is not limited to artificial
environments or to specific materials, and that its establishing is a mere experimental
challenge. In particular, it is also possible to supercool colloids, i.e., to retain colloidal
particles in a liquid-like arrangement when a crystal-like arrangement is energetically
preferred. In the specific case of the systems investigated in this work, the state of

1.37http://en.wikipedia.org/wiki/Crystallization

1.38Whether or not a crystal nucleus is stable depends essentially upon of two competing factors:
On the one hand, below the melting temperature a crystalline particle arrangement is energetically
favored over a liquid arrangement. On the other hand, the existence of nuclei entails the presence
of interfaces with the surrounding liquid, which is energetically disfavored. For more details on
this highly-relevant and active field of research we refer the interested reader to the aforementioned
sources [11, 32, 92, 141, 233].

1.39In fact, since fluctuations are stochastic, it is only with some probability P that there will be no
critical nucleus for t < τnucl, and it is the definition of τnucl that determines the actual value of P .

http://en.wikipedia.org/wiki/Crystallization
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supercooling is procured by the rather unusual procedure of increasing the diameters
of the simulated colloidal particles, which effectively is tantamount to increasing the
density of the particles (see Sec. 2.3 and Footnote 1.36).

1.2.3 Dynamic arrest

So how do supercooled liquids relate to glasses? After all, from the example of fused
quartz in Sec. 1.2.2, it seems that glasses are more similar to solids than to liquids. As
we shall see in the following, the desired connection is established by another process
of cooling1.36, where this time the relevant phenomenon is the effect of cooling upon a
supercooled liquid’s structural relaxation.

On the macroscopic scale, the structural relaxation of a substance corresponds to
its deformation response when subjected to a force, which in liquids is quantified by
the viscosity η. The effect of cooling on η is generally the one observed for instance
in honey, which is more viscous when refrigerated than when at room temperature.
For a wide range of temperatures and materials, the increase in viscosity upon cooling
obeys a so-called “Arrhenius law” [33, 101, 103, 104, 241],

η(T ) = η0 exp
{

− Ea
kBT

}

, (1.7)

where T is the temperature, kB is Boltzmann’s constant, and η0 is a proportionality
factor of dimension viscosity. In this law, which was originally observed for chemical
reactions, Ea plays the role of an “activation energy”, i.e., an energy that needs to
be surmounted (e.g., by fluctuations) before a reaction can take place. Rationalizing
Eq. (1.7) requires to associate Ea with a “reaction coordinate”, which in the case of
viscosity and the structural relaxation of liquids is the microscopic rearrangement of
particles.

Cooling has two straightforward consequences for particle rearrangements. Firstly,
it decreases the number of different configurational states that the substance assumes
on average, i.e., it decreases the substance’s entropy. Secondly, it renders it more time-
consuming for fluctuations in the reaction coordinate to overcome barriers between
configurational states. If these fluctuations are Gaussian, then the rate by which the
liquid elapses a sequence of configurational states depends exponentially upon the
temperature. Since such a state sequence corresponds to a substance’s deformation,
the aforementioned dependence is expressed by Eq. (1.7).

This, finally, allows to define the notion of “glass” as follows. The viscosity η
of a liquid is essentially proportional to the time τα required for the same liquid to
structurally relax [52, 71, 93, 103, 104, 241]. According to Eq. (1.7), the viscosity and
therefore τα diverge at T = 0, which means that sufficient cooling may increase τα be-
yond any given time tobs. If tobs is the time over which a supercooled liquid is observed,
and if tobs ≪ τα, then the substance will appear to be structurally static during the
time of observation. This can be used to define the “glass transition temperature” Tg

as the temperature at which the τα of the supercooled liquid of interest equals some
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Figure 1.6: Potential energy land-
scape. Schematic of the potential en-
ergy of particle arrangements (black
line) and of systems with different to-
tal energies (upper edge of colored ar-
eas) in this landscape: a liquid (blue),
a crystal (red), and a glass (green).
The glass’s nonergodicity is illustrated
by the green line, which is visible for
particle arrangements with a potential
energy less than the glass’s total energy.

liquidliquid

potential energy

crystalcrystal
glassglass

total system energy

fixed, “large” value [11, 31, 62, 71, 178, 241]1.40. Below this temperature, the substance
is then referred to as “dynamically arrested”—a glass.

1.2.4 In the glass

Let us briefly review some properties of supercooled liquids below the glass transition.
Figure 1.6 illustrates the phenomenon of dynamic arrest in terms of the potential
energy of the arrangements of the considered particles (a “potential energy landscape”
[62, 154, 230]). The upper edges of the colored areas represent the total energy of
three different systems1.41. The blue system is liquid, and it is ergodic since all allowed
configurations can be reached. The red system is crystalline and likewise ergodic. The
green system, however, cannot assume the configurational states beneath the green
line although its total energy would suffice to do so, the reason being that the system
is confined between potential energy barriers. This system, which corresponds to a
glass, is therefore nonergodic (cf. Sec. 2.1.3).

Another implication of the green line in Fig. 1.6 is that in a substance at a suffi-
ciently low temperature, there are many states that appear nonergodic to an observer.
In practice, which of these states is assumed upon dynamic arrest is determined by
the details of the preceding cooling process. To see this, consider for instance the
(hypothetical) instantaneous cooling from a temperature Tbefore to a temperature at
which the substance appears nonergodic. Such a cooling fully preserves the substance’s
structure at Tbefore, which means that different values of Tbefore lead to different glass

1.40In fact, Tg is conventionally defined via the viscosity η, namely as the temperature at which η
attains 1013 Poise (= 1012 Pa·s in SI units). In typical shearing experiments, liquids with this viscosity
structurally relax within a few minutes [223].

1.41In Fig. 1.6, the total energy E = K+U is constant, whereas in typical experiments, the temper-
ature T and therefore the kinetic energy K is constant while the potential energy U is allowed to
fluctuate. Therefore, constant-T systems can surmount any potential energy barrier given sufficient
time. Notably, in hard-sphere systems, U = 0 and thus E = K (cf. Sec. 1.1.3.2), which, unfortunately,
is difficult to visualize in Fig. 1.6 since it would require to replace U by an entropy-related quantity.
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structures. This influence of the process upon the result is referred to as the “history
dependence” of a glass [11, 26, 31, 62, 71, 167, 241]1.42.

All glasses, however, exhibit by definition a frozen structure when observed over an
appropriate time span tobs. In this regard, glasses are similar to the thermodynamically-
stable solid (crystal) phase. Microscopically, this similarity is reflected in the number
of degrees of freedom (DOFs), which over tobs is comparable for glasses and crystals
but different for glasses and liquids1.43. The number of DOFs in turn is determinative
of various thermodynamic properties of a substance1.44, which explains the fact that
crystals and glasses frequently exhibit very similar heat capacities and thermal expan-
sion coefficients [52, 62, 71, 101, 103, 104, 138]. It is, however, not surprising that
the disparate structures of glasses and crystals (see Sec. 1.2.6) also render these states
different—sometimes significantly—for other properties, a prominent example being
the general lack of birefringence in glasses1.45.

Finally, consider that nonergodic systems like glasses are by definition not in ther-
mal equilibrium. Since statistical mechanics is applicable only to systems in thermal
equilibrium1.47, and since statistical mechanics forms the basis for computer simula-
tions as applied in this work (see Secs. 2.1.2 and 2.1.3), it is difficult to characterize
dynamically-arrested systems in simulations. Therefore, in the majority of simulational
works on the glass transition, the transition is investigated only from the “ergodic side”,
i.e., only for temperatures T > Tg. In the remainder of this work, we will pursue this
approach and focus on systems in thermal equilibrium (cf. Sec. 2.5.5).

1.42The history dependence of glasses is technologically exploited in the process of “annealing”, in
which a glass is reheated to the vicinity of its glass transition temperature Tg. The purpose of this
reheating is to stimulate limited structural relaxation and to thereby remove structural stresses that
may have resulted from the initial cooling (“quenching”) below Tg [33, 97, 141]. A related effect is the
partial structural relaxation of a glass if it is in use for times comparable to its structural relaxation
time. This so-called “aging” is usually undesired in technological applications since it alters the
material’s properties [11, 26, 31, 62, 71, 167, 241].

1.43The difference in the number of degrees of freedom (DOFs) between crystals, glasses, and liquids
is straightforward: in crystals and glasses of simple particles like hard spheres, the DOFs are limited
to vibrations of the particles around their average positions, whereas the particles of liquids may also
rearrange.

1.44Strictly speaking, it is impossible to associate genuine thermodynamic properties with glasses
since glasses are not in thermodynamic equilibrium. However, thermodynamic properties are experi-
mentally determined in measurements of finite duration, and such experiments can also be conducted
on glasses to measure “effective” thermodynamic properties [11, 138].

1.45The effect of birefringence1.46 directly results from the anisotropy of the regular particle arrange-
ment in crystals. In glasses, such a regular arrangement is absent (cf. Sec. 1.2.6).

1.46http://en.wikipedia.org/wiki/Birefringence

1.47In some cases, statistical mechanics is applicable also to out-of-equilibrium systems. Incidentally,
one such case is the state of supercooling introduced in Sec. 1.2.2. Another case is that of systems in
a “steady state”, i.e., systems that are subject to a constant external perturbation [194].

http://en.wikipedia.org/wiki/Birefringence
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Figure 1.7: Angell plot. Variation of the
viscosity η with the inverse temperature 1/T
for three different liquids. Separately for each
material, 1/T is normalized to the inverse
of the material’s glass transition tempera-
ture 1/Tg. Classification by behavior of η
towards 1/Tg: approximately exponential in-
crease = “strong”; superexponential increase
for some temperatures = “fragile”. (Adapted
from Ref. [11]; note the scale on both axes.)
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1.2.5 A genuine transition?

In Sec. 1.2.4, we established that the “transition” at the temperature Tg (cf. Sec. 1.2.3)
is not thermodynamic but merely reflects some arbitrary patience limit1.48. The pur-
pose of this section is to amend and eventually countermand this portrayal, namely
by showing that there do seem to exist instances in which the cooling of a supercooled
liquid causes some of its properties to change discontinuously even if the liquid remains
quasi-equilibrated (cf. Sec. 1.2.2). Such changes are highly interesting since they con-
stitute the hallmark of genuine phase transitions between thermodynamically-stable
material phases [108, 238, 258].

Of the properties that seem to change discontinuously, let us first consider the one
most relevant to this work: the structural relaxation time τα. As stated in Sec. 1.2.3,
τα is equivalent to the viscosity η in liquids, and for many materials and temperatures,
η obeys Eq. (1.7). However, η does not follow Eq. (1.7) for other materials and
temperatures. To this end consider Fig. 1.7, which shows the dependence of η upon
the inverse of the temperature T for three different materials. In each case, T is
normalized by the material’s glass transition temperature Tg, and recalling that by
definition η(Tg) = ηg = 1013 Poise (see Footnote 1.40), this normalization means that
all curves meet at ηg. A plot of this kind is called an “Angell plot” [11, 53, 62, 71].

As can clearly be seen from Fig. 1.7, there is considerable variation in the func-
tional form of η(1/T ) for both different temperature regions and different materials.
For silicon dioxide (red, cf. Sec. 1.2.2), an exponential behavior of η(1/T ) as described
by Eq. (1.7) is observed over the entire depicted temperature range (note the scales

1.48If the exponential law in Eq. (1.7) holds in the vicinity of Tg, then even large changes in the
arbitrary threshold viscosity ηg cause only small changes in Tg (cf. Sec. 1.2.3 and Footnote 1.40). This
renders Tg “almost a material property” [11, 71]. Also, according to Sec. 1.2.4, the “thermodynamic
properties” are more similar for glass and crystal than for glass and liquid. Without knowledge of
the underlying physics, these findings could be considered indicative of a phase transition at Tg.
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on both axes). Liquids of this kind are called “strong” glass formers, and they in-
clude mostly substances in which all constituents are covalently bonded to form a
large “network” [11, 31, 53, 62, 71, 138, 178, 193, 194, 288]. A vastly different func-
tional behavior is observed for o-terphenyl (blue): here, cooling increases the viscosity
only relatively slowly at first, but over a relatively-narrow temperature range, the dy-
namic slowdown is then enormously accelerated. Such liquids are called “fragile” glass
formers, and include mostly substances with nonpermanently-bonded constituents
like molecules [11, 62, 71] and notably also hard-sphere systems [104, 154, 240] (cf.
Sec. 1.1.3). The third substance, glycerol (green), serves as an example for the many
intermediary cases between the fragile and strong extremes shown in the figure.

The point in case is that for many glass formers, the acceleration of the slowdown
upon cooling is so drastic that η (and therefore τα) seems to diverge at some nonzero
temperature T0. In fact, already in the 1920s it was found that for most glass formers,
η follows the empirical functional form

η(T ) = η0 exp

{

− Ea
kB (T − T0)

}

(1.8)

instead of Arrhenius’s law [Eq. (1.7)], the latter being recovered from Eq. (1.8) for T0 =
0. Equation (1.8) is today referred to as the “Vogel-Fulcher-Tammann (VFT) law” [1,
32, 62, 71, 73, 86, 103, 104, 254, 269] after its three independent discoverers. Since the
functional form of Eq. (1.7) arises from Gaussian fluctuations (cf. Sec. 1.2.3), the form
of Eq. (1.8) must be rooted in non-Gaussian fluctuations, which is interesting of its own
right and has been the subject of many investigations [104, 125, 156]. Unfortunately,
the limited nature of observation times does not permit to directly verify diverging
relaxation times in simulations and experiments, which renders theoretical models of
the utmost importance (cf. Sec. 1.4). However, experiments and simulations may well
contribute to an understanding of the mechanisms that underlie the extraordinary
slowdown, and it is largely this fact that motivated the work at hand.

Another indication of a genuine phase transition in supercooled liquids is the so-
called “Kauzmann paradox”, which was devised in 1948 and, in brief, suggests that the
“configurational entropy” in some substances vanishes upon cooling the liquid towards
some nonzero temperature TK [31, 62, 71, 138]. The configurational entropy represents
essentially the number of different particle arrangements that correspond to a super-
cooled liquid state1.49, and its vanishing is remarkable since it implies the existence

1.49The configurational entropy of a supercooled liquid at some temperature T ∗ is defined as the
difference between the entropy of the stable crystal, Scr, and the entropy of the liquid, Slq, at T ∗.
The term Scr can be determined by a thermodynamic integration1.50 in the crystal phase from the
reference point T = 0 (where the entropy vanishes) to T ∗. The term Slq first requires a thermodynamic
integration in the crystal from the same reference point T = 0 to the melting temperature Tm. To
this, the “entropy of fusion” (computable from the enthalpy of fusion) is added to obtain the entropy
of the liquid phase at Tm. This then serves as the reference for another thermodynamic integration,
now in the supercooled liquid state from Tm to T ∗.

1.50http://en.wikipedia.org/wiki/Thermodynamic_integration

http://en.wikipedia.org/wiki/Thermodynamic_integration
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of an “ideal” glassy state—much like an ideal crystal represents a thermodynamically-
stable phase. However, a number of works indicate that TK, if it exists, is always
below the dynamic arrest temperature T0 of the same substance (see above). For this
reason, it is difficult for both simulations and experiments to verify the existence of
Kauzmann’s paradox (cf. Sec. 1.2.4).

More recently, efforts have been intensified to identify diverging length scales in
supercooled liquids. Such length scales would be considered airtight evidence for phase
transitions, but are notoriously difficult to pinpoint. Only starting with the 1990s, the
computational and experimental capabilities have allowed to investigate the properties
that are nowadays considered “good candidates” for diverging length scales. One
of these candidates is “dynamic heterogeneities” [25–27, 62, 66, 125, 140, 157, 241,
277, 282], which may correlate over large distances and which, among others, are
commonly associated with collective particle rearrangements and the breakdown of the
Einstein relation (see Sec. 1.2.7). Another candidate is the “point-to-set correlation”,
in which the suitable freezing of particle positions creates boundary conditions that
may expose growing correlation lengths [25, 26, 34, 42, 157, 231]. This approach bears
certain similarities with the systems investigated in this work, as will become clear in
Sec. 1.3.4.2.

1.2.6 Static features of slow liquids

In the remainder of this background section, we will give an overview over those
features of supercooled liquids that are directly relevant to this work. Let us start
by introducing the term “slow liquids” to refer to supercooled liquids cooled towards
dynamic arrest. In the present section, we will present some simple static structural
properties of slow liquids, and argue that these properties do not provide obvious
indications of dynamic arrest.

Consider Fig. 1.8, which shows snapshots of three systems of hard disks (the two-
dimensional equivalent of hard spheres, cf. Sec. 1.1.3): a thermodynamically-stable
liquid (yellow), a slow liquid (green), and a crystal (blue). All systems are comparable
in density, and their similar local arrangement is a consequence of hard particles being
impenetrable. The only qualitative difference between the depicted systems is the
periodicity that is present in the crystal but absent in the liquids. The fact, however,
that the green liquid is close to dynamic arrest while the yellow one is not is essentially
impossible to infer from the snapshots1.51.

The similarity between normal and slow liquids is further substantiated by Fig. 1.9.
The figure shows the radial distribution function g(r), which encodes the normalized

1.51Notably, disordered systems with slow dynamics may result not only from supercooling (cf.
Sec. 1.2.2). The many alternative processes are for instance thermodynamic (compression, solvent
evaporation, vapor deposition), mechanical (shocking, grinding), chemical (electrochemical deposition,
polymerization, hydrolysis, sol-gel reactions), or irradiative (particle beams, X-rays) in nature [11, 31].
The results of such processes include for instance gels [120, 203], spin glasses [33, 73], amorphous thin
films [3, 81, 187], and nanostructured materials [101, 194].
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crystalslow liquidstable liquid

Figure 1.8: Structure of slow liquids. Snapshots of representative systems
of hard-disk particles: a thermodynamically-stable liquid (yellow), a supercooled
liquid close to dynamic arrest (“slow liquid”, green), and a stable crystal (blue).
The yellow and green systems are similar in that they show only short-range order
and are disordered otherwise, whereas the blue system exhibits long-ranged order
(save a few defects).

probability of finding a pair of particles at a separation r (explained in detail in
Sec. 2.5.2.1). The figure depicts g(r) for three representative simulated systems of
hard spheres (cf. Sec. 1.1.3): a moderately supercooled liquid (yellow), a strongly
supercooled and therefore slow liquid (green), and a crystal (blue). Obviously, g(r)
differs substantially between the crystal on the one hand and the two liquids on the
other. The g(r)’s of the two liquids, however, are remarkably similar, and in fact
the few genuinely distinct features1.52 emerge continuously upon cooling. The static
structure factor (essentially the spatial Fourier transform of g(r), cf. Sec. 2.5.2.2)
is similarly oblique to the dynamics. Therefore, a large number of authors deem
it impossible to infer the dynamic arrest of a supercooled liquid from simple static
structural features [11, 31, 54, 62, 71, 115, 138, 140, 261, 277].

Whether or not more complex structural features indicate dynamic arrest is the
subject of a long-standing debate. In addition to the point-to-set correlation function
mentioned in Sec. 1.2.5, the many candidates for such structural features include for in-
stance correlations in nonaffine displacement fields [63, 199], medium-range crystalline
order [255], “patch” correlations [231], spatial three-point correlations [54], and locally
preferred structures [53, 54], the latter being tightly connected with the concept of frus-
tration (see Sec. 1.3.3.2). However, none of these properties will be probed directly in
this work since the foremost goal of this work is to characterize the dynamics of the
investigated systems (cf. Sec. 1.4).

1.52The only clear-cut discernible feature between weakly and strongly supercooled hard-sphere liq-
uids is the splitting of the peak at r ≃ 2 (for unit-diameter spheres) in the strongly supercooled case.
Its appearance, however, is limited to hard spheres, where it is typically associated with “random
close packing”, i.e., disordered “jammed” arrangements at very high density (see Refs. [12, 22, 243]
and cf. Sec. 2.3.2.2). This suggests a relationship between hard-sphere glasses and jammed systems,
an idea that has been put forth by numerous authors [26, 173, 177, 237, 241, 260, 262].
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Figure 1.9: Radial distribution func-
tion of slow liquids. Normalized prob-
ability g(r) for the distance r of parti-
cle pairs in representative hard-sphere
systems at different packing fractions φ.
Yellow dashed line: moderately super-
cooled liquid; green solid line: slow liq-
uid in vicinity of random close packing;
blue dotted line: stable crystal close to
freezing point. The yellow and blue sys-
tems differ substantially, whereas the yel-
low and green systems are very similar
and do not allow to infer the dynamic
arrest of the green system. Note that
g(0≤r<1) ≡ 0 for hard spheres, and
that the y axis scale varies. (Simulation
data, reproduced from Refs. [51] and
[263].)
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1.2.7 Dynamic features of slow liquids

Investigating the dynamic properties of slow liquids constitutes the core of the present
work. Of particular interest is the structural relaxation of slow liquids since, as dis-
cussed in the previous sections, it is precisely this process that governs their response
to macroscopic stresses.

Many features of a slow liquid’s structural relaxation are reflected in intermediate
scattering functions (ISFs). ISFs encode how correlations of particle positions evolve
as the time t progresses. Figure 1.10 shows the specific case of the single-particle
ISF, Fs(k, t), for fixed wave vector k = 2π, the depicted system being an experimental
realization of slightly polydisperse1.53 hard spheres at different packing fractions φ [36].
(For more details on ISFs see Sec. 2.5.3, and for hard spheres see Sec. 1.1.3.) As can be
seen from the figure, the functional form of Fs(k, t) depends decisively upon φ: whereas
for the lowest depicted value of φ the ISF relaxes in a single step, for larger φ values
it exhibits a distinctive two-step relaxation pattern. Highlighted in different colors are
the β relaxation regime (red), the caging regime (green), and the α relaxation regime
(blue), the significance of which we will explain in the following.

Figure 1.11 illustrates the physical mechanism underlying the regimes of β relax-
ation and caging (red and green in Fig. 1.10, respectively). The left panel of the figure
shows the same slow hard-sphere liquid as the center panel of Fig. 1.8, while the right
panel shows a zoom-in of the vicinity of a randomly-chosen particle (red). Highlighted
in violet are the particles that neighbor the red particle and form a “cage” around it.
Clearly, in slow liquids each particle is surrounded by such a cage, and it is plausible

1.53The term “polydisperse” refers to random variations in the “size” of a substance’s particles. The
significance of this property in the context of slow liquids will be explained in Sec. 1.3.3.2.
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Figure 1.10: Intermediate scattering function of slow liquids. Structural
relaxation for the representative case of supercooled polydisperse hard spheres at
different packing fractions φ, quantified by the single-particle intermediate scatter-
ing function Fs(k, t) for the wave vector k = 2π and varying times t. (1) stable
liquid, (2) moderately supercooled liquid, (3) slow liquid. Shown in red is the β re-
laxation regime, in green the caging regime, and in blue the α relaxation regime.
For system (1), only α relaxation takes place. (Experimental data, reproduced
from Ref. [36] with slight extrapolations.)

that random fluctuations of particle positions are quite unlikely to change this struc-
ture (see below). Therefore, each particle is confined to its cage for some time, and
during this time it can merely undergo vibrational motion (indicated by the red circles
and the black arrow, cf. Footnote 1.43). This phenomenon is called the “cage effect”,
and it gives rise to the β relaxation regime highlighted in red in Fig. 1.10.

As laid out in Secs. 1.2.3 and 1.2.5, the structural relaxation time of a slow liquid
increases tremendously within a small temperature and/or density interval (note also
the values of φ in Fig. 1.10). Over this interval, the mean free path of a particle inside
its cage does not change by much, and neither does the time τβ required to complete
the β relaxation. On the other hand, the time τ ∗ after which particle rearrangements
occur in significant number depends strongly upon the degree of supercooling (see
below). Therefore, τ ∗ may exceed τβ by orders of magnitude. If this discrepancy
holds in some system, then the structural relaxation of this system will be negligible
for times τβ < t < τ ∗, and it is this time range that constitutes the “caging regime”
(highlighted in green in Fig. 1.10).

Finally, for the structure of a substance to completely relax—i.e., for the α re-
laxation to take place—, it is necessary that all of the substance’s particles relocate
considerably. In slow liquids, however, each individual particle is left with only a
marginal amount of space to move in by its cage (see above). For a particle to signifi-
cantly alter its position, the surrounding particles have to vacate an equally significant
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slow liquid

Figure 1.11: Cage effect. Left: same slow hard-disk liquid as in Fig. 1.8.
Right: zoom-in centered about an arbitrarily-chosen particle (red). Red circles and
black arrow: indicators of the vibrational movement of the red particle (slightly
magnified movement extent). Violet: particles that “cage” the red particle and
constrain its movement.

amount of space, which can be accomplished only if multiple particles relocate in a
coordinated fashion [1, 71, 103, 104]. Due to the random nature of the particles’
movements, the probability for such “cooperative rearrangements” to occur decreases
steeply with the number of participating particles. On the other hand, the number
of particles required for such rearrangements to take place at all increases with the
degree of supercooling. These dependencies match well with the observed α relaxation
(the regime highlighted in blue in Fig. 1.10), which, as noted before, decelerates dra-
matically upon cooling a slow liquid1.54. Notably, in liquids of lower density (such as
the stable liquid in Fig. 1.8), structural relaxation is possible without cooperative re-
arrangements, which is reflected in the absence of the β relaxation and caging regimes
in system (1) of Fig. 1.10.

Only relatively recently, it was determined that the most frequent type of coop-
erative rearrangement in slow liquids is the string-like or circular motion of groups of
particles [62, 66, 277]. This process is visualized in Fig. 1.12, which shows again the
slow hard-sphere liquid from Figs. 1.8 and 1.11. Highlighted in pink are five particles
that may potentially move in a closed loop along the black arrows without being ob-
structed in that motion by other particles. The system contains several other groups of

1.54The dynamics of collective rearrangements (CRs) is “energy landscape dominated” (cf. Fig. 1.6)
in the sense that CRs overcome potential energy barriers between metastable states [62, 93, 103]. CRs
are commonly associated with dynamic heterogeneities and non-Gaussian fluctuations (see Sec. 1.2.5),
which, in turn, are responsible for the frequently-observed breakdown of the Stokes-Einstein relation
(SER) in slow liquids [62, 104]. (According to the SER, the diffusion constant D of a liquid is inversely
proportional to its viscosity η. The relation assumes that fluctuations of the particle positions are
Gaussian, which means that non-Gaussian fluctuations break the SER. Also, D is dominated by the
fastest particles while η is governed by the slowest ones, and these particles are equally fast on average
if fluctuations are Gaussian while they move at different average speeds if dynamic heterogeneities
are present.)
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slow liquid

Figure 1.12: Cooperative rearrangements. Right: same slow hard-disk liquid
as in Figs. 1.8 and 1.11. Left: zoom-in of five particles that circularly rearrange
by randomly moving in the directions indicated by the black arrows.

particles (with varying member count) that are suitably positioned to undergo similar
collective motions if their velocity vectors are appropriate.

Already in the mid-19th century, Kohlrausch [158] discovered that the α relaxation
of certain properties in glassy materials are well described by a so-called “stretched
exponential”,

F (t) = F0 exp

{

−
(

t

τα

)β
}

, (1.9)

where β is a heuristic “stretching exponent” unrelated to the β of the β relaxation
process. The functional form of Eq. (1.9) was rediscovered in the 1970s by Williams and
Watts [32, 73, 284], which gave rise to its contemporary name “Kohlrausch-Williams-
Watts (KWW) law”. As indicated by the use of the symbol “F” in Eq. (1.9), the
equation is particularly useful in the description of intermediate scattering functions
of slow liquids (cf. Fig. 1.10), where in many cases it can be excellently fitted to the
caging and α relaxation regimes [71, 93, 104, 155].

1.3 Porous confinement

Fluids may drastically change their behavior when subjected to spatial confinement.
The changes may for instance be structural, thermodynamic, or dynamic in nature,
and they are not limited to any specific geometries or materials, for neither the fluid
nor the confinement. For two reasons, confinement is particularly interesting in the
context of dynamic arrest (cf. Sec. 1.2). Firstly, confined slow fluids are widespread
in nature and technology (Sec. 1.3.1), meaning that qualitative or even quantitative
understanding of the effects of confinement (Sec. 1.3.2) may constitute a significant
practical advantage. Secondly, and more fundamentally, confinement may elucidate
the very nature of dynamic arrest: if the physics of fluids in confinement is understood
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on a microscopic level (Sec. 1.3.3), then the presence of confinement might reveal
the mechanisms of dynamic arrest in general. In this work, we chose to investigate
the particular case of disordered porous confinement since this type of confinement
gives rise to some particularly interesting phenomena (Sec. 1.3.3). Specifically, we
investigated a model of fluids in porous confinement known as the “quenched-annealed”
model (Sec. 1.3.4.2), and did so using computer simulations (cf. Chapter 2).

1.3.1 Significance of fluids in confinement

Fluids in confinement, and in particular in porous confinement, are abundant in nature,
technology, and everyday life. A frequently-encountered example of a fluid with sig-
nificant confinement effects is water immersed in an ordinary cleaning sponge, where
the water remains confined to the sponge’s pores (and is even soaked up) despite the
presence of gravity, and particles suspended in the water can enter the sponge’s pores
only if they are small enough.

Of considerable technological and economic relevance are water and mineral oil—
both in pure form and in combination with other substances—that permeate porous
materials such as ceramics, cement, rock, clay, organic soil, or sand. Such combinations
of fluids and confinement play essential roles in agriculture (e.g., water retention in
soils) [48, 95], hydrogeology (e.g., replenishment of water reservoirs and aquifers) [39,
95, 192], the petrochemical industries (e.g., oil recovery) [10, 18, 39, 58, 95, 121,
232], and the geophysical sciences (e.g., lubrication in plate tectonics) [91, 95, 192,
235]. In other industries such as the chemical and pharmaceutical industries, porous
substances—for instance in the form of powders—serve to expedite chemical reactions
[95, 289].

Other industry-scale applications include the use of engineered porous materials
for filtration and purification purposes (for instance for the removal of pollutants from
water and thereby, indirectly, from soils) [10, 95, 206] or in the production of fresh water
from sea water or contaminated water by the process of reverse osmosis [146]. More
intricate technological applications of confinement include the separation of mixtures of
liquids and/or gases by selective adsorption into a porous medium [95, 206, 232, 289],
and, similarly, the construction of sensors in which particular porous media react
to some substances but not to others [45, 289]. Also, host media with well-defined
pore structures may serve as templates for the manufacturing of micro- or even nano-
patterned devices used for instance in ordinary electronics or opto-electronics [95].

Further, porous environments are ubiquitous in biology, prominent examples being
tissues such as bones and wood. Even more importantly, confinement is crucial to many
processes on the cellular level. For instance, at any time biological cells are filled with
dense collections of proteins floating in the cytoplasm [17, 18, 24, 50, 111, 118, 184, 188].
The simulational realization shown in Fig. 1.13(a) suggests that these proteins essen-
tially represent a slow colloidal fluid [184]. The cryoelectron tomography of a living
cell in Fig. 1.13(b), on the other hand, shows that the interior of cells is divided
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(a) (b)

Figure 1.13: Proteins in cytoplasm. Panel (a): Snapshot of a computer simu-
lation of the fifty most abundant protein species in the bacterium Escherichia coli

under near-natural circumstances. Colors code different protein species. (From:
McGuffee and Elcock [184].) Panel (b): Cryoelectron tomography of the interior of
a cell of Dictyostelium (a single-celled slime mold) approximately 815 nm × 870 nm
× 97 nm in dimension. Red: actin fibers (cytoskeleton); green: macromolecular
complexes (mostly ribosomes); blue: membranes. (From: Medalia et al. [188].)

into compartments by membranes (blue), and that there are numerous relatively-
immobile cellular apparatuses such as actin fibers (which form the cytoskeleton; red)
and macromolecular complexes (mostly ribosomes; green). These objects effectively
render the inside of a cell akin to a porous medium for the fluid of proteins to move
in [17, 18, 24, 45, 50, 111, 118].

Finally, designed porous materials with well-characterized properties are instru-
mental in experimental, simulational, and theoretical investigations of the effects of
confinement upon a fluid’s properties. Such investigations, empirical and mathemati-
cal, have been undertaken in considerable number in an effort to attain an enhanced
understanding of the physical mechanisms in confined fluids [3, 95, 185–187]. Pop-
ular model materials in these investigations are in particular porous silica, or aero-
gels [3, 10, 95, 101, 143, 145, 160, 161, 163, 207, 232]. These materials are obtained
from silica gels by a “sol-gel” process [95, 120], i.e., essentially by replacing the liquid
component of the gel by a gaseous one. Porous silica are appealing for theoretical and
simulational modeling since, as is evident from Fig. 1.14, their microscopic structure
is approximately equal to that of a collection of partly-fused, solid, spherical particles
frozen in place (cf. Secs. 1.1 and 1.3.4.2) [51, 95, 229, 266, 289]. Other popular model
materials include porous Vycor and controlled pore glass, which differ from porous sil-
ica primarily in the size and the distribution of the pores [3, 10, 95, 160, 161, 187, 232].
In experiments, these materials are then injected with fluids (for instance with fluids

1.55http://en.wikipedia.org/wiki/File:Mesoporous_silica_SEM.jpg

http://en.wikipedia.org/wiki/File:Mesoporous_silica_SEM.jpg
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Figure 1.14: Porous silica. Scanning
electron microscope graph of mesoporous
silica. Clearly, the substance resembles
an aggregate of spherical, solid, partly
fused particles with large interstitial vol-
umes. (Source: Wikipedia1.55.)

of colloidal particles) in order to study the effects of confinement.

1.3.2 Observed phenomena in confinement

This section provides a brief review of the many peculiarities of fluids in confinement.
The review is subject to two limits: Firstly, we are interested primarily in the properties
of the fluids, not those of the confinement. The confinement’s properties will therefore
be mentioned only if they explain some particular fluid behavior. Secondly, the present
work focuses on systems in thermal equilibrium. Thus, the effect of confinement upon
fluid flow [39, 48, 68, 152, 179, 260] will not be discussed directly, but instead only
indirectly in the context of percolation (see Sec. 1.3.3.3).

In the context of thermal equilibrium, it is first of all due to note that in neither
experiment nor simulation it is trivial to establish the state of equilibrium for confined
fluids [95] (see also Sec. 2.5.5). Provided that equilibrium has been reached, one
effect—found for instance in ordinary Helium (4He) or molecular nitrogen (N2)—is
that the liquid–vapor coexistence region (cf. Footnote 1.33) is significantly narrowed
by confinement [10, 95, 207]. In some substances (e.g., again, in 4He), in addition to
that the temperature and pressure of the critical point1.56 have been observed to be
shifted considerably by confinement [10, 95]. Analogous findings hold for mixtures of
different substances; for example, confining 4He and 3He into porous gold may entirely
suppress the liquid–liquid critical point of that mixture [10, 95, 207]. This means that
confinement may forcibly separate substances that without confinement are miscible
under the same external conditions.

As mentioned before in Sec. 1.2.5, processes of general interest in equilibrated sub-
stances are phase transitions such as freezing/melting and condensation/evaporation
[108, 238, 258]. Remarkably, confinement may induce phase transitions that do not

1.56The term “critical point” denotes the maximum pressure and temperature for which the liquid
and the gaseous phase of the same material can be distinguished1.57.

1.57http://en.wikipedia.org/wiki/Critical_point_%28thermodynamics%29

http://en.wikipedia.org/wiki/Critical_point_%28thermodynamics%29
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occur at all in the absence of confinement. A pertinent example is the “wetting” tran-
sition, i.e., a transition between states in which a liquid does or does not tend to form
films on the inside surface of the confinement [3, 10, 39, 95, 143, 232]. Also, confine-
ment may prompt the particles of the immersed substance to undergo a “layering”
transition [3, 95, 187]. Of significance to this work is the fact that confinement may
also considerably alter “ordinary” phase transitions. With confinement, for instance,
the condensation of a gas into the corresponding liquid phase occurs at a lower tem-
perature and/or pressure than without confinement. This effect is widely known as
“capillary condensation” [95, 143, 186, 187, 232, 234]. In the context of supercooling
(cf. Sec. 1.2.2), it is particularly interesting that confinement may also influence the
melting temperature Tm, the most striking finding being that in some systems Tm may
be raised by confinement whereas in others it may lowered, while in yet other systems
the freezing transition may completely vanish [3, 95, 186].

In view of the latter, it is only a small step to suspect that confinement may also
alter the properties of liquids with slow dynamics (“slow liquids”). Indeed, it has been
found that the glass transition temperature Tg as defined in Sec. 1.2.3 is subject to
variations similar to those of Tm if confinement is applied. The observed increases or
decreases of Tg for various systems are succinctly summarized in Table 1 of Ref. [186]
and Table 1 of Ref. [3], and have been designated by these (and many other) authors
as probably the most puzzling effect of confinement upon slow liquids. It has even
been suggested that confined slow liquids undergo two glass transitions—one for fluid
particles close to the confining medium, and one for the bulk of the fluid [3]. This
confirms that confinement may qualitatively alter not only the structure but also the
(equilibrium) dynamics of a fluid.

Aside from the viscosity—which defines Tg—, the dynamic alterations by confine-
ment are probably most prominent in the (self-)diffusion of fluids. As elaborated on in
Sec. 2.5.3.1, the phenomenon of diffusion microscopically refers to the mean squared
displacement (MSD), which according to Einstein [74] obeys the “diffusion relation”
limt→∞ δr2(t) = 6Dt. For the diffusion constant D, it has been found that—like Tm

and Tg—it may change drastically in the presence of confinement, with both an in-
crease and a decrease having been observed with respect to the case without confine-
ment [3, 10, 16, 45, 89, 95, 111, 113, 146, 179, 196–198, 252].

Most strikingly, however, under confinement the MSD may not at all obey the
diffusion relation and may instead conform only to the more general relation δr2(t) ∝ tz.
In this notation, normal diffusion corresponds to z = 1 and dynamic arrest to z = 0,
while all other values of z represent “anomalous diffusion”. In confinement, the notion
of anomalous diffusion usually implies z < 1, meaning that the particle propagation
is slower than ordinary diffusion, i.e., “subdiffusive”. As detailed in Sec. 2.5.3.1, the
exponent z equates to the “logarithmic derivative” of δr2(t) and is well defined locally
in time. In fact, transient subdiffusion has long been known to occur even without
confinement, and it does so for instance in simple slow liquids in the caging regime (cf.
Sec. 1.2.7). Yet, in most systems and under most external conditions, the long-time
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Figure 1.15: Confinement types. Two-dimensional schematic examples for
types of confining media (black areas) with an immersed dense fluid (gray disks).
Panel (a): single circular pore. Panel (b): single linear pore, corresponding to a
single capillary or a single slit in three dimensions. Panel (c): multiple regularly-
arranged circular pores with interconnections. Panel (d): multiple disordered and
interconnected circular pores.

value limt→∞ z(t) reverts to either zero or unity, implying either dynamic arrest or
normal diffusion.

There exist, however, also systems with genuine long-time subdiffusion, i.e., with
0 < limt→∞ z(t) < 1. In fact, the research on the various incarnations of anomalous
diffusion constitutes a veritable scientific field of its own. Subdiffusion has been ob-
served in a wide range of experimental systems, as for instance for the movement of
particles in turbulent liquids, charge carriers in amorphous semiconductors, reptat-
ing polymers, beads in polymeric networks, lipids and proteins in cell membranes,
colloids in quasi–one-dimensional setups, and most notably liquids in porous me-
dia [3, 83, 118, 119, 188, 191, 279]. On the theoretical side, equally many concepts have
been developed to account for the experimental findings, including fractional Brown-
ian motion, continuous-time random walks, Lévy flights, Lévy walks, time-fractional
dynamics, and single-file diffusion [2, 17, 134, 165, 191, 192]. Last but not least, the
phenomenon has been identified and investigated in detail in numerous computational
studies [16, 18, 45, 55, 75, 96, 110, 111, 113, 150, 184, 246, 251, 252, 273].

1.3.3 Microscopic influence of confinement

1.3.3.1 General remarks

This section summarizes the most important microscopic mechanisms that underlie
the confinement effects presented in Sec. 1.3.2. To understand these mechanisms, it
is vital to take into account the nature of the confinement since some mechanisms
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are specific to particular confinement types. One of the most influential properties of
the confining medium is its geometry [3, 17, 95, 185, 186, 249]. Figure 1.15 shows
various confinement geometries, each time with an example fluid immersed. As is
evident, the confined fluid particles (gray) see an environment that is very different
from that in a bulk fluid (compare Fig. 1.8). In each depicted case, a considerable
fraction of the fluid’s particles are in proximity to the confining medium, and the
same particles interact with much fewer neighboring particles than they would in a
bulk fluid [95]. In the general case, the fraction of particles that are directly influenced
by the confinement depends decisively upon the confinement’s geometry, with smaller
pores entailing more influence of the confinement [3, 67, 95, 146, 187].

The pore size is important also for another reason. Any type of confinement
is characterized by one or more length scales. Upon confining a fluid, these length
scales are superimposed onto the inherent length scales of the immersed fluid (e.g.,
the diameter of the fluid particles, their local ordering, or their spatially correlating
dynamics in the case of slow liquids). Thereby, the confinement’s length scales affect
the arrangement and the movement of the fluid particles [3, 29, 42, 62, 67, 95, 160, 186].
For example, if a fluid is confined to an isolated pore [panel (a) of Fig. 1.15], then no
property of the fluid can be associated with a length scale exceeding the size of that
pore, thereby inducing “finite-size effects” [3, 95]. Similarly, confining a fluid between
two parallel plates [panel (b) of Fig. 1.15] may effectively reduce the dimensionality of
the fluid by one if the distance between the plates is only little more than one particle
diameter [3, 95]1.58.

Further effects result from the immediate spatial proximity between the confine-
ment and some of the fluid particles. First of all, there is direct interaction between the
particles and the confining medium. For instance, chemical reactions may take place,
including in particular the possibility of the confining medium catalyzing a reaction
between constituents of the fluid [10, 17, 67, 95, 101, 146, 196, 232, 289]. Catalysis is
crucial in technology and a vast array of biological processes since it allows to greatly
expedite and control the rate of chemical reactions. However, the present work will
not focus on this topic, with the exception of the particle movements that may even-
tually lead to such reactions. Secondly, the confinement exerts forces upon the fluid’s
particles. These forces usually are repulsive (thereby effecting the spatial confinement
of the fluid) but may also be attractive. If the latter is the case, and if the attraction
is comparable to or even greater than the force between the fluid particles, then the
fluid tends to wet the surface of the confinement [3, 39, 48, 95]. This aspect is typically
expressed in terms of the “hydrophobicity” or the “hydrophilicity” of the confinement.
Thirdly, confinement may strongly affect the arrangement of fluid particles close to
the confining medium. If those particles are relatively immobile due to the spatial
proximity of both neighboring particles and the confinement, then their arrangement

1.58Depending on the nature of the fluid particles, it may or may not be sensible to speak of the
“diameter” of a particle. In the case of hard spheres, the definition of this property offers itself
naturally (cf. Sec. 1.1.3).
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Figure 1.16: Frustration. Illustration of a frustrated ground state using the
example of an antiferromagnetic three-spin system. Arrows: spins, each of which
can point either up or down. Lines: interactions between spin pairs (green: ener-
getically favored; red: energetically disfavored; interactions of the same color are
identical). Interactions are energetically favored if the spins of a pair are antipar-
allel. Shown are three of the six configurations with the same lowest energy; the
other three configurations mirror the depicted ones, i.e., up spins become down
spins and vice versa. (Adapted from Ref. [33].)

is essentially imprinted by the geometry of the confinement. In the case of simple con-
finement geometries such as those in Fig. 1.15(a) and (b), this may lead to a “layering”,
also known as a “wall effect” [3, 95, 187].

In the following, we will spotlight the two aspects of confinement that are most
important to the context of slow liquids: frustration, and percolation.

1.3.3.2 Frustration

In many condensed-matter systems, there exists a unique particle arrangement (save
translations and rotations of the whole substance) which represents the lowest-possible
potential energy that can be realized in the system under the given external conditions.
This arrangement is called the system’s “ground state” [33, 73, 108, 223, 238, 258]. If
the external conditions include the vanishing of temperature—i.e., if the particles do
not move—, then the ground state constitutes the single stable configuration of the
substance. Usually, in condensed-matter systems the ground state is ordered, i.e.,
crystalline1.59.

Other substances under other external conditions may not have a unique ground
state, but instead exhibit multiple particle configurations with the same lowest-possible
potential energy. These configurations are commonly subsumed under the term “frus-
trated ground state” [3, 33, 53, 62, 95, 154, 225, 241], and their existence implies that
the corresponding system always retains a nonzero entropy. A simple system with a
frustrated ground state is depicted in Fig. 1.16 [33]. It consists of three “spins” (black

1.59In some substances, the number of distinct realizations of the ground state is equal to the number
of allowed states. In these substances, a unique ground state exists only for a specific choice of external
conditions. This is the case in particular for systems of bulk monodisperse hard spheres, where the
potential energy is always zero and the only genuine thermodynamic control parameter is the density
(cf. Sec. 1.1.3). In this system, the only unique state is attained at the maximum density in the
crystalline phase where the particles cannot move.
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arrows), each of which can assume either an “up” or a “down” state. Each spin inter-
acts pairwise with all other spins, so that there are three interactions in the system
(red and green lines). The interactions are “antiferromagnetic”, i.e., antiparallel spins
are energetically favored over parallel spins. Neither the distance between the spins
nor their identity plays a role. Obviously, it is impossible for all spin pairs to be
antiparallel; instead, there is always at least one parallel pair. Therefore, there are
three lowest-energy configurations in which two spins point up and one down (those
depicted in the figure) and three more in which two spins point down and one up. This
means that in this system there exist six equivalent ground state configurations—the
system is frustrated.

In the context of condensed-matter systems with mobile particles, the term “frus-
trated” is often used more loosely, namely to refer to supercooled liquids that show
only a marginal tendency to crystallize. Although most materials of this kind do
not exhibit an actual frustrated ground state, they are valuable for elemental stud-
ies of slow liquid behavior1.60. A prominent example for materials with a genuinely
frustrated ground state are “atactic polymers”, i.e., polymers with randomly-varying
bond types and/or side groups [3, 71, 101, 107, 154]. More generally, any substance
with particles of random constitution is a good candidate for the existence of a frus-
trated ground state. In the case of hard spheres, for instance, crystallization can
be avoided by making the particles polydisperse, i.e., slightly random in diameter
(cf. Sec. 1.1.3.1). This is exploited in both simulation and experiment, the latter
typically (and often unavoidably) involving diameter variations of as much as ten
percent [62, 93, 104, 140, 211, 214, 227, 229, 277].

One of the fundamental motivations of the present work is the fact that frustration
may also be introduced into a condensed-matter system by subjecting it to suitable
boundary conditions. It is natural to suspect that if the boundary conditions are spa-
tially random, then the ordered particle arrangement of a crystal might be disfavored
or even entirely suppressed. Such boundary conditions are naturally provided by ran-
dom porous media as depicted for instance in Fig. 1.15(d). This constitutes one of the
reasons why liquids—and in particular slow liquids—in porous media are interesting
from a fundamental point of view [10, 95, 100, 144–146, 189, 224, 266, 289]. However,
not all random porous media actually suppress crystallization: only if a sufficient frac-
tion of fluid particles is directly influenced by the random geometry of the medium,
the randomness is translated to the overall arrangement of the fluid particles. This
means that the porous medium in question has to be random on a length scale similar
to the size of a fluid particle1.61.

1.60In particular, frustration in slow liquids has been associated with the arranging of a substance’s
particles in “locally preferred structures” (LPSs). LPSs may impede crystallization if they do not tile
the given space without gaps, as is for instance the case if the LPS of a substance is an icosahedron (a
twenty-faceted platonic solid). Also, LPSs may play an important role for the slowdown of substances
in the approach of dynamic arrest at nonzero temperatures (cf. Sec. 1.2.5) [51, 53, 62, 225].

1.61Recently, approaches have been developed in which disordered boundary conditions reveal
growing static correlation lengths. For instance, in order to compute the “point-to-set” corre-
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(a) (b) (c)

Figure 1.17: Percolation. Example system in which percolation may or may not
occur. Each element of the square lattice is occupied (black) with probability P
and not occupied (white) otherwise. Depending on P and on the realization, there
may exist a percolating backbone, i.e., a cluster of edge-sharing occupied squares
spanning across the system (here from top to bottom, red outline). Panels (a),
(b), and (c) show realizations for P = 40%, P = 59%, and P = 80%, respectively.
In an infinitely-large system, percolation occurs for P & 59% [276].

1.3.3.3 Percolation

One of the most important aspects in the behavior of a confined fluid is the following:
Assuming that the system of interest is infinitely large, does there exist a pore in which
fluid particles can propagate infinitely far? This issue is crucial to phenomena like flow
and diffusion, which are ultimately limited if such a pore does not exist [39, 45, 107,
152, 179, 229, 248]. In simple geometries such as in Fig. 1.15(a) and (b), whether such
a pore exists is usually straightforward, and likewise is it in periodically-replicated
geometries such as in Fig. 1.15(c). For disordered porous media, however, is difficult
to determine whether the medium is of the “open pore” or the “closed pore” type,
i.e., whether or not a “percolating backbone” of infinitely-many interconnected pores
exists. The reason for this is evident from Fig. 1.15(d), which shows that the pore
sizes and shapes in disordered porous media may vary strongly. Specifically, some of
the pores may be small and disconnected from all other pores; others, in contrast, may
constitute a considerable fraction of the overall volume of the confining medium and
thus be infinitely large if again it is assumed that the confining medium is infinitely
large.

From a theoretical point of view, the challenge is to predict the existence of a
percolating backbone from properties of the overall material [122, 152, 175, 179, 248,
276, 291]. For this, it is instructive to consider model substances such as the one shown

lation length (cf. Sec. 1.2.5), some of the particles of a substance in a fluid configuration are
“pinned” [25, 26, 29, 34, 42, 46]. Depending upon the aim of the investigation (e.g., for deduc-
tions based on the “mosaic theory”), the pinned particles may for instance reside outside a spherical
shell, outside a slit geometry, or simply be chosen at random. Notably, the latter procedure is closely
related to the porous media model employed in this work (cf. Sec. 1.3.4.2).
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in Fig. 1.17. The substance in the figure consists of “sites” arranged on a square lattice,
which are “occupied” (black) with probability P and “not occupied” (white) otherwise.
The occupied squares form “clusters”, i.e., groups in which each member is connected
to at least one other member by sharing an edge. A percolating backbone in this
system is a cluster that stretches across the entire system (top to bottom or left to
right), and it may exist depending on P and on the realization. As can be shown
(see references above), if the system depicted in Fig. 1.17 were infinitely large, then
there would exist a unique value P = P ∗ above which a backbone always exists and
below which it never exists. This behavior is akin to phase transitions in condensed-
matter systems, with P being the control parameter, P ∗ being its critical value, and
the existence of the percolating backbone being the order parameter. This suggests
that statistical-mechanical methods may be useful in determining P ∗ (usually called
the “percolation threshold”), and in fact there does exist a large body of literature on
this topic.

Of particular importance in the context of porous media are continuum percola-
tion models [107, 113, 142, 152, 248, 252]. Such models differ in two aspects from
lattice models like the one in Fig. 1.17: Firstly, the sites may be spatially disordered
and connected to any number of neighboring sites. Secondly, each site may assume
a value from a continuum of possible values, meaning that there may be varying de-
grees of connectivity. A popular continuum percolation model is the “random resistor
network”—electrical resistors with random strengths and connections—, the question
being whether or not (and how much) electrical current may flow across the net-
work [113, 152]. In view of Fig. 1.15(d), it is intuitive that continuum percolation
models provide a more natural description of porous media than lattice percolation
models, and it is precisely the former class of models that we will use to character-
ize the model porous medium investigated in this work (see Sec. 2.4). The caveat of
this class of models is that pertinent theories are significantly more complicated than
lattice percolation theories.

Of the research conducted on percolation, a significant fraction involves simula-
tional methods. As mentioned above, porous media are typically modeled as networks.
In a computer’s memory, any such network is necessarily finite; therefore, whether it
contains a percolating backbone is in principle a mere bookkeeping problem [122, 276].
It is two aspects that render computational percolation analyses of disordered porous
media challenging. Firstly, it is nontrivial to express the geometry of a porous medium
in terms of an appropriate network. This issue will be discussed in detail in Sec. 2.4
and in Appendix A.1. Secondly, “percolation” is usually understood to refer to a phe-
nomenon of infinite size (the percolating backbone), which cannot be represented in
a finite-sized system. In order to nevertheless evaluate accurate percolation threshold
values in simulations, one may examine properties that are particularly insensitive or
particularly sensitive to finite-size effects (see Sec. 2.5.4), or, if possible, make use of
finite size–scaling methods [2, 33, 175, 213, 248].
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1.3.4 Modeling of disordered porous confinement

1.3.4.1 Characterization and modeling strategies

In view of the manifold microscopic mechanisms at work in fluids in disordered con-
finement (Sec. 1.3.3) and the resulting contradictory phenomena (Sec. 1.3.2), it is
challenging to devise a pertinent model that captures the essential physics and all
the while is tractable by simulation and theory [3, 57, 58, 95, 185–187]. Ideally, such
a model should allow to disentangle the various mechanisms in order to assess their
respective contributions to the changed fluid properties. For example, a reduced avail-
able volume should decrease the entropy of a confined fluid and therefore increase its
glass transition temperature Tg, while Tg is expected to decrease as there is an increase
of hydrostatic effects at surfaces [3].

The principal problem is the considerable variation in the composition and con-
stitution of porous media [3, 95, 185–187], which may require many parameters for
a meaningful description. Among the relevant features—all of which may decisively
influence the structure and dynamics of the fluid—are

• the presence of a percolating backbone,
• the fraction of volume accessible to an immersed fluid (the “porosity”),
• the ratio between internal surface area and volume,
• the distribution of pore locations and sizes,
• the distribution and strength of inter-pore connections, and
• the interactions between fluid and porous medium.

In experiments, porous media are typically characterized on the basis of the arrange-
ment and chemistry of their constituent particles, popular methods being X-ray diffrac-
tion [95], neutron diffraction [95], positron annihilation [127], and photochromic label-
ing [127].

From a theoretical point of view, porous media are essentially tantamount to
an external potential. However, for disordered porous media this potential may be
highly complicated, with the possibility of chemical interactions adding further to
the complexity. Therefore, intelligent modeling strategies are required. A class of
particularly simple models is that of lattice geometries such as the one mentioned in
Sec. 1.3.3.3 in the context of percolation. In this class, once settling for a specific
lattice geometry, sensible porous media models can typically be obtained using only
a single parameter (for instance an occupation probability) [122, 152, 248, 276, 291].
However, unfortunately, lattice models are not suited to represent liquids since they
cannot account for effects such as packing and layering [154, 224].

A different modeling strategy is inspired by isolated pores as in Fig. 1.15(a),
namely to consider a solid homogeneous substance into which many such pores are
bored at random locations. Upon defining the geometry of an individual pore, the
parameters in this strategy merely need to account for the density and the spatial
distribution of the pores. A two-dimensional example for porous media of this kind
is depicted in Fig. 1.15(d), where the pores are circular (with fixed diameter) and



1.3. Porous confinement 41

(I) (II) (III)

Figure 1.18: The quenched-annealed model. Construction of a disordered
porous medium and of an immersed fluid according to the QA protocol. Details:
see text. (I) Equilibrium configuration of matrix precursor fluid with mobile inter-
acting particles. (II) Matrix of fixed particles. (III) Mobile fluid particles inserted
into the matrix at random positions. Arrows indicate the movement of particles.

randomly distributed (i.e., possibly overlapping). This particular model has also come
to be known as the “inverse Swiss cheese model” (cf. Sec. 1.3.4.2 and Refs. [67, 290]).

Probably most inspiring for the modeling of porous media is the fact that these
media, like any substance, ultimately consist of particles. Accordingly, some mod-
eling strategies regard a porous medium as a collection of particles that are spa-
tially disordered and restricted in their movement (e.g., by chemical bonds). For
further simplification, these particles may for instance be modeled as entirely immo-
bile and/or as relatively large so that their interstitial volumes constitute the pores
for the smaller particles of a fluid to move in [39, 51, 57, 58, 97, 98, 146, 152, 229].
Models of this kind are intuitively sensible considering aggregates such as sand or
powders, but they are also representative of other porous media like silica gels (recall
Fig. 1.14) [51, 95, 229, 266, 289]. In combination with the simplest choice of parti-
cles—spheres—, this model features the advantage that the pertinent arrangements
(in particular “random close packing” structures) are very well investigated1.62.

1.3.4.2 The quenched-annealed model

The quenched-annealed (QA) model has been designed specifically to investigate the
combination of disordered porous confinement and an immersed fluid. The model is
based on the idea of representing a porous medium by particles that are artificially
fixed in space. These particles are usually referred to as “obstacles”, “pinned particles”,
or “matrix particles”, and collectively as the “matrix” [98, 100, 174, 189, 266]. The

1.62Sphere packings are well investigated due to the fact that they are representative also of many
other physical systems such as colloidal liquids and glasses (cf. Footnote 1.52), and due to the funda-
mental interest in random close packing structures (cf. Sec. 2.3.2.2) [39, 77, 130, 132, 243, 260, 261,
292].
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QA model shares the idea of fixing particles with a number of other models [29, 41,
42, 49, 135, 147, 148, 150, 163, 164, 252], its distinguishing feature being the protocol
for obtaining the distribution of the matrix particles. This protocol is visualized in
Fig. 1.18, and can be summarized in the following three steps (see also Sec. 2.3):

(i) Into the space that is to host the QA system, first insert all the particles
that are to constitute the matrix. (At this stage, the matrix particles
represent a precursor fluid, i.e., they are not yet fixed but rearrange
and interact as in an ordinary condensed-matter system. This means
that an interaction between the matrix particles needs to be defined.)
Equilibrate the matrix precursor fluid.

(ii) Choose an arbitrary configuration of the matrix precursor fluid that is
representative of the state of equilibrium. Rigorously fix the particles at
the positions corresponding to that configuration to obtain the matrix.

(iii) Into the matrix, insert all particles that are to represent the immersed
fluid. In the insertion, place the particles at random positions irrespec-
tive of the pore structure of the matrix. Forbidden are only positions
that correspond to an infinite potential energy of the system.

Notably, according to the protocol, the external parameters (temperature, pressure,
etc.) at which the matrix precursor fluid is equilibrated are entirely independent of
the external conditions at which the immersed fluid is observed. Likewise, the interac-
tions among the matrix precursor particles, the interactions between fluid and matrix
particles, and the interactions among the fluid particles are independent of each other,
and in each case the interaction potential can be chosen freely.

The name “quenched-annealed” for this protocol derives from techniques used
in metallurgy and in the fabrication of glasses. There, a molten substance is first
cooled rapidly (“quenched”) to obtain an essentially-solid material1.63. Subsequently,
the substance is reheated to temperatures close to a liquid state (“annealed”) in order
to allow for the relaxation of stresses induced by the quenching1.64,1.65. In a warped
sense, these techniques translate to the components of a QA system, the matrix being
the product of a quench, and the fluid component resulting from annealing.

From an experimental point of view, a rigorous fixing of particles is clearly artifi-
cial; however, it can be justified as being approximative of various real systems. For in-
stance, it may represent particles that are very massive and therefore very slow [45, 75].
However, in true thermal equilibrium such massive particles would still be influenced
by the fluid particles, which is not the case in the QA protocol. Alternatively, the
fixed particles could be thought of to be held in place by external forces. In two-
dimensional systems, this can be accomplished for instance by optical tweezers [29],

1.63http://en.wikipedia.org/wiki/Quenching

1.64http://en.wikipedia.org/wiki/Annealing_%28glass%29

1.65http://en.wikipedia.org/wiki/Annealing_%28metallurgy%29

http://en.wikipedia.org/wiki/Quenching
http://en.wikipedia.org/wiki/Annealing_%28glass%29
http://en.wikipedia.org/wiki/Annealing_%28metallurgy%29
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or by the clamping of particles between two glass plates [57, 58]. In this case, the QA
picture does not account for the fact that the fixed particles undergo residual oscilla-
tions whenever the external force is finite. Likewise in two dimensions, matrix particle
configurations can be emulated by lithography [236], which, however, is tedious if an
averaging over different samples is desired (see below).

From a theoretical point of view, the QA model presents tremendous opportunities
which more than compensate for its moderately artificial nature. In fact, the model has
been designed to suit the needs of “integral equation theory”, where on the basis of the
“Ornstein-Zernike” (OZ) equation it is possible to infer the equilibrium structure and
thermodynamics of a system [115, 170, 208]1.66. Specifically, via the “replica trick”, the
OZ equation has been extended to a set of “replica Ornstein-Zernike” (ROZ) equations
in order to account for the rigorous fixing of the matrix particles [97–100, 180, 181].
Among others, the replica trick reconciles the requirement of thermal equilibrium with
the fixing of particles, namely by imposing the condition that in addition to the usual
thermodynamic averaging there be an average over matrix realizations (“replicas”).
Based on the ROZ equations, many properties of the fluid component of QA systems
have been investigated in detail by theoretical methods. This includes for instance
the pair distribution function [174, 189, 266], the Gibbs-Duhem equation, the virial,
and the pressure [144, 224], as well as phase diagrams [145] for one-component QA
fluids, along with similar investigations for two-component QA fluids [206, 207, 232].
The most recent major development—a theoretical method to investigate the dynamic
arrest of QA fluids—will be presented in detail in Sec. 1.4.

From a simulational point of view, investigations of QA systems are almost as
simple and even more efficient than investigations of two-component systems since
the particles of the matrix species do not need to be propagated. However, if simu-
lation data are to be compared to the predictions of integral equation theory, then
additionally the averaging over replicas has to be performed. Even if in practice the
number of replicas is limited, this entails a computational effort well exceeding that
of the simulation of ordinary multi-component systems. (For simulational details see
Chapter 2.)

A much investigated special case of QA systems is the “Lorentz gas” [16, 18, 83,
104, 107, 111, 113, 175, 246, 247, 252]. In brief, the three-dimensional version of

1.66In an isotropic and homogeneous one-component liquid system, the Ornstein-Zernike (OZ) equa-
tion reads h(r) = c(r)+ρ

∫

c(|r−r′|)h(r′) dr′, where ρ is the number density, h(r) = g(r)−1 with g(r)
being the radial distribution function (cf. Sec. 2.5.2.1), and c(r) is the “direct correlation function” [98–
100, 115, 144, 145, 174, 189, 202, 266]. Evaluating the OZ equation presents two principal problems:
(i) the equation does not include system-specific information, and (ii) its right-hand side corresponds
to an infinite integral series that cannot be approximated by simple truncation. Both problems are
taken care of by “closure relations” (CRs), which provide controlled approximations. For instance,
the “hypernetted chain” CR assumes that c(r) = h(r) − ln[h(r)+1] − βΦ(r), where β is the inverse
temperature, and Φ(r) is the inter-particle potential and therefore introduces system-specific informa-
tion [115, 145, 189, 206, 239]. Although CRs typically eliminate c(r) or h(r) from the OZ equation,
in most cases the remaining equation is analytically unsolvable. Therefore, the final step usually
involves converging numerical evaluation schemes.
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this model encompasses a matrix of monodisperse hard spheres that are randomly
distributed (i.e., they may overlap) and a fluid that consists of a single hard-sphere
tracer particle of the same size. This is tantamount to a QA system with (i) an
immersed fluid of infinitesimally low density, (ii) no interactions between the particles
of the matrix precursor fluid, and (iii) monodisperse hard-sphere interactions between
the matrix particles and the fluid particle. This model is also referred to as the
“Swiss cheese model” [107, 175, 252], and has a long-standing and successful history of
investigations in the fields of both static percolation [107, 175] and particle dynamics
[18, 83, 104, 111, 113, 246, 247].

1.4 Theoretical predictions

One of the primary motivations of this work is the fact that for the phenomena and the
systems investigated in this work—dynamic arrest in hard-sphere quenched-annealed
systems—there exist detailed theoretical predictions. In this section, we provide a
brief overview over established theories of the glass transition, describe in basic terms
the theory of interest to this work, and present the pertinent relevant predictions.

1.4.1 Theories of the glass transition

Describing the glass transition is a notoriously hard problem for theoretical physicists.
Among others, this is due to the following fundamental issues:

(i) Via supercooling and dynamic arrest, the glass transition involves
nonequilibrium physics.

(ii) It is uncertain whether the nature of the glass transition is ulti-
mately dynamic or thermodynamic (the latter implying an equi-
librium phenomenon).

(iii) It is unclear which quantity—if any—is the “correct” indicator of
the glass transition.

(iv) Depending on the material and the considered quantities, “the
glass transition” might refer to multiple independent phenomena.

Over the past decades, numerous material properties have been suggested to indicate
the glass transition, and similarly many theories have been developed on their basis.
In line with point (ii) above, these theories generally fall in one of two categories:
theories of dynamic arrest, and theories of thermodynamic glass transitions.

In the thermodynamics corner, probably the most widely recognized represen-
tatives are mean field theories [33, 46, 205, 241] and the “random first order” (or
“mosaic”) theory [26, 34, 178, 199, 241], which like other theories of this class relate
to thermodynamic quantities (e.g., configurational entropy [1, 62, 71, 103, 138, 154])
and/or sophisticated structural features such as point-to-set correlation functions [25,
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26, 34, 42, 157, 231], nonaffine displacement fields [63, 72], or local order parame-
ters [26, 53, 178, 225, 231, 255]. Fundamental questions pertinent to this view are
“What symmetry does the transition break (i.e., what is the order parameter)?” and
“Can a simple substance have an amorphous ground state?”

In the dynamics corner, which this work is set in, focus is instead on quantities
like relaxation times, fragilities [11, 62, 71, 104], dynamic heterogeneities [25–27, 62,
140, 157, 282], the traversal of energy landscapes (“hopping”) [62, 154, 178, 241],
and relations between these. This class of theories includes the early approach of
“cooperatively rearranging regions” by Adam and Gibbs [1, 66, 103, 104, 277] and the
more recent theories pertinent to “kinetically constrained” models [26, 117, 223, 241]
as well as the “self-consistent generalized Langevin equation” (SCGLE) theory [131,
204, 217]. Most notably, however, the celebrated “mode-coupling theory of the glass
transition” [71, 93, 104, 154, 211, 220, 223, 241, 242, 270, 271] which we will describe
in more detail in Sec. 1.4.3, is a dynamic theory.

In the case of hard-body, or “granular”, systems (a class that includes hard spheres,
cf. Sec. 1.1.3), the concept of “jamming” [132, 154, 173, 223, 237, 259, 260, 262]
additionally allows for the formulation of theories that link structural with dynamic
features. As early as 1959, for example, Cohen and Turnbull suggested that the
dynamics of such systems is determined by the amount and/or the percolation of “free
volume” [52, 103, 104, 196, 241, 252], whereas more recent works suggest for instance
that the glass transition of hard-body systems corresponds to a “rigidity percolation”
[81, 260]. Therefore, such systems are promising study objects in the context of the
glass transition—despite the absence of temperature as a control parameter (cf. Sec.
1.1.3.2).

1.4.2 Mode-coupling theory

The mode-coupling theory of the glass transition (MCT) is arguably the most success-
ful theory for describing the dynamic slowdown and eventual arrest of glass-forming
systems, and it has been shown to make reasonable predictions—both qualitatively
and quantitatively—for a number of different systems and conditions [51, 66, 80, 93,
140, 155, 156, 211, 240, 242, 265]. In the following we will outline its general ideas,
combining the introductions by Kob [154], Sciortino and Tartaglia [241] and Voigt-
mann [271].

MCT was developed in the mid-1980s by Götze, Bengtzelius, and Sjölander [20],
whose motivation—at least in hindsight—was to mathematically describe the dynamics
pertinent to the cage effect, the reason being that this effect is central to the structural
relaxation of slow liquids. As discussed in Sec. 1.2.7, the breaking of cages requires the
coordinated motion of multiple particles at different times and in different locations.
MCT considers the motion of particles indirectly in terms of local particle densities,
which transformed to the Fourier domain read

ρk(t) =
N
∑

i=1

eik·ri(t) , (1.10)
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where ri(t) is the location of the ith of N particles at time t, and k is the considered
wave vector. The central idea of MCT is to construct an “equation of motion” in
which the ρk(t) are the degrees of freedom and which accounts for the influence of
the ρk(t) onto themselves across space and time1.67. The most important tool in this
endeavor is the famous Zwanzig-Mori projection-operator formalism, which provides
a means to re-express the time evolution of correlation functions [20, 104, 115]. The
formalism predates MCT by two decades and has been instrumental for instance in
the description of critical phenomena and of Brownian motion [154]. In the case of
MCT, the relevant correlation function involves the densities from Eq. (1.10),

F (k, t) =
〈ρk(t)ρ−k(0)〉

S(k)
, (1.11)

where S(k) = 〈ρkρ−k〉 is the static structure factor (cf. Sec. 2.5.2.2), and only the
modulus k = |k| is relevant in the correlator if the system is isotropic. F (k, t) is usually
called the (collective) intermediate scattering function (ISF; cf. Sec. 2.5.3.2). By a
rather tedious twofold application of the Zwanzig-Mori formalism—once on F (k, t),
and once on a subterm arising in the first application—, it can be shown that for the
case of Newtonian dynamics, F (k, t) obeys the exact relation

F̈ (k, t) + Ω2(k)F (k, t) + Ω2(k)
∫ t

0
M(k, t−s) Ḟ (k, s) ds = 0 , (1.12)

where Ω2(k) = k2/ [mβ S(k)], with β being the inverse temperature and m being the
particles’ mass. The term M(k, t) is the so-called “memory kernel”, which via the
enclosing integral provides the desired feedback mechanism for F (k, t) to influence
itself at different times.

Unfortunately, the memory kernel expression emanating from the Zwanzig-Mori
formalism does not allow to solve Eq. (1.12). In order to obtain an evaluable term,
M(k, t) is first split into two contributions named the “regular” and the “slow” mem-
ory kernel. The regular memory kernel by definition determines only the short-time
evolution of F (k, t) and can thus be dropped in the context of dynamic arrest1.68. This
leaves the task of obtaining a usable expression for the slow memory kernel, M slow(k, t),
which is accomplished by projecting it onto a subspace of known quantities. MCT’s
subspace of choice for this procedure is that of “density pairs”, which is chosen ad-hoc
and only due to its being the simplest subspace nonorthogonal to M slow(k, t). This
projection has come to be known as the “MCT approximation”. In a second ad-hoc

1.67The name “mode-coupling theory” derives from the fact that particle densities in the Fourier
domain are also called “modes”, and from the assertion that these modes “couple”, i.e., influence
each other and themselves.

1.68As can be shown, the predictions of MCT are in fact insensitive to the microscopic dynamics
(Newtonian, Brownian, etc.) in the sense that a different microscopic dynamics merely shifts the slow
dynamical features by a constant factor in the time domain. It is this finding that warrants the
neglecting of the regular memory kernel, and it is likewise this finding that lends meaning to the use
of Newtonian dynamics in the simulation of the slow dynamics of colloidal particles (cf. Sec. 2.2).
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simplification, four-point correlation functions arising from this projection are replaced
by products of ISFs (the so-called “convolution approximation”), and three-point cor-
relation functions are neglected altogether. The resulting expression for the memory
kernel reads

M(k, t) ≈ MMCT(k, t) =
∫

V (2)(k,q,p) F (q, t) F (p, t)
dq

(2π)3
(1.13)

with the “quadratic vertex”

V (2)(k,q,p) =
n

2k4
S(k)S(q)S(p) [ k·q c(q) + k·p c(p) ]2 (1.14)

where n is the particle number density, c(k) = [1−1/S(k)]/n is the Ornstein-Zernike di-
rect correlation function, and p = k−q. Equations (1.12), (1.13), and (1.14) together
with the boundary conditions F (k, 0) = 1 and Ḟ (k, 0) = 0 (see Ref. [241]) represent a
closed equation for F (k, t) in which all other quantities [namely m, n, β, and S(k)] are
assumed to be known. The only remaining obstacle is the fact that the equation is ana-
lytically unsolvable; however, it is well possible to numerically determine approximate
solutions to any desired degree of precision.

All things considered, MCT is therefore capable of determining the time evolution
of F (k, t) using only static structural properties as input parameters. Of the input
parameters, the only nontrivial case is S(k). If a completely theoretical description
of a system is desired, then S(k) can be obtained from integral equation theory (see
Footnote 1.66), which, however, introduces approximations associated with closure
relations in addition to the MCT approximation. The alternative is to experimentally
or simulationally measure S(k) in the system of interest, which likewise introduces
uncertainties.

The principal capability of MCT, and the one most relevant to this work, is its
power to predict from the input information whether or not the pertinent system is
dynamically arrested. The latter is manifested primarily in the “nonergodicity param-
eter” f(k) = limt→∞ F (k, t), which is nonzero in the arrested case and zero otherwise.
MCT provides a host of further predictions, many of which have been tested and veri-
fied1.69. The predictions of MCT relevant specifically to this work will be discussed in
Sec. 1.4.3.

1.69Notwithstanding its success, MCT also has well-known shortcomings [51, 93, 154, 241, 265].
For instance, MCT originally did not include predictions for single-particle properties such as self
diffusion. Also, the conditions for which MCT predicts dynamic arrest are usually quantitatively off
by at least 20%. More fundamentally, MCT has been criticized for its prediction of “ideal” dynamic
arrest, which is most likely unphysical. The latter two problems have been attributed mainly to the
projection on the subspace of density pairs, which has been labeled “uncontrolled” since the choice of
subspace is arbitrary and no “small parameter” is involved as in perturbation theories. In response,
additional subspaces like density currents have been considered, which resulted in the avoidance of
ideal transitions and in increased quantitative accuracy, but came at the cost of vastly more complex
expressions.
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1.4.3 Replica MCT and its predictions

Over the past years, Krakoviack published a series of articles in which he adapted
MCT to fluids with quenched disorder and in which he investigated the pertinent
predictions for dynamic arrest [159–164]. The theory considers quenched disorder in
the form of pinned particles that are arranged according to equilibrium configurations
of another fluid. This is precisely the premise of quenched-annealed (QA) systems
(cf. Sec. 1.3.4.2), and in fact hard-sphere (HS) QA systems are among the systems for
which Krakoviack investigated his theory.

The MCT equations resulting from Krakoviack’s efforts are remarkably similar to
those of the original MCT equations, the main differences being:

• Any involved quantity that is supposed to be spatially homogeneous and
isotropic has to be averaged not only thermodynamically but also over re-
alizations of the quenched disorder (indicated by the symbol · · ·, compare
Secs. 1.3.4.2 and 2.5.1.5). Owing to this requirement, Krakoviack’s MCT
for fluids with quenched disorder has come to be known as “replica MCT”
(RMCT).

• In RMCT, all quantities refer exclusively to the fluid (i.e., nonpinned) parti-
cles. This includes the particle mass m, the number density n, the inverse tem-
perature β, the Fourier-space density ρk(t), the static structure factor S(k),
and the (collective) ISF F (k, t).

• In the presence of quenched disorder, F (k, t) can never fully relax. This is
a purely static phenomenon. However, limt→∞ F (k, t) > 0 indicates dynamic
arrest in MCT, which would imply QA fluids to always be arrested. Since this
is not a useful prediction, in place of F (k, t), RMCT considers the “connected”
ISF,

Fc(k, t) =
〈δρk(t)δρ−k(0)〉

Sc(k)
, (1.15)

which involves δρk(t) = ρk(t)−〈ρk〉, i.e., only the fluctuations of the local
density (cf. Sec. 2.5.3.3). These density fluctuations also define the connected
structure factor Sc(k) = 〈δρkδρ−k〉. Except for the changes detailed in the
next point, the RMCT expressions are obtained from the MCT expressions
[Eqs. (1.13) and (1.14)] by the straightforward substitution F (k, t)→Fc(k, t)
and S(k)→Sc(k).

• The RMCT memory kernel is more complex than the MCT memory kernel
from Eq. (1.13). It reads

M(k, t) ≈ MRMCT(k, t)

= MMCT(k, t) +
∫

V (1)(k,q,p) F (q, t)
dq

(2π)3
(1.16)
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Figure 1.19: RMCT HS-QA kinetic diagram. Depending on the packing
fractions of the matrix, φm, and of the fluid, φf , RMCT predicts HS-QA systems
to assume either a fluid (green area), a localized (blue area), or a glassy (red area)
state. The pertinent parameter-space regions are separated by type-B (red line),
type-A (yellow line), and localization (blue line) transitions. Black arrows indicate
parameter-space paths followed in Figs. 1.20, 1.21, and 1.22. (Reproduced from
Ref. [162], Fig. 2(a).)

with the “linear vertex”

V (1)(k,q,p) =
n

2k4
Sc(k)Sc(q)Sb(p)

[

k·q cc(q) + k·p n−1
]2

, (1.17)

where Sb(k) = 〈δρk〉〈δρ−k〉 is the “blocked structure factor”, and cc(k) =
[1−1/Sc(k)]/n.

In consequence, the input quantities of RMCT are m, n, β, Sc(k), and Sb(k). Re-
markably, this means that none of the matrix properties are referenced directly by
RMCT; instead, the influence of the matrix upon the fluid is represented only indi-
rectly via Sc(k) and Sb(k).

RMCT makes several intriguing predictions for the dynamic arrest of fluids with
quenched disorder, most of which are reflected in the case of monodisperse HS-QA
systems. In the following, we focus primarily on those predictions that later in this
work will be examined using computer simulations (see Chapter 3). For an overview,
let us start with the “kinetic diagram”, i.e., with the set of information about a system’s
dynamic state for all (relevant) points in its control parameter space. As shown in
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Figure 1.20: RMCT HS-QA connected ISF. RMCT predictions for the relax-
ation of the connected ISF in HS-QA systems. In both panels, the wave vector
is k = 6.71, the matrix packing fraction φm is constant, and the fluid packing
fractions are φf ∈ {0.9φg

f , 0.99φg
f , 0.999φg

f , 0.9999φg
f , 0.999 99φg

f , 1.000 01φg
f ,

1.0001φg
f , 1.001φg

f , 1.01φg
f , 1.1φg

f }. Panel (a): φm = 0.105 and φg
f ≃ 0.352.

Panel (b): φm = 0.209 and φg
f ≃ 0.146. Colors correspond to regions in Fig. 1.19;

curves are listed bottom left to top right. (Reproduced from Ref. [160], Figs. 1(a)
and 1(b).)

Fig. 1.19, the parameter space of HS-QA systems is spanned by the packing fractions
of the matrix, φm, and of the fluid, φf . In this space, RMCT predicts HS-QA systems
to assume either a “fluid” (green area), a “localized” (blue area), or a “glassy” (red
area) state. These states are separated and defined by “type-B” (red line), “type-A”
(yellow line), and “localization” (blue line) transitions, which, as explained below, refer
to features of ISFs. Probably the most striking feature of the RMCT HS-QA kinetic
diagram is the presence of a “reentrant region” for 0.17 . φm . 0.24, where a decrease
of φf from >0.25 towards zero first leads from glassy to localized states and then back
to glassy states.

The difference between type-A and type-B transitions is illustrated in Fig. 1.20.
The figure depicts the connected ISF, Fc(k, t), at state points with φm = 0.105 in
panel (a) and φm = 0.209 in panel (b), with k = 6.71 being the pertinent wave
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vector1.70. In both panels, the φf values of the shown state points are in the vicinity of
the fluid packing fraction φg

f at which RMCT predicts dynamic arrest to occur, with
φg

f ≃ 0.352 in panel (a) and φg
f ≃ 0.146 in panel (b). The state points therefore reside

along paths 1 and 2 in Fig. 1.19, and the curves are colored according to the regions
in Fig. 1.19.

The relaxation patterns of Fc(k, t) are obviously very dissimilar between panels (a)
and (b). In panel (a), the nonarrested (blue) curves relax in two steps, which—as
explained in Sec. 1.2.7 using the cage effect—is typical for simple glass-forming liquids.
If this relaxation pattern is present in some parameter-space region, and if dynamic
arrest is approached in that region, then the second (and only the second) relaxation
step is delayed beyond any limit. This means that at the transition, the ISF’s long-time
value fc(k) = limt→∞ Fc(k, t) exhibits a jump. Transitions of this kind are referred to
as “type-B”.

In panel (b), in contrast, Fc(k, t) relaxes in a single step. If in some parameter-
space region this relaxation pattern is present, and if the dynamic arrest transition is
crossed in that region, then fc(k) exceeds zero just like in type-B transitions. However,
in the depicted case fc(k) varies continuously with the external parameters, i.e., it does
not jump upon crossing the transition. Such transitions are referred to as “type-A”,
and it is one of the aims of this work to elucidate the physical origin of transitions of
this type.

Transitions of collective correlators such as Fc(k, t) define the distinction between
glassy or nonglassy systems. However, there also exist single-particle (“self”) quanti-
ties, which further allow to differentiate nonglassy systems into “localized” and “fluid”
systems. One of these self quantities is the single-particle ISF, Fs(k, t), as defined in
Sec. 2.5.3.4 and as shown in Fig. 1.21. The figure differs from Fig. 1.20 in that now
k = 7 and that the constant quantity in panel (b) is φf instead of φm, with φm = 0.1
in panel (a) and φf = 0.15 in panel (b). The figure contains state points with φf in
the vicinities of φg

f and φl
f in panel (a), and analogously with φm in the vicinities of φg

m

and φl
m in panel (b). Here, φl

f and φl
m are the fluid and matrix packing fractions at

which RMCT predicts the occurrence of localization (see below). The state points
thus reside along paths 1 and 3 in Fig. 1.19, and again the colors correspond to the
regions in Fig. 1.19.

As can be seen from Fig. 1.21, the relaxation patterns of Fs(k, t) are more complex
than those of Fc(k, t). Panel (a) clearly reflects the (collective) dynamic arrest at
φf = φg

f with a two-step relaxation for φf . φg
f as in Fig. 1.20(a). However, φf < φg

f is
not sufficient for fs(k) = limt→∞ Fs(k, t) = 0, which instead is the case only for φf < φl

f .
Panel (b) is similar to Fig. 1.20(b) in that a two-step regime is absent, and it resembles
panel (a) in that fs(k) = 0 only for φm < φl

m. The transition at φm = φg
m—i.e., the

change from blue to red curves—is virtually featureless in panel (b). In the remainder
of this work, we will refer to the transition at φl

m or φl
f as the “localization transition”,

1.70For the RMCT transition predictions, it is irrelevant which wave vector k is considered, the reason
being that according to the theory, dynamic arrest occurs simultaneously for all k.
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Figure 1.21: RMCT HS-QA single-particle ISF. RMCT predictions for the
relaxation of the single-particle ISF in HS-QA systems. In both panels, the wave
vector is k = 7. In panel (a), the matrix packing fraction is constant at φm =
0.1, and the fluid packing fractions are φf ∈ {0.9φl
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f }. In panel (b), the constant quantity is φf = 0.15, and φm ∈

{0.9φl
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m, 0.9φg
m, 0.99φg

m, 0.999φg
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m}. Colors correspond to regions in Fig. 1.19; curves are listed bottom left

to top right. (Reproduced from Ref. [162], Figs. 8 and 11.)

although according to the previous terminology it is of type A. Doing so highlights
its occurrence only in self properties, and distinguishes it from type-A transitions in
collective quantities.

The localization transition is also reflected in the mean squared displacement
(MSD), δr2(t), as defined in Sec. 2.5.1.2. Figure 1.22 shows the MSD for the same
constant quantities as Fig. 1.21—φm = 0.1 in panel (a) and φf = 0.15 in panel (b)—and
likewise for state points with φf in the vicinities of φg

f and φl
f in panel (a) and φm in

the vicinities of φg
m and φl

m in panel (b). As can easily be seen, in both panels the
MSD’s long-time value tends to infinity only in the fluid regime, while in the localized
and the glassy regimes it attains a finite maximum value. This behavior is well known
from simple glass formers, where the localization and the dynamic arrest transitions
coincide. The separation of the latter in QA systems is reflected in panel (a), where
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Figure 1.22: RMCT HS-QA MSD. RMCT predictions for the mean squared
displacement in HS-QA systems. In panel (a), the matrix packing fraction is
constant at φm = 0.1, and the fluid packing fractions are φf ∈ {0.9φl
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m}. Dashed lines: long-time subdiffusion at
φf = φl

f in panel (a) and at φm = φl
m in panel (b). Colors correspond to re-

gions in Fig. 1.19; curves are listed bottom left to top right. (Reproduced from
Ref. [162], Figs. 7, 10, and 13; dashed line in panel (b) added.)

upon crossing the transition at φg
f the long-time value of δr2(t) features a jump.

Upon closer inspection, the MSD does not merely corroborate the findings of
Fig. 1.21 but additionally evidences the presence of long-time subdiffusion (compare
Sec. 1.3.2). Specifically, RMCT predicts this phenomenon to occur for all state points
at which a localization transition takes place. For these cases, the precise value z =
1/2 is analytically inferred from RMCT1.71. In Fig. 1.22, the long-time subdiffusive
behavior at φf = φl

f in panel (a) and at φm = φl
m in panel (b) is highlighted by

black dashed lines. It is one of the foremost goals of this work to verify the existence

1.71Recently, the value z = 1/2 deduced from RMCT for the long-time subdiffusion has been con-
tested; however, the general prediction of long-time subdiffusion has been found to hold [235].
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of this phenomenon in HS-QA systems and, if present, to elucidate its underlying
mechanisms.

RMCT makes several predictions in excess of those discussed above. However, in
this work we did not attempt to verify those predictions since either

(1) the computational effort would have been exceedingly large, or
(2) we found the preconditions of the prediction to differ from reality.

Among others, point (1) ruled out the verification of glass–glass transitions and of
state points with higher-order singularities, while point (2) rendered it impossible to
verify the predicted dependence of fc(k) and fs(k) upon the wave vector and/or the
state point in large parts of the kinetic diagram.



Chapter 2

Methods

2.1 Concepts

2.1.1 Overview

After fast electronic computing machines emerged in the middle of the past century2.1,
computer simulations have grown to be an invaluable tool in science and technology.
Popular contemporary examples for fields in which simulations play a major role are
weather forecasting2.2, machine and building construction2.3, cosmological modeling of
the universe2.4, and thermonuclear reactions (vulgo atomic bombs)2.5,2.6. A striking
common feature of this case selection is that all of the named simulations consider their
respective system as a large collection of constituent units that behave and interact
according to a prescribed set of relatively-simple rules. Although there are many ways
to put fast computing machines to use, the repeated evaluation of simple instructions
is a task at which calculation machines truly excel—and this is precisely what the
quoted cases exploit.

So wherein lies the (scientific) value of computer simulations? Classically, the
scheme of progress in the natural sciences is that of the mutual stimulation of theory
and experiment or, put differently, the co-development of more refined observations of
and control over real-world systems on the one hand, and the search for patterns in
the behavior of those systems on the other. Naturally, difficulties have to be overcome
to make this scheme work. Experiments need to be controlled and reproducible, and
reasonable assumptions have to be made as to what circumstances are relevant to

2.1http://en.wikipedia.org/wiki/History_of_computing_hardware

2.2http://en.wikipedia.org/wiki/Numerical_weather_prediction

2.3http://en.wikipedia.org/wiki/Computer-aided_engineering

2.4http://en.wikipedia.org/wiki/Millennium_simulation

2.5http://en.wikipedia.org/wiki/Los_Alamos_National_Laboratory

2.6http://en.wikipedia.org/wiki/Lawrence_Livermore_National_Laboratory

http://en.wikipedia.org/wiki/History_of_computing_hardware
http://en.wikipedia.org/wiki/Numerical_weather_prediction
http://en.wikipedia.org/wiki/Computer-aided_engineering
http://en.wikipedia.org/wiki/Millennium_simulation
http://en.wikipedia.org/wiki/Los_Alamos_National_Laboratory
http://en.wikipedia.org/wiki/Lawrence_Livermore_National_Laboratory
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Figure 2.1: Theory, simulation, experiment. Flowchart of scientific fact find-
ing, highlighting the significance of computer simulations (reproduced from Allen
and Tildesley [9]). Red: experiment branch; turquoise: model branch, the latter
splitting up into sub-branches for simulation (green) and theory (blue).

measurements. The complexity of mathematical theories can typically be controlled by
the initial assumptions, yet even if the latter are simple, complex—or even unsolvable—
expressions are common to arise so that approximations (which may or may not be
justified) are frequently required to arrive at predictions for the behavior of a real-world
system. In this age-old scheme, computer simulations assume an intermediary position
between experiment and theory, and owing to their rapid acceptance and prowess (as,
hopefully, this work demonstrates) they are nowadays even called the “third pillar of
science”2.7.

Let us consider the specific case of condensed-matter systems, i.e., large collec-
tions of distinct micro- or mesoscopic particles that form a material. In this case,
a theory may for instance make assumptions about the properties of a set of parti-
cles (such as their composition, their arrangement, or their interaction) to predict the
characteristics of a material is constituted by them. The theoretical predictions may
then be compared with experimental observations conducted on the same material.
A straightforward application of computer simulations in this case is to simulate this
material using as input exactly the assumptions about the particle properties that
were made to derive the theoretical predictions. This information is then processed
according to some algorithm (such as the one detailed in Sec. 2.2) and yields a set of
results. As sketched in Fig. 2.1, these computer simulation results then provide the

2.7http://www.grs-sim.de/education/master

http://www.grs-sim.de/education/master
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Figure 2.2: Chess. The conventional set-up of chess, with
32 pieces on a 64-field checkerboard. For the simple consid-
eration in Sec. 2.1.1, all pieces are regarded to be equal, and
likewise are all fields.

distinct possibility to carry out two comparisons of outcomes—as opposed to merely
one in the classical experiment/theory scheme. Firstly, it is possible to compare simu-
lation results with the observed physical behavior of a system, which allows to assess
whether the properties of the model particles are well chosen. Secondly, if theoretical
evaluations require approximations, the results from computer simulations for a given
model choice allow to judge the appropriateness of those approximations.

Of course, the two new comparisons are prudent only if the results of computer
simulations are generally more similar to experimental observations than theoretical
predictions are. This is by no means trivially fulfilled, with the main problem being
as simple as severe: limited computing power. A slightly unrelated problem, which
is nevertheless seriously considered by scholars (see, e.g., Ref. [165]), may clarify just
how limited even the most powerful present computers are. Consider a system in
which 32 “particles” of differing types move according to various convoluted rules on a
two-dimensional square with 8× 8 lattice sites—i.e., consider the game of chess. If we
want to fully characterize this “system” without a-priori knowledge about the rules,
then we need to find every permitted constellation of pieces along with its probability
to occur. If for a moment we make the (significant) simplifications that all pieces
are indistinguishable, that every piece may occupy every field, and that capture is
impossible, then we arrive at the astronomically large number

64!

(64−32)!
≃ 4.8× 1053 (2.1)

for the number of possible arrangements2.8. For comparison, the fastest supercom-
puters currently execute ∼1015 low-level operations per second2.9, i.e., even if it took

2.8If all chess rules were properly accounted for, then the quoted number of configurations would
have to be enlarged by a factor 12! ≃ 5×106 due to the 12 distinct types of chess figures, but also
reduced by a factor that accounts for the fact that some pieces can never occupy certain fields (which
is difficult to quantify). To account for capture, the procedure would then have to be repeated for
less than 32 pieces and summed over the respective outcomes. Since in condensed-matter systems
particles are generally indistinguishable and subject to comparatively simple rules, the number of
configurations quoted in the text is more meaningful to the present context.

2.9http://www.top500.org/list/2012/11

http://www.top500.org/list/2012/11
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only one such operation to construct one arrangement2.10, it would take 1031 years
(!) to compute them all even on a supercomputer. Considering that physical systems
typically consist of much more than 32 particles which are moreover not constrained
to a lattice, it is clear that computer simulations in condensed matter physics cannot
operate in “brute force” mode, i.e., attempt to find each and every configuration of a
system in order to describe it.

2.1.2 Statistical mechanics

Fortunately, there exists a well-established theoretical framework that can be used—
amongst others—to approach this unfortunate deficiency of condensed-matter systems:
statistical mechanics (see, e.g., Refs. [108, 238, 258]). The fundamental concept of this
theory is to link a macroscopic descriptor of a system to its detailed microscopic
representations (“microstates”). Obviously, statistical mechanics is one of the theories
alluded to in the previous subsection that predict a system’s macroscopic behavior
based on a set of underlying assumptions. However, due to its mathematical structure
it is not only suited to make predictions, but also to develop approximations in a
meaningful way and to assess their accuracy.

Let us go about this a bit more formally. The central quantity in statistical me-
chanics is the so-called “partition function”; its German name Zustandssumme (“state
sum”) reflects the fact that it represents a sum over all possible states of the system.
However, it is not a simple sum but a weighted one in which each state is represented
by its probability to occur. In the chess example, if we count every arrangement with
unity weight, then the partition function is nothing but the figure 64!/32! that we
already quoted. In the general case we have N particles instead of 32, and one state of
the system is characterized by the set of the (continuous) coordinates rN = (r1, . . . , rN )
and the momenta pN = (p1, . . . ,pN), and possibly by other properties of the parti-
cles such as their magnetic moment or their orientation. A general expression for the
partition function is then given by

ΩQ(t) = h−3N
∫

{Γ}
wQ(Γ; t) dΓ . (2.2)

Here, the function wQ(Γ; t) denotes the weight of a microstate Γ = (rN ,pN ), i.e., the
relative probability that a certain combination of rN and pN occurs at a particular
time t under the premise that the external conditions Q = {Q1=const, . . . } are fixed
(see further below). The integration is carried out over the entire range of possible Γ,
the so-called “phase space” {Γ}. The factor h−3N only occurs in the integral form of
the partition function and serves to render ΩQ dimensionless, with the actual value
of h being insignificant since the weights are only determined up to a common constant

2.10In reality, it is much more likely that finding one particular arrangement would take several dozen
operations per piece, that is, perhaps 1000 operations per arrangement—excluding the computational
effort required to determine the probability of that arrangement.
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factor2.11. If the weight function (and thus the partition function) does not explicitly
depend upon time, then by definition the respective system is in thermal equilibrium
[115]; throughout this work we will assume this condition to hold. The delicate issue
of establishing thermal equilibrium will be touched upon in Sec. 2.5.5.

Before we discuss the external conditions Q and the associated weight wQ in more
detail, we should wonder why the rather strange object of the partition function ΩQ is
so important. The answer is: because it is the very tool that connects the microscopic
with the macroscopic description of the system. Suppose we want to measure some
physical property A of the system (A should of course not be one of the external
conditions Q since those are imposed and constant). Examples for A are the density,
the pressure, the heat capacity, the viscosity, or the structure factor of a system.
Obviously, each microstate Γ of the system may have its own value of A—in other
words A = A(Γ). The average value of A observed in a measurement therefore depends
upon which Γ’s the system assumes during the time of measurement, which in turn is
determined by the probability of the Γ’s to occur. If we want to evaluate the “true”
average value of A under the conditions Q, then we need to consider all microstates Γ,
i.e., the entire phase space {Γ}. This is formally encoded by the expression

〈A〉ps
Q = h−3N

∫

{Γ}
A(Γ)

wQ(Γ)

h−3N
∫

{Γ}
wQ(Γ′) dΓ′

dΓ , (2.3)

where the superscript “ps” serves to remind about the phase-space integration. The
term in the denominator of the fraction in Eq. (2.3) purports an important physical
purpose: since the system has to occupy some microstate, the sum of the probabilities
has to be unity. A quick check against Eq. (2.2) reveals that this denominator is
nothing but the partition function ΩQ. We can therefore introduce the so-called “phase-
space density”

fQ(Γ) =
wQ(Γ)

ΩQ

(2.4)

to rewrite the observed average of the quantity A as

〈A〉ps
Q = h−3N

∫

{Γ}
A(Γ) fQ(Γ) dΓ . (2.5)

This formula represents the core of every application of computer simulations in the
context of statistical mechanics. However, unfortunately, Eq. (2.5) alone does not yet
relieve the investigator from the task of calculating every possible state of a system
to evaluate an observable since all integrals involved run over the entire range of their
arguments.

Before we address this problem in the next subsection, one issue remains to be
discussed: the fixed external conditions Q and the associated weight wQ(Γ). There

2.11It is only in quantum statistics that h attains an actual meaning, being then interpreted as
Planck’s constant.
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are many properties of a system that one may decide to keep constant, for instance
the number of particles N , the volume V , the pressure P , the total internal energy E,
the temperature T , or the chemical potential µ, just to name a few. Each choice of Q

determines a so-called “ensemble” and entails a particular functional form of wQ(Γ).
As will become clear in Sec. 2.2, for the investigations carried out in this work the
natural choice is Q = {N=const, V=const, E=const}, or short Q = NV E. This
corresponds to a system that is completely isolated from its surroundings (no transfer
of particles, volume, or energy into or out of the system) and is commonly termed the
“microcanonical ensemble”. The fundamental postulate of statistical mechanics states
that in such isolated systems, every microstate is equally likely [108], i.e., wNV E is
a constant2.12. For our purpose this means that evaluating the partition function
formally reduces to “counting” the microstates (similar to the chess example), which,
however, remains a highly-nontrivial task.

2.1.3 Molecular dynamics

So how does statistical mechanics help us eventually? As mentioned before, the frame-
work allows to work out meaningful approximations. One concept in this direction is
to consider real-world systems, where the constituent particles are subject to physical
laws. As a consequence of these laws, as time progresses a system will evolve in a se-
quence of closely-related microstates. The careful reader will notice that the concept
of the time evolution of a system has not played a role so far. On the contrary: in
Sec. 2.1.2 we explicitly disregarded all dependence of our ensembles upon time (and
thereby assumed our systems to be in thermal equilibrium). However, in reality time
does play a major role. For instance, one could imagine that given an infinitely-long
time span, a system would explore its entire phase space, i.e., realize all possible mi-
crostates at least once. In fact, always bearing in mind that the phase space of a system
is dependent upon the external conditions Q, already Ludwig Boltzmann postulated
that the time average

〈A〉time
Q = lim

τ→∞

1

τ

∫ τ

0
A(Γ(t)) dt , (2.6)

where now Γ(t) = (rN(t),pN (t)), is equivalent to the ensemble average as defined in
Eq. (2.5), i.e.,

〈A〉time
Q = 〈A〉ps

Q . (2.7)

2.12Notably, if the system of interest consists of hard spheres (cf. Sec. 1.1.3), then the micro-
canonical ensemble is equivalent to the “canonical” ensemble (see below). This is due to the
“athermal” nature of hard spheres (cf. Sec. 1.1.3.2), the effect of which in the present context is
the following. In the canonical ensemble, Q = NV T and wNV T = exp{−βH (rN ,pN )}, where

H (rN ,pN ) =
∑N

i=1 p2
i /(2mi) +U(rN ) is the Hamiltonian of the system, mi is the mass of particle i,

the potential energy is represented by U(rN ), and β = 1/(kBT ) with kB being Boltzmann’s con-
stant. Since in hard-sphere systems it is always U(rN ) = 0, and the total momentum of the particles
∑N

i=1 p2
i /(2mi) is conserved, the Hamiltonian reduces to a constant. Resulting from this, wNV T is

simply constant for systems of hard spheres—just as is the case for wNV E regardless of the system.
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The statement expressed in Eq. (2.7) is the (in)famous “ergodic hypothesis”, which,
despite all controversy, will be assumed to hold in the remainder of this work2.13.

This reinterpretation of the averaging of an observable can be exploited, namely
by noticing that in the real world, any measurement time τobs is finite. It has been
established in a plethora of instances that reliable and reproducible measurements can
be obtained in experiments despite finite observation times. This implies that the
limit τobs → ∞ is not compulsory, and that neither is considering the entire phase
space of a system. Of course, the truncation of the observation time comes at the
cost of a systematic measurement uncertainty since part of the phase space has been
neglected. The immediate question naturally is: if a finite τobs can suffice, how long
is “sufficient”? Unfortunately there is no general answer to this question. However, it
is common practice to conduct repeated measurements of a certain length τobs (each
of which will yield a different value), and to evaluate statistical uncertainties for their
outcomes, which are then required to remain below a predefined value (e.g., 10% of
the mean of the measured values). A more succinct answer to how long τobs has to
be chosen involves the study of so-called time correlation functions (discussed in more
detail in Sec. 2.5), which usually show features on various time scales: if all important
time correlators have been considered, then the largest of their time scales can be
interpreted as a lower bound for the observation time.

In the same context, another important point calls for care by the investigator. In
any measurement—be it in a simulation or in an experiment—, the sample has to be
prepared in some way, i.e., it has to be assigned an initial microstate. (The delicate
issue of finding such initial states for quenched-annealed systems is the subject of Sec.
2.3.) Unfortunately, the value of the observable of interest A in this initial state may
be far from its ensemble average. On the other hand, it can be shown that a reasonably
large system in thermal equilibrium (and far away from a phase transition, but this
is a different topic) is subject to only little fluctuations [108], i.e., that almost all
microstates occurring under these conditions yield values of A close to 〈A〉ps

Q . Therefore,
if the ergodic hypothesis holds, then the system must sooner or later enter a region
of phase space in which “equilibrium microstates” are abundant. The time τeqlib a
system requires to arrive at this phase-space region is called the “equilibration time”,
which clearly depends on the initial microstate. Since the microstates that the system
assumes in the physical evolution subsequent to its preparation usually have a value
of A similar to the initial state, it is generally advisable to let a time t > τeqlib elapse
before commencing a measurement. As mentioned before, for the systems investigated
in this work, the procedures and issues connected to establishing thermal equilibrium
are discussed in Sec. 2.5.5.

2.13Unfortunately, as the name indicates, the ergodic hypothesis has remained a hypothesis to the
present day. A proof of it would provide the long-sought classical-mechanical basis to statistical
physics, which is in fact based solely on the mathematics of probability. Despite this radiant appeal,
the problem has turned out too adamant even for minds as brilliant as Henri Poincaré, Paul Ehrenfest,
Enrico Fermi, John von Neumann, and Boltzmann himself. Nevertheless, the named personages and
many more after them were able to demonstrate that in slightly modified versions or under additional
conditions, the hypothesis indeed holds in numerous cases [258].
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Summarizing this ansatz, one approach for computer simulations in condensed-
matter physics is to evolve a digital representation of a system according to a set of
physically meaningful laws. Indeed, algorithms of this kind have found widespread
application and are commonly termed “molecular-dynamics” (MD) simulations [6, 9,
85, 216, 219]. The fact that it imitates a system’s physical development renders the MD
concept particularly appealing since it allows for the distinct possibility to determine
time-dependent properties of a system. In fact, it is owed to this capability of MD
simulations that major parts of this investigation are based on this technique. The
particular incarnation of MD underlying this work (which is a relatively rarely used
one) shall be discussed Sec. 2.2, where details on its algorithmic implementation as
well as on its physical justification will be given.

2.1.4 Monte Carlo

In addition to MD, there exists another very successful approach for computer simula-
tions in condensed-matter physics: the “Monte-Carlo” (MC) technique. In the present
work, a MC-type method is used for only one specific purpose, namely for generating
initial configurations of the systems of interest. Since a very simple version of MC
suffices to fulfill this task, and since no calculation of observables is required in this
context, the present section shall merely outline some general ideas that provide the
basis of MC. The description of the actual algorithm as well as of its application are
then detailed in Sec. 2.3.

Essentially, the term “MC technique” describes the concept of using mathemat-
ical methods—instead of physical insight—to obtain an (approximate) value for the
central quantity of statistical mechanics: the partition function ΩQ. The most basic
of the mathematical considerations involved is the following: suppose we have a one-
dimensional function f(x) that is defined on some interval [xa, xb]. Then, even if it is
impossible to find an analytic solution to the integral

∫ xb
xa
f(x) dx, it is in principle pos-

sible to approximate its value—for instance by calculating f(x) at K regularly-spaced
points {xi} = {x1, . . . , xK} separated by a distance ∆x = (xb−xa)/(K−1) and by
then summing over these values, i.e.,

∫ xb

xa
f(x) dx ≈ Sreg = ∆x

K
∑

i=1

f(xi) , (2.8)

where the subscript “reg” indicates that the {xi} are regularly spaced. In fact, in
the limit ∆x→ 0 this expression provides the conventional definition of the Riemann
integral2.14. There are two main obstacles that thwart the use of Eq. (2.8) to evaluate
the partition function ΩQ with its integrand wQ(Γ). Firstly, Γ = (rN ,pN ) lives in a
6N -dimensional space, meaning that the number of interpolation points in this case
is as large as K6N—as opposed to only K in the one-dimensional case. Secondly, the
functional form of wQ(Γ) is typically such that K needs to be relatively large to obtain

2.14http://en.wikipedia.org/wiki/Riemann_integral

http://en.wikipedia.org/wiki/Riemann_integral
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an acceptable accuracy in Sreg. As an example, if we consider merely 10 particles and
for their loci and momenta we allow only two interpolation points per dimension (a
basically useless characterization), this results in the astonishing figure 260 ≃ 1018 for
the number of interpolation points2.15.

In the 1940s, von Neumann and Ulam realized that any Riemann-type integral can
be approximated to any desired accuracy by means of stochastic methods [9]. While at
first this seems to be a needless complication, this finding provides the foundation to
the MC-simulation method. In Eq. (2.8), for K ≫ 1 the sum Sreg represents nothing
but the average of f(x) over the interval [xa, xb], multiplied by (xb−xa). Now who
is to say that for determining some average, the points {xi} have to be picked on a
regular lattice? The mathematics of probability states that an average can just as well
be determined from the values of f(x) at random positions {xj} = {x1, . . . , xM}. Due
to its probablistic nature, this scheme, expressed by

∫ xb

xa
f(x) dx ≈ Suni =

(xb − xa)
M

M
∑

j=1

f(xj) , (2.9)

is called “Monte Carlo integration”. The index “uni” signals that for this equation
to hold, the {xj} have to be sampled uniformly from [xa, xb], i.e., every value in that
interval has to be equally likely to be selected. In fact, Eq. (2.9) is very similar to
Eq. (2.8), so what do we gain by using it? One can show that the uncertainty in Suni

scales proportionally to 1/
√
M , which means that approximating an integral can be

commenced with a small number of evaluations M , and that Suni can subsequently be
refined continuously by considering more f(xj). However, just as in the deterministic
scheme (where Sreg is meaningless if the grid is too coarse), the number of addends M
in Suni is subject to a lower bound: it must be chosen such that the integrand does
not contain maxima narrower than (xb−xa)/M , so that each maximum is likely to
be sampled. Unfortunately, since wQ(Γ) is often highly nonuniform, this condition
requires very large M to reliably estimate ΩQ, which means that for this purpose the
simple MC-integration scheme is almost as useless as deterministic integration.

However, MC integration provides the basis for a more sophisticated scheme pio-
neered by Metropolis and coworkers [190]. The first fundamental idea of these authors
was to employ a nonuniform probability p(x) for selecting a particular xj, and to
modify the sum Suni in Eq. (2.9) such that in the limit M → ∞ it remains invariant
despite the different sampling of the {xj}. This can be achieved by dividing each
addend of Suni by p(x), i.e.,

∫ xb

xa
f(x) dx ≈ Simp =

(xb − xa)
M

M
∑

j=1

f(xj)

p(xj)
. (2.10)

2.15In fact, the simple “rectangular” discretization scheme in Eq. (2.8) effectively converts the con-
tinuous problem to a lattice problem of the chess type, for which we have already demonstrated
in Sec. 2.1.1 that a brute-force approach is futile. However, the current approach additionally evi-
dences that more sophisticated deterministic approximation schemes such as the trapezoidal scheme
or Simpson’s rule are also bound to fail since in any case the number of interpolation points tends to
be astronomically large due to the high-dimensional nature of the integration space.
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If p(x) is suitably chosen, then the error of Simp may decrease much faster with increas-
ing M than does the error in Suni. Obviously, the xj that are favorably selected by
such a p(x) are more significant, which is why this method is also called “importance
sampling”—hence the index “imp”. If for every addend we have to generate a new xj
without any additional information, then the probability p(x) has to be normalized
since for each addend we have to select some xj. In this situation, we cannot use
p(x) = f(x) for the selection function (which would seem a promising choice) since
the normalization for this function would be precisely the integral that we set out to
determine in the first place.

Here, the second fundamental idea of Metropolis and his collaborators comes into
play, which is to avoid the necessity of normalizing p(x) altogether by only evaluating
relative probabilities. This can in principle be achieved by generating a so-called
“Markov chain” [9], which is essentially a state automaton with a (possibly infinite)
number of states, as well as with probabilities to change from one state to another
that depend only on a finite number of previous states. Since there are infinitely-
many possibilities to prescribe a Markov chain, it is nontrivial to choose a set of rules
for which the {xj} are selected according to p(x) as M → ∞. One prescription that
suffices this criterion2.16 was originally proposed by Metropolis et al. [190]: Suppose
the automaton is in state xj. To go to state xj+1 we first choose some xk ∈ [xa, xb] at
random. If p(xk) > p(xj), then we set xj+1 = xk immediately. If on the other hand
p(xk) < p(xj), then we first draw a random number R ∈ [0, 1]; if R < p(xk)/p(xj),
then we set xj+1 = xk as above, and xj+1 = xj otherwise. (Notably, the latter does
not mean rejecting the trial but rather that the new state of the chain is equal to the
old one.) In addition to evaluating only relative probabilities, this algorithm requires
to know at any time merely two states of the system: the current and the proposed
one.

The final consideration is concerned with the actual values of the probability
ratios. It is of paramount importance that there occur sufficiently many trials in
which p(xk)/p(xj) is below unity but large enough to allow the system to change to
the dispreferred state xk. This is necessary for the MC algorithm to surmount barriers
that separate regions of preferential states, which is an obvious requirement for the
algorithm to explore the entire range [xa, xb]. The frequent occurrence of probability
ratios below but close to unity can be achieved by selecting in each step a trial xk
that is in a relatively-small vicinity δx of the current xj. However, this vicinity should
not be chosen too small since it takes at least (xb−xa)/δx trials to explore the entire
interval. In the high-dimensional integration spaces of condensed-matter systems this
requirement is not easily fulfilled and requires adaptive techniques as well as some

2.16While it is reasonably simple to prove that the described state-change prescription fulfills the
Markov-chain criteria, the proof is slightly lengthy [9, 190]. It is based on solving the eigenwert
problem of the stochastic matrix that describes all possible state transitions. Since the criteria
defined by this problem are insufficient to devise a simulation algorithm, Metropolis and his coworkers
introduced the additional (actually overly strict) criterion of “detailed balance”, which constitutes
their third fundamental idea. On this basis, the same authors succeeded in deriving the so-called
“asymmetric solution” described in the text.
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(limited) insight into the physical mechanisms that are at work in the investigated
system.

Since the MC method does not require a system to evolve physically correctly, it
allows for an abundance of optimizations. For this reason (and of course because it
is very efficient), the MC technique is widely used in the scientific community. The
method also constitutes an ideal starting point to tailor custom algorithms for unusual
purposes. In the present work, an MC-type algorithm was employed to generate
initial conditions for fluids in porous media; the custom scheme developed to suit this
objective is described in Sec. 2.3.

2.2 Event-driven molecular dynamics

2.2.1 Physical principle

2.2.1.1 Overview

A popular exercise in elementary college physics textbooks reads as follows:

Two marbles roll in a straight horizontal groove such that one hits the other.
The marbles have the same diameter, their masses are m1 and m2, and their
velocities before the collision are v1 and v2. The collision is fully elastic, and
friction and rotation do not play a role. What are the velocities w1 and w2 of
the marbles after the collision?

In such an exercise, the student is supposed to realize the significance of conservation
laws (namely those of momentum and energy) which have to be employed to obtain the
solution. Of course, the conditions described in this exercise are somewhat artificial:
nothing is known about the actual collision (it is just assumed that “before” and
“after” the collision are well defined), and in reality there will always be some energy
dissipation. Also, the objects move along a groove only for the purpose of rendering
the problem one-dimensional and therefore free of vectorial quantities. Nevertheless,
the three-dimensional analog of such collisions represents a reasonable approximation
for a variety of interactions between macroscopic objects, examples being tennis balls,
curling rocks, and bumper cars.

An important motivation of the present work is the fact that collision-like inter-
actions can take place also among mesoscopic colloidal particles, especially if they are
designed to have this property (see Sec. 1.1). The major part of this work is devoted
to investigating large collections of such particles, which in the framework of statisti-
cal physics are commonly called “hard spheres” or “billiards”. As described in more
detail in Sec. 1.1.3, aggregates of hard spheres are widely considered (proto)typical
condensed-matter systems due to their resembling of many key properties of other ma-
terials [115]. In a nutshell, this feature is owed to the fact that hard spheres embody
the essence of excluded-volume interactions.
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In 1959, Alder and Wainwright took up the concept of collisions to devise a
computer-simulation method for finding the exact time evolution of a collection of
ideal hard spheres [5, 6]. In fact, their scheme constitutes the very first molecular-
dynamics (MD) algorithm in history, and has remained popular to the present day.
The central ingredient of this scheme are particles that never overlap and that move
at constant velocity along straight lines except for infinitesimally short times during
which momentum and energy are mediated via “impulse interactions”. The physics
of these interactions—a.k.a. collisions—can be derived from the additional conditions
that the system is invariant under time shifts, translations, and rotations (i.e., that en-
ergy, momentum, and angular momentum are conserved), and that no external forces
or torques are exerted on any part of the system. The particle trajectories resulting
from all of these assumptions are obtained by iterating the following scheme:

(I) find the time of the next collision between any two particles
in the system,

(II) propagate all particles to that time along straight lines ac-
cording to their current velocity vectors, and then

(III) change the velocities of the colliding particles in a way that
conserves energy, momentum, and angular momentum.

The procedure therefore does not involve the notion of a fixed time step (as do other
MD schemes [9, 85, 216, 219]) but rather evolves a system in a sequence of discrete
physical events—hence the name “event-driven molecular dynamics”. As shall be
demonstrated shortly, all of the above points are reasonably simple from the math-
ematical point of view. The nontrivial task is to optimize this scheme such that the
event computing rate is sufficient. This is particularly important if a system consists
of a large number of particles, if collisions are frequent due to a short mean free path,
or if the slow nature of the system’s dynamic features requires the simulated time to
be long. Since the systems discussed in this work are subject to at least the latter
two conditions, we implemented a considerable body of optimizations. The latter will
be described in detail in Section 2.2.2, after introducing the physical basis to points
(I)–(III) in the above scheme.

2.2.1.2 Finding the next collision

Finding the time at which the next collision event will take place is the most difficult
task in the three-step algorithm outlined in Sec. 2.2.1.1. The problem actually consists
the following sub-tasks:

(1) Define the set {Pij} of pairs of particles that might collide.

(2) For each particle pair in {Pij}, check if the particles will collide.

(3) For each remaining pair, determine when the particles will collide.

(4) From the times resulting from step (3), find the smallest one.
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Figure 2.3: Will a collision occur?
Sketch of two identical particles of di-
ameter d separated by a distance r.
Particle j is fixed at its position, and
particle i moves such that at closest
approach it touches particle j. For a
collision to occur, the angle enclosed
by the vector connecting the centers
of i and j and the velocity vector of
particle i must be smaller than β.

In each iteration of steps (2) and (3), exactly two particles are considered and all
other particles are neglected. This is a valid approach since there exists a definite “next
event” that depends only upon the current properties of exactly two particles. The sole
precondition for finding this event is that in step (1) the corresponding pair of particles
be included in {Pij}. Unless there is further insight (see Sec. 2.2.2), performing the
next event then renders all other events invalid since the physical conditions from
which they were calculated have changed. In this section, we will focus on steps (2)
and (3) since they contain the major part of the physical and geometric considerations.
Steps (1) and (4) will be discussed in detail in Sec. 2.2.2 since they offer themselves to
numerous optimizations. For step (1), the reader may temporarily assume the simple
(yet inefficient) approach in which the set {Pij} comprises all possible pairs of particles
[i.e., N(N−1)/2 elements] and thereby trivially includes the next event. Step (4) is
then accomplished equally simply by updating scalar variables for the time and the
collision partners each time a collision time is computed.

For step (2), consider two particles i and j. Whether or not a collision will take
place between i and j depends on merely six quantities: the current loci of the two
particles, ri and rj, their current velocities vi and vj, and their diameters di and dj. For
notational convenience, we have suppressed all time dependencies since here we focus
on a fixed instant of time. The problem is invariant under Galilean transformations,
which means that the relevant quantities reduce to the relative location of the particles
r = ri− rj, their relative velocity v = vi−vj, and their diameters di and dj. We may
for instance consider the frame of reference in which particle j is fixed at the origin
and particle i is located at r and moves with velocity v; this situation is depicted in
Fig. 2.3.

Suppose that particle i would touch (but not interact with) particle j in the
fly-by depicted in Fig. 2.3. In this case, the particle’s velocity vector and the vector
connecting the particle centers at closest approach would be orthogonal, and the length
of the latter vector would be d = (di + dj)/2. The angle β in Fig. 2.3 therefore serves
as a threshold for the angle α enclosed between r and v, with a collision occurring only
if α < β. This consideration can be expressed using planar trigonometry since the
problem is of cylindrical symmetry about the vector connecting the particle centers.
In terms of the known quantities (and using the notation r = |r| and v = |v|), the
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Figure 2.4: When will the collision
occur? Sketch of two identical parti-
cles of diameter d separated by a dis-
tance r. Particle j is fixed at its posi-
tion, and particle i moves along a path
tilted by an angle α < β relative to
the vector connecting the particle cen-
ters (cf. Fig. 2.3). The path is such
that a collision between i and j occurs,
with the time of the collision being de-
termined by the length x and the veloc-
ity of particle i.
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condition for a collision to take place can hence be expressed as

α < β

cosα > cos β

cosα > r−1
√
r2 − d2

r2v2 cos2 α > v2(r2 − d2)

a2 > b , (2.11)

where simply the definition of the cosine and Pythagoras’s theorem were used. In the
last step, the shortcuts

a = r v cosα = r · v and

b = v2(r2 − d2)
(2.12)

have been introduced for the reason that in a computer program the values associated
with a and b can be stored and reused, the benefit of which will become clear shortly.

The collision time tcoll can be evaluated from an equivalent trigonometric consid-
eration. In this case, the primary object of interest is not the threshold angle (as
above) but rather the distance that particle i has to travel from its current position to
the position of closest approach. In Fig. 2.4 this distance is labeled with x, while the
quantities r, d, and α = �(r,v) are the same as above and therefore known. Using
the cosine rule, the distance d can be expressed as

d2 = r2 + x2 − 2r x cosα , (2.13)

and employing the quadratic formula, the solution of this equation for x is

x1,2 =
1

2

{

2r cosα±
√

4r2 cos2 α− 4(r2 − d2)
}

. (2.14)

The “+” solution of this expression corresponds to the dotted circle in Fig. 2.4, which
is clearly unphysical since particle i would have to pass through particle j to reach
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this position. We therefore get

x = r cosα−
√

r2 cos2 α− (r2 − d2)

=
1

v

{

v r cosα−
√

v2r2 cos2 α− v2(r2 − d2)
}

=
1

v

(

a−
√
a2 − b

)

(2.15)

where in the last step we used a and b as introduced in Eq. (2.12). Dividing x by v,
we finally get the time of collision tcoll as

tcoll =
1

v2

(

a−
√
a2 − b

)

+ tcurr , (2.16)

where tcurr is the current time of the system. It is readily verified that in accordance
with Eq. (2.11), the resultant tcoll is a real number only if a2 > b.

2.2.1.3 Propagating the particles

Moving the particles from their current location to their location at the time of the
collision is trivially performed by evaluating the simple equation

ri(tcoll) = ri(tcurr) + (tcoll − tcurr) vi(tcurr) (2.17)

for all particles. Here, tcurr is the current time of the system (i.e., the time at which
the previous event occurred), tcoll is the time at which the next collision takes place,
and ri(t) and vi(t) are the location and the velocity of particle i at time t. Surprisingly,
it is possible to optimize this task, as will be explained in Sec. 2.2.2.4.

2.2.1.4 Performing the collision

Once steps (I) and (II) specified in Sec. 2.2.1.1 have been performed, the colliding
particles i and j are directly at contact2.17. The ensuing collision event is fully defined
by the particles’ locations, ri and rj, their velocities before the collision, vi and vj,
and their masses mi and mj. The quantities to be determined are the velocities
after the collision, which shall be denoted by wi and wj. As in Sec. 2.2.1.2, all time
dependencies are notationally suppressed since the time instant is fixed. To solve the

2.17In fact, the particles-to-collide are rarely precisely at contact after conducting the propagation
step in a computer simulation. This is due to unavoidable numerical round-offs, which regularly lead
to minute overlaps of (or spacings between) the respective particles. While this does not affect the
validity or the stability of the MD algorithm, a routine has to explicitly account for the existence
of these small errors if it relies on identifying particle overlaps. This is the case for instance when
verifying the proper functioning of the MD algorithm (see Sec. A.3.1).
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Figure 2.5: After-collision ve-
locities. Decomposition of the
particles’ velocities into two com-
ponents: one parallel to the vec-
tor r that connects particle i and j,
and one perpendicular to this vec-
tor.
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task, it is necessary to decompose the velocity of each particle k ∈ {i, j} into the two
components

v
‖
k = r̂ (r̂ · vk) (2.18a)

v⊥k = vk − v
‖
k , (2.18b)

that is, in a component parallel to r̂ and a component perpendicular to r̂, where

r̂ =
r

r
=

ri − rj

|ri − rj|
(2.19)

is a unit-length vector parallel the vector connecting the particle centers, and Eq.
(2.18b) simply results from requiring

vk = v
‖
k + v⊥k . (2.20)

The decomposition is visualized in Fig. 2.5; note that despite the sketch being two-
dimensional, the problem is actually fully three-dimensional since v⊥i and v⊥j need not
be parallel to each other. If we assume the spheres to be frictionless (which we shall
do in the remainder of this work), then no momentum is mediated perpendicular to r̂

during the collision, which immediately yields

w⊥k = v⊥k , (2.21)

meaning that the velocities perpendicular to r̂ are left unchanged. This is precisely
tantamount to the assumption that torques are absent during collisions, i.e., that
angular momentum is conserved (cf. Sec. 2.2.1.1). Eq. (2.21) therefore leaves us to
be concerned solely with vectors parallel to r̂, which renders the nature of the task
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one-dimensional and in fact recovers the elementary problem described in Sec. 2.2.1.1.
The quantities involved are mi, mj, v

‖
i = |v‖i |, and v

‖
j = |v‖j | and, as alluded to, if no

energy is dissipated in the collision event (which we will assume to hold throughout this
work), then the problem can be solved by exploiting the conservation of momentum
and energy

mi v
‖
i + mj v

‖
j = mi w

‖
i + mj w

‖
j (2.22a)

mi
2

(v‖i )
2 +

mj
2

(v‖j )
2 =

mi
2

(w‖i )
2 +

mj
2

(w‖j )
2 . (2.22b)

We can rearrange this to

mi
[

v
‖
i − w

‖
i

]

= −mj
[

v
‖
j − w

‖
j

]

(2.23a)

mi
[

(v‖i )
2 − (w‖i )

2
]

= −mj
[

(v‖j )
2 − (w‖j )

2
]

(2.23b)

which upon dividing Eq. (2.23b) by Eq. (2.23a) reduces to

v
‖
i + w

‖
i = v

‖
j + w

‖
j . (2.24)

Substituting the solution for w‖j in Eq. (2.22a) gives

miv
‖
i +mjv

‖
j = miw

‖
i +mj

(

v
‖
i − v‖j + w

‖
i

)

w
‖
i =

1

mi +mj

[

v
‖
i (mi −mj) + 2mjv

‖
j

] (2.25)

which, together with Eqs. (2.18b) and (2.20) yields

wi = v⊥i +
r̂

mi +mj

[

v
‖
i (mi −mj) + 2mjv

‖
j

]

. (2.26)

The after-collision velocity wj pertaining to particle j is trivially obtained by swapping
the indices i and j in Eq. (2.26). Two special cases of the mass mj play a prominent
role in this work, namely mj = mi and mj → ∞. In these cases, Eq. (2.26) takes on
the particularly simple forms

w
mj=mi
i = v⊥i + v

‖
j and (2.27a)

w
mj→∞
i = v⊥i − v

‖
i . (2.27b)

In the quenched-annealed systems discussed in this work (cf. Sec. 1.3.4.2), the case
mj = mi occurs frequently since all fluid particles are taken to be identical. The case
mj → ∞ is no less important since it provides the rule for the case in which fluid
particle i collides with matrix particle j. It is worth noting, however, that this infinite-
mass limit may entail subtle difficulties, for instance when using the conservation of
momentum for validating the MD algorithm (see Appendix A.3.1.1).
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2.2.2 Optimization strategies

An important characteristic of an MD algorithm is its change in performance upon
altering the number of particles N in the system while leaving all other simulation
parameters unchanged. For instance, the unoptimized algorithm in Sec. 2.2.1 requires
to check for N2 possible collisions in each attempt to find the next event. Making use of
the so-called “Landau” or “Big O” notation2.18, this can be expressed as θcoll ∝ O(N2),
where θcoll denotes the computing time required to determine just the next collision.
Consider now the average number of collisions that one particle participates in during
a fixed interval ∆t of simulated time, which is independent of N . However, there are
N particles in the system, meaning that O(N) collisions have to be computed for ∆t
to elapse, which in turn implies the proportionality θ∆t ∝ O(N3), with θ∆t standing
for the computing time required to progress the simulation by the interval ∆t.

Since condensed-matter systems generally require a large number of particles for
measurements to be reliable, the scaling with N usually represents the primary opti-
mization target. Notwithstanding, enhancements that merely decrease the constant of
proportionality in the above-quoted formulae are equally welcome since contributions
to the overall performance of the MD algorithm are usually cumulative. As will be
detailed in the following, the event-driven MD algorithm introduced in Sec. 2.2.1 offers
several targets for optimization, some of which can be taken on with physical insight
while others have to be tackled with methodologies developed in the computer sciences.
In Appendix A.3.2 we shall see that the reward of those—sometimes intricate—opti-
mizations is an MD algorithm that requires merely O(N logN) operations to advance
a system of N particles by a constant interval of time. In order to ensure that despite
these optimizations the algorithm still is sound and robust, we will in Appendix A.3.1
introduce a number of suitable validation methods.

2.2.2.1 Periodic boundary conditions

The first optimization approach that we shall discuss is somewhat of an oddball since
its main objective is not to enhance the actual computing algorithm but rather to
minimize the number of particles in the simulated system while still being able to
conduct meaningful observations. The method is motivated by the fact that if a
condensed-matter system is small, then surface effects play a significant role. Since the
available computing power generally puts severe limits to the number of particles that
a simulated system can consist of, a means to suppress this effect is highly desirable.

To understand the graveness of the surface problem, consider that macroscopic
condensed-matter systems generally comprise an extremely large number of particles—
usually comparable to Avogadro’s number, NA ≃ 6×1023. Unless specific conditions
are fulfilled (such as a particular arrangement of the particles), the overwhelming
majority of the particles in such a system is not part of an interface. For instance, if
NA particles are arranged in a simple cubic lattice and form a cubic body, then only one

2.18http://en.wikipedia.org/wiki/Big_O_notation

http://en.wikipedia.org/wiki/Big_O_notation
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out of NA/[NA−(N1/3
A −2)3] ≃ 1.4×107 particles is located directly at one of the cube’s

faces. In computer studies, the number of particles that can be efficiently simulated is
much smaller than NA. If we consider a million particles (which is a huge number for
simulations), then in the same arrangement almost 6% of the particles reside at one
of the side areas, and for N = 103 this figure increases to an astonishing 49%. From
the investigator’s point of view this is unfortunate since in many cases the object of
interest is the behavior of a material’s bulk rather than that of its surface.

The basic idea to remedy this problem is to provide interaction partners to the
surface particles without having to increase the number of particles in the system. This
can be accomplished by applying “periodic boundary conditions” (PBCs; the reason
for the naming shall become clear below), a technique which introduces interactions
between particles located at “opposite” surfaces. This rather abstract and seemingly
unphysical concept has first been described in the year 1912 by Born and von Karman
in the context of crystal lattices [35] and has been employed in the pioneering works
by Metropolis et al. [190] and Alder and Wainwright [6], i.e., from the very beginnings
of computer simulations2.19.

We shall illustrate the technique by considering a specific implementation, keep-
ing in mind that the individual features of a given system may suggest—or even re-
quire—the realization to be different. If the particles of a system assume continuously-
distributed positions (as is the case in this work), then it is convenient to first define a
finite spatial region in which all particles are placed. The shape of this region should be
reasonably simple while tiling the entire space, and its volume should of course fulfill
possibly-present external conditions. While the best choice generally depends on the
system and the aims of the investigation, the most popular shape in three-dimensional
systems (and the one that we shall adopt) is a cube2.20.

Consider now the particles close to one of the cube’s faces. Providing these par-
ticles with interaction partners from the opposite face of the cube is fact equivalent
to placing a copy of the simulation box in a position at which the considered face
of the original cube and the opposite face of the copy coincide. This interpretation
is visualized in Fig. 2.6, in which a two-dimensional hard-disk system within a qua-
dratic simulation box is portrayed. The figure illustrates that particles extend across
the cube’s borders even if their centers reside inside the cube; therefore, neighboring
copies have to be present not only at the edges but also at the vertices (meaning that
26 copies have to be considered in three dimensions). Since in the bulk of a material
there should not exist any artificial barriers, particles are free to leave the original
cube. Tracking the full arrows and the empty circles in Fig. 2.6, it is clear that if a
particle leaves the central box through some face, then a copy of the same particle
enters the same box through the opposite face. Therefore, at any time at least one

2.19Another famous use of PBCs is in one of the two solutions to the one-dimensional Ising model,
both of which were provided by Ising himself in 1925 [128].

2.20Other commonly-used shapes of the simulation volume range from cuboids over prisms to more
complex bodies which may for instance reflect the real-space base cell of a relevant crystal structure
(see, e.g., Ref. [9]).
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Figure 2.6: Physical significance
of periodic boundary conditions.
Two-dimensional example system of
seven hard disks residing in a qua-
dratic area. Dark disks: “original”
particles. Light disks: periodic im-
ages of the particles. Full arrows:
movement of particle A and of its
copy A1. Dotted arrow: effective
movement of particle A. The lat-
ter results from the fact that after
the movement, A1 is treated as the
original A, whereas the former origi-
nal is afterwards regarded to be the
copy A2.

A

A1

A2

A

copy of each particle is present in the central cube. This is usually exploited by al-
ways defining the copy in the central box to be the “original”, which means that the
particle effectively “jumps” to the opposite end of the cube upon crossing one of its
faces (indicated by the dotted arrow in Fig. 2.6). This effective behavior facilitates the
identification of interacting particle copies, and provides an opportunity to verify the
algorithm’s correct functioning by requiring all particles to reside inside the central
box.

Obviously, the term “using periodic boundary conditions” is reasonably descrip-
tive of this procedure. As a variation, occasionally the word “toroidal” is used in place
of the term “periodic” [106]; this alternate naming is motivated in Fig. 2.7, which
shows a two-dimensional system that is warped in a third dimension such that it as-
sumes the topology of a torus and that opposing pairs of its edges (pictured in red
and green) eventually coincide2.21.

PBCs in fact achieve the initial aim of reducing surface effects by removing sur-
faces altogether. Since a surface-less body cannot be less than infinitely large, this
method has the welcome side effect of mimicking a system with infinitely-many parti-
cles. However, this capability comes at the cost of artificially introducing periodicity,
which not only means that no physically relevant information is contained in distances
larger than the smallest extent of the simulation volume, but also that the simulation
cannot account for any physical effects extending beyond this length. In particular,
if conditions are simulated under which a large system would develop a large length

2.21Note that the warping only correctly reflects the topology but not the geometry. The three-
dimensional analog would be to wrap a cube around a four-dimensional torus, which may mathemat-
ically be straightforward but definitely escapes this author’s imagination.
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Figure 2.7: Toroidal topology of periodic boundary conditions. A two-
dimensional simulation area is distorted in a third dimension such that it assumes
the topology of a donut.

scale, then the simulation will fail to exhibit this length scale if only few particles and
PBCs are used. This actually reflects the mere fact that the simulated system is really
no larger than the original simulation box, and the investigator must be constantly
aware of this subtlety of PBCs.

Finally, periodic boundary conditions are commonly complemented by the “near-
est image convention” (NIC), the significance of which is the following. Consider a
particle i and its interaction with another particle j. Focusing on the periodic image
of i that is considered the “real” one (usually the one in the central box), i could
in principle interact with all periodic images of j. As mentioned before, however,
no physical information is contained in the presence of periodic replicas of particles.
Therefore, it seems reasonable to disregard all images but one2.22, and in fact if the
inter-particle potential emphasizes interactions over short distances, then it is custom-
ary to consider only the image of j that is nearest to i [9, 85, 219]. In systems in which
particles interact through continuously-varying potentials, the NIC is commonly used
in combination with a potential cutoff, compensated by additionally considering a ho-
mogeneous background [9, 85, 219]. In the case of hard-sphere interactions, however,
the NIC is exact in this regard in the sense that by construction, an interaction be-
tween i and j takes place only if i and one of the images of j are in immediate spatial
proximity of each other.

2.2.2.2 Bucket lists

Historically, the bucket-list method was first implemented later than the concept of
reusing previously-calculated events (the latter being introduced in Sec. 2.2.2.3). This
is due to the fact that bucket lists require substantial memory resources, which were
not readily available in the early days of computer simulations [6]. The event-reuse

2.22Notably, in the case of “long-range interactions” it is not valid to consider only one image since
in that case the combined influence of all images of a particle j on some particle i always outweighs
the influence by any particular image of j (see, e.g., Refs. [9, 85, 172, 219]).
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Figure 2.8: Geometry of the buckets. Two-
dimensional schematic of the geometry choices for the
buckets and the simulation volume, with M being the
number of cubic buckets in one dimension and L be-
ing the edge length of the cubic simulation box.
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concept, on the other hand, entails subtle difficulties if it is used in conjunction with
periodic boundary conditions (for details see Sec. 2.2.2.3). Although there does exist
a well-established technique to solve these problems in the absence of bucket lists [6],
this approach is entirely obsolete if bucket lists are suitably implemented since the
associated modifications of the MD algorithm intrinsically alleviate the event-reuse
problems. Therefore, we shall first introduce the notion of bucket lists, and only
afterwards turn to the event-reuse concept.

Bucket lists directly tackle one of the primary problems of determining inter-
actions in condensed-matter systems, namely that in a system of N particles there
exist N(N−1) pairs of particles that—depending on their distance—may interact.
Bucket lists greatly facilitate the identification of pairs in which the respective par-
ticles are separated by less than a given distance. In event-driven MD, this kind of
selection assumes a central role since collision events solely involve particles that are
precisely at touching distance.

The basic concept of bucket lists is to partition the simulation volume into sub-
volumes (“buckets”2.23) and to assign each particle at each instant of time to exactly
one of these buckets. Obviously, this requires the buckets to cover the entire space
without overlapping each other. For each assignment of a particle to a bucket, a piece
of information is stored not only in the particle’s data structure but also in a data
structure pertaining to the bucket. This procedure provides the basis for an efficient
identification of all particles that reside in some given region of space: if we know all
buckets that overlap this region, then all particles in question are contained in the
data structures of these buckets. If the bucket boundaries follow some pattern, then
the relevant buckets can be determined from computationally inexpensive rules, with
less complicated boundary patterns being obviously favorable.

2.23The entities that we call “buckets” here are referred to as “cells” in most works [9, 85, 219].
However, since we reserved term “cells” for the geometric regions in tessellations (see Sec. 2.4), we
chose to instead use the term “buckets”, the latter being reasonably common in the information
sciences (see Footnote 2.64).
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Since in Sec. 2.2.2.1 we opted for the simulation volume being cubic, for the
present work we will accordingly employ cubic buckets (which are therefore arranged
on a cubic lattice). As is visualized in Fig. 2.8, assigning a particle to one of the
buckets is then particularly simple: if the simulation cube of edge length L is centered
about the origin of the coordinate system, and a bucket is to be identified by the
indices mα ∈ {1, 2, . . . ,M} with α ∈ {x, y, z} denoting the dimension, then

mα =
⌈

M
(

rα
L

+
1

2

)⌉

(2.28)

if the particle in question is located at r = {rα} with rα ∈ [−L/2, L/2]. The notation
⌈a⌉ symbolizes the ceiling operation, which yields the smallest integral number that is
larger than a.

For reasons that will become clear later, in the context of event-driven MD it is
vital to guarantee that at any given simulation time, all particles are assigned to the
correct bucket. This can be achieved by introducing a new type of event, namely the
“bucket change” event. This event is treated in the same way as collision events, in
the sense that the three-step scheme in Sec. 2.2.1.1 is modified to read

(I′) find the time of the next event,

(II′) propagate all particles to that time along straight
lines according to their current velocity vectors, and
then

(III′) for particles that participate in the event, change the
velocities according to the laws of the event,

with an event now being either a bucket change or a collision. At first sight, this intro-
duces additional computational effort since there are now more events to be calculated
per simulated time interval. However, the computational gain that can be achieved by
employing bucket lists usually clearly outweighs this disadvantage (see below).

For each particle, at any given time there is precisely one future bucket-change
event. In the case of cubic buckets, determining the time of this event is particularly
simple: since the inside of each bucket is defined by six planes, it is sufficient to
evaluate the times at which the particle crosses each of these planes, with the smallest
positive one of these times defining the bucket-change event. The time of the next
crossing is then

tcross = min
{

t±α
∣

∣

∣ t±α > 0
}

+ tcurr , where

t±α =
1

vα

[

L

M

(

mα −
M

2
− 1

2
± 1

2

)

− rα
]

,
(2.29)

if we use the same geometry descriptors as for Eq. (2.28), and let tcurr denote the
current time of the system.

For determining collisions in event-driven MD, the bucket list structure can then
be exploited as follows. Suppose that we are given a particle i, and that we want to
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Figure 2.9: Buckets relevant for collisions. Two-
dimensional sketch of the procedure to determine
the bucket set {B{kα}}. Dark gray: particle i, lo-
cated in the central bucket. Medium gray: “rounded
square” area within which a particle of diame-
ter dmax has to be placed to allow for the possibility
of touching particle i. Light gray: buckets that over-
lap the rounded square.
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determine the next collision involving i. For this collision to take place, the collision
partner needs to be located within one of the buckets {B{kα}} that allow it to touch
particle i. Any particle that is not located in {B{kα}} would first have to enter one of
the buckets in {B{kα}}, which would cause a bucket-change event that would precede
the collision of the respective particle with i. Consider now that particle i is mobile
itself: as long as it moves only within its current bucket, it will not cause a bucket-
change event; nevertheless, by propagating this way it might approach other particles
such that a collision takes place. This suggests to extend the set {B{kα}} such that
the buckets therein include all particles that could touch particle i if the latter were
located anywhere in its current bucket. Provided this, collisions between particle i and
particles outside {B{kα}} are always preceded by bucket-change events, which means
that none of these collisions are candidates for the next event in the system, which in
turn means that all buckets not contained in {B{kα}} can be neglected when seeking
the next collision partner of particle i.

The remaining task is to pinpoint which buckets constitute {B{kα}}. As explained
above, this selection is performed based on the distance that allows other particles to
touch particle i. Since any particle might be i’s next collision partner, we need to
specifically consider the largest of all particles with diameter dmax. According to the
rules compiled in the preceding paragraph, the region that needs to be covered by the
buckets in {B{kα}} is that of a “rounded cube”, the two-dimensional analog of which
(a rounded square) is visualized in Fig. 2.9. If particle i measures di in diameter, then
the rounded cube is obtained by forming the spatial union of the following bodies: the
bucket that particle i resides in, a sphere of diameter di + dmax centered at each of its
eight vertices, a cylinder of height L and diameter di + dmax aligned along each of its
twelve edges, and a cuboid of the dimensions L× L× (di + dmax)/2 attached to each
of its six faces. If the condition L/M > (di + dmax)/2 holds, then {B{kα}} comprises
simply the bucket that particle i is located in and the 26 buckets that directly border
it, that is,

kα ∈ {(mα − 1 mod M),mα, (mα + 1 mod M)} , (2.30)

where mα is determined according to Eq. (2.28). The notation “mod” signals the
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modulo operation, which is required if periodic boundary conditions are employed
since in this case the condition kα ∈ {1, 2, . . . ,M} needs to be adhered to.

The choice of M significantly impacts the performance of the MD algorithm. If
it is chosen such that L/M < (di + dmax)/2, then {B{kα}} consists of more than
27 buckets, with larger M entailing more buckets. If, on the other hand, M is selected
such that L/M ≫ (di+ dmax)/2, then only few buckets can be neglected when seeking
the collision partners of particle i. Hence, usually a value of M is employed for which
L/M & (di+ dmax)/2 holds. Further, the value of M is the same for all particles since
there is only one bucket grid that the particles are assigned to. If we want to ensure
that {B{kα}} comprises 27 buckets irrespective of the particle, then dmax has to be used
in place of di. Finally, considering that M has to be an integral number this results in

M =
⌊

L

dmax

⌋

(2.31)

for the choice ofM . Here, similar to the ceiling operation in Eq. (2.28), the notation ⌊a⌋
describes the floor operation, which returns the largest integral number that is smaller
than a.

Using the bucket-list method, the computational effort for finding the next colli-
sion of particle i is reduced from O(N) to O(1), meaning that finding all candidates
for the next collision now requires only O(N) operations. Since no other part of the
event-driven algorithm takes more than O(N) operations per event, bucket lists in-
crease the overall performance of the program such that only O(N2) instead of O(N3)
operations are needed to advance a system by a fixed interval of simulated time. In
a final word, it is worth noting that using the bucket-list technique, it is well possible
that no future collision is found for a given particle i. Although this means that there
might exist system configurations in which no particle is known to have future colli-
sions (this is particularly likely if M is large), this does not represent a problem since
there is always a next bucket-change event in the system.

2.2.2.3 Reuse of previously-calculated events

The reuse of previously-calculated events has been implemented as early as in the
original work that introduced event-driven MD [6]. The idea is based on noticing that
if the quantifiers that describe a hard-sphere system are suitably chosen, then any
event in the system leaves most of these quantifiers unchanged.

More specifically, suppose that we have already performed l−1 events according
to the cycle in Sec. 2.2.2.2, and that for event l we have already prepared the list
of candidate events {Ej}l. Each candidate Ej in this list is determined from only a
small set of information {Ik}j , where each piece of information Ik is taken from the
pool of quantifiers that characterize the system. In consequence of putting event l to
effect, then, only a few of the quantifiers Ik change. If, resultingly, some set {Ik}j
remains unchanged, then the associated event Ej will remain valid after event l and
will therefore also be an element of the list of candidate events {Ej}l+1 for event l+1.
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Obviously, any such Ej can simply be reused instead of recomputing it, which can be
exploited to construct {Ej}l+1 according to the following three-step procedure:

(i) remove from {Ej}l all those Ej for which {Ik}j has
changed as a result of performing event l,

(ii) set {Ej}l+1 = {Ej}l, and

(iii) add to {Ej}l+1 those candidate events that arise
from the system’s changed quantifier pool.

Step (ii) in practice does not involve any action since at no time {Ej}l+1 and {Ej}l
need to be known simultaneously. In the following, we shall therefore focus on the
details of steps (i) and (iii).

In step (i), the first obvious observation is that the events l and l+1 cannot be
the same event, which immediately entails that event l has to be removed from {Ej}l.
The remaining invalid candidate events in {Ej}l can be identified by suitably defining
the set of information {Ik}j that pertains to a candidate event Ej. For this, consider
the assumptions under which a particular Ej is evaluated. In the case of collision
events, the principal information underlying Eq. (2.16) is that from the time of the
identification of the event up to the time of actual collision the participating particles
undergo a free flight. This means that if event l is a collision between the particles Pl,1
and Pl,2, then a candidate collision Ej is rendered invalid if it involves at least one of
these particles. This is because obviously the collision between Pl,1 and Pl,2 disrupts
the free flight of these particles. Since the assumption of free flight also constitutes
the basis of Eq. (2.29), the same conclusion is effective if Ej is a bucket change of
either Pl,1 or Pl,2.

If event l is a bucket-change event (say of particle Pl), then only implications on
collisions have to be considered since there does not exist any other Ej that is a bucket
change of Pl. The effect of a bucket-change event is rather subtle as it leaves the state
of free flight of Pl unchanged. Instead, a different parameter is altered: although
during the event the location of Pl is not modified, by definition after the event the
particle is associated with a different bucket2.24. This bucket, in turn, determines the
set of buckets {B{kα}}Pl that is used for seeking candidate collisions that particle Pl

2.24Recalling the procedure in Sec. 2.2.2.2, this is not quite trivial. Numerically, evaluating Eq. (2.28)
always yields a definite answer, which is a problem since a bucket-change event does not include
modifications of the particle’s location. Even worse, since at the time of the event, the particle is
supposed to be located precisely at the interface of two buckets, unavoidable numerical rounding
renders the result of Eq. (2.28) unpredictable. Therefore, a different strategy is needed to ensure that
a particle is consistently associated with the correct bucket. Instead of always calculating the bucket
index from Eq. (2.28), this equation is evaluated only once for each particle, namely at the beginning
of the simulation, with the resulting bucket indices mα being stored in memory fields pertaining
to the particles. Subsequently, upon a bucket change of a particle, its respective memory field is
adjusted, i.e., its mα are incremented or decremented according to the bucket-change event (taking
into account periodic boundary conditions). In computations like Eq. (2.29) then these stored mα
are used instead of the result of Eq. (2.28).
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participates in (see Sec. 2.2.2.2). Let {B{kα}}before
Pl

and {B{kα}}after
Pl

be the sets of
buckets before and after event l, respectively. Since in principle any bucket may be
added to such a set of buckets, there is no problem in {B{kα}}after

Pl
containing additional

buckets stemming from {B{kα}}before
Pl

—merely a small performance toll has to be paid
since {Ej} will contain more candidate collisions than necessary. Also, fortunately,
there is no risk of cluttering {Ej} with overly many candidates, as (by the mechanism
described above) each extraneous collision will eventually be discarded due to other
collisions. Therefore, a bucket change of Pl does not require to purge {Ej} from
candidate collisions that involve Pl. Summarizing, in step (i), elements have to be
removed from the list of candidate events only if event l is a collision.

Removing invalid entries from {Ej}l is a computationally expensive procedure in
itself if done without optimization. In a simple approach, each Ej has to be checked
for validity, which requires O(N) operations if the bucket-list technique is used. This
is because buckets allow to seek for events in a neighborhood of constant size around a
particle, leading to O(N) elements in {Ej} if done for each of the N particles. However,
it is possible to avoid having to search all of the {Ej} if supplementary information
about the Ej is maintained: recognizing that removing events is connected to particles,
it is sensible to compile information about which events are associated with a given
particle. This can be achieved for instance with a so-called “linked list” [219]: each
particle is provided with a memory field that contains the index j of an event, and
each event is given a similar memory field. These index placeholders can be exploited
to construct a chain in which each segment points to the next. The first element of
this event chain is pointed to by the particle’s memory field, whereas the end of the
chain is signaled by the memory field of the last event in the chain having a value
outside the allowed range of j.

In fact, for the present purpose a single pointer per event is insufficient. Firstly, if
an event is a collision, then it has to belong to two distinct event chains—one for each
participating particle—, which demands for at least two pointers per event. Secondly,
in order to efficiently remove single elements from a chain, it is desirable to be able
to follow the chain in “forward” and “backward” direction, which requires twice as
many pointers, i.e., a total of four pointers per event. In the case of bucket changes,
which are associated with only one particle, two of the pointers remain unused. Each
chain originates from precisely one particle, but it turns out to be advantageous to
have each particle spawn two chains. This is because of the following: suppose that
starting at some particle i we have forward-iterated along a chain and arrived at some
collision. There are then two forward pointers along which we could continue. To
choose the right one, we could randomly pick one of the two pointers and check if the
resulting event is associated with particle i; if it is not, then we have to pick the other
pointer. However, there is a more efficient procedure: noticing that in a collision there
is always a “first particle” and a “second particle” (where the assignment is arbitrarily
fixed by the collision-finding procedure), it is compelling to establish two chains per
particle—one in which each element recorded the chain-spawning particle as the first
particle, and one in which it consistently is the second. The iteration of these chains
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Figure 2.10: Removing elements from the list of candidate events.
Schematic representation of the linked-list data structure described in detail in
the text. Large colored disks: particles. Small colored squares: events. Small
black disks: “nowhere”, signaling the end of a chain. Black arrows: pointers to
events or to nowhere. Small light-gray arrows lead to events irrelevant to the
discussion. Positions of the elements bear no physical meaning and are chosen
to accommodate the pictured information. Colors highlight which elements are
associated with which particle. Panel (a): initial collection of candidate events;
panel (b): after removing the blue events; panel (c) after removing the red events.

can then be separated by defining the “first-particle chain” along the “first pointer
pair” and the “second-particle chain” along the “second pointer pair”, where a pointer
pair is constituted by one forward and one backward pointer. Bucket-change events
can be incorporated in this scheme without modification by (arbitrarily) defining one
of the pointer pairs to carry the relevant information.

Figure 2.10 illustrates the subtleties of removing events. As signaled by the black
arrows, each event (small colored squares) points forward and backward to another
event or, alternatively, to “nowhere” (small black disks), thus creating event chains of
finite length. The small light-gray arrows point to events irrelevant to this discussion.
Each particle (large colored disks) initiates two chains—one displayed horizontally and
one vertically; the chains pertinent to a particle are displayed in the same color as the
particle. Suppose now that the red and the blue particle underwent a collision event
(the red/blue box). In the first step, from (a) to (b), the chains of the blue particle are
eliminated. In the course of this, an element is removed from the vertical green chain,
which necessitates to adjust the pointers of the preceding and the succeeding event
in the green chain such that they point at each other. In the vertical red chain, the
last element is removed so that in the altered chain the second element now forward-
points to nowhere. In the second step, from (b) to (c), the chains of the red particle are
eliminated, thereby removing the last element in the horizontal green chain. As desired,
resultingly, all pointers of the red and of the blue particle now point to nowhere.

In step (iii), in direct consequence of step (i), the procedure of finding new can-
didate events also depends on whether event l is a collision or a bucket change. In
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the collision case, finding all relevant collisions and bucket changes requires a double
carrying-out of the entire search algorithm prescribed in Sec. 2.2.2.2—once with Pl,1
being the “given particle”, and once with Pl,2 in this role. In the case of event l being a
bucket change, clearly first of all the next bucket change of Pl needs to be determined.
For the potential collisions of Pl, the relevant effect of event l is that (as mentioned
above) it alters the set of buckets {B{kα}}Pl . However, there is no need to scan all buck-
ets in {B{kα}}after

Pl
when seeking collisions according to Sec. 2.2.2.2. This is because a

candidate collision is already contained in {Ej}l if the bucket of the collision partner is
a member of both {B{kα}}before

Pl
and {B{kα}}after

Pl
. Therefore, merely the buckets in the

set difference {B{kα}}after
Pl
\ {B{kα}}before

Pl
contain particles that potentially contribute

new candidate collisions of Pl to {Ej}. Given a geometry as in Fig. 2.9, in three
dimensions this set difference contains precisely nine buckets.

In summary, if previously-calculated events are reused and linked lists are em-
ployed in the presence of buckets2.25, the computational effort of determining the set
of candidates {Ej}l for event l is reduced from O(N) to O(1) operations. This is true
for all {Ej}l except for the very first one since in this case there are no reusable events
yet. Although this means that part of the program scales with O(N), the effect of the
latter on the program’s overall performance is negligible since in any case O(N) events
have to be performed to advance the simulation by a given time interval.

2.2.2.4 Particle-local times

Although conceptually simple, it can be computationally expensive to perform step
(II) in the three-step procedure in Sec. 2.2.1.1. In fact, propagating all particles
before each event entails O(N) operations per event, which is, notably, less efficient
than finding the respective event if the methods outlined in Secs. 2.2.2.2 and 2.2.2.3
are implemented. In this situation, depending on the system details, advancing the
particles may be the dominant consumer of computation time if N is as small as
103. Fortunately, this can be circumvented—albeit by a seemingly strange method:
assigning a “local time” to each particle [219]. The idea is to spatially and temporally
advance a particle only if it is absolutely necessary. In the following, we shall examine
which conditions constitute such a necessity.

To approach this question, first of all we note that advancing a particle i solely
alters its location ri and its (local) time ti. Therefore, failing to propagate particle i
can only render an operation invalid if the latter makes explicit reference to one of the

2.25If periodic boundary conditions and the event-reuse concept are to be employed in the absence of
buckets (which is not the case in this work, but for instance in Ref. [6]), then the required precautions
differ substantially from those described in this section. This is because in this case it is a priori
unknown which of the infinitely-many images of a particle j around some particle i will be the next
one to undergo a collision with i. A solution to this is to recompute the entire set of candidate events
after the fastest particle may have traversed a quarter of the simulation box [6]. This renders the
reuse of events without buckets only slightly less effective than with buckets, the reason being that a
box traversing requires the same O(N) operations as recomputing the entire event candidate list.
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named properties of this particle. The term “operations” in this context includes all
computations that are necessary for the MD algorithm to proceed, namely

(1) performing bucket changes,
(2) performing collisions,
(3) finding candidate bucket changes, and
(4) finding candidate collisions.

In point (1), as laid out in Footnote 2.24, neither ri nor ti is explicitly referenced
since this information is useless for characterizing a changing bucket index.

For point (2), the relevant equations are Eq. (2.26) and Eq.(2.19), from which
one can immediately see that the locations of the colliding particles, ri and rj, are
referenced. Therefore, in order to correctly perform a collision event, the participating
particles i and j first have to be advanced such that their local times ti and tj match
the time of the collision event.

For point (3), the governing equation is Eq. (2.29), which explicitly involves the
location ri of the particle i for which the next bucket change is sought. Recalling
that this equation relates to the position of i relative to six different planes, ri has to
be adjusted such that the particle is actually located in the bucket mα. This can be
achieved by advancing the particle to the time of the last event2.26, which is prudent
also if tcurr in Eq. (2.29) is to be used without adaption.

Point (4) is the most complicated among the four points; yet it is still reasonably
simple. The procedure of finding a candidate collision between two given particles i
and j is prescribed by Eqs. (2.11) and (2.16), which via Eq. (2.12) involve the positions
ri and rj of the particles. Therefore, both i and j need to be advanced to the current
system time tcurr. In order to find all candidate collisions that involve particle i,
we need to also consider the potential collision partners of i, which are the particles
residing in the buckets {kα}i as defined in Eq. (2.30). As a result, all particles located
in one of the buckets {kα}i need to be advanced such that their local times match tcurr.
In case of the preceding event having been a collision, the above procedure needs to
be carried out for both of the participating particles being particle i.

Since in any case point (4) needs to be performed in consequence of an event, the
resulting procedure reduces to the following sequence:

(1′) perform the event,

2.26Here, a problem similar to that in Footnote 2.24 arises: if the last event was a bucket change,
then at the time of this event the particle is located right at the interface between two buckets. In this
case, one of the times t±α in Eq. (2.29) should be precisely zero and therefore be discarded. However,
rounding errors may render this time slightly larger than zero, which would effect an unphysical
repetition of the bucket-change event. This can be avoided by considering only three plane crossings
instead of six, namely those that a particle can possibly cross, given the indices mα and the signs of
the velocity components vα. For instance, if it is vx > 0, then the change mx → mx + 1 may be the
relevant one whereas the change mx → mx − 1 can by no means take place. Using this procedure,
advancing the particle is actually superfluous if in Eq. (2.29) the reference time for tcross is taken to
be the particle’s local time, ti, instead of the time of the last event in the system, tcurr.
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(2′) advance the particles {i} that participated in the event,

(3′) advance all particles located in the buckets {kα}i that
surround each of the particles {i}, and

(4′) seek for candidate collisions and bucket changes as usual.

In consequence of this procedure, the computational effort of advancing particles re-
duces from O(N) to O(1) per event, which is owed to the fact that {kα} is of fixed
size.

There remains one caveat of particle-local times: in order to compute observables
in a physically meaningful way (see Sec. 2.5), at the time of an observation the system
has to be in a synchronized state in the sense that the local time of all particles
has to be advanced to match tcurr. Since observations are the ultimate objective of
a simulation, the algorithm would continue to scale with O(N) if the frequency of
observations depended on the number of elapsed events. This, however, is not the
case—instead observations are usually conducted at regular simulation time intervals.
Recalling that O(N) operations are required to advance the system by a fixed interval
of simulated time, propagating particles in conjunction with observations is no more
costly than the ideal MD algorithm in which processing one event would take O(1)
operations.

2.2.2.5 Efficient event list structure

As alluded to in Sec. 2.2.2.3, finding a particular element in the list of candidate
events {Ej} can be a computationally expensive procedure since at any time this list
contains at least O(N) elements. Whereas in Sec. 2.2.2.3 the issue was to remove
specific events from {Ej}, in this section the goal is to efficiently identify which of the
members of {Ej} constitutes the “next event”.

In the absence of additional physical insight, it is purely a computer-science prob-
lem to establish an economical method appropriate for this task. Following the emer-
gence of fast computing machines, a multitude of data structures has been developed
to suit various different requirements; for an overview over the vast field see, e.g., the
classic work The Art of Computer Programming by D. Knuth, in particular volume 3
Searching and Sorting [153]. The specific problem of finding the next event from a list
of candidates falls into the class of so-called “priority queues”. The defining property
of this kind of collection is the existence of a comparison operator that allows (at least
in principle) to arrange the pertinent items in an ordered sequence; consequentially, a
priority queue features one element with the highest priority2.27, which is then to be
identified. Moreover, priority queues are typically required to allow for adding and
removing elements, i.e., to dynamically grow and shrink. In the case of event-driven

2.27One might also allow a priority queue to contain elements with the same priority; if such elements
are actually present, then the queue is said to be “degenerate” and additional rules have to be
introduced to establish an unambiguous ordering among the respective elements.
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MD, the ordering criterion would obviously be a numeric comparison between the
scheduled times of the candidate events, with the top-priority element being the event
with the smallest associated time—the next event.

Priority queues constitute an integral part of a wealth of real-life applications2.28,
and numerous data structures have been designed to satisfy the various requirements
of extracting information from such queues as well as modifying the items therein. As
has been laid out before, in the case of handling the list of candidate events {Ej}, the
data structure has to explicitly provide facilities for

(i) identifying the next event,
(ii) deleting an arbitrary event (not only the next one), and
(iii) adding an event,

with the need for operation (ii) arising from the procedures described in Sec. 2.2.2.3.
Two competing criteria can be invoked to select among suitable data structure can-
didates: on the one hand, executing the above operations should be as efficient as
possible; on the other hand, the data structure should be reasonably simple in or-
der to facilitate coding and debugging. As an example, in popular introductory im-
plementations of event-driven MD, it is common to maintain {Ej} as a contiguous
one-dimensional array in which the event sequence does not obey any specific order.
While this approach boasts a minimal implementation effort, it requires an unaccept-
able O(N) steps to identify the next event, which is owed to the fact that any member
of {Ej} could be the element in question.

Naturally, any data structure that is to outperform the unordered-list approach
has to accomplish each of the operations (i)–(iii) in less than O(N) steps. Structures
fulfilling this requirement range from sorted lists over hash tables and trees to heaps,
and also include combinations of these. In this work, we shall adopt the concept of
a binary heap [176] since it represents an excellent compromise between coding effort
and program runtime. Other authors prefer a binary tree [219], which may under
some circumstances outperform the heap (due to its usage of links) but requires more
care on the programming side and also runs the risk of degenerating. In the following,
we shall describe in detail what the structure of a standard binary heap is, how the
above-listed operations (i)–(iii) translate to this structure, and how well they perform.

Figure 2.11 depicts an example binary heap. A heap is constituted by a collection
of N nodes that are arranged on M levels. Each node is connected to exactly one

2.28Common commercial applications of priority queues are, among others, emergency manage-
ment systems, customer order services, telephone and data networks, as well as computer operating
systems2.29. On a different note, the concept is a core part of algorithms that identify the shortest
path between any two given points in a network of nodes and connectors. Obviously, applications of
this problem include computer network routing and driving directions software. Less obviously, and
oddly enough, networks (and therefore priority queues) can also be used to determine solutions to
Rubik’s famous cube2.30.

2.29http://en.wikipedia.org/wiki/Priority_queue

2.30http://en.wikipedia.org/wiki/Shortest_path_problem

http://en.wikipedia.org/wiki/Priority_queue
http://en.wikipedia.org/wiki/Shortest_path_problem
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Figure 2.11: Structure of a heap.
Schematic representation of a heap,
in which the nodes (circles) are con-
nected (lines) according to parent–
child relationships to form the arrange-
ment of an almost-complete binary
tree. The numbers indicate the pri-
ority of each node; according to the
heap property, each parent element
has a higher priority than each of its
children elements.

“parent” node, and can itself be parent to at most two “child” nodes. This rule leads to
the structure of an (upside-down) tree in which levels with a higher index contain more
nodes. Such a tree is spawned by a so-called “root” node on level 1, which is special in
that it does not possess a parent. In the case of the binary heap, the tree is maintained
such that all nodes on levels 1 . . .M − 2 have exactly two children, and the nodes on
level M−1 are given children starting from the left. On level M , obviously, none of the
nodes have children—otherwise there would be another level. This arrangement, which
is also called an “almost-complete binary tree”, entails M = ⌈log2 N⌉ levels; in the
example shown in Fig. 2.11, the N = 12 nodes result in the depicted M = ⌈3.585⌉ = 4
levels.

Consider now that each of the nodes in a heap is associated with a priority. In
Fig. 2.11, this priority is symbolized by the integer value inscribed in each circle; in
event-driven MD of course the priority would be the associated time of the event. In
either case, a lower number signals a higher priority. The so-called “heap property”,
which distinguishes a heap from an otherwise unstructured tree, states that each parent
node has a higher priority than its child nodes. It is easily verified that all nodes in
Fig. 2.11 fulfill this property, i.e., that the heap in the figure is “consistent”. Since the
heap property is purely local, consistency does not imply that all nodes on a certain
level have a higher priority than the nodes on the subsequent level; this can be seen
for instance from the elements with the priorities 4 and 6 in the figure. Notably, there
is one paramount exception: in a consistent heap, the node at level 1 is always the one
with the highest priority. This is fortunate (and actually by design) since it allows to
identify the highest-priority element in O(1) steps.

Having thus accomplished operation (i) from the above list, let’s now turn to
the more complicated operations of adding and removing nodes. Consider first the
simpler case of adding an element to a consistent heap. The pertinent procedure is
illustrated in panels (a)–(c) of Fig. 2.12, all of which depict only the right branch of
the heap in Fig. 2.11. The adding procedure starts by placing the additional node
(highlighted in green) in the only position that preserves the “almost-complete binary
tree” arrangement, namely on level M in the leftmost unoccupied spot. Since this
location is essentially random from the viewpoint of queuing, the additional element
is likely to have a higher priority than its new parent—which would of course violate
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Figure 2.12: Adding a node to a heap. The open circles in panels (a)–(c)
constitute the right branch of the heap in Fig. 2.11. The additional node (green
disk) is first placed at the lowest level of the heap [panel (a)]. Then, it is progres-
sively up-sifted by repeatedly comparing it to its parent [blue/yellow/red circle in
panel (a)/(b)/(c)] and by swapping places if necessary because the new node’s
priority is higher than that of its parent [panels (a) and (b)]. Green hooks mark
required node swaps; the red cross indicates to retain the current node arrange-
ment.

the heap property. To alleviate this heap inconsistency we introduce the concept of
“sifting” a node, with the event-add case requiring a particular variation called “up-
sifting”. One step in this procedure consists of comparing the additional node with
its parent [the blue/yellow/red circle in panel (a)/(b)/(c)] and exchanging the two
elements if these two nodes violate the heap property [as in panels (a) and (b)]. After
each sifting step, the additional node attains a new parent, which prompts for another
sifting step; obviously, this chain of sifting steps is terminated once the additional node
has a lower priority than its new parent [panel (c)]. On average, an element with an
arbitrary priority will therefore require M/2 sifting steps, which means that adding
an event requires O(logN) operations.

Removing an element from a heap is slightly more complicated than adding an
element. As can be seen in Fig. 2.13(a) and (d), the first step after removing an element
from a consistent heap is to take the rightmost node from level M and place it in the
gap that was left by the removed node. From here, two types of actions have to be
checked: up-sifting (as before) and the new procedure of “down-sifting”. Up-sifting
in the node-remove case works precisely as in the node-add case. The down-sifting
concept can be understood by considering panel (d), which illustrates the specific case
of removing the highest-priority item. In this case, as in any other, the relocated
node may have a lower priority than its new children, leading to an inconsistent heap.
Just like up-sifting, down-sifting restores the heap consistency in a step-wise process.
Contrary to up-sifting, finding a due element swap requires two comparisons: the first
comparison (symbolized by the red–green arrows) determines the child with the higher
priority; in the second comparison, only this child is then compared to the relocated
node, and swapped if necessary. This procedure ensures that after the swapping step
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Figure 2.13: Removing a node from a heap. In the first step [panels (a)
and (d)], the rightmost node from the last level (gray circle, red disk) is relocated
to the position of the removed node. The left column [panels (a)–(c)] shows the
succeeding up-sifting, very much like in Fig. 2.12. The right column [panels (d)–
(f)] illustrates the alternatively-required down-sifting procedure. In each down-sift
step, first the children of the relocated node [yellow/blue circles in panel (d)/(e)]
are compared to each other (red–green arrows). Then, the relocated node is
swapped with the higher-priority child (green arrow) in order to restore the heap
property if it was violated [panels (d) and (e)]. Green hooks mark required node
swaps; red crosses indicate to retain the current node arrangement.
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Figure 2.14: Array representation of a heap. Repre-
sentation of the example heap in Fig. 2.11 as a contigu-
ous array. Colors code the heap level, numbers indicate
the node index. Priorities are not depicted.
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the heap property is observed. Obviously, the down-sifting steps have to be repeated
until the relocated item has a higher priority than all of its children. Note that is vital
to consider up-sifting and down-sifting whenever a node is relocated due to another
one’s removal. However, since in either case the number of sifting steps depends mainly
on the number of levels M , removing an event requires O(logN) operations—just like
adding an event.

As a technical detail, one of the differences between a heap and a simple tree
lies in its data handling. Due to its being an almost-complete tree, a heap can be
conveniently stored as a contiguous array (see Fig. 2.14). This has the advantage
that no link structure is necessary to determine the parent and the children of a node.
For instance, consider the case that the elements are indexed starting from “1” as
in Fig. 2.14. In this case, if a node has the index i, then its parent node is located
at index ⌊i/2⌋ (which may be computed as an integer division) and its children have
the indices 2i and 2i+1. This advantage comes at the penalty of having to actually
swap elements in the array; however, the associated cost is moderate since an event is
constituted by only about half a dozen numbers (most of which are the links introduced
in Sec. 2.2.2.3).

In summary, since operations (ii) and (iii) perform worse than operation (i), the
former control the overall performance in handling the event list. This statement
still holds when considering the effort for establishing the heap in the first place:
since a one-element collection already constitutes a consistent heap, this “additional
operation” requires merely O(1) steps. As a result, O(logN) list operations have to
be carried out subsequent to performing a single event; this is by no means great
since all other parts of the program operate at O(1). However, unfortunately there
exists no known technique to remedy this deficiency in a single-threaded program.
Merely parallelly-coded programs are able to overcome this behavior, albeit at a greatly
increased programming cost [195].

2.3 Initial states of quenched-annealed systems

2.3.1 Overview

As alluded to in Sec. 2.1, the initial setup of a hard-sphere (HS) quenched-annealed
(QA) system represents a formidable challenge. In this section, we will point out
algorithms known to succeed in setting up disordered one-component HS systems at
high density, comment on problems in extending those algorithms to the QA protocol,
and report on our custom solution to the problem.
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The first task is to generate configurations of obstacles. This is easily accom-
plished, since in none of the considered cases, the packing fraction of the matrix
exceeds 35% (cf. Chapter 3). Such low values reside well in the fluid regime of a
monodisperse one-component HS fluid, as shown first by Alder and Wainwright [5]
and Wood and Jacobson [286] and more recently by Odriozola [201]. This allows to
use even the simplest of the procedures discussed in Sec. 2.3.2.1 to insert the Nm matrix
particles into the system. Subsequently, the event-driven molecular-dynamics (MD)
algorithm presented in Sec. 2.2 can be employed to equilibrate the obstacles-to-be.

The actual challenge is the following: Given then the positions of the Nm obstacles,
permissible positions need to be found for the Nf particles that during the MD run
will be allowed to move. Unfortunately, to this respect, multiple complications arise
in HS-QA systems, the three most important of which are:

(i) an overlap between any two particles is strictly forbidden,

(ii) in the resulting configuration, the matrix particles have
to be located at precisely-specified positions, and

(iii) the entire volume not occupied by matrix particles has to
be considered as locations for the fluid particles.

Note that under point (iii), it is explicitly required that the locations of the fluid
particles not disregard “traps”, i.e., spatial regions that are entirely surrounded by
matrix particles such that a fluid particle placed therein cannot escape (cf. Sec. 2.4).
This is necessary in order to restore spatial isotropy and homogeneity of the fluid
particle distribution upon statistically-mechanically averaging over matrix realizations
(see Sec. 2.5).

2.3.2 Established packing methods

2.3.2.1 Simple methods

One of the simplest methods to arrange HS objects in a volume is trial-and-error
insertion. For this, a fluid particle is placed at a random location, and is permanently
assigned this position if it does not overlap a matrix particle or another fluid particle;
otherwise, it is removed. This trial step is repeated until all particles have been
assigned a location. Unfortunately, this procedure is inefficient even for setting up
bulk high-density systems of hard spheres since it fails to reproduce the short-range
correlations required to densely pack particles.

A more useful, straightforward method is to compress a low-density system. Com-
pression can be carried out for instance by coordinate rescaling combined with random
particle displacements, in the spirit of constant-pressure Monte Carlo (MC) [9]. In the
context of QA systems, however, methods of this kind severely suffer from require-
ment (ii). Alternatively, sedimentation could be emulated in (temporarily) bounded
systems, for instance by a simple MC algorithm (cf. Sec. 2.1.4) with displacements
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biased in one direction, or MD with a constant unidirectional force combined with dis-
sipation [76]. Unfortunately, in simple algorithmic realizations, neither compression
nor sedimentation fulfill requirement (iii).

Another method commonly used to insert many particles into a system is to ini-
tially use an ordered (crystalline) configuration and to subsequently melt this arrange-
ment. In our case, this method is inappropriate for two reasons: Firstly—concerning
the porous medium—, prior to the melting, fluid particles would have to be removed
from the crystal’s lattice sites in a way that no overlaps with the matrix particles occur.
This would result in unacceptably low fluid densities for values of φm even as low as a
few percent. Secondly, and more fundamentally, we are interested in metastable fluid
configurations, i.e., systems under external conditions that thermodynamically favor
the crystal phase. This means that melting the crystalline configuration would first
require an excursion into the region of fluid stability, which clearly foils any possible
advantage of an initial crystal arrangement.

2.3.2.2 Elaborate methods

Over the years, a number of elaborate algorithms have been devised to achieve very
high densities in bulk disordered HS systems. Many of these methods have histori-
cally been associated with the notion of “random close packing” [12, 22, 243], which,
however, has been shown to be ill-defined by Torquato et al. approximately a decade
ago [261]. In a nutshell, these authors revealed that the densest-achievable ball pack-
ing depends on how much local order is allowed on average, with more order permit-
ting packing fractions closer to that of the face-centered cubic (fcc) arrangement2.31,
φfcc = π/(3

√
2) ≃ 0.74. For an overview over the vast range of phenomena and meth-

ods in random packing and jamming as well as its connection to glassy systems, we
refer the interested reader to the excellent review by Torquato and Stillinger [260]. In
the following, we shall highlight selected packing algorithms and briefly describe their
shortcomings regarding the present context.

Historically, the first efficient algorithms for the amorphous packing of hard spheres
were developed in the early 1970s by Bennett [21] and by Visscher and Bolsterli [268].
Although differing in technical details, both methods use the concept of serial depo-
sition, where large amorphous aggregates are obtained by adding single particles one
by one to an existing collection, placing them in “ideal” positions according to some
“gravity”-like criterion. While both methods yield the desired dense amorphous pack-
ings for bulk systems, they are unfortunately not suited for setting up QA systems:

2.31As an interesting side note, it has been conjectured more than four centuries ago by Johannes
Kepler that the fcc arrangement represents the densest-possible arrangement of spheres in three
dimensions. Despite the radiant appeal of his suggestion, until very recently the conjecture had
escaped the enormous efforts to prove it. However, finally, methods of computer algebra seem to
have paved the way; we recommend Footnote 2.32 as a starting point into this exciting topic, and
Ref. [114] to the more technically inclined reader.

2.32http://en.wikipedia.org/wiki/Kepler_conjecture

http://en.wikipedia.org/wiki/Kepler_conjecture
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firstly, the essentially-arbitrary locations of the obstacles would lead to disproportion-
ally large gaps between the deposited particles; secondly, the algorithms provide no
means to adhere to requirement (iii).

The late 1980s and early 1990s saw the publication of the methods that to the
present day are the most efficient ones for generating amorphous packings. In 1985, Jo-
drey and Tory introduced their “overlap-elimination” algorithm [130] in which particles
are initially placed at random locations and thus overlap. Subsequently, in each step
of the algorithm, the largest overlap is removed by spreading apart the corresponding
particles, which clearly may create new overlaps. However, by simultaneously reducing
the diameter of the particles, eventually an overlap-free state of very high density can
be achieved. In the context of QA systems, while it might be possible to somehow
adapt this method to requirement (ii), requirement (iii) is clearly not fulfilled, which
rules out the use of this method.

In 1990, Lubachevsky and Stillinger presented their growth algorithm [177], which
is not only capable of producing densely-packed disordered hard spheres but also of
generating partially-ordered (“polycrystalline”) samples. It is this very feature that
eventually allowed Torquato et al. to investigate the role of order in the packing of
spheres [261]. The algorithm itself is essentially an event-driven MD algorithm [176],
much like the one presented in Sec. 2.2, with the slight adaption that the diameter of
the spheres is increased over time. While this may seem like a significant complica-
tion, a linear dependence of the diameter upon the simulation time is easily included in
Eq. (2.16) since it leaves the structure of that equation unchanged [176, 177]. However,
despite all its merits, the algorithm cannot be used to generate initial QA configura-
tions since it cannot account for requirement (iii).

2.3.3 Custom method

Since in this work, we are interested in QA systems with a slowly-evolving fluid, an
algorithm for generating systems with densely-packed fluid particles is indispensable.
Considering the complications described in Sec. 2.3.2, we decided to devise a custom
method for this task. By coincidence, the algorithm resulting from our efforts bears
similarities to that employed by Chang et al. [45]; however, our method was designed
independently and features more thorough optimization.

Our algorithm consists of the following three steps:

(1) Prior to the insertion of a fluid particle, its “real” diameter (the di-
ameter to be used during MD simulations) is reduced to some minute
value (“deflated”). This greatly increases the probability of trial-and-
error insertion, and allows all particles to be simultaneously present
in the system throughout the search of a valid QA configuration.
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(2) In order to find such a valid configuration, a simple Metropolis-MC
algorithm [190] is employed using the HS potential (see below). Ob-
viously, using this algorithm with the minute diameters is meaning-
less; therefore, at the beginning of each sweep—one displacement
attempt for each fluid particle in serial order—, the diameter of
each deflated particle is increased (“inflated”) to the maximum value
possible without overlapping another particle. If for a particle this
maximum value is greater than its real diameter, then inflating is
done for this particular particle and it is assigned its real diameter
(“fully inflated”).

(3) A disconnected void (cf. Sec. 2.4) may be filled with (almost) any
number of deflated particles; however, the particular void may be too
small to accommodate all of these particles if they were fully inflated.
To remedy this problem, before certain sweeps, all particles that
are not yet fully inflated are removed from the simulation box and
then redeflated and reinserted according to step (1). The number
of sweeps separating two such removal-and-reinsertion procedures is
gradually increased so as to allow for any number of sweeps to fully
inflate a particle while still quickly “draining” crammed voids.

Obviously, as soon as all particles are fully inflated, the setup routine is complete
and a configuration fulfilling the QA requirements has been found. Subsequently, the
Nf fluid particles are assigned random velocities vi, which are then normalized to
yield kBT = 2/(3Nf)

∑Nf

i=1 mi|vi|2/2 = 1 (compare Footnote 1.11). In conjunction
with the numerical value mi = 1, this procedure results in the vi being close to unity,
which is computationally advantageous. Note, however, that the actual value of the
temperature T is insignificant if the reduced time unit τ , as defined in Sec. 2.5.1.6, is
used to express numerical time values. In an ensuing MD run, the velocities quickly
approach a Maxwellian velocity distribution even when initially being assigned at
random [9].

The MC procedure in step (2) is extremely simple. The particles serially undergo
individual trial moves to a random position in a small cubic neighborhood around
their current location. Dealing with hard spheres, the acceptance criterion for a trial
move is particularly simple: it is rejected if (and only if) it results in an overlap of
two particles. Over the course of the MC run, the trial neighborhood is resized such
that the average acceptance rate stabilizes around 50%. Notably, we chose to perform
the inflation process in step (2) serially along with the MC trials. This leads to the
distribution of fluid particle diameters covering a wide range at all times during the
iteration, except when close to the approach of an allowed configuration. Since this
introduces a “fluctuating polydispersity”, we found the generation of ordered states at
high densities to be strongly suppressed even for bulk monodisperse systems.

In Appendix A.3.3, we present a brief systematic investigation of the custom initial-
state algorithm presented in this section, with particular focus on its performance and
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Figure 2.15: Hard-core range required for trapping. Gray disks:
fluid particles. Black circles and disks: matrix particles. A concen-
tric circle and disk represent the excluded spaces for different inter-
actions of one matrix particle. Black circles: excluded space of the
matrix–matrix interaction. Black and gray disks: excluded space of
the matrix–fluid interaction. For d = 2, the fluid particle is located
halfway between the two matrix particles, which immediately entails
Hmf = Hmm/2 if the gray disk is to touch the black disks. For d = 3,
the fluid particle rests at the center of the circum- and incircle of the
equilateral triangle prescribed by the centers of the matrix particles,
which means that Hmf = (2/3) × cos(30◦) × Hmm = Hmm/

√
3 if

touching is desired.

on its applicability resulting from the latter.

2.4 Geometry of the accessible volume

In this section, we shall be concerned with the accessible volume in a quenched-
annealed (QA) mixture, i.e., with the volume that the matrix particles leave for the
fluid particles to move in. Comprehensive information about the accessible volume al-
lows to separate the fluid component of a QA system into two classes: “free” particles
that can move infinitely far away from their initial position, and “trapped” particles
that cannot. The superordinate idea is to evaluate the characteristics of the fluid
separately for these two classes so as to extract more information about the features
of the QA system. This section will describe the origin of the distinction in free and
trapped particles, and elaborate on a geometric method to pinpoint and quantify this
phenomenon. A detailed proof for the mathematical validity of this method is provided
in Appendix A.1.

2.4.1 Traps and the percolating void

Central to the aim of identifying free and trapped particles is the notion of “traps”
formed by the matrix particles, i.e., spatial regions that a fluid particle is rigorously
confined to if placed therein. Regardless of the system’s dimensionality d, three con-
ditions suffice for traps to be present in an infinitely-large QA system:

(i) Hmf > 0, where Hmf is the hard-core range of the matrix–
fluid interaction as in Sec. 1.1.3,

(ii) Hmf > xdHmm, where xd is a dimensionality-dependent
scalar and Hmm is the hard-core range of the matrix–
matrix interaction as in Sec. 1.1.3, and
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(iii) φm > 0, where φm is the density of the quenched particles.

Conditions (i) and (ii) ensure that matrix particles can form extended contiguous
regions in which a fluid particle has infinite potential energy. In this, condition (ii)
warrants that d matrix particles can be arranged close enough together that no fluid
particle can cross “between” them. As can be seen from Fig. 2.15, in two and three
dimensions, it is x2 = 1/2 and x3 = 1/

√
3, respectively; the choice Hmf = Hmm used

throughout this work (cf. Sec. 2.2.1) therefore clearly fulfills condition (ii). Condition
(iii) ensures that some matrix particles actually do arrange according to Fig. 2.15; this
is achieved through the essentially-random distribution of the matrix particles, which
in combination with the precondition of an infinitely-large system entails that any
allowed local arrangement of matrix particles is actually realized.

If conditions (i)–(iii) hold, then there exist traps in a QA system. A specific
trap is defined by a set of at least d+1 matrix particles that form a closed (d−1)-di-
mensional hypersurface (without holes) at which a fluid particle’s potential energy
diverges. Figures 2.16 and 2.17 illustrate the nature of such traps in QA systems of
d-dimensional hard hyperspheres. For simplicity, in these figures and the pertinent
description, we specialize to d = 2 and the corresponding terminology; the description,
however, is easily generalized to three dimensions as used in this work’s simulations
(cf. Sec. 2.2)2.33. Figures 2.16 and 2.17 show the same sample QA system in which
Nm = 50 quenched particles are indicated by black disks. The depicted system is
subject to periodic boundary conditions (PBCs), with the unique part being outlined
by the dark gray square and the elements outside this square representing regularly
displaced copies of elements inside the square (cf. Sec. 2.2.2.1).

Figure 2.16 shows Nf = 63 fluid particles (gray and blue disks) inserted into the
matrix particle configuration. As in all parts of this work, all particles are taken to be
additive hard spheres, i.e., each particle i is associated with merely a single radius Ri
(see Sec. 1.1.3). Moreover, all particles are chosen to be identical, meaning that we
can write Ri = R. In Fig. 2.16, the quantity R serves as the radius of the disks,
which entails an area fraction of the matrix and of the fluid particles of φm ≃ 0.25 and
φf ≃ 0.32, respectively. Notably, φm is almost an order of magnitude smaller than the
area fraction of disks at hexagonal packing2.34, φhp = π/

√
12 ≃ 0.91. Nevertheless, it

is evident that numerous pairs of matrix particles in Fig. 2.15 are arranged such that
no fluid particle can cross between them.

It is in principle no problem to identify all noncrossable pairs of matrix particles
in a two-dimensional QA system; this can be accomplished by simply checking each
possible combination of two matrix particles for whether it can be passed by a fluid
particle. (Strictly speaking, this brute-force method requires to check Nm(Nm−1)/2
pairs; however, when proceeding visually—as we do here—, most pairs are easily
dismissed as crossable.) In Fig. 2.15, noncrossable pairs are indicated by red lines that

2.33For example, areas in two dimensions correspond to volumes in three dimensions, and the coun-
terpart of line segments in d = 2 is triangles in d = 3.

2.34http://en.wikipedia.org/wiki/Circle_packing

http://en.wikipedia.org/wiki/Circle_packing
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Figure 2.16: Trapped and free particles in quenched-annealed systems.
Snapshot of a two-dimensional QA system of equal hard disks under PBCs. The
50 matrix and 63 fluid particles fill a combined area fraction φ = 0.57. Black disks:
matrix particles with radius R; gray [blue] disks: free [trapped] fluid particles with
radius R. Red lines connect matrix particle pairs that cannot be crossed by fluid
particles; red lines that would run across yellow regions are suppressed. White:
single, infinitely-large area; yellow: areas of finite size.

connect the respective matrix particles. The figure shows a peculiar selection of such
lines, namely those that separate the white area from the yellow ones. The distinction
between the differently-colored areas is the following: while numerous red lines are
omitted that run across the yellow areas, no such lines can be found within the white
area. Therefore, the white area is infinitely large (remembering the PBCs) and the
yellow areas are of finite size (they are entirely bounded by red lines). This means
that the latter must contain all traps of the system, which in turn allows to separate
the particles according to the area type that they reside in: the gray fluid particles,
which populate the white area, are “free” in that they may move infinitely far away
from their initial position; the blue fluid particles, on the other hand, reside in the
finite-sized yellow areas and are therefore “trapped”.

Unfortunately, the yellow and white areas give a somewhat misleading impression
of the space available for configurations of the fluid particles. Consider the following:
suppose we are given an arrangement of matrix particles and we want to place a single
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fluid particle somewhere inside this arrangement. In this case, a useful definition of
the “accessible volume” would be to describe the probability that a randomly-chosen
position of the fluid particle does not entail an overlap with a matrix particle. We can
adjust the definition of the accessible volume to suit this requirement by exploiting one
of the basic properties of the hard-sphere (HS) potential (described in Sec. 1.1.3.2),
namely that we may assign more than one radius to a particle. For instance, we
may associate each matrix particle with a matrix–matrix and a matrix–fluid radius,
R(m)

m and R(f)
m , and each fluid particle with a fluid–matrix and a fluid–fluid radius,

R
(m)
f and R

(f)
f . For inserting a single fluid particle into a matrix configuration, only

the fluid–matrix interaction with HS distance Hfm = R(f)
m + R

(m)
f is relevant. Since

the fluid and the matrix particles effectively represent “distinct species”, we may for
instance define

R̃(f)
m = R(f)

m +R
(m)
f = Hfm = 2R and

R̃
(m)
f = R

(m)
f −R

(m)
f = 0 ,

(2.32)

and replace R(f)
m → R̃(f)

m and R(m)
f → R̃

(m)
f as described in Sec. 1.1.3.2. This is equivalent

to considering the fluid particles as point particles in the fluid–matrix interaction, and
to accordingly double the fluid–matrix radius of the matrix particles. As explained in
Sec. 1.1.3.2, this redefinition does not alter the physics of the system. In the context
of quenched disorder, this property of the HS interaction has first been exploited by
Kim and Torquato in the context of their “cherry pit” model [146].

Figure 2.17 shows the same system as Fig. 2.16, with the radii changed according
to Eq. (2.32), i.e., the radius of matrix particles is now twice as large as in Fig. 2.16 and
the fluid particles are point-sized (and therefore not shown). The blue lines highlight
that in the light-green area there exist paths along which the point fluid particles
may move through the entire system. The connectivity of the accessible regions is
now easily verified, and it is precisely the areas depicted in Fig. 2.17 that we shall
henceforth refer to as “traps” (light red) and the “percolating void” (light green). In
addition, by the term “void” we shall denote either one of the latter, i.e., a single trap
or the percolating void. In the naming of the light-green area, the term “percolating”
emphasizes the system-spanning nature; this important issue and its peculiarities in
the presence of PBCs2.35 are elaborated on in Secs. 1.3.3.3 and 2.4.5.

From Fig. 2.17, one can see that the voids are significantly smaller than the yellow
and white regions in Fig. 2.16. Specifically, if we designate the areas of the traps and
of the percolating void in Fig. 2.17 and the yellow and the white areas in Fig. 2.16 as
Atrap, Apercol, Ayellow, and Awhite, then we see that

Ptrap =
Atrap

Atrap + Apercol

<
Ayellow

Ayellow + Awhite

= Pyellow , (2.33)

2.35Notably, in the presence of PBCs, it is in principle possible that multiple percolating voids exist;
this would be the case for instance if the matrix particles formed an infinitely-extended, imperme-
able flat sheet that (together with the PBCs) divided the system in an infinite number of distinct,
percolating slabs.
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Figure 2.17: Accessible volume in quenched-annealed systems. Same system
as in Fig. 2.16, with the matrix particles drawn larger and the fluid particles being
of point size and therefore invisible. Black overlapping disks: matrix particles with
diameter 2R. Blue lines: example paths along which point-sized fluid particles
can move infinitely far. Nonblack area: accessible volume; light green: percolating
void; light red: traps.

where Ptrap is the probability that a randomly-selected fluid particle in a QA mixture
is trapped (cf. Sec. 2.5.4.2) whereas Pyellow bears no particular significance. For quanti-
tative investigations, it is therefore more meaningful to consider the areas in Fig. 2.17
than those in Fig. 2.16. However, despite this difference in quantification, there is
no fundamental difference between the areas in Figs. 2.16 and 2.17 from the point of
view of distinguishing free and trapped fluid particles. In fact, it is even possible to
partition the yellow area into distinct regions that correspond to the individual red
areas in Fig. 2.17; this can be accomplished by reconsidering a suitable set of red lines
that were neglected in Fig. 2.16.

Unfortunately, the methods used so far for identifying the different types of ar-
eas (or volumes) in Figs. 2.16 and 2.17 are not appropriate for direct application in
computer programs. From Fig. 2.17, information was in fact extracted purely visually,
with the picture serving a mere illustrative purpose. In Fig. 2.16, at least a clear
protocol was used to identify noncrossable pairs of matrix particles, which at any rate
constitutes a starting point. A weakness of this protocol is the brute-force method
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involved; in d dimensions, such a method requires inspecting
∏d−1
j=0(Nm−j)/d! tuples of

d particles, which may be a large number (for instance, Nm = 104 and d = 3 result in
more than 1011 relevant tuples). This, however, is in principle a mere workload issue.
The more fundamental deficiency of the protocol is its failure to associate volumes
with noncrossable tuples of particles; such an association is of paramount importance
to classify fluid particles on the basis of their location. Fortunately, there exists a
geometric construction that provides not only an out-of-the-box mechanism to iden-
tify all relevant matrix-particle tuples (and thereby solves the workload problem) but
that also naturally connects each of these tuples with a region in space. The mighty
construction that we are referring to here—and that we will be concerned with in the
following section and in Appendix A.1—is the “Delaunay tessellation”.

2.4.2 Definition of the Delaunay tessellation

In this section, we will introduce the geometric definition of the Delaunay tessellation.
The first thing to notice about the name “Delaunay tessellation” probably is the term
“tessellation”. This term describes a procedure to divide a given d-dimensional space
into distinct, nonoverlapping regions such that these regions entirely fill (“tile”) the
given space. If a space contains infinitely-many distinct points, then there obviously
exist infinitely-many tessellations for this space; this is the case for essentially every
continuous space. The Delaunay tessellation [64], specifically, was formally introduced
by its namesake Boris Delaunay in 1934 in an essay honoring Georgy Voronoi2.36.
This particular tessellation partitions a d-dimensional space based on a set of distinct
points that are arbitrarily distributed in that space. These points will be referred to
as “Delaunay vertices” in this work, and the space-tiling regions resulting from these
points shall be called “Delaunay cells”. Since in what is to follow, we will frequently
make use of terms like “Delaunay x” (where x is some object like a vertex, a cell, or
the tessellation as a whole), for brevity we will mainly use the one-letter prefix “D-”
in place of the honored scientist’s name (e.g., “D-cell” instead of “Delaunay cell”).

The geometric definition of the D-tessellation goes as follows. The tessellation
groups the given D-vertices into several sets of d+1 D-vertices each, with every D-ver-
tex belonging to at least d sets. The D-vertices in each set form the vertices of a d-di-
mensional hyperpolyhedron, and every such hyperpolyhedron constitutes one D-cell.
Obviously, the D-vertex sets have to be chosen such that the resulting D-cells tile the
given space and do not overlap. The fixed number of d+1 vertices entails that the

2.36For two of reasons, introducing his tessellation in an article in the honor of Voronoi is a noble
and notable act by Delaunay (Russian: Бори́с Никола́евич Делоне́). Firstly, it underlines the tight
relationship between the Delaunay and Voronoi tessellations, as laid out in Appendix A.1. Secondly,
it spotlights the strong personal bonds between Delaunay and Voronoi, the latter being the doctorate
supervisor of the former. On a different and no less interesting note, Delaunay was not only an
outstanding mathematician but also a renowned mountaineer—to a degree that a one of the highest
peaks in the Altai mountain range is named in his honor2.37.

2.37http://www.numbertheory.org/obituaries/RMS/delone/page3.html
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Figure 2.18: Sphères vides. Two-dimensional example
for the empty-sphere property of a D-tessellation (without
PBCs). Small black disks: given D-vertices. Thin green cir-
cles: “sphères vides”, defined by having no D-vertices on the
inside and three D-vertices on the rim. Thick pink lines: faces
of the D-cells that result from the empty circles. The config-
uration of D-vertices is the same as in Figs. A.1(d) and A.4.

topology of each D-cell is the one of a “d-simplex”, the simplest-possible d-hyperpoly-
hedron2.38. In two dimensions, for instance, the tessellation consists solely of triangles,
whereas for d = 3, all simplices are of tetrahedral topology.

Clearly, in the general case, no unique tessellation results from the mere require-
ment that all D-cells take the form of a d-simplex. This ambiguity can be alleviated
by imposing additional constraints, for which there exist many different possibilities.
The D-tessellation, specifically, adds a condition which makes reference to the fact
that the d+1 D-vertices of a d-simplex always define a d-dimensional hypersphere.
The “Delaunay property”—the hallmark of the D-tessellation—then dictates that a
particular d-simplex constitutes a D-cell if (and only if) its associated d-hypersphere is
devoid of other D-vertices [64, 212]. Writing in French and being concerned with the
particular case of three dimensions, Delaunay used the name “sphères vides”—empty
spheres—in his original work to refer to this property. Figure 2.18 provides a two-
dimensional illustration of this peculiar property (in the absence of PBCs); in the
figure the sphères vides—which in d = 2 reduce to circles—are outlined by thin green
lines, and the corresponding D-cells are bordered by thick pink lines. It can easily
be shown from the Voronoi tessellation (a geometric construction closely related to
the Delaunay tessellation) that irrespective of the particular distribution of D-vertices,
there always exists a tessellation in which all cells fulfill the Delaunay property (see
Refs. [64, 212] and Appendix A.1).

However, the sphère-vide criterion leaves some narrow room for ambiguity. Specif-
ically, the surface of a particular sphère vide may host c > d+1 D-vertices; this
phenomenon is illustrated in Figure 2.19. Since by definition, a D-cell is associated
with precisely d+1 D-vertices, the c D-vertices then have to be divided in subsets of
d+1 D-vertices (with each D-vertex belonging to multiple subsets) to represent D-cells.
In the absence of additional criteria, this subdivision is arbitrary—the only constraint
being that the D-cells do not overlap and entirely cover the d-hyperpolyhedron defined

2.38We found the majority of authors to use the term “simplices” when referring to the objects that
we call “Delaunay cells” [70, 229, 260]. However, for symmetry with the term “Voronoi cell” (cf.
Appendix A.1), we decided to retain the name “Delaunay cell”.
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Figure 2.19: Degenerate Delaunay tessellations. Example of a
degenerate two-dimensional D-tessellation. Small black disks: given
D-vertices. Green circle: sphère vide, hosting more than three D-ver-
tices on its surface. Dark pink lines: incomplete D-tessellation.
Faint solid and dark dashed pink lines: equivalent completions of
the D-tessellation.

by the c D-vertices. This ambiguity renders the tessellation “degenerate”2.39.

In the context of molecular simulations, it is important to note that the D-tes-
sellation—in any dimensionality—is well defined also in the presence of PBCs (cf.
Sec. 2.2.2.1). The reason for this is that each D-cell is defined by a “local neigh-
borhood” of D-vertices. Problems, however, may arise when using the nearest-image
convention (see Sec. 2.2.2.1 again) in conjunction with very small systems; this is due
to the fact that in this case, the hypersphere defined by a set of d+1 D-vertices may
occasionally be larger than the system, meaning that multiple images of the same par-
ticle may have to be considered when verifying the empty-sphere property. In a final
note, as will be detailed in Sec. 2.4.4, the sphère-vide property is central not only to
the definition of the D-tessellation but also to the efficient computation of this tessella-
tion. In fact, the local nature of this property renders these computations so efficient
that the aforementioned Voronoi tessellation is typically constructed not directly but
instead indirectly from its Delaunay counterpart [15].

2.4.3 Characterization of the accessible volume

We will now elaborate on the issue of how the D-tessellation can be used to characterize
the accessible volume in QA systems. In this, the section at hand will focus solely on
the aspect of the procedures that our method encompasses; the validity of the method
will be discussed separately in Appendix A.1. The method is inspired by a number of
authors, whose various works—some of which are as old as two decades [39, 48, 107,

2.39Strictly speaking, in probablistic distributions of D-vertices in continuous spaces, there do not
exist sphères vides with more than d+1 D-vertices on their surface. For this effect to occur in such
distributions, the space must consist of only a finite number of distinct spatial points (i.e., it must
be a lattice space). Notably, this is effectively the case for every space represented in a computer’s
memory. However, apart from the distribution of D-vertices, the probability for degeneracies to occur
also depends on the number of distinct spatial points. Since the 64-bit arithmetics used in this work
provides at least (253)3 = O(1048) distinct “lattice points” (53 being the number of bits used to
represent the significand of a 64-bit floating-point variable2.40), we can for all practical purposes rule
out degenerate D-tessellations in this work.

2.40http://en.wikipedia.org/wiki/Floating_point
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229, 246, 251, 252]—aim at explaining phenomena related to those investigated in this
work2.41.

Our method starts off by mapping the structure of the accessible volume onto
a network of “sites” and “bonds” (cf. Sec. 1.3.3.3 and Appendix A.1). From the
D-tessellation of a given d-dimensional arrangement of matrix particles, this network
is obtained by the following two steps:

(1) Each D-cell in the tessellation represents one site in the network; a
site is “occupied” only if the corresponding D-cell is “accessible”. A
D-cell is considered accessible if the center of its circumhypersphere
is left accessible by the matrix particles that form the D-cell.

(2) Each D-face in the tessellation represents one bond in the network; a
bond is “connecting” only if the corresponding D-face is “crossable”.
A D-face is considered crossable if the center of its circumhyper-
sphere is left accessible by the matrix particles that form the D-face.

The network resulting from these steps shall henceforth be referred to as the “Delaunay
network”. The similarity in the wording of steps (1) and (2) is intentional and serves
to emphasize that the definition of an occupied element is the same for the sites and
the bonds aspects. The difference between sites and bonds lies merely in the number
of matrix particles that define a D-cell and a D-face, which is d+1 and d, respectively.
Therefore, although all elements are part of the same d-dimensional tessellation, the
circumhypersphere of a D-cell is d-dimensional whereas its D-face counterpart is only
(d−1)-dimensional. For instance, in d = 3 (the case most important to this work)
the former and the latter are represented by spheres and circles, respectively. As
alluded to in Sec. 2.4.2, circumhyperspheres of D-cells and D-faces arise naturally
when constructing D-tessellations; therefore, details on how to actually compute these
circumspheres will be supplied in Sec. 2.4.4.2. Without going into detail here, we
note that the Delaunay network is much akin to the Voronoi network introduced in
Appendix A.1.1.2 and depicted in Fig. A.3.

Subsequent to establishing the D-network, we perform a cluster analysis of the
network’s sites, i.e., we identify groups of sites for which every member site is connected
by a bond to at least one of the other member sites. The algorithm used to perform
this grouping is described in detail in Sec. 2.4.5. In the resultant cluster picture, each
site group corresponds to precisely one of the voids present in the system. In view of
the fact that there may exist an infinitely-large site group (one that spans the entire
space), this procedure is tantamount to a percolation analysis (cf. Sec. 1.3.3.3). The
percolation aspect will receive particular attention in Sec. 2.4.5 since the presence of
PBCs has significant repercussions on this issue.

2.41Notably, the authors of Refs. [39, 48, 107, 229, 246, 251, 252] consider a range of different physical
systems and circumstances, not all of which feature the notion of “fluid” and “matrix” particles.
Instead, these authors are interested for instance in whether a mobile test particle can assume a
position in a particular configuration of other mobile particles.
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Figure 2.20: Delaunay network. D-network representation of the same system
as in Figs. 2.16 and 2.17. Black disks: matrix particles of radius R. Green [red]
lines: [non]crossable D-faces. White areas: D-cells that belong to the percolating
void. Yellow areas: D-cells that belong to a trap. Gray areas: inaccessible D-cells.
Blue areas: D-cells that do not contain accessible volume but are deemed “acces-
sible”. The accessibility of D-cells and the crossability of D-faces are determined
according to steps (1) and (2) specified in the beginning of Sec. 2.4.3.

Finally, we need to determine within which void a random accessible point is
located. The procedure to achieve this consists of two straightforward steps:

(I) Given some accessible point Pi, determine the D-cellDCj
that Pi is located in.

(II) Having identified DCj, determine the site group and thus
the void that DCj is part of.

This procedure serves two important purposes: (a) identifying whether a given fluid
particle is free or trapped, and (b) estimating the amount of accessible volume per-
taining to a void. Since the latter involves a fair share of additional methodology, the
computational details of how to associate a location with a void will be described in
Sec. 2.4.6 [the section elaborating on issue (b)].

As an illustration of the method presented in this section, Fig. 2.20 depicts the
D-tessellation of the same arrangement of matrix particles as Figs. 2.16, 2.17, and A.3.
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The figure highlights features of the void characterization resulting from the tessella-
tion, and it is not a coincidence that Figs. 2.16 and 2.20 look quite alike. In both
figures, the fluid and matrix particles are of the same radius R, the only difference
between the figures being that Fig. 2.20 shows exclusively the matrix particles (black
disks). Also in both figures the thick red lines indicate the relevant ones among the
noncrossable pairs of matrix particles. Taking into account that Fig. 2.16 suppresses
red lines that cross yellow areas, there obviously is the desired one-to-one correspon-
dence of red lines between the figures. Further, both figures highlight the areas that
are entirely enclosed by red lines. However, whereas Fig. 2.16 uses a uniform yellow
color for this, Fig. 2.20 employs different colors to encode different types of D-cells:
yellow D-cells are accessible [according to step (1) in the beginning of this section]
and actually do contain accessible space, blue D-cells are accessible but do not con-
tain accessible space, and gray D-cells are inaccessible. Clearly, taken together, the
nonwhite D-cells in Fig. 2.20 precisely amount to the yellow area in Fig. 2.16. Further,
Fig. 2.20 confirms the notion established in Figs. 2.17 and A.3 that the system contains
five traps. Note, however, that the distinction between yellow and blue D-cells serves
only an illustrative purpose—the D-tessellation provides no direct means to identify
whether a particular D-cell does actually contain accessible volume (see Sec. 2.4.6 and
Ref. [229]). Without this distinction, the D-network equates the yellow and blue cells
and therefore accounts for seven traps instead of five, two of which then are of course
devoid of accessible space. As a matter of fact, this difference reflects precisely the
disparity between the Voronoi and the Delaunay networks (see Appendix A.1.2.2).
The green lines, finally, complete the D-network in that they symbolize the crossable
D-faces.

In summary, the D-tessellation provides a handle to describing all geometric fea-
tures of the accessible volume in HS-QA systems that are of interest to this work. In
particular, the tessellation provides an efficient means to identify the relevant noncross-
able tuples of matrix particles—without even making reference to this issue—, and to
assemble these tuples to noncrossable surfaces (cf. Sec. 2.4.1). Likewise, the issue of
associating the tuples with volumes is naturally taken care of by the D-tessellation
and its associated D-network.

Subsequent to this section, we will turn to the computational algorithms used in
this work to perform the geometric analysis outlined in the above. First, in Sec. 2.4.4,
we will take on the construction of D-tessellations; after that, we will turn to the
aforementioned cluster and percolation analysis (Sec. 2.4.5). Finally, in Sec. 2.4.6,
we shall introduce the method alluded to further above for estimating the amount of
accessible volume contained in a void, with the aim of subsequently carrying out a
quantitative analysis of these volumes.

2.4.4 Construction of Delaunay tessellations

In this section, we will be concerned with the issue of constructing a D-tessellation
from a given set of D-vertices. For this, we first conduct a survey of packages and
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algorithms that might be useful in this context. In conclusion of this survey we devised
a custom method for constructing D-tessellations, which we will then elaborate on after
introducing two auxiliary procedures that are vital to this custom method.

2.4.4.1 Available packages and known algorithms

The task of constructing a D-tessellation falls into the field of computational geometry;
for an introduction to the many topics that this field encompasses see for instance
the excellent book by Preparata and Shamos [212]. Given that the computation of
tessellations is typically nontrivial and is for the most part not among the core skills
of a physicist, the usual approach would be to make use of some publicly-available
computational-geometry package. Therefore, as a first step, we conducted an exten-
sive search among the multitude of available packages, with the goal of finding at
least one that would fulfill all items from our limited set of requirements (see below).
Unfortunately, as we report in the following, the search resulted in a null result.

• The most basic one of our requirements was that the package be able to
compute three-dimensional D-tessellations. This fundamental prerequisite is
failed by a great many packages, which instead provide merely the facility to
compute two-dimensional D-tessellations. This is the case in particular for
the following major packages:

– GTS2.42

– Triangle2.43

– VRONI2.44

• For two reasons, we clearly preferred a library solution over a stand-alone
program: a library would (i) avoid having to externally convert large amounts
of data and to temporarily store these data on a disk, and (ii) provide much
better facilities for workflow integration. This requirement thwarted the use
of the following prominent programs:

– Qhull2.45

– Detri2.46

• Any library coming into question has to lend itself to usage with the FORTRAN

90/95/2003 programming language since the latter is used extensively by the
author for writing programs that require fast execution speed. Unfortunately,
a number of available packages are coded in C++ and its object-oriented pro-
gramming paradigm, which significantly differs from the procedural paradigm

2.42http://gts.sourceforge.net

2.43http://www.cs.cmu.edu/~quake/triangle.html

2.44http://www.cosy.sbg.ac.at/~held/projects/vroni/vroni.html

2.45http://www.qhull.org

2.46http://www.geom.uiuc.edu/software/cglist/GeomDir

http://gts.sourceforge.net
http://www.cs.cmu.edu/~quake/triangle.html
http://www.cosy.sbg.ac.at/~held/projects/vroni/vroni.html
http://www.qhull.org
http://www.geom.uiuc.edu/software/cglist/GeomDir
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of FORTRAN. This presents a major obstacle to calling routines of these pack-
ages from within a FORTRAN program. Other packages are written in program-
ming languages uncommon in the natural sciences such as PASCAL, which
effects the availability of only very little documentation on how to integrate
such libraries into FORTRAN programs. Shortcomings of these kinds forbade in
particular the use of the following, highly-elaborate and acknowledged pack-
ages:

– CGAL2.47

– FastGEO2.48

• The package-to-be-used has to provide a reliable code basis. This in particular
means that upon compilation, no warnings (much less errors) should be issued.
Proper documentation of both the interfaces and the internal algorithms is
of equal importance so as to avoid improper usage. Unfortunately, these
criteria were not met to a satisfactory degree by the last one of the promising
candidates, namely

– GEOMPACK2.49

Packages other than the named ones either failed more than one of our requirements,
or failed the last one very badly (for instance by lacking documentation altogether).

In consequence, we found it preferential to implement a program for computing
D-tessellations ourselves. Obviously, for this it is prudent to first survey the concepts
that underlie existing solutions to the task at hand. Therefore, in the following we
will briefly introduce the most prominent algorithms to construct D-tessellations, and
motivate our choice among these. The interested reader may follow up on the presented
methods in the excellent reviews by Aurenhammer2.50 [15] and by Su and Drysdale
[250].

◮ Flip algorithms make use of a property inherent to pairs of D-cells that share
a D-face: for such D-cells, the empty-sphere property (cf. Sec. 2.4.2) dictates
that the sum of the internal angles at the two nonshared vertices be smaller
than some upper bound. A flip algorithm uses this property to construct a
D-tessellation as follows: First, some tessellation is created in which the cells
are arbitrary nonoverlapping d-simplices whose vertices coincide with the given

2.47http://www.cgal.org

2.48http://www.partow.net/projects/fastgeo/index.html

2.49http://people.sc.fsu.edu/~jburkardt/f_src/geompack/geompack.html

2.50As a matter of fact, in his review, Aurenhammer focuses predominantly on the construction
of Voronoi tessellations. However, in Appendix A.1.2.1, we will see that Voronoi and Delaunay
tessellations actually encode the same set of information. It is therefore not surprising that a number
of efficient methods have been established to obtain either one of the two tessellations from the
respective other one. This effectively renders the Voronoi and Delaunay tessellations interchangeable
from the point of view of their construction [15, 250].

http://www.cgal.org
http://www.partow.net/projects/fastgeo/index.html
http://people.sc.fsu.edu/~jburkardt/f_src/geompack/geompack.html
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D-vertices. Then, each pair of these cells is checked for whether the internal-
angle sum adheres to the bound criterion, and if this is not the case, then
the face that joins the cell pair is “flipped” such that the criterion holds. The
latter step is repeated until all cells in the tessellation have been transformed
to D-cells. Unfortunately, without major optimization, such algorithms may
need as many as O(N2) steps to generate a D-tessellation [15, 169, 250].

◮ Divide-and-conquer (D&C) algorithms are based on the fact that construct-
ing a D-tessellation is much less expensive for small sets of D-vertices than it
is for large ones. D&C algorithms exploit this fact by recursively dividing
the set of vertices until each subset contains “few enough” vertices, with the
subsets being grouped according to spatial regions that typically are slice-like
but can in principle take any form. After constructing each subset’s D-tes-
sellation, these tessellations are merged (“conquered”), which is the computa-
tionally expensive part of D&C algorithms and is nontrivial to optimize even
for a simple slice geometry. In two dimensions and with heavy optimization,
this type of algorithm has been shown to outperform all other D-tessellation
methods (in absolute terms) and to require O(N log logN) operations (see
Refs. [15, 69, 250] as well as Footnote 2.51).

◮ Sweepline algorithms effectively translate the construction of a d-dimensional
D-tessellation to a (d−1)-dimensional “dynamic” problem. Algorithms of this
kind are reminiscent of event-driven molecular dynamics (cf. Sec. 2.2) in that a
(d−1)-dimensional hyperplane is “swept” through space and thereby generates
“events” that are sequentially processed. The two relevant types of event are
the encounter of a D-vertex, and the exiting of one of the sphères vides defined
by each tuple of d+1 D-vertices for which it is yet unknown whether it defines
a D-cell. Whereas sweepline algorithms in two dimensions have been shown to
require O(N logN) steps and are considered an efficient technique, their com-
plexity (in both implementation and runtime) heavily increases with dimen-
sionality, which usually constrains their use to two dimensions [15, 82, 250].

◮ Insertion algorithms incrementally construct a D-tessellation by first com-
puting the tessellation of an (arbitrary) small subset of the given D-vertices—
which is inexpensive—, and by then “inserting” the remaining D-vertices one
by one and updating the D-tessellation upon each insertion. The insertion
is usually carried out by first creating new (non-Delaunay) cells that involve
the inserted D-vertex, and by then transforming these new cells into D-cells
(e.g., via flipping as described above). The transformation on average requires
merely O(1) operations [250], which renders the creation of the new D-cells the
bottleneck since for this, the D-cell in which the inserted D-vertex resides needs
to be located. Without optimization, this requires O(N) operations per D-ver-
tex, which, however, can be heavily optimized using bucketing techniques (like

2.51http://www.cs.cmu.edu/~quake/tripaper/triangle2.html

http://www.cs.cmu.edu/~quake/tripaper/triangle2.html
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for instance the one introduced in Sec. 2.2.2.2) to yield algorithms that overall
scale as O(N)—at least if the D-vertices are randomly distributed [15, 250].

◮ Addition algorithms are similar to insertion algorithms in that they proceed
incrementally; however, they require at most one invalid D-cell to be kept
track of simultaneously. Addition algorithms involve two principal steps: (i)
establishing one initial D-face, and (ii) finding new D-cells that are adjacent
to already-known D-faces. Step (ii) can easily be accomplished by checking
whether the circumhypersphere defined by some candidate D-vertex and the
D-vertices of a known D-face is empty (cf. Sec. 2.4.2). Empirical data show that
step (i) can be performed in O(1) steps, which leaves step (ii) as the critical
factor: while the absence of optimization entails an overall O(N2) behavior,
bucketing techniques—like for the insertion algorithm case—reduce the effort
to O(N) steps for randomly-distributed D-vertices [15, 70, 183, 250, 256].

Although D&C algorithms were found to excel in execution speed, we deemed their
principle to be too complex for implementation in this work. Similar reasons suggested
to refrain from sweepline algorithms; since these algorithms moreover seem to be in
practical use in two dimensions only, unexpected methodical problems could have oc-
curred upon attempting an extension to three-dimensions. Flip algorithms suffer from
the dimensionality problem, too, and additionally display poor performance, which
actually leaves historical completeness as the only reason for continued interest in this
method. In effect, this left the choice between the insertion and the addition algo-
rithms, of which we opted for the latter due to its (arguably) slightly simpler concept.

Before we elaborate on this work’s implementation of the addition algorithm, we
will discuss two auxiliary procedures that on the one hand form integral parts of the
tessellation algorithm and on the other hand constitute solutions to problems interest-
ing of their own right. The first one of these procedures, which we shall introduce in
Sec. 2.4.4.2, is concerned with the construction of circumspheres; the second, detailed
in Sec. 2.4.4.3, provides an efficient method for determining which particle is closest
to a given point in space.

2.4.4.2 Auxiliary: Circumspheres and -circles

As laid out in Sec. 2.4.2, the D-tessellation is fundamentally based on the fact that each
D-cell is associated with a circumsphere that is “empty”. Therefore, it is not surprising
that most every D-tessellation algorithm invokes this property in one way or another.
To phrase this condition more formally, suppose that there exists a distribution of
points in d dimensions, and that {DXk}j is a subset of d+1 of these points. Then,
the Delaunay property states that the points {DXk}j form a D-cell if (and only if)
they reside on the surface of a d-dimensional hypersphere CSj that is otherwise devoid
of points from the distribution. In fact, checking the set {DXk}j for the Delaunay
property consists of two steps: (i) constructing the pertinent CSj, and (ii) determining
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Figure 2.21: Circumcircle construction. Simple construction of
the circumcircle of a given triangle. Black disks: vertices of the tri-
angle; pink lines: edges of the triangle. Orange lines: perpendicular
bisectors of the triangle edges; empty orange squares: indicators for
right angles. Green circle: circumcircle; green disk: center of the
circumcircle.

whether CSj is empty. Of these steps, in this section we will focus exclusively on the
former. The procedure pertinent to the latter step will be the subject of Sec. 2.4.4.3.

Concerning the construction of circumhyperspheres, consider first the simplest
case: two dimensions. In this case, {DXk}j contains three points that form a triangle,
and CSj is the circumcircle of that triangle. A simple reasoning to obtain the latter
is the following. Since by definition, the circumcircle center is equidistant from all
triangle vertices, it must be located on the perpendicular bisectors of the triangle. As
shown in Fig. 2.21, there are three such perpendicular bisectors—one for each of the
triangle’s edges. Since every triangle has a circumcircle (a circle can in fact be defined
by three points), the center of the circumcircle must be the point in which all of these
bisectors intersect. This scheme is easily extended to d dimensions, namely by finding
the (d−1)-dimensional hyperplanes that perpendicularly bisect the d+1 edges of a
d-dimensional simplex, and by locating the point in which all of these hyperplanes
intersect. However, there exists a more elegant and computationally more efficient
method due to Pedoe [209], which we will describe in the following.

For the two-dimensional case, we will recite the derivation of Pedoe’s method as
presented in Footnote 2.52. There, the starting point is that the points of a circumcircle
can be shown to conform to the equation
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where x and y represent the components of the circumcircle’s points, and xk and
yk (with k ∈ {1, 2, 3}) are the components of a point DXk from the given vertex
subset {DXk}j . Using Laplace expansion2.53, the determinant on the left-hand side in
Eq. (2.34) can then be expressed as

a(x2 + y2) + bxx+ byy + c = 0 (2.35)

2.52http://mathworld.wolfram.com/Circumcircle.html

2.53http://en.wikipedia.org/wiki/Laplace_expansion

http://mathworld.wolfram.com/Circumcircle.html
http://en.wikipedia.org/wiki/Laplace_expansion
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“Completing the squares” transforms Eq. (2.35) to read

a
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x+
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2a

)2

+ a

(

y +
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2a

)2

− b2
x

4a
− b2

y

4a
+ c = 0 (2.37)

which is of the form

(x− x0)
2 + (y − y0)

2 = r2 , (2.38)

meaning that Eq. (2.37) describes a circle for which the center and the radius are

(x0, y0) = − 1

2a
(bx, by) and r =

1

2|a|
√

b2
x + b2

y − 4ac . (2.39)

In three dimensions, the procedure is entirely analogous (see Footnote 2.54). In this
case, a circumsphere is described by the equation
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with the symbols as in Eq. (2.34), except that now each vector obviously has a z
component and that we need four vertices to define a circumsphere. Like for Eq. (2.34),
the determinant in Eq. (2.40) can be expanded2.53, reading then

a(x2 + y2 + z2) + bxx+ byy + bzz + c = 0 (2.41)

2.54http://mathworld.wolfram.com/Circumsphere.html

http://mathworld.wolfram.com/Circumsphere.html
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Figure 2.22: Crossing criterion. Criterion for a fluid particle to cross a
D-face. Black disks: matrix particles; gray disk: fluid particle. Pink lines:
edges of the D-face. Green circle: circumcircle of the D-face; green dot:
center of the circumcircle and of the fluid particle. White disks: matrix
particle centers.

in which, straightforwardly, the subdeterminants are defined by
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Then, like before, Eq. (2.41) can be rearranged to read
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which in analogy to Eq. (2.38) describes a sphere for which the center and the radius
read

(x0, y0, z0) = − 1

2a
(bx, by, bz) and r =
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2|a|
√

b2
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z − 4ac . (2.44)

Therefore, in two [three] dimensions, the relevant information about CSj can
be obtained by simply evaluating the determinants in Eq. (2.36) [Eq. (2.42)] and by
inserting the resulting scalars into Eq. (2.39) [Eq. (2.44)]. Considering the trivial
modifications from two to three dimensions, it is easy to see that the same scheme
could be applied in any dimensionality.

Although seemingly only a toy version of the three-dimensional case, computing
circumcircles is more than just an academic exercise in the present context: as illus-
trated in Fig. 2.22, it is in fact the radius of the circumcircle that determines whether
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a D-face is crossable or not. Specifically, some D-face is crossable if (and only if)2.55,2.56

its circumcircle radius is larger than the hard-core range of the matrix–fluid interac-
tion (cf. Fig. 2.15). This is the criterion referred to in point (2) in the beginning of
Appendix A.1.2.2.

Circumspheres, however, are no less important in that their radius provides the
criterion for their associated D-cell to be accessible. This is of course determined in the
same way as for D-faces, i.e., if a circumsphere’s radius is larger than the matrix–fluid
interaction range, then the corresponding D-cell is accessible. This criterion is referred
to in point (1) in the beginning of Appendix A.1.2.2.

2.4.4.3 Auxiliary: Nearest-neighbor search

Suppose, as before, that we are given some distribution {DXi} of N points in a
d-dimensional space, and that we are moreover given some arbitrary reference point P .
Then, it is a challenge interesting of its own to determine which of the {DXi} is
the one closest to P—the “nearest neighbor”. One straightforward application of such
knowledge is to subsequently measure the distance between P and its nearest neighbor,
and to compare that distance with some given length. This clearly constitutes one
method for determining whether a circumhypersphere around P is empty, and it even
constitutes an efficient one if the circumhypersphere contains many points from {DXi}
and/or many buckets (cf. Secs. 2.4.4.2 and 2.2.2.2).

An obvious approach to finding the nearest neighbor of P would be to simply
determine the distance between P and all of the points {DXi}. While this approach,
unfortunately, is quite inefficient if N is large, fortunately a plethora of more efficient
solutions to this problem has been devised. This is due in part to Knuth, who popular-
ized this computational-geometry task under the label “post-office problem” [153, 212].
Essentially, the underlying challenge is that of a suitable partitioning of space, which

2.55Notably, the circumcircle-evaluation scheme presented in this section operates on a triangle in
two-dimensional space. In three-dimensional D-tessellations, however, the triangular D-faces are
part of a three-dimensional space. Fortunately, it is possible to retain the two-dimensional evaluation
scheme by introducing two additional steps: First, the D-face in question is rotated such that its
normal vector is parallel to one of the coordinate axes. This coordinate axis is then neglected, and
the circumcircle center of the D-face is obtained in a space spanned by the other two coordinate axes.
Finally, the circumcircle center is reinterpreted as part of the three-dimensional space and subjected
to the inverse of the previous rotation. The rotations involved in this procedure can be carried out
for instance using Euler angles2.57.

2.56In fact, the circumcircle radius provides the criterion for a D-face to be crossable only in the case of
a single matrix–fluid HS interaction. This approach would not be valid if instead each matrix particle
interacted via a distinct HS range with the fluid particles. Instead, the criterion for crossability would
then be given by one of the solutions to “Apollonius’s problem”, i.e., to the problem of finding the
circle that is tangential to three other circles2.58. In this work we did not pursue this case of a
“polydisperse matrix” since it entails a host of other difficulties, starting from the MD algorithm and
ending with the proper analysis of the inferred observables.

2.57http://mathworld.wolfram.com/EulerAngles.html

2.58http://mathworld.wolfram.com/ApolloniusProblem.html

http://mathworld.wolfram.com/EulerAngles.html
http://mathworld.wolfram.com/ApolloniusProblem.html
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Figure 2.23: Relative minimum-possible distances be-
tween buckets. Scheme for constructing a mask of relative
minimum-possible distances (MPDs) between buckets. Buck-
ets are constructed according to Sec. 2.2.2.2 and Fig. 2.8
therein. Squares of the same color denote MPD groups, i.e.,
groups of buckets that share the same relative MPD to the
central bucket. Squares bordered by thick black lines high-
light selected buckets; thick dotted black lines indicate the
MPDs of these buckets. Black disk: example for the site P
for which the nearest neighbor is to be found; filled black
square and triangle: examples for points from the given point
distribution. The thin black dashed lines illustrate that the
disk–square distance is larger than the disk–triangle distance,
despite the MPD of the yellow buckets being smaller than the
MPD of the green buckets.

in many approaches is accomplished by virtue of one of the various space-partitioning
tree structures known to the information sciences such as octrees2.59, k-d-trees2.60, and
R-trees2.61. Instead of such data trees, we will here exploit a structure already estab-
lished for the optimization of this work’s event-driven MD algorithm: bucket lists (cf.
Sec. 2.2.2.2).

While bucket lists—which in the context of space partitioning are also known
as “locality-sensitive hashes”2.62—are an obvious candidate for solving the nearest-
neighbor problem, their use for this purpose is unfortunately not quite as simple as
it might seem. To understand the pertinent difficulties, suppose that we have already
searched a number of buckets in the vicinity of P without having found any point
from {DXi}, and that subsequently in bucketB we have found the pointDXl ∈ {DXi}
at some distance dl,P away from P . Then, DXl constitutes P ’s nearest neighbor only
if we have previously ruled out that some other DXm ∈ {DXi} exists for which
dm,P < dl,P . This ruling out can only be guaranteed if prior to bucket B, we have
searched every bucket containing a spatial point that is closer to P than is DXl. One
systematic way to achieve this would be to search the buckets in ascending order of
the minimum-possible distance (MPD) between the anchor point P and any point
within each bucket. However, upon altering the position of P , such an ordering would
change—even if P remained within the same bucket. This means that the MPD
ordering would have to be re-evaluated for every position of P , which would entirely
overturn the advantage of bucket lists.

It is, however, well feasible to sort the buckets once and for all according to a
similar order, namely in ascending order of the MPD between any point in P ’s bucket

2.59http://en.wikipedia.org/wiki/Octree

2.60http://en.wikipedia.org/wiki/Kd-tree

2.61http://en.wikipedia.org/wiki/R-tree

2.62http://en.wikipedia.org/wiki/Locality_sensitive_hashing

http://en.wikipedia.org/wiki/Octree
http://en.wikipedia.org/wiki/Kd-tree
http://en.wikipedia.org/wiki/R-tree
http://en.wikipedia.org/wiki/Locality_sensitive_hashing
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and any point in each other bucket. Such an ordering can be established by once
evaluating a “mask” of the relative MPDs between one “central” bucket and all other
buckets (up to the maximum-possible distance), and by then every time translating
this mask such that the central bucket is the one containing P . The two-dimensional
version of such a mask is visualized in Fig. 2.23, wherein the central bucket is indicated
by the central red square with thick black borders. For three selected buckets (yellow,
green, and turquoise squares bordered by thick black lines) the MPD to the central
bucket is highlighted by the thick black dotted lines; for those buckets, the respective
MPDs are 1,

√
2, and 2 in units of bucket side lengths. As indicated by the colors

of the squares, for each MPD there exist several buckets that share that distance.
Therefore, if at some stage any bucket of such an “MPD group” is searched, then all
buckets of the same MPD group have to be searched before considering to terminate
the nearest-neighbor search. For instance, if the mask in Fig. 2.23 is to be used, then
first all red buckets have to be checked, then (if no nearest neighbor has been found)
all yellow ones, and then—one group after another—the green, turquoise, blue, and
pink ones.

The criterion for terminating the nearest-neighbor search results from the follow-
ing consideration. Suppose that some ongoing nearest-neighbor search has so far failed
to discover a point from {DXi}, and that the search has just finished processing some
MPD group (say for instance the red one in Fig. 2.23). Then, in consequence of the
above, the search has to continue by checking the next MPD group (here the yel-
low one) in its entirety. If in this MPD group the search encounters multiple points
of {DXi}, then obviously merely the one closest to P needs to be kept track of.
Suppose that this closest point is the filled square in Fig. 2.23. Then, although the
MPD groups are ordered by minimum-possible distance, there still may exist points
from {DXi} that are closer to P than the square and are not yet checked by the
search. This is the case for instance for the point indicated by the filled triangle in
Fig. 2.23. This circumstance is possible due to the fact that most points in an MPD
group are farther from P than the MPD of that MPD group, and that some points
are even farther from P than the MPD of the next MPD group in the queue (here the
green one). To accommodate for this circumstance, the criterion for terminating the
nearest-neighbor finally reads as follows:

(1) If the current MPD group does not contain points from {DXi}, then
proceed to the next MPD group.

(2) If the current MPD group does contain points from {DXi}, then
find the point DXc among these points that is closest to P . This
spawns two sub-cases:

(2a) If DXc is farther from P than the MPD of the next MPD group,
then proceed to the next MPD group.

(2b) If DXc is closer to P than the MPD of the next MPD group,
then identify DXc with DXP (the nearest neighbor of P ) and
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Figure 2.24: Bin sorting. Schematic representation
of the bin-sorting algorithm. A hash function computes
an integer (a bin index) from each given value in or-
der to assign that value to a bin. The hash function
for the relative minimum-possible distances (MPDs)
between buckets (cf. Fig. 2.23) is spelled out at the
very left; the results of the hash function are the num-
bers 1 through 8. Large squares represent the bins of
a pertinent array; each colored bin corresponds to a
possible MPD, whereas the white bins have no corre-
sponding MPD. Small filled black squares indicate the
occupation of the bins resulting from Fig. 2.23, i.e.,
the number of buckets with the same relative MPD.
Since some bin indices do not correspond to relative
MPDs, the array is subsequently compressed.
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terminate the search.

Of course, in case (2a), it is mandatory to retain DXc as a candidate for DXP when
proceeding to the next MPD group. Notably, the additional checking of DXc in
cases (2a) and (2b) alleviates the problem that the MPD groups are constructed such
that the buckets therein do not necessarily have the same minimum-possible distance
to P .

Having established the order in which the buckets have to be searched, we now
address the task of arranging the buckets in that order. Fortunately, for accomplish-
ing this task, it is possible to use the exceptionally efficient and equally simple bin-
sorting2.63 routine. This possibility is owed to two properties of the possible values of
the MPDs:

(i) the range of these values is subject to a definite lower and upper
bound, and

(ii) the values assume only a finite number of different values within
that range.

Properties (i) and (ii) allow to set up an array in which all possible values are repre-
sented by a sequence of “bins” that are sorted according to a known rule. Each of
the N values that are to be sorted (which may be much more than the number of dis-
tinct values) is then “dropped” into its corresponding bin; this requires merely O(N)
operations if direct access to the bins is provided. The sorting is then established

2.63The term “bin sorting” is probably less widespread than the equivalent term “bucket sorting”2.64;
however, since we reserved the buzzword “bucket” for the space partitioning in Sec. 2.2.2.2, we will
use the former term to refer to the sorting method.

2.64http://en.wikipedia.org/wiki/Bucket_sort

http://en.wikipedia.org/wiki/Bucket_sort
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by subsequently visiting the bins in the constructed sorting order (usually a sequence
from start to end) and “collecting” the values therefrom.

Since all relevant programming languages (such as FORTRAN or C) use consecutive
integer numbers to indicate the elements of an array, a function has to be devised
that computes such an integer from each of the values-to-be-sorted. It is moreover
compulsory that the integers resulting from such a “hash function” obey the same
ordering as the input values. In case of the MPDs, a sensible choice for the bin indices
is the squared relative MPD in units of bucket edge lengths. In a d-dimensional
system that harbors M buckets along one coordinate axis, this scheme yields 0 and
d[(M−1)/2]2 as the minimum and maximum bin indices, with the minimum nonzero
difference being 1. Therefore, a pertinent array has to provide d[(M−1)/2]2+1 bins.
As an example for this hash function, Fig. 2.24 illustrates the integer values that
result from the buckets in Fig. 2.23. On the upside, the integers clearly follow the
same sequence as the MPDs, and each MPD is assigned a unique integer—just as
required. On the downside, not every bin in the array corresponds to a possible
MPD, which, however, is a common feature of hash functions and does not present a
fundamental problem2.65. It does, yet, suggest a subsequent step of purging the array
from nonexistent MPD values, as is symbolized by the arrows in Fig. 2.24. Finally, it
should be noted that each bin has to provide for the facility to accommodate multiple
items, which then in our case form the MPD groups (cf. Fig. 2.23).

2.4.4.4 Custom construction algorithm

Having thus set the scene, we now turn to the actual algorithm used in this work for
constructing a D-tessellation of a given set of points {DXi} in d dimensions. Inspired
by the two-dimensional addition algorithm devised by Maus [183], our procedure con-
sists of two fundamental steps:

(1) establish at least one D-face from the final D-tessellation, and

(2) iteratively find all D-faces that are part of less than two known
D-cells, and construct the D-cells adjacent to those D-faces.

One common approach for accomplishing step (1) is to construct the convex hull2.66

of the {DXi}, that is, to find the hyperpolyhedron with vertices from {DXi} that
entirely encloses the {DXi} and is convex everywhere. As can be shown, the convex
hull is a subset of the D-tessellation in the sense that each face of the convex hull is a
D-face [15, 169, 183, 250]. While this approach is certainly valid, devising an efficient
algorithm for finding the convex hull is a challenge of its own right, and is in fact
of similar complexity (in both runtime and programming effort) as the superordinate
task of constructing a D-tessellation. Fortunately, however, in this work, each distri-
bution {DXi} is derived from a physical system—a QA system—, which leads to an

2.65http://en.wikipedia.org/wiki/Hash_function

2.66http://en.wikipedia.org/wiki/Convex_hull

http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Convex_hull
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Figure 2.25: The initial Delaunay cell.
Two-dimensional illustration of the proce-
dure for finding a good candidate for the
first D-cell. Black disks: D-vertices as in
Figs. 2.18 and A.1(d); blue disks: barycen-
ters, i.e., averaged locations of subsets of
D-vertices. In panel (a), the barycenter co-
incides with DX1; in panel (b), it is located
halfway between DX1 and DX2. Blue cir-
cles indicate the distance to each barycen-
ter’s next neighbor, disregarding D-vertices
that define the barycenter. Light-pink lines:
edges of the resulting candidate cell.
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DX2

(a) (b)

DX1
DX2

DX3

essentially-random distribution. Specifically, this means that the {DXi} do not as-
sume some pathological regular pattern or concentrate in a small spatial region. This
randomness facilitates not only the construction of convex hulls, but also opens the
door to an even simpler approach that we shall detail in the following.

Suppose that we want to determine whether a D-cell is formed by some arbitrarily-
chosen tuple of d+1 points from {DXi}. Recalling the empty-sphere property (see Sec.
2.4.2), it is clear that doing so requires knowledge merely about the tuple in question
and about the positions of the {DXi}. Using the nearest neighbor–search technique
(cf. Sec. 2.4.4.3), the empty-sphere check can be carried out within O(1) operations.
Therefore, it is in principle possible to identify an initial D-face by simply inspecting
random (d+1)-tuples until a D-cell is encountered (which then consists of d+1 of the
desired faces). However, a D-tessellation contains merely O(N) D-cells, while there
are

∏d
j=0(N−j) = O(Nd+1) ways to randomly select (d+1)-tuples from the {DXi}.

This means that by this method, on average a D-cell is discovered only after O(Nd)
random trials, which renders “brute force” quite infeasible (for N = 104 and d = 3,
for instance, O(1012) tuples would have to be inspected). Fortunately, in the case of
the {DXi} being randomly distributed, this cost can be substantially reduced by a
slight tweak to the method of choosing the members of the (d+1)-tuples. Specifically,
instead of naming the tuples’ members at random, consider the following procedure
(illustrated in Fig. 2.25):

(I) pick some point DX1 ∈ {DXi} at random,
(II) add the point DX2 ∈ {DXi} closest to DX1,

(III) add the point DX3 ∈ {DXi} closest to the barycenter of {DX1, DX2},
(IV) add the point DX4 ∈ {DXi} closest to the barycenter of {DX1, DX2, DX3},

and so forth, depending on the dimensionality. Here, the “barycenter” of a set of
points is simply the averaged location of these points (akin to the center of mass for
equal point masses), and the “closest point” can be identified for instance using the
nearest neighbor–search technique described in Sec. 2.4.4.3. Obviously, all of the points
{DX1, DX2, DX3, . . . } have to be distinct, i.e., the points that define a barycenter have
to be excluded from the associated nearest-neighbor search. Empirically, a (d+1)-tuple
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DXj,1

DXj,2

{DXk}j

r j,search

DX'j,2

Figure 2.26: Adding Delaunay cells. Scheme inspired by Maus
[183] for adding D-cells to the list of known D-cells. Black disks:
D-vertices as in Figs. 2.18, 2.25, and A.1(d). Dark solid pink lines:
known D-cell with vertices DXj,1 and {DXk}j . Light-pink disk:
hypothetical D-vertex DX ′j,2 that forms an equilateral triangle
(dotted light-pink lines) with the vertices {DXk}j . Blue disk:
circumcircle center of that equilateral triangle, used as center
rj,search for a nearest-neighbor search. Blue circle: indicator for
the distance of the nearest neighbor DXj,2 from rj,search. The
vertices DXj,1 and {DXk}j are disregarded in this search, and
likewise are D-vertices found in the gray area. Solid light-pink
lines: resulting candidate cell.

selected by this procedure has been found to form a D-cell in one out of O(1) cases; in
QA systems close to the percolation transition, for instance, only about two candidate
tuples need to be inspected on average. Essentially, this procedure’s efficiency derives
from the fact that the vertices of a D-cell are generally in spatial proximity of each
other if the {DXi} are randomly distributed.

Despite its remarkable rate of success, the tuple-selection method outlined above
is not suitable for constructing an entire D-tessellation. This is because there may
exist D-cells that cannot be described by a sequence of nearest neighbors of barycen-
ters. Completely random trial tuples would eventually yield the entire D-tessellation,
but—as discussed above—come at too high a computational cost. For this reason, we
introduce step (2) as stated in the beginning of this section, with the aim of incremen-
tally “nucleating” the D-tessellation around the initial D-cell.

More precisely, the idea of step (2) is the following. Among the D-faces that are
already known to be part of the final D-tessellation, a face is identified that is part of
only one known D-cell. Let us call this D-face DFj, its constituent D-vertices {DXk}j ,
and the known D-cell DCj,1. Since in any dimension, each D-face is part of two
D-cells2.67, there exists another D-cell DCj,2 6= DCj,1 that DFj is part of. Both DCj,1
and DCj,2 contain one D-vertex in addition to {DXk}j; these vertices we shall refer to
as DXj,1 and DXj,2. Since by construction, DXj,1 is already known, only DXj,2 is of
interest here. A simple approach to find DXj,2 is to form a trial (d+1)-tuple for each
point that is in {DXi} but not in {DXj,1, {DXk}j}, and to determine whether the
corresponding circumhypersphere is empty. This procedure would result in an average
of O(N) operations per addition of a D-cell, or O(N2) operations for completing the
D-tessellation.

Although this performance is already quite acceptable, Maus [183] showed that
relatively-simple modifications can take this method even further. Specifically, due

2.67If only D-cells of finite size are considered, and if the system contains a finite number of vertices,
then the D-tessellation possesses a “surface” at which D-faces are part of merely one D-cell. In
this work, however, we exclusively consider systems with PBCs (Sec. 2.2.2.1), which are effectively
infinitely large and for which such a surface does not exist.
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again to the local nature of the D-cells, DXj,2 is likely to be located in the neighborhood
of DFj. This obviously calls for another nearest-neighbor search. As for the initial
D-cell, this search can for instance be conducted around the barycenter of the {DXk}j .
Working in two dimensions, Maus [183] suggested to instead start the search at the
circumcircle center of a equilateral triangle formed by a hypothetical DX ′j,2 and the
{DXk}j . This procedure is pictured in Fig. 2.26. We generalized Maus’s idea to
d dimensions by considering as the search pivot the point

rj,search = rj,circ ± r̂j,perp

√
d (2.45)

where rj,circ is the center of the (d−1)-dimensional circumhypersphere around {DXk}j ,
and r̂j,perp is the unit-length normal vector of DFj. Whether the “+” or the “−” sign
has to be chosen in Eq. (2.45) depends upon the definition of r̂j,perp and upon the
location of DXj,1 relative to the hyperplane defined by DFj (see Sec. 2.4.6). Fur-
thermore, it is worth noting that DFj divides the given space into two half-spaces,
each of which hosts precisely one of the D-cells that DFj is part of. This means
that candidates for DXj,2 resulting from the nearest-neighbor search can be disre-
garded if they are located in the same half-space as DXj,1 (gray area in Fig. 2.26).
Since validating the latter requirement is considerably faster than checking for empty
circumhyperspheres, this further accelerates the D-tessellation algorithm. Once a can-
didate for DCj,2 has been identified, the corresponding D-cell candidate is checked for
whether it conforms to the empty-sphere criterion. If this is not the case, then the
current candidate for DCj,2 is put on a “black list”, and the next candidate for DCj,2
is retrieved by repeating the nearest-neighbor search around DX ′j,2 and disregarding
therein all D-vertices on the black list.

As mentioned before, all systems investigated in this study are subject to PBCs
(see Sec. 2.2.2.1). Therefore, this condition also applies to the corresponding D-tessel-
lation, which effectively renders it infinitely large and surface-less (cf. Footnote 2.67).
Unfortunately, however, in particular in small systems, the nearest-image convention
used in association with these PBCs (cf. Sec. 2.2.2.1) may occasionally lead to a fail-
ure of a systematic search for DXj,2. The reason for this lies in the ambiguity of the
nearest-image pivot for extended objects such as a D-face or a D-cell (cf. Sec. 2.4.2).
To alleviate the cases of failure, our algorithm provides a fall-back mechanism that
selects random locations for the pivot of the nearest-neighbor search for DXj,2, as
opposed to the schematic selection described further above.

Upon finally discovering DCj,2, it is determined whether DCj,2 is already among
the known D-cells so as to prevent double-counting. (D-cells are identical if defined by
the same set of D-vertices.) In order to avoid checking DCj,2 against all O(N) known
D-cells, after its discovery, a D-cell is “associated” with each of its d+1 D-vertices.
This allows to seek for possibly-existing instances of a D-cell within O(1) operations
by polling the D-vertices of the D-cell in question for associated D-cells.

Summarizing the above measures, the algorithm presented in this section requires
merely O(N) operations to generate the D-tessellation of a given distribution of D-ver-
tices—provided that this distribution is random. In Appendix A.3.5, we underpin
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this assertion in the form of a brief compilation of performance measurements. Meth-
ods for verifying that the algorithm introduced in this section indeed yields correct
D-tessellations are discussed in Appendix A.3.4.

2.4.5 Percolation algorithm

In this section, we take on the issue of identifying D-cell clusters, i.e., groups of D-cells
in which every D-cell is connected to another D-cell by a crossable D-face (cf. Sec. 2.4.3).
The information required to carry out this identification is encoded in its entirety in
the D-network (Sec. 2.4.3). Provided that the D-cell clusters are identified correctly,
each cluster contains either none or precisely one of the system’s voids within the
space covered by its D-cells (see Appendix A.1.2). If a D-cell cluster consists of a
finite number of sites and bonds, then assembling the cluster is a relatively-minor
challenge. If on the other hand PBCs (Sec. 2.2.2.1) are present and a cluster spans
across the simulation box, then it is vital to avoid a multiple counting of D-cell images
while still being able to identify whether the void is percolating. To accomplish this
task, we devised a novel algorithm that we will describe in the following. Notably, that
algorithm is generic in that it can be applied to any network of sites and bonds that
is subject to PBCs.

The starting point of our algorithm is marked by choosing at random a D-cell for
which it is not yet known what D-cell cluster it belongs to. This random D-cell—which
at this point we call the “current” D-cell—is noted as the initial element of a list that
ultimately is to contain all D-cells of one of the D-cell clusters. The current D-cell is
stored in this list together with a representative location, the latter being for instance
the center of the D-cell’s sphère vide.

Following this, all D-cells are identified that border the current D-cell via a con-
necting D-face; these D-cells we will call “pending”. For each pending D-cell, an
absolute location is defined (like for the initial D-cell), from which then a location
relative to the initial (not the current) D-cell is computed. This relative location is
obtained as follows: first, the difference vector between the absolute locations of the
current and the pending D-cells is determined—using the nearest-image convention if
applicable (cf. Sec. 2.2.2.1)—, and then, this difference vector is added to the (known)
relative location of the current D-cell. Subsequently, each pending D-cell is checked
for whether it is already an element of the list. Obviously, to this end there are two
possibilities:

(1) The pending D-cell is not on the list; in this case, the respective D-cell is
simply appended to the list together with its relative location.

(2) The pending D-cell is already contained in the list. This is where the use
of relative locations becomes relevant since in this case the stored relative
location of the pending D-cell is compared with the one just computed.
This gives rise to two subordinate cases:
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Figure 2.27: Percolation algorithm. Two-
dimensional illustration of the percolation al-
gorithm for an example D-tessellation with
PBCs. Black disks: matrix particles of ra-
dius R. Green [red] lines: [non]crossable
D-faces. Yellow areas: D-cells that belong to
a trap; gray areas: inaccessible D-cells. Light-
blue area: initial D-cell in the percolation algo-
rithm. Light-pink areas: first D-cell for which
two different periodic images are encountered
by the algorithm.
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(2a) The relative locations match, meaning that the pending D-cell has
already been visited and nothing needs to be done.

(2b) The relative locations do not match. In this case the pending D-cell
is a periodic image of a D-cell already contained in the list, which
immediately leads to the conclusion that the list is associated with
a percolating void. The latter piece of information is stored as a flag
within the list; other than that, nothing needs to be done.

After completing the above procedure with all pending D-cells, the current D-cell
is marked “processed”. Then, the unprocessed D-cell with the lowest list index is
retrieved from the list and the same procedure is repeated. This scheme is iterated
until the list contains solely processed D-cells, at which point the list encompasses all
D-cells in the cluster. Notably, since in subcase (2b), the pending D-cell is not added
to the list, even in the case of a percolating void, the list contains only a finite number
of D-cells—which are then to be periodically replicated to obtain the infinitely-large
void. Conversely, if the “percolating” flag is not set, then no periodicity is assumed
and the pertinent void—if present—is immediately known to constitute a trap.

The algorithm described in the above is illustrated in Fig. 2.27. The figure depicts
a D-tessellation in which the elements are highlighted in the same style as in Fig. 2.20,
i.e., the matrix particles are of the same radius R as the fluid particles, but the latter
are omitted. To achieve a reasonable number of iteration steps of the algorithm, the
depicted system is substantially smaller than that in Fig. 2.20; however, it does feature
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PBCs in order to illustrate the algorithm in that particular case. The algorithm then
proceeds as follows. Suppose that the initial D-cell in the list is DC1 (marked in light
blue). The iteration steps resulting from this choice are:

• In loop #1, DC1 is current and DC2 and DC3 are pending.
Both DC2 and DC3 are added to the list.

• In loop #2, DC2 is current and DC1 and DC4 are pending.
DC1 is encountered at the same relative location as previously saved;
therefore, it is discarded and only DC4 is added to the list.

• In loop #3, DC3 is current and DC1 and DC5 are pending.
DC1 is discarded whereas DC5 is added to the list.

• In loop #4, DC4 is current and DC2, DC6, and DC7 are pending.
Only DC6 and DC7 are added to the list.

• In loop #5, DC5 is current and DC4, DC6, and DC8 are pending.
DC4 is discarded and DC8 is ordinarily added to the list. DC6 is
encountered at a location differing from the encounter in loop #4,
meaning that the group is percolating.

Subsequently, the procedure is continued at DC6 in order to find the remaining D-cells
of the cluster.

Before concluding this section, it is prudent to ask whether it is sensible at all to
investigate percolating voids in systems with PBCs. From a technical point of view, the
answer to this question is simple: it does make sense since the analysis merely operates
on the information encoded in the provided systems. From a physical standpoint,
however, matters are more complicated due to conflicting aspects of PBCs and QA
systems: while PBCs are designed to mimic an infinitely-large system by introducing
periodicity, a defining feature of the matrix in QA systems is its nonperiodic nature.
Therefore, whenever the spatial extent of some feature of the system is larger than the
system that is actually simulated—and notably percolation involves infinitely-large
length scales—, effects connected to periodicities will arise that would not exist in an
infinitely-large system. This problem is in fact merely the known issue of finite-size
effects, which is scrutinized in the present context in Appendix A.2.

It is, however, valid to ask whether percolation in a finite system can serve at least
as an approximation for percolation in an infinitely-large system with the same external
parameters. In fact, this issue has been investigated by a number of authors [222, 276,
291] who have concluded that in finite systems under PBCs, percolation is generally
more likely to occur in smaller systems. Therefore, finite systems can be used to
establish either an upper or a lower bound to the “percolation threshold” (the value
of the control variable at which percolation occurs in the system of interest). If the
influence of the system’s size on the percolation threshold is known quantitatively, then
it may even be possible to correct other observables for finite-size effects. Notably, the
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authors cited above have devised methods similar to the algorithm presented in this
section in order to identify percolation in systems with PBCs; however, our algorithm is
more elaborate than those methods since the latter consider a cluster to be percolating
simply if it touches a given number of opposing sides of the simulation box (see in
particular Ref. [276]).

2.4.6 Rastering algorithm

In this section, we will first describe the geometric method used in this work for
determining whether a given, random spatial point is located within a given D-cell.
Following that, we will introduce a rastering algorithm for estimating the amount
of accessible volume contained within a given D-cell. The latter information can
subsequently be used to determine the size of all of the voids in the system in terms
of their associated accessible volume, which opens the possibility for a quantitative
statistical analysis of the sizes of the voids (see Secs. 2.5.4 and 3.3).

2.4.6.1 Given point within given Delaunay cell

Determining whether a given spatial point Pi is located within a given D-cell DCj
is fairly simple. The method that we will describe in this section uses the fact that
the d+1 D-faces that bound a D-cell are in fact segments of (d−1)-dimensional hyper-
planes, each of which divides the given d-dimensional space into two half-spaces. The
hyperplanes can therefore be thought to partition the given space into 2d+1 regions,
precisely one of which constitutes the “inside” of DCj. Determining whether Pi re-
sides within DCj therefore merely requires to check d+1 hyperplanes for whether Pi
is located in the “correct side” in each respective case.

The first step of our method is to determine the normal vector nk,j of a given
hyperplane Hk,j. One way to obtain nk,j in arbitrary dimension d is to evaluate the
“generalized cross product”2.68, which can formally be expressed as the determinant of
a matrix as
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= nk,j . (2.46)

Here, the vectors h1, . . . ,hd−1 are linearly independent and parallel toHk,j , and the vec-
tors e1, . . . , ed define the orthonormal basis in which the components of the h1, . . . ,hd−1

are expressed in. The determinant in Eq. (2.46) can be evaluated via the usual determi-
nant algebra such as Laplace expansion (see Footnote 2.53). In three dimensions—the

2.68http://en.wikipedia.org/wiki/Cross_product
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case relevant to this work—, Eq. (2.46) reduces to the common cross product2.68:
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The d−1 linearly independent vectors in the hyperplane Hk,j , required for Eq. (2.46),
can be established for instance from the d D-vertices that define Hk,j . If the locations of
these D-vertices are r1, . . . , rd, then selected difference vectors between these locations
can represent the desired vectors h1, . . . ,hd−1, with one possible selection being

hα = rd − rα with α ∈ {1, . . . , d− 1} . (2.48)

In the second step of our method, we construct two auxiliary vectors: one vector, pk,j ,
runs from a point Ok,j ∈ Hk,j towards the given point Pi, and the other vector, qk,j,
points from the same Ok,j towards a point Qk,j that is known to reside on the correct
side of Hk,j . The many equivalent choices for the point Ok,j include the D-vertices
of the D-face DFk,j that defines Hk,j, the circumhypersphere center of DFk,j, and
the barycenter of DFk,j. For the point Qk,j there are equally many options; however,
if Qk,j is chosen to reside inside DCj, then it even resides on the correct side relative
to all hyperplanes in question. One point that certainly resides within DCj is the
barycenter of the D-cell, i.e., the averaged location of the D-vertices that define DCj
(cf. Sec. 2.4.4.4).

Having defined pk,j and qk,j, we project these vectors onto the normal vector
of Hk,j by simply evaluating the scalar products

SP = nk,j · pk,j and SQ = nk,j · qk,j . (2.49)

In the result of this operation, it is the signs of SP and SQ that are relevant, with the
points Pi and Qk,j residing on the same side of Hk,j only if those signs are equal (i.e., if
both scalar products are positive or both are negative). Notably, for this comparison
of signs, it is not necessary for nk,j to be of unit length.

One direct application of the method presented in this section is to determine
whether a given fluid particle in a QA mixture is trapped or free. If for each D-cell in
the system, it is known whether it is associated with a trap or a percolating void (cf.
Sec. 2.4.5), this can be accomplished by simply checking each of the O(N) D-cells for
whether it contains the given fluid particle. While an acceleration of this application—
e.g., using some bucketing technique (cf. Sec. 2.2.2.2)—is certainly possible, we found
such optimization expendable since identifying each fluid particle’s D-cell required
merely seconds for the systems investigated in this work. In this context, it is notable
that the performance of the method presented in this section compares favorably with
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other methods to accomplish the same task2.69,2.70.

2.4.6.2 Accessible volume within Delaunay cell

We now turn to the problem of estimating the amount of accessible volume contained
within a given D-cell. Knowledge about this property for all D-cells immediately
yields the sizes of the voids—in terms of accessible volume—in the given QA system if
previously a percolation analysis has been performed (Sec. 2.4.5). Information about
all void sizes in turn allows to conduct pertinent statistical analyses, which then may
give way to explaining and interpreting features of the fluid component of the given
QA system. Further, knowing the void sizes allows to accurately determine the matrix
density at which the percolation transition of the accessible volume takes place (see
Secs. 1.3.3.3 and 2.5.4 as well as Refs. [248, 252]).

Predating our work by a decade, Sastry et al. devised a method for the exact
calculation of the accessible volume within a three-dimensional D-cell [229]. Unfortu-
nately, due to the lengthy mathematical expressions involved, this method is nontrivial
to implement and debug. Since accessible volumes are not in the principal focus of
this work, we instead chose to determine void sizes only approximately. Our method
of choice for this is to divide the given space into minute distinct, space-filling regions
(which we will call “grains”), each of which is—by some criterion—considered either
accessible or inaccessible as a whole. The approximate amount of accessible volume of
a given D-cell DCi can then be obtained by combining the volumes of all grains that
are deemed to belong to DCi, with each grain obviously belonging to precisely one
D-cell. Clearly, the accuracy of this approximation depends upon the size and shape
of the grains.

We chose, for simplicity, to divide the given d-dimensional space into d-hypercubic
grains, which we arrange on a hypercubic “raster” similar to that of the buckets used
in the event-driven MD algorithm (see Sec. 2.2.2.2 and Fig. 2.8 therein). In a first

2.69A short performance assessment for this section’s method goes as follows. In d dimensions, the
method encompasses the evaluation of d+1 generalized cross products, with each d×d determinant
involved requiring

∑d−1
i=1 d!/i! multiplication operations. Additionally, 2(d+1) scalar products need

to be evaluated, with each prompting for d multiplications. Therefore, in d = 3, the method involves
4×9 + 8×3 = 60 multiplications (plus some summations, but no operation of higher complexity such
as square roots). If additionally the normal vector of each D-cell is stored, then only the 24 scalar
product multiplications are required. However, depending on the computer architecture and the
simulated system, storing additional data may even slow down evaluations due to finite caching
capabilities (cf. Footnote A.9).

2.70A popular alternative method for determining whether the given point Pi is located within the
given D-cell DCj is to express Pi in the “barycentric coordinates”2.71 pertaining to DCj . There, if any
component of Pi’s barycentric coordinates is negative, then Pi resides outside DCi. Unfortunately,
computing barycentric coordinates involves the evaluation of d+2 determinants with d+1 rows and
columns each, which results in 200 multiplications if d = 3. This is substantially more than the
60 multiplications that the method presented in this section requires if no normal vectors are stored,
with our method moreover scaling favorably with dimensionality2.69.

2.71http://en.wikipedia.org/wiki/Barycentric_coordinate_system_(mathematics)
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Figure 2.28: Rastering method. Two-dimensional rep-
resentation of the method used to estimate the accessible
volume within a D-cell. Each square represents one raster-
ing grain. Pink triangle: D-cell. Gray disks: matrix parti-
cles with radius 2R. Squares with blue outline: candidate
grains; black-filled squares: inaccessible grains inside the
D-cell; green-filled squares: accessible grains inside the
D-cell.

step, each grain is classified as “accessible” or “inaccessible” depending on whether its
center—which is well defined for a hypercube—resides within the accessible volume.
Subsequently, it is determined which grains are associated with the given D-cell DCi;
the criterion for this is again based on the center of a grain, which has to reside
within DCi for each respective grain. Since DCi contains only a (possibly tiny) fraction
of the grains in the system, we preselect candidate grains as follows. From the d+1
D-vertices that form DCi, we determine the minimum and the maximum values of
each coordinate, which we use to establish a d-hypercuboid that entirely encloses DCi
and has edges parallel to the coordinate axes. Only grain centers that reside inside
this “circum-hypercuboid” can possibly also reside within DCi. Due to the regular
geometry of the grain raster, it is possible to compute the minimum and maximum
indices of the grains that have to be considered. The accessible volume inside DCi,
finally, is then approximately given by the number of accessible grains inside DCi times
the volume of a grain, the latter being simply the raster spacing to the dth power.

The rastering procedure is illustrated in Fig. 2.28, which shows a two-dimensional
D-cell (pink triangle) and the corresponding matrix particles with radius 2R as in
Fig. 2.17 (gray disks). The figure depicts candidate grains (those with centers inside
the circum-hypercuboid) as squares with blue outline, whereas grains inside the D-cell
are squares filled in black if inaccessible and filled in green if accessible. Notably, in our
statistical analysis of void sizes (see Secs. 2.5.4 and 3.3), the grains are considerably
smaller than in Fig. 2.28, in which the grains’ edges are as long as R/6. However, the
achievable resolution is limited by both memory and computing time constraints.

2.5 Observables

In this section, we will be concerned with the task of extracting information from
condensed-matter systems in general and from quenched-annealed (QA) systems in
particular. For this, we will first introduce the concept of observables, and then moti-
vate and define all such quantities—static and dynamic—that are of importance to this
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work. Subsequently, we will discuss the tools for a statistical analysis of the accessible
volume, before finally turning to the issue of error estimation.

It is due to emphasize in this prominent place that the actual evaluation of all
observables—using input data from the molecular-dynamics (MD) algorithm of Sec.
2.2—was carried out using the ATOOL (ATomistic Object-Oriented Libraries) package
developed by Daniele Coslovich [53].

2.5.1 Observables in computer simulations

In this section, we will introduce the concept of observables, and discuss various is-
sues of this concept in general and in the context of QA systems and of computer
simulations.

2.5.1.1 Phase-space density vs. observables

As described in Sec. 2.1.2, a condensed-matter system is fully characterized by the
phase-space density fQ(Γ), that is, by the likelihood that at a given time, the system
assumes a particular combination of its internal degrees of freedom [108, 115, 238, 258].
The degrees of freedom are notationally condensed in the phase-space vector Γ, which
typically contains the particles’ loci rN and momenta pN in a system realization with
N particles. The symbol Q denotes the set of fixed external conditions that the
system is subjected to, and (as alluded to before) we assume that the system under
investigation has reached thermal equilibrium, i.e., that fQ(Γ) is independent of time.
(The sensitive issue of establishing thermal equilibrium will be discussed in Sec. 2.5.5.)

Unfortunately, fQ(Γ) cannot be determined directly for the overwhelming ma-
jority of many-body systems. This is owed to Eq. (2.4), via which the phase-space
density involves the partition function ΩQ, which in turn due to Eq. (2.2) requires
information about all of the system’s phase-space points. However, for most systems,
the phase-space density itself is not particularly informative anyway (even if known
entirely) due to the amount of information it encompasses. Therefore, typically a
different approach is pursued to characterize condensed-matter systems: observables.
Despite the inevitable fact that any observable contains less information than fQ(Γ),
a well-chosen observable may provide much more insight into a system than the raw
phase-space density. This is immediately evident when considering the macroscopic
world, where experimental measurements are well capable of providing a meaningful
description of a material—even if only macroscopic features are accessible. While this
relieves the investigator from explicitly determining fQ(Γ), in exchange it presents him
or her with the task of selecting observables that are appropriate for characterizing
the system of interest.

Alas, recalling Eq. (2.5), we see that fQ(Γ) also plays a pivotal role in computing
the average value 〈A〉Q of an observable A under the conditions Q. However, as
discussed in Sec. 2.1.3, if we consider an ergodic system, then we can replace Eq. (2.5)
by Eq. (2.6), i.e., the phase-space average 〈A〉ps

Q by the time average 〈A〉time
Q . Since
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Eq. (2.6) does not contain any reference to fQ(Γ), this strategy relieves the investigator
entirely of having to compute the phase-space density explicitly. On the down side, this
procedure introduces the additional concept of a trajectory in phase space, along which
a sequence of Γ’s is visited. Despite the seeming disadvantage, such a time evolution
is precisely what takes place in real systems, and of course many real materials can be
described to possess well-defined properties.

2.5.1.2 Time-dependent observables

In computer investigations, it is common to evaluate averages of the type 〈A〉time
Q from

data generated in MD simulations (cf. Sec. 2.1.3 and Refs. [6, 9]). Among others, the
event-driven MD algorithm presented in Sec. 2.2 is suited for this task; in this specific
case the external conditions read Q = NV E, where N is the number of particles of the
system, V its volume, and E its total internal energy. The reason for using MD instead
of Monte-Carlo (MC) simulations is that the former technique allows naturally for
computing observables of the form A(t), i.e., for time-dependent quantities. Although
the MC scheme also generates phase-space trajectories, these trajectories generally do
not represent time evolutions2.72. Since time-dependent observables are of paramount
importance for characterizing glass-forming systems [1, 86, 115, 138, 154, 158, 214,
254, 269, 284] and, more generally, for quantifying any dynamic feature of a material,
MD is typically clearly preferable to MC in these contexts.

MD simulations provide complete information about the phase state point Γ(t)
occupied at a certain simulation time t since knowing all degrees of freedom [in the
present case the locations rN(t) and the momenta pN(t)] is essential to MD algorithms.
Therefore, any observable A(Γ(t)) computed from this information is formally exact
(except for numerical errors). However, for two reasons, computer simulations are
inherently unable to take all phase-space points into account. Firstly, any simulation
and therefore any pertinent phase-space trajectory is finite. Secondly, even along a
finite phase-space trajectory, there are infinitely-many Γ’s, out of which a computer
program can consider only a subset. As a result, any average 〈A〉time

Q obtained from
MD simulations must necessarily be an approximation. If, for instance, over the course
of a simulation, we conduct M measurements at equidistant time intervals ∆t, such
an approximation can be expressed by

〈A〉time
Q

Eq. (2.6)
= lim

τ→∞

1

τ

∫ τ

0
A(Γ(t)) dt ≈ 1

M

M
∑

m=1

A(Γ(m∆t)) . (2.50)

2.72In fact, there do exist MC methods like Kinetic MC2.73 that produce time-like sequences of
phase-space points. However, it is important to realize that none of these schemes is capable of
determining time scales from first principles. On the contrary, data obtained from MC simulations
have to be either rescaled to match a known time scale [28, 55], or the microscopic MC moves have
to be associated with time scales known from other methods2.73.

2.73http://en.wikipedia.org/wiki/Kinetic_Monte_Carlo
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While it is essential to determine the conditions under which this approximation is
meaningful and justified, a discussion of this issue requires more detailed knowledge
about the observables that are relevant to the investigated system. Therefore, for
the time being we will regard Eq. (2.50) as valid and defer a detailed assessment to
Sec. 2.5.5.

The three most important types of dynamic quantifiers are connected by “Einstein
relations” [74, 274]

γ = lim
t→∞

1

2t

〈

|A(t)− A(0)|2
〉

(2.51)

and “Green-Kubo relations” [106, 166]

γ =
∫ ∞

0

〈

Ȧ(t) Ȧ(0)
〉

dt . (2.52)

Here, we have notationally suppressed the dependence of the averages upon Q, as we
shall do the following unless needed for clarity. The symbol γ on the left-hand side
of both equations denotes a generic scalar “transport coefficient” [9, 115]; quantities
of this type are only of marginal interest in this work since they are mainly suited
for quantitative comparison whereas our foremost goal is to investigate the qualitative
behavior of QA systems. The expression on the right-hand side of Eq. (2.51) provides
the template for one of the most important dynamic observables, the mean squared
displacement, which will be introduced and discussed in Secs. 2.5.3.1 and 3.2.4. The
expression on the right-hand side of Eq. (2.52) contains an important class of observ-
ables—“correlators” [9, 115]—which we will discuss in more detail in the following.

2.5.1.3 Correlators

Static correlators are fairly simple objects. Their general form is obtained by replacing
the argument of the integral in Eq. (2.6) by the product of two observables A and B
evaluated at the same time t:

〈AB〉 = lim
τ→∞

1

τ

∫ τ

0
A(t)B(t) dt . (2.53)

Here, we have used the compact notation A(t) = A(Γ(t)), and likewise for B. In the
simplest version of such a correlator, A and B are scalar functions of their argument
(and thus accordingly is 〈AB〉); however, A and B also could be vectors or even
tensors. Dynamic correlators are slightly more complicated objects in which A and B
are evaluated at different times:

〈A(t′)B(t′′)〉 = lim
τ→∞

1

τ

∫ τ

0
A(s+ t′) B(s+ t′′) ds . (2.54)

In thermal equilibrium, the correlator is a function only of the time difference t between
the arguments of A and B. Therefore, under this condition, an equivalent expression
is

〈A(t)B〉 = lim
τ→∞

1

τ

∫ τ

0
A(s+ t) B(s) ds . (2.55)
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Here, the expression on the left-hand side is notationally condensed from 〈A(t)B(0)〉;
this is common practice since by construction only the time difference t is relevant [115].

A special role is played by dynamic correlators for which B = A, with the resulting
functions of the form 〈A(t)A〉 being called “auto-correlation functions”. These func-
tions feature the general property of being maximal for t = 0, which offers the distinct
possibility for normalization without having to consider an extended time range [115].
Except for the time derivatives, the argument of the integral on the right-hand side of
Eq. (2.51) is of this type. Analyzing various auto-correlators constitutes the bulk of
this investigation’s results part (Chapter 3).

2.5.1.4 Logarithmic time scales

For two reasons, dynamic observables in this work are considered on logarithmic time
scales: Firstly, systems with slow dynamics typically exhibit multiple time scales that
may differ by several orders of magnitude [154, 241]. Secondly, and more importantly,
in glassy systems, the structural relaxation time is extremely sensitive to changes in
the external control parameters (cf. Sec. 1.2), which makes it impossible to illustrate
pertinent trends in a single linear-time plot.

Unfortunately, in MD simulations, it is methodologically more demanding to eval-
uate correlators on logarithmic than on linear time scales. The challenge lies in the
fact that MD simulations typically generate system configurations at regular simula-
tion time intervals. Obviously, to resolve the system’s shortest time scale of interest,
τmin, these intervals must be chosen shorter than τmin. On the other hand, we also
want to obtain information about the longest relevant time scale, τmax, which in the
equal-interval scheme means that at least τmax/τmin configurations have to be gener-
ated. This results in a problematically-large number of configurations if τmax ≫ τmin,
and precisely this is the case in glass-forming systems.

There are two principal methods at the investigator’s dispense to overcome this
difficulty. The first, probably more obvious one is to generate configurations at log-
arithmically spaced times, which comes at the expense of an increased programming
effort as well as substantially-worse statistics when evaluating observables for small
times. The second approach is to first conduct an MD run longer than τmax, and to
then perform a number of runs that start at randomly-chosen configurations of the long
run and last for a shorter time τshort. These short runs then serve to provide observable
averages at a higher time resolution for times up to t = τshort. Unfortunately, using this
method, there will appear to be small “jumps” in an observable’s average A(t). This
is because for t ≤ τshort, we chose to calculate A(t) from the short runs only, and for
t > τshort from the long runs only. Since different simulation runs always yield slightly
different values of A(t) (see Sec. 2.5.5), this leads to the aforementioned jumps right
at the times τshort. Despite this visual drawback, we opted for the second method—a
choice largely made to fit the capabilities of the ATOOL library [53]. Notably, we re-
frained from introducing ad-hoc methods to render A(t) visually smoother since the
jumps merely reflect the inherent simulational uncertainties.
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2.5.1.5 Quenched disorder

In the case of QA systems as introduced in Sec. 1.3.4.2, another complication is added
to the picture [97, 99, 100, 159–162, 174, 180, 181, 189, 266]. Imagine that we have used
the QA protocol to create one particular realization of the quenched disorder. Then,
by definition, there are spatial regions that fluid particles are more likely to occupy
than others. For hard spheres, there are even zones that are entirely inaccessible—
regardless of how long we wait, and no matter at which allowed positions we initially
place our fluid particles (cf. Sec. 2.4). Moreover, the pinned particles locally entail
directional dependencies in the behavior of the fluid particles. In consequence of
these effects, the quenched disorder breaks the spatial homogeneity and isotropy of the
thermodynamically-averaged fluid. While these symmetries are broken also by well-
characterized confinement geometries like parallel-plate slits, cylindrical channels, and
spherical pores, in disordered confinement this constitutes an undesired effect since
there is no uniquely-defined reference geometry. Instead, disordered matrices can be
realized in infinitely-many arrangements which are equivalent but not the same.

However, by construction, the matrix in QA systems follows statistical rules (see
Sec. 1.3.4.2) that render the matrix itself spatially homogeneous and isotropic if it is
averaged over all possible realizations. This means that the homogeneity and isotropy
of the annealed component in a QA mixture can be restored if we consider not only a
thermal average but additionally, in a second step, a statistical-mechanical average over
the quenched disorder. Notationally, we shall express this procedure by the symbol

· · ·Q
′

; for instance, the prescription in Eq. (2.6) including this average reads

〈A〉time
Q

Q′

= lim
τ→∞

1

τ

∫ τ

0
A(t) dt

Q′

. (2.56)

Like Q, the index Q′ denotes external conditions, only this time those that the matrix
configurations were obtained from. Obviously, in the context of the present work, it
is Q′ = NV E just as for Q; note, however, that save V , the quantities contained in Q

and Q′ are independent of each other. In the following, like Q we shall notationally
suppress Q′, except for selected explicative reasons.

Since in many ways, a QA system resembles a mixture of two “species” of particles,
it would in principle be possible to define each observable separately for the matrix
(“m”) and the fluid (“f”) particles. This concept could also be extended to correlators,
i.e., both arguments of the integral could be treated to pertain to one of the species,
which would result in four different varieties for each correlator—“mm”, “mf”, “ff”, and
“fm” (the fourth combination being equivalent to “mf” in auto-correlators). However,
in the context of the present work, we are interested exclusively in the properties of the
fluid particles, i.e., in “f”- and “ff”-type quantities. Therefore, these indices will not
be explicitly typeset unless necessary for clarity. The motivation behind focusing on
the fluid is that the array of obstacles can be viewed as a mere external potential that
the fluid particles are subjected to, i.e., that the particulate nature of the confinement
is actually irrelevant.
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2.5.1.6 Reduced units

In order to lend meaning to the numbers that represent a system, they must be as-
sociated with units. For the purpose of simplicity and computational efficiency, it is
advantageous to choose these units in a way that many stored and calculated proper-
ties assume values either equal to or close to one. Units fulfilling this requirement are
commonly called “reduced units”. In this work, all quantities that are associated with
a unit are given in the following system of reduced units:

dimension unit symbol defined by
length σ particle diameter

mass µ particle mass

time τ τ =

√

kBT

µσ2

Here, T is some temperature, and kB is Boltzmann’s constant. In a system consisting
of hard spheres, the choice of T does not impact the dynamics except for an overall
time factor (see Sec. 1.1.3.2). This is because in this kind of system, there is no
potential energy, and according to the equipartition theorem (cf. Footnote 1.11), it is
(3/2)NkBT =

∑N
i=1 mi|vi|2/2, where N is the number of particles in the system and mi,

and vi are the mass and the velocity of particle i. The time unit τ is designed to follow
the same functional dependence upon T as do the velocities vi so that, employing τ
as the unit of time, altering the temperature does not change the numerical values of
dynamic observables. Also, note that the definitions of σ and µ are unambiguous since
in every system considered in this work, all particles have the same diameter and the
same mass.

2.5.2 Static observables

Static observables provide a time-independent characterization of a material. In the
present work, the only static observables considered were structural correlators, which
were mainly used to examine whether a particular QA system is of fluid or crystalline
character (cf. Sec. 3.2.3).

2.5.2.1 Radial distribution function

Consider a correlator as in Eq. (2.53), with the functions A and B being delta functions
of the positions ri and rj of two arbitrary particles i and j. If we sum all such
correlators for all pairs of distinct particles in the system, we obtain the “two-particle
density” [115]

ρ(2)(r, r′, t, t′) =
Nf

∑∑

i6=j

δ(r− ri(t)) δ(r
′ − rj(t

′)) , (2.57)

where Nf is the number of fluid particles in the system, and we do not avoid double-
counting pairs. The time dependencies have been introduced for future reference and
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can be disregarded for the time being. In a homogeneous system, we can express the
position r relative to r′, and integrate the result over r′ without losing any information.
We can normalize this expression such that another integral over r simply yields the
volume V of the system; this requires a factor V/Nf

2 since the integration is performed
over Nf(Nf − 1) ≃ Nf

2 delta functions. Actually carrying out this integral then yields
the conventional “pair correlation function” [115]

g(2)(r) =
∫

dr′
V

Nf
2 〈ρ(2)(r + r′, r′)〉

=
∫

dr′
V

Nf
2

〈

Nf
∑∑

i6=j

δ(r + r′ − ri) δ(r′ − rj)

〉

=
V

Nf
2

〈

Nf
∑∑

i6=j

δ(r− [ri − rj])

〉

.

(2.58)

In an isotropic system, this expression can be further simplified by removing the de-
pendence upon angular variables. Using the notation rij = |rj − ri| this results in

g(2)(r) =
V

Nf
2

〈

Nf
∑∑

i6=j

δ(r − rij)
〉

, (2.59)

which, as is easily verified, still yields V upon simple integration over r. However,
conventionally it is required that the “radial distribution function” g(r) = c g(2)(r)
fulfill ∫

4πr2 g(r) dr = V , (2.60)

which immediately gives c = 1/(4πr2) and therefore

g(r) =
1

4πr2

V

Nf
2

〈

Nf
∑∑

i6=j

δ(r − rij)
〉

. (2.61)

The significance of the radial distribution function is twofold [9, 115, 219]: Firstly, it is
experimentally accessible via the static structure factor S(k) (see Sec. 2.5.2.2), which
is essentially the Fourier transform of g(r). Secondly, g(r) contains much information
about the local structure of a material. In simple fluids, for instance, up to a few
particle diameters, g(r) typically exhibits a wave-like pattern of peaks and troughs
(seen, e.g., in Fig. 3.4), which indicates the existence of “shells” of particles neighboring
each particle. Also, in the fluid case it is g(r→∞) = 1 and typically g(0) = 0,
which reflects the lack of correlation between the positions of fluid particles over large
distances and their steric repulsion at short separations, respectively.

2.5.2.2 Static structure factor

As alluded to in Sec. 2.5.2.1, the static structure factor S(k) is essentially the Fourier
transform of the radial distribution function g(r). Like g(r), it can be described as a
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correlator, only this time in terms of the Fourier-transformed one-particle density

ρk(t) =
∫

dr e−ik·r
Nf
∑

i=1

δ(r− ri(t)) =
Nf
∑

i=1

e−ik·ri(t) (2.62)

where again Nf is the number of fluid particles, and the time dependency will be of
significance only later. In terms of this density, the structure factor is then defined
as [115]

S(k) =
1

Nf

〈ρkρ−k〉 , (2.63)

where the negative sign in the second index ensures that S(k) ∈ R. The connection
to g(2)(r) is established via [115]

S(k) =
1

Nf

〈

Nf
∑

i=1

Nf
∑

j=1

e−ik·rieik·rj

〉

= 1 +
1

Nf

〈

Nf
∑∑

i6=j

e−ik·(ri−rj)

〉

= 1 +
1

Nf

〈

Nf
∑∑

i6=j

∫∫

dr dr′ e−ik·(r−r′) δ(r− ri) δ(r− rj)

〉

= 1 +
1

Nf

∫∫

dr dr′ e−ik·(r−r′) ρ(2)(r, r′)

= 1 +
Nf

V

∫

dr e−ik·(r−r′) g(2)(r) .

(2.64)

In a homogeneous and isotropic fluid, the dependence of the structure factor on the
wave vector k is simplified to a dependence upon its modulus k, with the relation
between S(k) and g(r) [cf. Eq. (2.61)] in this situation reading [115]

S(k) = 1 +
Nf

V
4π
∫

dr r2 g(r)
sin kr

kr
. (2.65)

The static structure factor is an important observable because it is directly accessible to
experiments such as light scattering or neutron scattering [3, 23, 36, 95, 104, 115, 185–
187, 193, 214]. As evidenced by Eqs. (2.64) and (2.65), it contains essentially the same
information as g(r). Despite the more abstract nature of Fourier space, S(k) more
readily allows access to two pieces of information:

(i) S(0) is directly related to the compressibility of the corre-
sponding material [115], and

(ii) the height of the first peak of S(k) (cf. Sec. 3.5) provides a
simple criterion for distinguishing a crystalline from a fluid-
like phase [116].

The method alluded to under item (ii) is commonly known as the “Hansen-Verlet
criterion”, which essentially states that any substance in which the first peak of the
structure factor exceeds a value of ∼3 is most probably a crystal. The relevance of
this criterion in the context of this work will be discussed in Sec. 3.2.3.
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2.5.3 Dynamic observables

Dynamic observables provide the key information to characterize systems in which
dynamic arrest occurs. In consequence, analyzing this kind of observables consumes
the lion’s share of this work’s results part (Chapter 3).

2.5.3.1 Mean squared displacement

The mean squared displacement (MSD) is a relatively-simple observable that quantifies
the average distance traveled by one of the Nf fluid particles after some time t. It is
one of the most frequently analyzed quantities in computer simulations concerned with
the dynamics of a system [9, 16, 18, 75, 113, 115, 148, 154, 156, 172, 197, 198, 219, 242,
246, 252, 273]. The definition of the MSD derives from Eq. (2.51), and it is reminiscent
of an auto-correlator, being defined by

δr2(t) = lim
τ→∞

1

τ

∫ τ

0
ds

1

Nf

Nf
∑

i=1

|ri(t+ s)− ri(s)|2

=
1

Nf

〈

Nf
∑

i=1

|ri(t)− ri(0)|2
〉

,

(2.66)

where ri(t) is the location of particle i at time t. Notably, δr2(t) consists of Nf

independent terms, each of which involves only a single one of the Nf fluid particles.
Observables of this kind are commonly called “self-averaging”; they are particularly
suited for numerical computations since the additional average reduces the associated
statistical error by a factor

√
Nf (cf. Sec. 2.5.5).

Like other dynamic observables, δr2(t) in glassy systems may exhibit features at
very different time scales. A helpful means to identify and quantify these features in
the MSD is its “logarithmic derivative”

z(t) =
d [ log δr2(t)]

d [ log t]
(2.67)

which in an assumed functional dependence

δr2(t) ∝ tz (2.68)

represents the momentary value of the exponent z. The value of z(t) in a particular
time regime is an indicator for the physical processes that take place in this regime.
For instance, an uninterrupted ballistic motion by all particles entails z = 2, whereas
diffusive motion due to stochastic events obeys z = 1 (see, e.g., [113, 191]). The
presence of other values of z in QA systems (along with possible explanations) will be
discussed in Sec. 3.2.4.

Although not of further relevance to this work, for completion it shall not remain
unmentioned that the transport coefficient associated with δr2(t) is—up to a constant—
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the diffusion coefficient D. The pertinent relation was found by Einstein [74] and,
independently2.74, by Smoluchowski [274] to be

D = lim
t→∞

1

6t

〈

|A(t)− A(0)|2
〉

, (2.69)

i.e., comparing with Eq. (2.51), it is γ = 3D in the case of the mean squared displace-
ment. The reason for which we did not conduct a general investigation on the diffusion
coefficient is that Eq. (2.69) is valid only if limt→∞ z(t) = 1, which, as will be shown
in Sec. 3.2.4, is not always the case in QA systems.

2.5.3.2 Collective intermediate scattering function

In this work, we consider multiple different variants of intermediate scattering functions
(ISFs). The motivation for this procedure stems partly from theoretical predictions
[159–162], and in other parts from the aim of analyzing as many aspects of QA systems
as possible. ISFs are probably the most popular quantity to observe in systems with
dynamic arrest [36, 62, 87, 88, 90, 93, 104, 115, 147, 148, 154, 155, 197, 198, 241, 265,
272], the reason for which will become clear shortly. Since the functional features of
ISFs in the context of glass-forming systems are detailed in Sec. 1.2, in this section we
shall instead focus on general features of ISFs and on technical aspects. The pertinent
discussion (subsequent to the definition of this section’s ISF) is then to be regarded
common to all ISFs considered in this work.

The collective ISF, F (k, t), which we are going to consider first, is a quantity
closely related to the static structure factor (see Sec. 2.5.2.2). Like S(k), it is defined
as a correlator of k-space densities [Eqs. (2.62) and (2.63)], with the additional aspect
of considering these densities at different times:

F (k, t) =
〈ρk(t)ρ−k(0)〉
〈ρk(0)ρ−k(0)〉

=
〈ρk(t)ρ−k〉
Nf S(k)

. (2.70)

The collective ISF encodes how the density correlations represented by S(k) diminish
as time elapses, and thereby quantifies the structural relaxation of the material. Since
structural relaxation is the slowest of all processes in glass-forming systems [93, 104],
examining ISFs is the method of choice for quantifying the macroscopic behavior of a
system undergoing dynamic arrest.

Among the technical issues alluded to is the wave vector k. When visually ex-
amining ISFs, k is commonly treated as a parameter while the time t is considered
as the continuous variable. There are two widespread methods of analyzing series
of ISFs: In the first one, F (k, t) is evaluated for a single set of external parameters

2.74Equation (2.69) was first published by Einstein in one of his famous 1905 papers. However,
Einstein’s work was in fact preceded by Smoluchowski, who, however, hesitated to publish his findings
due his feeling of lacking experimental evidence. Smoluchowski eventually published his derivation
of Eq. (2.69) only in direct response to Einstein’s work.
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(temperature, pressure, etc.) but for multiple wave vectors. This allows to identify
dynamical processes that take place at different length scales (cf. Sec. 2.5.2.2). The
second method is to choose a fixed wave vector k̃ and to instead vary the external
parameters. Due to the inevitable uncertainty of observable averages calculated from
computer simulations, it is reasonable from purely computational grounds to focus on
the wave vector k̃ = kmax for which F (kmax, 0) = S(kmax) = max(S(k)) since for this
wave vector the relative statistical error is typically the smallest. In our systems (as
in most liquids), kmax corresponds to the first peak of the static structure factor (see
Sec. 3.2.3 and Fig. 3.5 therein), which renders the choice of kmax physically sensible as
well since it corresponds to structures comparable in size to the system’s particles.

Unfortunately, in systems with quenched disorder, the collective ISF can never
fully relax to zero whenever the matrix packing fraction φm > 0. The reason for
this is that in these systems, the one-particle density as defined in Eq. (2.62) is inho-
mogeneous even if thermodynamically averaged, i.e., 〈ρk〉 6= const (see Sec. 2.5.1.5).
These frozen-in density fluctuations, imprinted by the matrix particles, entail that
one-particle densities at different times always retain some degree of correlation, i.e.,
limt→∞〈ρk(t)ρ−k〉 > 0. An additional disorder average does not change this inequality
since a positive correlation results from every matrix realization; this is simply due to
the fact that ρk(t) is always positive (and so is a product of these densities). This find-
ing is a major problem since normally a nonrelaxing dynamic correlator is a hallmark
of an arrested phase. Therefore, unfortunately, F (k, t) is useless for distinguishing
nonarrested and arrested (glassy) phases of QA systems.

2.5.3.3 Connected intermediate scattering function

The failure of the collective ISF to differentiate between arrested and nonarrested
phases in QA systems can be remedied by considering a slightly altered correlator.
Recalling the problem, F (k, t) in the presence of quenched disorder does not relax due
to frozen-in density fluctuations. A straightforward alternative is to instead consider
densities from which we subtract those imprinted fluctuations, and to construct corre-
lators of these altered densities. More formally, we can define the fluctuations of ρk(t)
relative to its thermodynamic average as

δρk(t) = ρk(t)− 〈ρk〉 . (2.71)

Using this object, we can first define the static correlator

Sc(k) =
1

Nf

〈δρkδρ−k〉 , (2.72)

which is commonly referred to as the “connected structure factor”. Accordingly, the
auto-correlator involving these densities

Fc(k, t) =
〈δρk(t)δρ−k(0)〉
〈δρk(0)δρ−k(0)〉

=
〈δρk(t)δρ−k〉
Nf Sc(k)

(2.73)
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is called the “connected ISF”. Unlike F (k, t), this quantity does decay to zero for
t→∞, provided that the system is ergodic—just as desired.

Unfortunately, the capability of Fc(k, t) to characterize arrested systems is ques-
tionable at best (cf. Sec. 2.5.5). The reason for this is that neither Fc(k, t) nor Sc(k) is
well defined in nonergodic systems; this is owed to Eq. (2.71), via which δρk involves
the ergodic average 〈ρk〉. Consequences are that Fc(k, t) does not follow any particular
relaxation pattern in the arrested case; instead, it may for instance assume (meaning-
less) values below zero due to the subtraction in δρk, or even relax to zero due to
some canceling of errors. The latter, importantly, implies that arrest does not always
lead to Fc(k, t→∞) 6= 0. In turn, Fc(k, t→∞) 6= 0 does not necessarily result from
arrest; such deviations from zero can instead also be caused by numeric and (other)
systematic errors.

Another perspective on the issue of the decay of Fc(k, t) in nonergodic systems is
added by explicitly inserting the density fluctuations [Eq. (2.71)] into the definition of
the connected ISF [Eq. (2.73)]. This procedure gives rise to the following relationship
between the connected and the collective ISF:

Nf Sc(k)Fc(k, t) = 〈δρk(t)δρ−k(0)〉
= 〈[ρk(t)− 〈ρk〉] [ρ−k(0)− 〈ρ−k〉]〉
= 〈ρk(t)ρ−k(0)〉 − 〈ρk〉〈ρ−k〉 − 〈ρk〉〈ρ−k〉+ 〈ρk〉〈ρ−k〉
= Nf S(k)F (k, t)− 〈ρk〉〈ρ−k〉 .

(2.74)

In the third step, we have used that 〈ρk(0)〉 = 〈ρk〉 due to the arbitrary time origin
upon averaging, and in the fourth step, the definition of F (k, t) was exploited [Eq.
(2.70)]. The relationship in Eq. (2.74) reveals that F (k, t) and Fc(k, t) are related by
a mere offset and a time-independent factor and therefore inherently feature the same
time scales for dynamic phenomena.

In the following, we will derive two relationships that allow to evaluate the offset
〈ρk〉〈ρ−k〉. The first one is obtained by expanding the connected structure factor
[Eq. (2.72)] in a way similar to Eq. (2.74), yielding

NfSc(k) = 〈δρkδρ−k〉
= 〈[ρk − 〈ρk〉] [ρ−k − 〈ρ−k〉]〉
= 〈ρkρ−k〉 − 〈ρk〉〈ρ−k〉 − 〈ρk〉〈ρ−k〉+ 〈ρk〉〈ρ−k〉
= NfS(k)− 〈ρk〉〈ρ−k〉 .

(2.75)

In the last line, we have used the definition of the (full) static structure factor from
Eq. (2.63). Using the notion of the “blocked structure factor” Sb(k), this can be
re-expressed to yield the first relationship as

S(k)− Sc(k) =
1

Nf

〈ρk〉〈ρ−k〉 = Sb(k) . (2.76)
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The second way to evaluate 〈ρk〉〈ρ−k〉 makes use of the general fact that any two
quantities in an ergodic system are uncorrelated if considered at infinite temporal
separation [115, 161, 162], i.e., that

lim
t→∞
〈A(t)B〉 = 〈A〉〈B〉 . (2.77)

Applying this relation to the collective ISF, we obtain the second relationship as

lim
t→∞

S(k)F (k, t) = lim
t→∞

1

Nf

〈ρk(t)ρ−k〉 =
1

Nf

〈ρk〉〈ρ−k〉 = Sb(k) . (2.78)

Equations (2.76) and (2.78) represent two independent methods to evaluate Sb(k). In
combination with

S(k)F (k, t) = Sc(k)Fc(k, t) + Sb , (2.79)

which is a simple re-expression of Eq. (2.74), this provides a more stringent means
to assess the assumption of ergodicity than simple observations of Fc(k, t)’s decay
pattern. Nevertheless, by the discussion further above, it is clear that characterizations
of nonergodic systems via Fc(k, t) are in any case to be taken with great care. This
issue has to be born in mind particularly in the context of comparing Fc(k, t) with
theoretical predictions by mode-coupling theory (cf. Sec. 1.4.3).

2.5.3.4 Single-particle intermediate scattering function

The single-particle—or “self”—ISF represents a subset of the information contained in
the collective ISF. Like the latter, it is a density–density correlator, the only difference
being that it correlates single-particle densities:

ρ
(i)
k (t) =

∫

dr eik·r δ(r− ri(t)) = e−ik·ri(t) . (2.80)

Using this expression, the single-particle ISF is defined as

Fs(k, t) =
1

Nf

Nf
∑

i=1

〈

ρ
(i)
k (t)ρ(i)

−k(0)
〉

. (2.81)

Like the mean squared displacement, Fs(k, t) is a self-averaging quantity (cf. Sec.
2.5.3.1), which typically renders this quantity much more precise (in terms of sta-
tistical errors) than the collective ISF.

Nĳboer and Rahman [115, 200] showed that it is possible to expand the self ISF
in terms of the particle displacement as

Fs(k, t) = exp
{

− 1

6
k2δr2(t)

[

1 +O(k4)
]

}

. (2.82)

In this expression, the terms involving k4 or higher powers of k quantify the degree
to which the particle motion is “non-Gaussian”. In the “Gaussian approximation”, in
which these terms vanish, it is therefore

lim
k→0

Fs(k, t) = lim
k→0

exp
{

− 1

6
k2δr2(t)

}

= 1− 1

6
k2δr2(t) , (2.83)
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where the last equality results from a simple Taylor expansion. The message conveyed
by Eq. (2.83) is that in the limit of infinitely-long wave vectors, the self ISF encodes
the same information as the mean squared displacement. It is, however, important
to note that one of the hallmarks of complex liquids systems is the breakdown of the
Gaussian approximation [53, 62, 75, 90, 93, 104, 113, 155, 241, 246], meaning that the
observed dynamic properties of such systems may differ depending on whether they
are identified via Fs(k, t) or δr2(t).

2.5.3.5 Decay quantification and long-time value subtraction

In the context of glass-forming systems, an important feature of any ISF Fx(k, t) is
the time τ (α)

x for it to decay to its long-time value fx(k) = limt→∞ Fx(k, t). In simple
glass-forming systems, it has been found that usually the final (“α”) relaxation can
be fitted excellently by a “stretched exponential” in which the desired quantities τ (α)

x

and fx(k) are parameters (cf. Sec. 1.2 and Refs. [3, 36, 62, 87, 90, 93, 104, 154, 155,
197, 198, 220, 241, 265, 272]). In QA systems, however, such a fitting is thwarted
by the considerable variation in the decay patterns of ISFs (see Secs. 3.2.5 and 3.2.7).
Therefore, to infer values for τ (α)

x and fx(k), simpler definitions of these quantities
need to be employed, our choice of which shall be detailed in the following.

The decay time τ (α)
x we defined in this work as the time required for the cor-

responding Fx(k, t) to relax below some value c. Specifically, we decided to always
use the value c = 0.1, which—while in fact arbitrary—is reasonable in most of the
investigated systems even without further treatment (see below). This is because this
value is (i) small enough to indeed quantify the final relaxation of any Fx(k, t), and
(ii) large enough to allow most Fx(k, t)’s to actually decay below c. Concerning the
latter issue, it is important to note that it is impossible to infer τ (α)

x if fx(k) > c, which
unfortunately constitutes a major problem since the possible values of fx(k) in QA
systems cover almost the entire interval [0, 1] (see Secs. 3.2.5 and 3.2.7).

Fortunately, the conflicting requirements to the value of c can be resolved by
first determining the long-time value fx(k), and by then rescaling the correlator of
interest Fx(k, t) such that its values cover the entire interval [0, 1] instead of just the
interval [fx(k), 1]. The main difficulty here is to reliably identify fx(k) when data are
available only for a finite range of time [0, tmax]. To accomplish the recasting under
this condition, we developed a heuristic algorithm consisting of the following steps:

(1) Given some wave vector k̃, determine the global minimum of the ISF of
interest Fx(k, t):

Mk̃ = min
(

Fx(k̃, t)
∣

∣

∣ 0 ≤ t ≤ tmax

)

. (2.84)

(2) Adopt the following (standard) rule to compute the standard deviation
of Fx(k̃, t) in the time range [t0, tmax]:

Sk̃(t0) =

(

[

1

∆t

∫ tmax

t0
dt t2 Fx(k̃, t)

]

−
[

1

∆t

∫ tmax

t0
dt Fx(k̃, t)

]2
)1/2

. (2.85)
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Here, the shorthand ∆t = tmax−t0 has been used, and the meaning of t0
will become clear below. The first bracketed term in Eq. (2.85) is the
ISF’s second moment in the considered range, and the second bracketed
term is its average value.

(3) Compute Sk̃(t0) for a series of progressively-increasing values of t0, starting
at zero. Exit this series as soon as Sk̃(t

∗
0)/(1−Mk̃) < a, where a is some

pre-set tolerance threshold, and t∗0 is the value of t0 upon exiting the
series. If the above inequality is fulfilled, then Fx(k̃, t) is considered to be
constant in the time range [t∗0, tmax].

(4) If tmax/t
∗
0 > b, where b is another pre-set threshold, then identify fx(k̃) =

Mk̃ and define

F̂x(k̃, t) =
Fx(k̃, t)− fx(k̃)

1− fx(k̃)
. (2.86)

Otherwise, fx(k̃) < Mk̃, that is, Fx(k, t) has not reached its long-time
value within the time range considered.

The algorithm features two parameters, a and b, to adjust the accuracy of the identi-
fication fx(k̃) = Mk̃. In this work, we chose the values a = 0.008 and b = 10, thereby
requiring Fx(k̃, t) to vary (on average) less than one percent over the final available
time decade to pronounce it “relaxed”.

By design, any ISF F̂x(k, t) resulting from the above algorithm fully relaxes to
zero. Since none of the parameters used in Eq. (2.86) depend upon time, the temporal
scales of the dynamic features in F̂x(k, t) and Fx(k, t) are precisely the same. This
finally allows to apply the simple decay-below-c criterion (outlined in the beginning of
this section) to any Fx(k, t), regardless of the value of fx(k)—as long as fx(k) can be
pinpointed. We will put this method to use when attempting to compare the relaxation
time scales of the self ISF to those of the connected ISF (see Sec. 3.2.8).

2.5.3.6 Van Hove correlation function

The Van Hove correlation function was introduced by Léon Van Hove to describe “Cor-
relations in Space and Time” (the actual title of his 1957 milestone paper [264]). Van
Hove’s function complements the picture of static and dynamic correlations functions
in that it is both the Fourier transform of the collective ISF (see Sec. 2.5.3.2) and
the time-dependent equivalent of the pair correlation function (cf. Sec. 2.5.2.1). Its
definition is similar to Eq. (2.58), with a significant difference being that it is defined
in terms of the real-space one-particle density

ρ(r, t) =
Nf
∑

i=1

δ(r− ri(t)) , (2.87)
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a quantity reminiscent of ρ(2)(r, r′, t, t′) and closely related to ρk(t) [see Eqs. (2.57) and
(2.62), respectively]. The Van Hove function (VHF) is then a full dynamic correlator
of two such densities [115]:

G(r, t) =
1

Nf

〈ρ(r, t)ρ(0, 0)〉

=
1

Nf

〈ρ(r + r′, t)ρ(r′, 0)〉

=
∫

dr′
1

Nf

〈

Nf
∑

i=1

Nf
∑

j=1

δ(r + r′ − ri(t)) δ(r′ − rj(0))

〉

=
1

Nf

〈

Nf
∑

i=1

Nf
∑

j=1

δ(r− [ri(t)− rj(0)])

〉

.

(2.88)

The VHF is normalized such that
∫

dr G(r, t) = Nf . As for the radial distribution
function, in a homogeneous and isotropic system, no information is lost when reducing
the dependence upon r to a dependence upon r. Like for g(r), in this case, typically
an additional factor 1/(4πr2) is added to the normalization, leaving us with

G(r, t) =
1

4πr2

1

Nf

〈

Nf
∑

i=1

Nf
∑

j=1

δ(r − |ri(t)− rj(0)|)
〉

. (2.89)

Being a sum, the Van Hove function can easily be split into two contributions [115, 264],

G(r, t) = Gs(r, t) +Gd(r, t) , (2.90)

where Gs(r, t) is the “self” and Gd(r, t) the “distinct” part of the VHF, defined by

Gs(r, t) =
1

4πr2

1

Nf

〈

Nf
∑

i=1

δ(r − [ri(t)− ri(0)])

〉

, and (2.91)

Gd(r, t) =
1

4πr2

1

Nf

〈

Nf
∑∑

i6=j

δ(r − [ri(t)− rj(0)])

〉

. (2.92)

Comparing Eq. (2.92) with Eq. (2.58), we notice that it is actually the distinct part of
the Van Hove function—not the full G(r, t)—that (up to a constant factor) constitutes
the time-dependent version of the radial distribution function.

In this work, we shall be interested exclusively in the self part of the VHF. Fo-
cusing on Gs(r, t) is common in investigations of glass-forming systems [53, 75, 87, 89,
111, 113, 126, 154, 156, 246, 273] since the self part more readily provides information
about the average local particle motion than does the distinct part. This capabil-
ity of Gs(r, t) plays an important role in identifying and quantifying the “cage picture”
and the associated notion of “dynamic heterogeneities”, as discussed in Secs. 1.2, 3.2.9,
and 3.4.3.
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Further, it is easy to show that the self part of the Van Hove function is the spatial
Fourier transform of the single-particle ISF [Eq. (2.81)]. This entails that Gs(r, t) and
Fs(k, t) encode the same information. While considering Gs(r, t) might therefore seem
redundant, for one its being a real-space quantity makes interpretation more intuitive.
Moreover, when plotted, the VHF is commonly considered with the distance r as the
continuous variable and the time t as a parameter, thereby complementing the views
delivered by the self ISF. A consequence of using time as the parameter is that the
evolution of Gs(r, t) has to be encoded in a series of curves. Since commonly merely
one such series is collected in a single plot, investigations of the Van Hove function
are typically limited to considering only one combination of the system’s external
parameters at a time.

Like for the single-particle ISF, a connection can be established between the self
part of the VHF and the mean squared displacement. In fact, in the case of Gs(r, t)
the connection is even more natural, with δr2(t) being simply the second moment of
the Van Hove function’s self part [104, 113, 154, 246]:

δr2(t) =
∫

dr r2 Gs(r, t)

=
∫

dr r2 1

Nf

〈

Nf
∑

i=1

δ(r − [ri(t)− ri(0)])

〉

=
1

Nf

〈

Nf
∑

i=1

|ri(t)− ri(0)|2
〉

(2.93)

Here, the normalization of Gs(r, t) is the same as that of the full Van Hove function in
Eq. (2.88). Obviously, taking the second moment of the VHF’s self part is equivalent
to the combined Gaussian approximation and k → 0 limit in the single-particle ISF
[cf. Eq. (2.83)]. However, it is worth noting that the Gaussian approximation was
originally formulated in terms of the VHF, where it equivalently states that Gs(r, t) is
Gaussian at all times, i.e., Gs(r, t) = A exp{−B r2}, where A and B are two positive
constants [115]. As is clear from Secs. 1.2 and 3.2.9, a hallmark of glassy systems is
the non-Gaussianity of the Van Hove function, which underlines the caution that the
equivalence of the self ISF and the MSD [Eq. (2.83)] has to be taken with.

2.5.4 Accessible volume quantifiers

We now shift our attention to quantities that characterize the accessible space in hard-
sphere (HS) QA systems. Bearing in mind that the primary aim of this work is still to
investigate the fluid component of a QA mixture—not the matrix—, we limit our study
to quantities significant to that aim. Specifically, we decided to consider the overall
amount of accessible volume, the presence of percolation, the fraction of accessible
volume located in traps, and (in some more detail) the distribution of trap sizes. The
evaluation of either of these quantities is dependent, in one way or another, upon data
generated by the algorithms in Sec. 2.4. Further, similar to the procedure described in
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Sec. 2.5.1.5, all of these quantities are subject to a compulsory average over different
matrix realizations; as in the case of observables, this average (where applicable) will
be indicated by the symbol · · · .

2.5.4.1 Accessibility probability: grains, D-faces, D-cells

Possibly the simplest quantitative characteristic of the accessible volume in an HS-QA
system is its overall amount. To measure the latter, no knowledge is required about the
extent and connectivity of the voids in a system; the necessary information can instead
be obtained for instance from the first step in the rastering method (Sec. 2.4.6.2),
where it is identified which grains in a system are accessible. For simplicity, in place
of the actual amount of accessible volume—which depends upon the system size—we
will consider here the fraction of the system’s overall volume that is constituted by
accessible volume. By design of the grains, this quantity is approximated by the
probability Pgrain(φm) that a random grain is accessible in an HS-QA system with
matrix packing fraction φm.

The significance of Pgrain(φm) lies in its description of how much space is available
to a single tracer fluid particle for propagation in the matrix of an HS-QA system. In
fact, Mittal et al. [196] suggested that Pgrain(φm) is the sole parameter determinative
of the dynamics of such a tracer—provided that all particles in the QA system interact
hard sphere–like and that the matrix packing fraction is well below φ∗m, the percolation
threshold of the accessible volume (cf. Sec. 2.5.4.2). This is particularly interesting in
view of the fact that it is also possible to obtain a highly-accurate analytic expression
for Pgrain(φm). The derivation of this expression is based on the fact that Pgrain(φm)
is related to the excess chemical potential µ, which quantifies the cost of inserting an
additional particle into a system. The derivation starts with the equation of state for
a monocomponent, monodisperse HS fluid; for this we use the Carnahan-Starling (CS)
approximation,

βmP
CS
m

ρm

=
1 + φm + φ2

m − φ3
m

(1− φm)3
, (2.94)

which was introduced by Carnahan and Starling in Eq. (10) of Ref. [44] and which
constitutes a superb approximation of the real equation of state of HS fluids [115].
Since the fluid described by Eq. (2.94) is supposed to form the matrix of an HS-QA
system, all quantities in the equation pertain to the fluid from which that matrix was
quenched. This is indicated by the subscript “m”, where specifically Pm denotes the
pressure, βm = 1/(kBTm) the inverse temperature, ρm the number density, and φm the
packing fraction of that particular HS fluid. From Eq. (2.94), the expression

βmµ
CS
m (φm) =

8φm − 9φ2
m + 3φ3

m

(1− φm)3
(2.95)

for the excess chemical potential was obtained by Lee in Eq. (2.7) of Ref. [170]. Via
the equation

PCS
grain(φm) = exp

{

−βmµ
CS
m (φm)

}

, (2.96)
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which Reiss et al. derived in Eq. (2.11) of Ref. [221], the excess chemical potential
in turn determines the amount of accessible volume in the HS fluid, with the latter
therefore being a function solely of φm. Notably, in Eq. (2.96), the quantity PCS

grain is
ignorant of the concept of grains; the subscript merely serves to indicate that PCS

grain

and Pgrain describe the same physical quantity by different means.

From the individual elements of a Delaunay tessellation (Sec. 2.4.3), it is possible
to compute a number of quantities that provide information relatively similar to that
encoded in Pgrain. Of these, we will consider here the following:

(I) the probability Pcell (φm) that a random Delaunay cell is accessible,
and

(II) the probability Pface(φm) that a random Delaunay face is crossable.

Here, the criteria for accessibility and crossability are those defined in steps (1) and
(2) in the beginning of Sec. 2.4.3. The similarity of Pcell and Pface to Pgrain is a
consequence of D-cells, D-faces, and grains being in fact merely slightly different local
objects, all of which are considered accessible according to a single representative
point. Qualitatively, the three probabilities can therefore be expected to show a similar
dependence upon φm, which allows to cross-check conclusions drawn from either of
these quantities. Notably, for the determination of neither Pcell nor Pface it is necessary
to perform a percolation analysis.

2.5.4.2 Probabilities for percolation and trapping

Suppose now that data have been established about the distinct voids in an HS-QA
system (Sec. 2.4.5), and that for each of these voids, their size in terms of accessible vol-
ume has been determined (Sec. 2.4.6). Before considering quantifiers that operate on
this information, it is important to realize that analyzing void sizes inherently involves
the concept of percolation, which—as mentioned in Sec. 1.3.3.3—is well defined only
for an infinitely-large system. It is therefore of significance that all systems investi-
gated in this work are subject to periodic boundary conditions (PBCs, cf. Secs. 2.2.2.1
and 2.4.5), the impact of these conditions being that the occurrence of percolation
depends not only upon the matrix packing fraction, φm, but also upon the system size
(i.e., the size of the periodically-replicated system images). However, if a quantifier
is well designed, then its relevant features depend monotonically upon the size of the
system, which then allows meaningful extrapolations to infinite systems. We will indi-
cate dependencies on the system size by introducing the number of matrix particles,
Nm, as a parametric argument to any quantity affected by this effect.

Perhaps the simplest quantity to obtain from the void information is the proba-
bility Ppercol(φm;Nm) that an HS-QA system contains a percolating void. Ppercol in an
infinitely-large system is a step function [248] centered about φ∗m, the value of φm at
which the percolation transition of the accessible volume takes place. Ppercol therefore
provides a natural means to estimate φ∗m; this holds even if the step function is smeared
out due to finite system sizes. Notably, in the latter case it is of the utmost importance
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that multiple system realizations be sampled since Ppercol for a single realization can
only be either zero or unity.

Another straightforward quantity to investigate is Ptrap(φm;Nm), the fraction of
accessible volume belonging to traps (as opposed to the percolating void). In an
infinitely-large system with a sharp percolation transition, Ptrap is unity for φm >
φ∗m since for these φm values, no percolating void exists. However, Ptrap does not
take the shape of a step function even in an infinite system since below φ∗m there
always exist traps—irrespective of the system size. Given that Ptrap (like Ppercol) is
smeared out for finite systems, this non–step shape is unfortunate since it complicates
obtaining the infinite-size value of Ptrap for φm < φ∗m from a finite-size extrapolation.
Therefore, it is less practicable to extract φ∗m from Ptrap than from Ppercol. However, the
significance of Ptrap is a different one anyway: as a consequence of the random insertion
of fluid particles into the matrix structure (cf. Sec. 2.3), Ptrap relatively accurately2.75

reflects the average fraction of fluid particles that are located in a trap (the “trapping
fraction”). This allows in principle to compute an observable for the full fluid from a
weighted average of the same observable for the trapped and the free particles, with
the weight of the trapped particles being an appropriate function of Ptrap.

2.5.4.3 Trap-size distributions

We now turn to characterizing the actual sizes of the voids in an HS-QA system. The
first step in doing so is to realize that the volume of the percolating void(s) in a system
with matrix packing fraction φm and matrix particle number Nm can be expressed as

Vpercol(φm;Nm) =
[

π

6
Nmφ

−1
m

]

Pgrain(φm) [1− Ptrap(φm;Nm)] , (2.97)

where (π/6)Nmφ
−1
m is the system’s volume, Pgrain the accessible fraction of the system’s

volume, and 1−Ptrap the fraction of accessible volume located in the percolating void.
Assuming that there exists only one percolating void (cf. Footnote 2.35), this means
that the size of this void can be calculated solely from quantities already discussed.
Therefore, we will in the following consider only traps. The quantity central to the
subsequent discussion is the probability P (V ;φm, Nm)—shorthand “P (V )”—that a
given trap contains the accessible volume V . Being a probability distribution, P (V )
can numerically be approximated by the scheme

P (V ;φm;Nm) ≃ N−1
trap

∑

V <Vi<V+∆V

1 , (2.98)

2.75In fact, Ptrap slightly—but systematically—overestimates the fraction of trapped particles if the
fluid packing fraction of a system is close to the maximum-possible value. The reason for this is that
the particles in a trap will still be able to move (sometimes more, sometimes less) even if no further
fluid particle can be inserted into that trap. Since this effect is negligible in the percolating void, it
is the accessible volume representative of the movement in traps that, added up, accounts for the
overestimation.
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where Ntrap is the number of traps in the system, Vi is the volume of trap i, and the
volume ∆V is small enough to yield a suitable number of intervals but large enough to
render the approximation reasonable for all V values of interest. In order to emphasize
features of P (V ) for large V , we also consider the quantity

P (V ;φm;Nm) V ≃ N−1
trap

∑

V <Vi<V+∆V

Vi . (2.99)

Although similar in definition, the quantities in Eqs. (2.98) and (2.99) bear different
physical significance: whereas P (V ) focuses on traps in that it quantifies the probabil-
ity for a random trap to be of size V , its counterpart P (V )V assesses the probability
that a random trapped particle is located in a trap of size V . The latter interpretation
suggests to compare P (V )V for instance with the infinite-time limit of the Van Hove
function for the trapped particles in an HS-QA system (cf. Sec. 2.5.3.6).

Remembering that P (V ) and P (V )V depend not only upon V but also upon φm

and Nm, it is reasonable to condense the details of the dependence upon V into a
single representative number if dependencies upon φm and Nm are to be investigated.
Two meaningful choices for such single numbers are the first and second moments2.76

of P (V )

V̂1(φm;Nm) =





∞
∫

0

P (V )V dV





/





∞
∫

0

P (V ) dV



 ≃
[

∑

Vi

Vi

]/[

∑

Vi

1
]

and (2.100)

V̂2(φm;Nm) =





∞
∫

0

P (V )V 2 dV





/





∞
∫

0

P (V )V dV



 ≃
[

∑

Vi

V 2
i

]/[

∑

VI

Vi

]

, (2.101)

where we normalized the first and the second moments with the zeroth and first mo-
ments, respectively, in order to render both V̂1 and V̂2 of dimension “volume”. Although
both expressions represent some sort of average trap size, their interpretation differs
significantly: whereas V̂1 describes the average size of a randomly-chosen trap, V̂2 quan-
tifies the average size of the trap that a random trapped particle resides in. Therefore,
V̂2 is better suited to pinpoint the effects of confinement on the fluid component of an
HS-QA system.

The most important characteristic of V̂2, however, is its capability to highly accu-
rately estimate φ∗m from finite systems (φ∗m, again, being the value of φm at percolation).
This capability of V̂2 comes about as follows. Suppose that some trap Tj in the system
is similar in size to all of the system’s other traps combined. Then, from the above
interpretation and from the definition in Eq. (2.101), it is clear that the value of V̂2

will be comparable to the size of Tj. Since Tj, while obviously finite in a finite system,
is infinitely large itself in an infinitely-large system, V̂2 diverges if a trap like Tj exists
in a system with Nm →∞.

2.76http://mathworld.wolfram.com/RawMoment.html

http://mathworld.wolfram.com/RawMoment.html


2.5. Observables 149

As is easy to rationalize, in an infinitely-large system, a trap like Tj can be present
only for φm = φ∗m (cf. Sec. 1.3.3.3). To see this, consider first a system in which the
largest void is just barely percolating, i.e., a system with φm = φ∗m−dφm, where dφm

is an infinitesimal amount of matrix packing fraction. Then, the addition of a single
matrix particle (i.e., of dφm) may cut this percolating void into two traps, with these
traps then obviously being very large. For φm > φ∗m, no infinitely-large trap can
exist since adding particles in excess of φm = φ∗m only reduces the sizes of traps. For
φm < φ∗m, traps are generally finite as well since it is impossible for an infinitely-large
trap to have no connection with the percolating void (the latter, by definition, always
exists for φm < φ∗m). Therefore, only for φm = φ∗m an infinitely-large trap can be
present.

In a finite system with PBCs, breaking the percolating void at φm = φ∗m−dφm by
adding dφm has slightly different consequences: instead of being almost infinitely large,
the resulting traps in this case will be comparable in size to the unique part of the
system. Since—by a similar reasoning as for the Nm→∞ case—traps of such size can
exist only in some vicinity around the percolation threshold, V̂2 [see Eq. (2.101)] will
exhibit a pronounced maximum for φm = φ∗m in finite systems. While identifying φ∗m
via this maximum is second in accuracy only to finite size–scaling techniques [248], it is
still advisable to consider large systems, the reason being that the percolation threshold
in periodically-replicated systems actually depends upon the size of the system, with
φ∗m increasing monotonically with that size (cf. Sec. 1.3.3.3). Relying on large systems
is preferential also due to the positive scaling with the system size of the maximum’s
height (see above), thereby allowing for a more clear-cut identification of φ∗m.

Although V̂1 may also exhibit maxima and minima as φm is varied, these features
unfortunately do not provide information about φ∗m. In fact, since V̂1 is the quotient
of Vtrap (the combined size of all traps in the system) and Ntrap (the number of those
traps), and since Vtrap is simply the product of the known quantities Ptrap, Pgrain, and
the system’s volume [cf. Eq. (2.97)], the only original information encoded in V̂1 is Ntrap.
Although this information could be quantified more succinctly by simply counting
traps, we decided to nevertheless consider V̂1 due to its mathematical similarity to V̂2,
the ready availability of P (V ), and the average trap size being an interesting quantity
per se.

2.5.5 Equilibration and error estimation

In Sec. 2.5.1.2, we deferred the discussion about computing an observable average 〈A〉Q
from MD simulation data. Recalling Eq. (2.50) and suppressing therein the dependence
upon the external conditions Q, an observable average2.77 can be approximated by
〈A〉 ≃ A = 1

M

∑M
m=1A(Γ(m∆t)) if an MD simulation delivers M measurements at

2.77The conventional notation of a simulational average is the symbol · · · . However, since we reserved
the overstrike for the average over matrix realizations (see Sec. 2.5.1.5), we instead indicate simulation
averages by an underline, · · · .
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times equally spaced apart by ∆t. For A to reliably reproduce the true observable
average 〈A〉, the probability of a certain phase-space point Γ to occur in the definition
of A has to be close to the phase-space density f(Γ). This is nontrivial to ensure.
By construction, the limiting factor is the duration of the simulation; therefore, we
need a means to assess which span of simulated time τsim is “long enough”. The usual
approach [9, 85, 219] is to examine the inherent time scales {τi} of the simulated
system, and to choose τsim > max {τi}. This condition ensures that the system is (in
principle) capable of reaching any arbitrary phase-space point Γ within the allotted
simulation time2.78, which is an intuitively sensible condition and reflects the fact that
averages of the form 〈A〉 are meaningful only in an ergodic system (see Footnote 2.13).

Before we discuss how to obtain the time scales, we note that (incidentally) be-
ing able to arrive at any Γ within some simulated time τsim is not only required for
rendering A reliable—it is also a necessary condition for equilibrating a system. As
mentioned before (see Sec. 2.1.2), for the statistical methods employed in this work
to yield meaningful results, any examined system needs to be in a state of thermal
equilibrium. Therefore, a two-step procedure is imperative for the investigations in
this work: first, the system of interest has to be brought to equilibrium (“equilibration
run”), and only then measurements can be conducted on this system (“production
run”). Remembering that the computation of reliable averages and the establishment
of thermal equilibrium make the same demands on τsim, it is natural to use that span
of simulation time—once determined—for fixing the duration of both the equilibration
and the production run.

Coming back to the time scales, obviously the difficulty lies in identifying those
scales; since each τi is associated with an observable Ai, this problem is equivalent
to finding the “right” observables2.79. In the context of dynamic arrest, a plethora of
investigations have shown that the slowest time scale is set by the structural relaxation
of the material [36, 53, 62, 86, 87, 89, 90, 93, 104, 154, 214, 241, 254, 269, 272, 281].
The structural relaxation—or at least aspects of it—is quantified by density–density
correlators, i.e., by the ISFs and the Van Hove functions (cf. Sec. 2.5.3). The lower
bound for the simulated time τsim is therefore the relaxation time of one of these
observables. As we shall see in Sec. 3.2.5, in HS-QA systems, the slowest time scale is
set by single-particle density correlators, i.e., by Fs(k, t) and Gs(r, t). Unfortunately,
while we already discussed how to distill relaxation times from correlators (Sec. 2.5.3.5),
it is not easy to implement an automated procedure that determines τsim concurrently
with an MD simulation.

2.78The phase space of a system—particularly that of an HS-QA system—may consist of disconnected
domains separated by regions of zero occupation probability [f(Γ) = 0]. In this case, the system can
of course only reach the phase-space points that belong to the same domain as the initial phase-space
point.

2.79Although an observable may exhibit features on multiple time scales, it is only the largest of
these that is relevant in the context of the simulation length. Also, it is worth noting that some of
the τi may have the same physical origin and therefore be identical.
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An obvious, yet inefficient solution would be to assess the decay of the correla-
tors a posteriori. However, fortunately, it is also possible to extract the same time
scale information from a related simpler quantity: the mean squared displacement.
Extensive comparison between δr2(t) and Fs(k, t) reveals that the MSD’s logarithmic
derivative z(t) (see Sec. 2.5.3.1) generally remains unaltered for times beyond the re-
laxation of the self ISF to its long-time value fs(k). Using this rule, τsim can be set
by the time required for z(t) to reach its long-time value z(∞) = limt→∞ z(t). Un-
fortunately, this criterion is not easily tracked during a simulation either. However, a
distinct advantage of the MSD is that in addition to time-scale features, it naturally
relates to real-space length scales. This can be exploited by redefining τsim as the time
that δr2(t) requires to arrive at some length lcutoff , i.e.,

δr2(τsim) = l2cutoff , (2.102)

where τsim is of the order of τmax if lcutoff is equal to the system’s largest inherent length
scale lmax. Although strictly speaking this merely shifts the problem from times to
lengths, in the absence of a-priori knowledge about the system’s dynamic features,
length scales are more intuitively estimated than time scales.

In a simple monatomic system deep within the fluid regime, the only inherent
length scale is set by the range of the interaction potential [115]. However, other
(diverging) length scales emerge as a phase transition is approached [108, 238]. While
the exact nature of the glass transition is still a matter of debate, many works provide
evidence that this transition is accompanied by a diverging length scale of some kind (cf.
Sec. 1.2 and Refs. [19, 25–27, 34, 43, 53, 62, 71, 78, 79, 104, 135, 137, 139, 154, 167, 241,
277, 282]). The type of disorder introduced in the QA protocol entails additional length
scales that likewise may diverge (see Sec. 1.3.4.2 and Refs. [45, 111, 113, 148, 150, 159–
162, 196, 252]). Since any diverging length scale can be translated to a diverging time
scale—for instance via the MSD—, it is up to the investigator to choose the maximum
length lcutoff to accommodate to, and to not examine phenomena beyond lcutoff and its
associated time scale. In this work we chose to define

lcutoff = 10 (2.103)

in reduced units (cf. Sec. 2.5.1.6), which is much larger than the diameter of the
particles and allows to investigate at least the onset of a possibly-present diverging
length scale and its related dynamic phenomena.

In fact, in a system close to dynamic arrest, the simulation time τsim obtained
from Eq. (2.102) may be very long. Therefore, we additionally imposed the condition

τsim ≤ τcutoff (2.104)

where τcutoff is some simulation time span chosen to ensure that an MD simulation
be truncated after at most a few weeks of real time. Obviously, such a truncation
results in a nonequilibrated system, the further treatment of which then requires special
caution (see below). Notably, a combination of Eqs. (2.104) and (2.102) is suitable for
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defining dynamic arrest by selecting an appropriate simulation time span τarrest and
pronouncing a system arrested if

δr2(τarrest) ≤ l2cutoff . (2.105)

For convenience, we chose the length lcutoff in Eq. (2.105) to be the same as in Eq.
(2.103). Equation (2.105) is employed in the systematic investigations presented in
Sec. 3.2.1, where for this purpose we defined

τarrest = 30 000 (2.106)

in reduced units (cf. Sec. 2.5.1.6). While this value of τarrest was chosen essentially
arbitrarily, in combination with Eq. (2.105) it happened to reasonably reproduce the
well-established glass-transition density φf ≃ 0.59 of bulk HS systems (see Sec. 3.2.1
and Refs. [36, 78, 79, 151, 182, 214, 241, 265]).

The requirement of thermal equilibrium, as mentioned before, dictates that a
production run (PR) be preceded by an equilibration run (ER). The details of our
pertinent procedure read as follows: during the ER, the MSD is monitored, and the
run is terminated as soon as Eq. (2.102) is fulfilled or Eq. (2.104) is violated. The
final configuration of the ER then constitutes the initial configuration of the PR, with
the length of the PR (in terms of simulated time) being defined as that of the ER.
Subsequent to the PR, from the self ISF’s relaxation, it is determined whether the
chosen lcutoff sufficed for equilibration.

Owing to the time-cutoff procedure [Eq. (2.104)], a number of runs performed
in this work did not fulfill the condition that Fs(k, tsim) is approximately equal to
the long-time value fs(k). It is, however, in the very nature of QA systems that some
systems are harder to equilibrate than others; in fact, in some regions of the parameter
space, equilibration is even outright impossible. This is—by definition—the case for
dynamically-arrested states, and also for systems in which no percolating void exists.
In such parameter-space regions, we cautiously dared to also interpret nonequilibrated
runs, albeit only under the condition that the errors margins of the relevant observables
be “small” (see below). In any case, any such interpretation is clearly documented in
the respective sections (see in particular Secs. 3.2.4, 3.2.5, and 3.2.7).

The latter consideration turns the spotlight to the important issue of error estima-
tion. As laid out in the beginning of this section, any observable average A obtained
from MD data is necessarily an approximation of the true thermodynamic average 〈A〉
and therefore associated with an error. Fortunately, it is possible to assess the reliabil-
ity of such an imperfect average. The tool at call is basic statistics, with the relevant
quantity being the conventional “standard error of the mean”2.80

sA =
1√
K

σA =
1√
K

√

√

√

√

1

K

K
∑

k=1

(

Ak − µA
)2

. (2.107)

2.80http://en.wikipedia.org/wiki/Standard_error

http://en.wikipedia.org/wiki/Standard_error
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Here, the Ak’s represent K different sample averages of the observable A, and µA =
1
K

∑K
k=1 Ak denotes the mean of those averages. Before we discuss how to obtain the

different sample averages, it is important to realize that Eq. (2.107) is valid only if all
of the Ak’s are statistically independent of each other2.80.

One straightforward method to obtain multiple sample averages is to break the
trajectory generated by an MD run into nonoverlapping sub-trajectories, each of which
is then used to evaluate an Ak. In the case of this method, statistical independence
demands that the initial and final system configuration of each sub-trajectory be un-
correlated in terms of some ISF or VHF. While this condition might be difficult to
ensure, it is precisely this method that is used in real-life experiments. Computer
simulations, however, provide the opportunity for a more elegant procedure to obtain
different sample averages: conducting multiple simulations with different (random)
initial configurations. In this scheme, the only constraint applies to the initial config-
urations, all of which have to represent the same external conditions. In this work,
for two reasons we pursued the latter method: its simplicity, and (more importantly)
the fact that in QA systems, multiple system realizations have to be generated and
averaged anyway to restore homogeneity and isotropy (cf. Sec. 2.5.1.5). Notably, it is
precisely this matrix-averaging procedure that constitutes the only—and at the same
time the natural—way to obtain different sample averages for quantifiers of the matrix
structure (cf. Sec. 2.5.4).

It is important to be aware of the fact that the standard error captures only
statistical deviations of AQ from the true average 〈A〉Q. Equation (2.107) does not
account for systematic deviations built into the data acquisition. Such systematic
errors arise for instance from the practice to measure A under the external conditions Q

while actually trying to determine 〈A〉 with the external conditions 〈Q〉. Although
trying to achieve AQ ≃ 〈A〉〈Q〉 seems futile if Q 6= 〈Q〉 from the outset, this is precisely
what is widely attempted in computer simulations. The reason for this is that in many
investigations, the system of interest is infinitely large—a condition that by its very
nature escapes the capabilities of computer simulations. If such an infinitely-large
system is the object of interest, a common procedure is to instead consider a “large”
system, in the hope of not missing any essential effects. Fortunately, there exist more
stringent tests than “hope” as to whether a system of finite size approximates an
infinitely-large system to a satisfactory extent. Recalling that both dynamic arrest
and porous media may involve large length scales (cf. Secs. 1.2 and 1.3), the issue of
finite-size systems is of considerable concern to this work. Therefore, in Appendix A.2
we shall discuss and apply methods to assess and quantify the effects of a limited
system size in QA systems.





Chapter 3

Results

3.1 General remarks

In this chapter, we present and discuss the results of the computer simulations con-
ducted by the author for the purpose of the work at hand. As laid out at length in the
previous chapters, the primary subject of this work is the dynamic arrest of the fluid
component of hard-sphere quenched-annealed (HS-QA) systems. Since the author has
published most of the findings discussed in this chapter in scientific journals (cf. the
Preface), it seems fitting to present the findings in an according fashion—i.e., roughly
chronologically—so as to convey the evolution of the fact-finding process. In this
spirit, we will first discuss the structure and the dynamics of the full fluid component
of HS-QA systems (without regard to the details of the QA matrix), then elaborate
on the structure and the connectivity of the pores of the matrix, and finally consider
separately the properties of those QA fluid particles that are trapped and those that
are not.

In the majority of the HS-QA systems simulated in this work, the numbers of the
matrix and of the fluid particles add up to Nm+Nf = N = 1000. Therefore, N is stated
explicitly only if for some system N 6= 1000. The relatively-small figure N = 1000
was chosen due to the fact that the investigation of dynamic arrest by its very nature
requires to consider systems with long relaxation times, and equilibrating such systems
is more readily accomplishable if N is small. The drawback of using systems with few
particles is the potential presence of finite-size effects, which is investigated in detail
in Appendix A.2. Further, as discussed in Secs. 1.3.4.2 and 2.5.1.5, when computing
observable averages in QA systems, it is imperative that averages be taken over mul-
tiple independent realizations of systems with the same external parameters. Unless
stated otherwise, we accommodated for this fact—wherever required—by considering
ten such realizations. As a welcome side effect, as detailed in Sec. 2.5.5, multiple
realizations allow to infer margins of statistical uncertainty. Wherever appropriate,
these margins are represented in the diagrams in the form of error bars, each of which
indicates the standard error of the mean [see Eq. (2.107)] for the presented datum.
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The computing runs of this work—i.e., the molecular-dynamics simulations and
the subsequent post processing—were conducted largely on two high-performance com-
puting clusters: (i) the Soft Matter Theory (SMT) group’s own local cluster, which
in the years of the simulations (2008–2011) was composed of 68 top-notch CPU cores,
and (ii) the Vienna University of Technology’s Phoenix and Phoenix 2 clusters, which
at that time consisted of 130 medium-range and 256 high-end CPU cores, respectively.
The calculations of this work consumed approximately 100 000 hours of CPU time,
equating to exclusive uninterrupted calculations on all cores of the SMT cluster in
excess of nine weeks.

Before commencing the discussion of the results, it is appropriate to explicitly
mention a number of publications in which closely-related simulational investigations
were carried out and which served as major inspirations of this work. Grouping them by
principal author as well as by relevance, these works include those by Kim et al. [147–
150], Yethiraj et al. [45, 50, 251, 252], Franosch, Höfling et al. [18, 83, 111, 113, 246,
247], Voigtmann, Horbach et al. [121, 273], Fenz et al. [75], Moreno and Colmenero [197,
198], Gallo, Rovere et al. [87–91], Gimel, Nicolai et al. [16, 96], Berthier and Kob [29],
Mittal, Errington, and Truskett [196], Karmakar et al. [135, 136], and Jardat et al.
[129].

3.2 Full fluid

As laid out in Secs. 1.3.4.2 and 1.4.3, the primary objects of interest in hard-sphere
quenched-annealed (HS-QA) systems are the structure and the dynamics of their fluid
component, as opposed to those of their matrix. In the absence of reasons to do
otherwise, the first logical step is to consider all fluid particles to be equivalent. This
“full-fluid” approach we shall pursue in this section.

3.2.1 Mean squared displacement: Kinetic diagram

Recalling the intriguing predictions of the replica mode-coupling theory (RMCT, see
Sec. 1.4.3), one of the foremost goals of this work is to use computer simulation data to
establish a kinetic diagram (KD) of HS-QA systems. This requires to investigate, for
the relevant external parameters, whether or not pertinent systems are dynamically
arrested. Since KDs provide a succinct overview over the HS-QA parameter space, we
shall commence Sec. 3.2 with a KD based on a quantity that is easily computable even
without dedicated post-processing: the mean squared displacement (MSD).

As described in Sec. 2.5.5, one definition of dynamic arrest involving the MSD is
provided by Eq. (2.105), the pertinent numerical values being τarrest = 3×103 for the
threshold time and l2cutoff = 102 for the squared threshold length. In Fig. 3.1—as in all
KD renditions to follow—, the HS-QA parameter space is represented by the matrix

3.1http://www.zid.tuwien.ac.at/hpc/phoenix_linux_cluster

http://www.zid.tuwien.ac.at/hpc/phoenix_linux_cluster
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Figure 3.1: HS-QA kinetic diagram: mean squared displacement. Sym-
bols: state points (combinations of the matrix and the fluid packing fractions, φm

and φf) at which HS-QA systems were simulated. Blue diamonds: nonarrested
systems; red disks: arrested systems. The arrest criterion is Eq. (2.105), which
involves the mean squared displacement, δr2(t). Thick dotted green line: inter-
polation through adjacent nonarrested and arrested state points. Thin black lines:
transition lines predicted by RMCT for single-particle properties (cf. Fig. 1.19).

packing fraction, φm, on the abscissa and the fluid packing fraction, φf , on the ordinate.
The figure indicates for several dozen state points (combinations of these parameters)
whether the corresponding systems are arrested (red disks) or not (blue diamonds).
To arrive at this distinction, of the independent system realizations simulated at each
indicated state point (cf. Sec. 3.1), we required at least 50% to be arrested according
to Eq. (2.105) to mark the state point “arrested”.

The thick dashed green line interpolates between adjacent nonarrested and ar-
rested state points. An extrapolation of this line towards φm = 0 (not shown) suggests
that dynamic arrest in the case of bulk hard spheres occurs for φf ≈ 0.58, which is
in excellent agreement with literature values [104, 204, 214]. Included for comparison
are the RMCT single-particle transition lines (thin black lines) introduced in Fig. 1.19.
While the shapes of the MSD and the RMCT arrest lines are evidently quite similar,
their locations in the KD differ considerably. This is only moderately surprising since
it has been shown for a number of systems that the temperature and/or the density
of dynamic arrest are not uncommon to be underestimated by MCT by 20% or even
more [93, 104, 154–156].
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Figure 3.2: Paths and points in the HS-QA parameter space. Locations of
the points (blue crosses) and the paths (red arrows) at and along which various
observables are presented in detail in this work. Included for reference are the
RMCT transition lines from Fig. 1.19 as well as the MSD arrest line from Fig. 3.1.

3.2.2 Paths and points in the parameter space

In Sec. 3.2.1, we established the parameter-space regions in which HS-QA systems
are arrested according to Eq. (2.105). The next straightforward step is to investigate
selected quantities in more detail for individual state points. For this task, which
we will commence in the following section, we will repeatedly focus on specific paths
and points in the parameter space. For future reference, these paths and points are
summarized in Fig. 3.2, the pertinent data reading

• path I: constant φm = 0.05 • point A: φm = 0.05, φf = 0.50
• path II: constant φm = 0.20 • point B: φm = 0.20, φf = 0.22
• path III: constant φf = 0.10 • point C: φm = 0.25, φf = 0.10

• point D: φm = 0.30, φf = 0.05

A primary objective of this work, as mentioned in Sec. 1.4.3, is to compare the results
of our computer simulations with the predictions of the replica mode-coupling theory
(RMCT; see Sec. 1.4.3). How can such comparisons be accomplished in a meaningful
way using the above paths and the paths in Fig. 1.19? According the latter figure,
RMCT predicts that the localization transition for φf → 0 occurs at φ∗m ≃ 0.17. As
stated above, our simulations for φf = 0.1 rather suggest φ∗m & 0.25, which implies
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that for φf → 0, the value of φ∗m is even larger3.2. According to Fig. 1.19, RMCT
further predicts that the dynamic arrest for φm = 0 takes place at φf = 0.52, whilst
our simulations suggest that in this case φf = 0.58 (see Sec. 3.2.1). It is therefore
reasonable to treat the RMCT parameters, φth

m and φth
f , as different from the simulation

parameters, φsim
m and φsim

f , and as proportional to each other by the relations

φsim
m ≃ φth

m × 1.5 and

φsim
f ≃ φth

f × 1.1 .
(3.1)

Keeping in mind that paths 1, 2, and 3 are used in the investigation of RMCT (Sec.
1.4.3) whereas paths I, II, and III refer to our simulations, this suggests the following
correspondences:

• For path 1, the ideal counterpart would be at φsim
m = 0.15. This value is most

closely approximated by path II. However, given the different natures of the
theoretical and the simulational investigations, it is prudent to also consider
path I when comparing data for path 1 with simulational data.

• For path 2, the optimum counterpart would be at φsim
m = 0.3. This value is

situated deep within the parameter-space region that was defined as “arrested”
in Fig. 3.1. Since only limited simulations are possible in this region, no path
in the simulation parameter space directly corresponds to path 2.

• For path 3, the best-case counterpart would be at φsim
f = 0.17. This value

is approximated by path III, albeit not particularly closely. Considering the
features of Fig. 1.19, however, it is reasonable to assume that observables
at constant φsim

f = 0.17 and at constant φsim
f = 0.10 (path III) differ only

quantitatively.

3.2.3 Static structure

In the context of the static structure of HS-QA systems, the most important concern
is the issue of whether in all simulated systems, the particles of the QA fluid do indeed
represent a fluid (as unspokenly assumed in Sec. 3.2.1) and not a crystal. A simple
approach to this question is visual inspection. To this end consider Fig. 3.3, which
depicts snapshots of representative HS-QA system realizations at points A and C, with
the white and the dark gray spheres denoting fluid and matrix particles, respectively.
In panel (b), representing point C, the matrix particles clearly prevent the fluid parti-
cles from arranging in an ordered pattern3.3. In panel (a)—showing point A—, this is

3.2In Sec. 3.3.4, the much more precise value φ∗m ≃ 0.2512 is obtained for the localization transition
at φf → 0.

3.3Since the matrix particles represent an equilibrium configuration when considered by themselves
(Sec. 1.3.4.2), and since for the φm values relevant to HS-QA systems, the matrix particles are
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(a) (b)

Figure 3.3: HS-QA system snapshots: points A and C. Computer images of
representative HS-QA systems. Panel (a): system at point A where (φm, φf) =
(0.05, 0.50); panel (b): system at point C where (φm, φf) = (0.25, 0.10). Both
systems contain Nm+Nf = 1000 particles. White spheres: fluid particles; dark
gray spheres: matrix particles. Yellow lines: simulation cell replicated by periodic
boundary conditions (cf. Sec. 2.2.2.1).

likely the case, too, albeit to a much lower degree of certainty. This finding is not un-
expected since, as discussed in Sec. 1.3.3.2, disordered boundary conditions introduce
frustration only when influencing a sufficient fraction of the particles of interest.

A classical means to examine a substance’s static structure in more detail is to
determine its radial distribution function, g(r), and/or its static structure factor, S(k),
as defined in Eqs. (2.61) and (2.65), respectively. Those two quantities are depicted in
Figs. 3.4 and 3.5 for series of state points along paths I, II, and III (cf. Fig. 3.2). As
the figures show, the degree of local order in HS-QA systems increases with both φf

and φm. Also, the figures evidence that all features of both g(r) and S(k) change
continuously as φf and φm are varied, which strongly suggests that no thermodynamic
phase transition takes place.

A comparison of the g(r) data in Figs. 3.4 and 1.9 allows to conclude that the
considered QA fluids are indeed amorphous. Firstly, the overall shapes of the g(r)’s
in Fig. 3.4 are typical of HS fluids. Secondly, in Fig. 3.4(a), the maximum at r ≃ 2
develops a split-peak shape as φf is increased, which, as mentioned in Footnote 1.52, is a
hallmark of HS glasses and of random close packing structures. Thirdly, any crystalline
order—local or global—would probably be of the face-centered cubic (fcc) type, as in

arranged in fluid configurations, the positions of the matrix particles in the investigated systems are
guaranteed to be disordered.
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Figure 3.4: HS-QA radial distribution function. Radial distribution function,
g(r), for state points along paths I, II, and III (cf. Fig. 3.2). Error bars: see
Sec. 3.1.

the case of bulk hard spheres3.4. Such order would entail a local g(r) maximum for
rfcc = Φ

√
2, where Φ = {(φm+φf)/φmax}1/3 with φmax = π/(3

√
2) being the volume

fraction of close-packed monodisperse hard spheres3.4. For the state point (φm, φf) =
(0.05, 0.50), this would imply a peak at rfcc ≃ 1.56, which is clearly absent.

Considering that S(k) and g(r) essentially contain the same information (cf. Sec.
2.5.2.2), it is not surprising that the S(k)’s in Fig. 3.5 are typical of HS fluids, too.
However, Fig. 3.5(a) also suggests that some degree of crystallinity may be present for
(φm, φf) = (0.05, 0.52), the reason being that the first maximum of the pertinent S(k)

3.4http://en.wikipedia.org/wiki/Sphere_packing

http://en.wikipedia.org/wiki/Sphere_packing
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Figure 3.5: HS-QA static structure factor. Static structure factor, S(k), for
state points along paths I, II, and III (cf. Fig. 3.2). Error bars: see Sec. 3.1.

curve exceeds a value of 4, which is well above the Hansen-Verlet threshold of ∼3 (see
Sec. 2.5.2.2). Taking into account the previous reasoning in this section, this may
indicate the presence of transient crystallites, which is not uncommon in substances
approaching dynamic arrest, and which has recently been suggested to even be the
very cause of various phenomena associated with the glass transition [231, 255].

In conclusion, it can be stated with certainty that even the most dilute QA matrix
considered in this work (φm = 0.05) is sufficient to suppress long-range ordering within
QA fluids. Since the work at hand focuses primarily on the effects of QA matrices
upon dynamic arrest, no systematic attempts were made to pinpoint the threshold
value of φm below which long-range ordering of QA fluids is possible.
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Figure 3.6: HS-QA mean squared displacement: path I. Mean squared
displacement, δr2(t), and its logarithmic derivative, z(t), for state points along
path I (cf. Fig. 3.2). Error bars: see Sec. 3.1.

3.2.4 Mean squared displacement: Paths

In Sec. 3.2.1, we determined the value of the MSD at the time elapsed within a simula-
tion in order to define dynamic arrest and to construct a KD. In this section, we shall
examine the MSD, δr2(t), in more detail and complementarily consider its logarithmic
derivative, z(t), so as to emphasize the MSD’s various features. The definition of these
quantities can be found in Eqs. (2.66) and (2.67), respectively. In the spirit of Sec. 3.2.3
and of Figs. 1.19 and 3.2, we will present δr2(t) and z(t) for state points along paths I,
II, and III, with the pertinent figures considering the time t on logarithmic scales (cf.
Secs. 2.5.1.4 and 2.5.3.1) so that phenomena at disparate time scales can be identified.

Figure 3.6 portrays δr2(t) and z(t) along path I, that is, for state points with
φm = 0.05 and with various values of φf . As the figure shows, at short times, the MSD
grows quadratically (z = 2) for all state points, which reflects the fact that a particle’s
velocity in event-driven MD remains unaltered until an obstacle is encountered (cf.
Sec. 2.2). This time regime is thus called the “ballistic” or “inertial” regime. For the
lowest φf value considered, the particles subsequently cross over to a diffusive regime
(z = 1) after propagating some few particle diameters. In systems with larger φf , in
contrast, the ballistic regime is followed by an intermediate regime in which z drops
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Figure 3.7: HS-QA mean squared displacement: path II. Mean squared
displacement, δr2(t), and its logarithmic derivative, z(t), for state points along
path II (cf. Fig. 3.2). Error bars: see Sec. 3.1.

below unity and as low as z ≃ 0.15 for φf = 0.505. This feature originates in the cage
effect and is typical of many glass-forming systems [88, 89, 154, 156, 211]. As asserted
in Sec. 1.2.7, the duration of the caging indeed depends strongly upon φf . Finally, in
the limit of large times, diffusive behavior is recovered for each considered state point.

Figure 3.7 illustrates δr2(t) and z(t) for state points along path II, i.e., for φm = 0.2
and for varying φf . Although not immediately obvious, the MSD differs significantly
between the state points along path II and the state points along path I. Similar
features are the initial ballistic regime and the subsequent decrease of z below unity.
Overall, however, for path II the decrease is sharper than for path I, and a decrease is
also observed for the lowest-φf state point on path II. This suggests that in this time
regime, not only caging but also confinement effects are relevant in the case of path II.
The subsequent acceleration differs from that observed for path I in two respects.
Firstly, the recovery of diffusion requires considerably-longer times; secondly—and
more importantly—, the functional form is different, namely in that for an extended
intermediate time, z remains at a roughly constant sub-unity value. Notably, this
value (z ≃ 0.78) is essentially independent of the φf value3.5. In the remainder of

3.5In Fig. 3.7, it is z < 0.78 in the subdiffusive regime for state points along path II with large φf .
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Figure 3.8: HS-QA mean squared displacement: path III. Mean squared
displacement, δr2(t), and its logarithmic derivative, z(t), for state points along
path III (cf. Fig. 3.2). Error bars: see Sec. 3.1.

this work we shall refer to this regime as “the subdiffusive regime”, although in a
broader sense caging likewise implies subdiffusion. This serves to remind of the effects
of confinement and of the fact that those effects are foreign to simple glass formers.

Figure 3.8, finally, shows δr2(t) and z(t) for state points along path III, meaning
that now φf is held constant at a value of 0.1 while φm is varied. Except for the state
point with the lowest φm (which coincides with the lowest-φf state point in Fig. 3.6),
all state points exhibit a ballistic regime, a caging regime, and a subdiffusive regime.
Concerning the latter, panel (b) of the figure evidences that both the extent of the
subdiffusive regime and the average value of z therein are highly dependent upon φm.
This implies that the value z = 0.78 observed in the subdiffusion regime of path II
does not bear any particular significance. Most strikingly, for φm ≥ 0.25, ordinary
diffusion is not recovered in the long-time limit. While for φm > 0.25, the value of z
instead tends towards zero3.6, for φm = 0.25, it remains at a value of approximately 0.5

This may be due to the fact that those systems are not well equilibrated with respect to the criterion
defined in Sec. 2.5.5.

3.6Since the systems at (φm, φf) = (0.2875, 0.1000) are not well equilibrated, the pertinent δr2(t) and
z(t) have to be interpreted with caution (cf. Sec. 2.5.5). Beyond the largest depicted time, t = 104,
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for more than three decades in time before ultimately increasing beyond that value.
This suggests that there exists a value φ∗m & 0.25 for which z neither increases towards
unity nor tends towards zero for an indefinite time. As we will show later in this
work, such long-time subdiffusion (cf. Sec. 1.3.2) is tied intimately to a percolation
transition in the accessible volume at φ∗m. The fact that for φm = 0.2625 the value of z
ultimately decreases towards zero allows to conclude that 0.25 < φ∗m < 0.2625. Taking
into account the dependence of z upon φm in the subdiffusive regime, limt→∞ z for φ∗m
is probably somewhat lower than 0.5.

Let us now compare these observations with the predictions of RMCT as summa-
rized in Fig. 1.22. For this, we need to recall that in our computer simulations, we
considered only equilibrated systems (cf. Sec. 1.2.4), meaning that comparisons are
sensible only for the nonarrested (green) curves in Fig. 1.22. For these cases, in both
depicted paths (path 1 at constant φm = 0.10, and path 3 at constant φf = 0.15),
RMCT predicts that there are three distinct time regimes of the MSD:

(i) an initial diffusive regime,
(ii) a subdiffusive regime with z = 1/2, and
(iii) a final diffusive regime.

In regime (iii), RMCT predicts the MSD to be diffusive in all nonarrested systems
except for those at φ∗m. This is confirmed by our simulations. In regime (i), the MSD
is ballistic (z = 2) in the simulations and diffusive (z = 1) in RMCT; however, as
mentioned in Footnote 1.68, the short-time dynamics is irrelevant for the predictions
of RMCT and therefore for comparisons with simulation data. In regime (ii), finally,
the RMCT predictions genuinely differ from our observations: Firstly, for neither
path 1 nor path 3, a distinct caging regime is found in RMCT. Secondly, according
to RMCT, the value of z in the subdiffusive regime invariably is 1/2, which is at
odds with our finding that it depends upon φm and attains the value 0.5 only for φ∗m.
However, for the specific case of φ∗m, the RMCT prediction is in superb agreement with
our observation.

In summary, the MSD’s most interesting feature in simulations of HS-QA sys-
tems is the subdiffusive regime, which for φ∗m prevails indefinitely. Unfortunately, the
insights attained in this section are insufficient to pinpoint the cause(s) of this fea-
ture. One may speculate that it is due in part to caging, in part to trapping, in part
to an (emerging) fractal nature of the accessible volume, and in part to dimensional
reduction, perhaps resembling single-file diffusion.

3.2.5 Intermediate scattering functions: Paths

Beginning with this section, we direct our focus to the various intermediate scattering
functions (ISFs) of HS-QA systems. In the present section, we will investigate the

the depicted z(t) will probably attain a maximum and subsequently level off to zero.
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Figure 3.9: HS-QA intermediate scattering functions: path I. Connected
intermediate scattering function, Fc(k, t), and single-particle intermediate scatter-
ing function, Fs(k, t), for state points along path I (cf. Fig. 3.2) and for the wave
vector k = 7. Error bars: see Sec. 3.1.

connected ISF and the single-particle (“self”) ISF along the same parameter-space
paths as for the MSD in Sec. 3.2.4, i.e., along paths I–III. The definitions of the ISFs
can be found in Eqs. (2.73) and (2.81), respectively. The knowledge gathered in this
section will subsequently be used in Sec. 3.2.6 to construct KDs on the basis of these
ISFs.

Figure 3.9 shows the connected ISF, Fc(k, t), and the self ISF, Fs(k, t), for state
points along path I (constant φm = 0.05). The wave vector k = 7 used in both panels
is close to the first maximum of S(k) (cf. Fig. 3.5), which leads to a favorable signal-to-
noise ratio and spotlights the structural relaxation at a length scale comparable to the
particles’ diameter. As is evident from the figure, the relaxation times and patterns
of Fc(k, t) and Fs(k, t) are very similar—except perhaps for the largest-φf state point,
where, however, the systems are not as-well equilibrated as for the other state points
(note the unphysical decay of Fc(k, t) to below zero). For the largest depicted φf

values, regimes of β decay, caging, and α decay can clearly be distinguished, with
the caging-regime plateau changing only in extent but not in height as φf is varied
(cf. Sec. 1.2.7). Such type-B transitions are typical of simple glass formers (compare
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Figure 3.10: HS-QA intermediate scattering functions: path II. Connected
intermediate scattering function, Fc(k, t), and single-particle intermediate scatter-
ing function, Fs(k, t), for state points along path II (cf. Fig. 3.2) and for the wave
vector k = 7. Error bars: see Sec. 3.1.

Fig. 1.10), meaning that in this parameter-space region, there is no qualitative effect
of the QA matrix on the structural relaxation.

Fig. 3.10 illustrates Fc(k, t) and Fs(k, t) for state points along path II (constant
φm = 0.2), the wave vector again being k = 7. Clearly, for each ISF, the relaxation
pattern differs considerably from that along path I (Fig. 3.9). Even more importantly,
the connected and the self ISF are quite dissimilar to each other, the most important
difference being the significantly-disparate relaxation times. This can be quantified
using the times tc and ts required for Fc(k, t) and Fs(k, t) to decay to a value of 0.1,
respectively (cf. Sec. 2.5.3.5). For φf = 0.22, for instance, we find tc = 7.9×100 and
ts = 5.4×103, which represents a difference of almost three decades in time, with the
connected ISF relaxing faster.

Considering Fc(k, t)’s substantially-prolonged relaxation times upon increasing φf ,
it can be assumed that the connected ISF approaches a transition for φf values slightly
beyond 0.27 (the largest φf value depicted). However, for three reasons it is difficult
to pinpoint whether this transition is of type A (continuous) or type B (discontinuous;
cf. Sec. 1.4.3). Firstly, caution has to be exercised in the interpretation of the data at
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φf ≥ 0.26, the reason being the imperfect equilibration with respect to the criterion
defined in Sec. 2.5.5 (note again the unphysical decay to below zero). Secondly, the
features of type-A transitions may differ between simulation and theory. Thirdly, it
is possible that an intermediate-time plateau emerges for φf > 0.27. Unfortunately,
since equilibration times rise sharply beyond φf = 0.27 (cf. Sec. 3.2.4), it is doubtful
that even more sophisticated simulation techniques can resolve this question. Turning
to Fs(k, t), an intermediate-time plateau can be observed at large φf . As for path I, this
plateau exists only beyond a certain φf value, and subsequently extends in time as φf

is increased. However, unlike for path I, the height of the plateau increases with φf .
Another significant difference between Fs(k, t) along paths I and II is the fact that for
path II, the self ISF does not fully relax but instead attains a nonzero long-time value
(LTV). Although this LTV, fs(k), decreases weakly as φf is lowered, it remains well
above zero even for the lowest depicted φf value.

It is nontrivial to rationalize these observations. The relaxation of Fs(k, t) to
nonzero values is likely due to “trapped” fluid particles (particles that cannot move
infinitely far away from their initial position; cf. Sec. 2.4), which is consistent with the
observed Fc(k, t) as confinement does not leave traces in correlators of fluctuations (cf.
Sec. 2.5.3.3). The plateaus of Fc(k, t) and Fs(k, t), in contrast, are more puzzling. In
classical glass formers, plateaus result from caging, and the strong dependence upon φf

of the relaxation patterns indicates that packing effects indeed play a role. However,
in Fc(k, t) a plateau is absent, whereas in Fs(k, t) it is prominent and even varies in
height. Therefore, it can be assumed that the classical caging effect, if it exists, is
profoundly altered by the presence of the matrix, a possibility being for instance an
impact on the cage size. Unfortunately, at this point, the geometric complexity of this
problem does not allow to draw any definite conclusions.

Fig. 3.11, finally, depicts Fc(k, t) and Fs(k, t) for state points along path III (con-
stant φf = 0.1) at the wave vector k = 7. As is evident, both quantities differ markedly
between path III and the other two paths. However, Fc(k, t) and Fs(k, t) for path III
itself are quite similar to each other, namely in that both quantities relax in a single
step. The two quantities differ merely in that Fc(k, t) relaxes strictly to zero in all
depicted cases while Fs(k, t) attains a nonzero LTV, fs(k). The value of fs(k) strongly
depends upon φm, which is consistent with the reasoning introduced in the context of
path II that fs(k) > 0 is caused by trapped particles. For both Fc(k, t) and Fs(k, t),
the relaxation times towards the LTV increase with φm, but they do so only moder-
ately for the connected ISF, suggesting that Fc(k, t) is not close to a dynamic arrest
transition within the considered φm range.

How do RMCT’s predictions fare against all these observations? As laid out in
Refs. [159–162], for small φm, there is much similarity between RMCT and the classical
mode-coupling theory in that either one predicts a type-B transition for both Fc(k, t)
and Fs(k, t). Our simulations along path I confirm this transition type. In Sec. 1.4.3,
we reported RMCT’s predictions for the connected ISF along path 2 and for the self
ISF along path 3 (see Figs. 1.20 and 1.21). While path 3 corresponds to our path III,
for path 2 there is no directly-corresponding path in our simulations (cf. Sec. 3.2.2).
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Figure 3.11: HS-QA intermediate scattering functions: path III. Connected
intermediate scattering function, Fc(k, t), and single-particle intermediate scatter-
ing function, Fs(k, t), for state points along path III (cf. Fig. 3.2) and for the wave
vector k = 7. Error bars: see Sec. 3.1.

However, since for Fc(k, t), the arrest transition occurs roughly at the intersection of
paths 2 and 3 (cf. Figs. 1.19 and 3.2), it is reasonable to compare this quantity between
path 2 and path III. Considering these correspondences, RMCT’s predictions are quite
satisfactory for both ISFs, those for Fs(k, t) arguably being somewhat better. The only
clear difference—due perhaps to the simulational limitations—is the fact that we did
not observe fc(k) = limt→∞ Fc(k, t) > 0 for any state point.

The deviation between RMCT’s predictions and our simulation results is more
pronounced for the case of path 1. For Fc(k, t), RMCT finds a type-B transition
while our data along path II rather resemble a type-A transition (despite fc(k) = 0 in
all investigated cases). However, according to Fig. 1.19, the theory does find type-A
transitions at φm & 0.16, which is commensurate with path II (cf. Sec. 3.2.2). The
case of Fs(k, t), finally, is the least satisfactory: while RMCT predicts that along
path 1 there is a type-A transition, and clearly separated from that a type-B transition,
according to our simulations, there may either be a rather intricate interplay of those
transitions over an extended parameter-space region, or even a fundamentally different
transition in that region.
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Figure 3.12: HS-QA kinetic diagram: single-particle ISF. Symbol colors and
shapes: relaxation time ts of Fs(k=7, t) at the respective state point. Thick solid
blue line: interpolation between state points for which ts ≃ 103. Thick dotted
green line: MSD arrest line from Fig. 3.1. Thin black lines: RMCT transition
predictions for single-particle properties (cf. Fig. 1.19)

3.2.6 Intermediate scattering functions: Kinetic diagrams

Let us now construct KDs on the basis of the single-particle (“self”) and the connected
ISFs. To accomplish this task, we focus on a number of distinct state points, at each
of which we evaluate the full functional behavior of Fs(k, t) and Fc(k, t) and determine
the times ts and tc that the respective ISF at the wave vector k = 7 requires to relax to
the value 0.1 (cf. Sec. 3.2.5). Notably, ts and tc by this definition are not defined if the
respective ISF exceeds 0.1 in the long-time limit—which, however, does not present
major problems as we shall see below. (For a further discussion of the merits and
problems of the definition of ts and tc see Sec. 2.5.3.5.)

Figure 3.12 illustrates the KD obtained from Fs(k, t). Included as a thick solid
blue line is an iso–relaxation time line, i.e., a line interpolating between state points
at which ts attains approximately the same value. This value we chose to be ts = 103,
which is reasonably close to the actual dynamic arrest and nevertheless establishable
in large parts of the KD. Further, using this ts value, the onset of the line at small φm

and large φf roughly coincides with the arrest line inferred in Sec. 3.2.1, the latter
being included in the figure in the same thick dotted green appearance as in Fig. 3.1.
As can be seen from the figure, the self ISF and the MSD arrest lines are remarkably
similar, despite small differences at large φm and small φf . This, on the one hand,
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Figure 3.13: HS-QA kinetic diagram: connected ISF. Symbol colors and
shapes: relaxation time tc of Fc(k=7, t) at the respective state point. Thick dash-
dotted red line: interpolation between state points for which tc ≃ 3×100. Thin
black lines: RMCT transition predictions for collective properties (cf. Fig. 1.19).

is reasonable to expect in the light of both Fs(k, t) and δr2(t) being single-particle
properties. On the other hand, the similarity is remarkable considering that the arrest
definitions differ significantly and that for many state points, ts is not even defined
(see above). Fig. 3.12 thus lends further credence to the transition lines predicted
by RMCT for single-particle properties (included in the figure for comparison as thin
black lines; cf. Sec. 3.2.1).

Figure 3.13 depicts the KD based on Fc(k, t). As in the case of the self-ISF KD,
the figure includes an iso–relaxation time line (the thick dash-dotted red line), which
in the present case interpolates between state points for which tc ≃ 3×100. The latter
value is significantly smaller than in the case of Fs(k, t) in order to allow for the iso-tc
line to be traced into the parameter-space region of large φm and small φf . Recalling
RMCT’s predictions for the collective properties (thin black lines) and the scaling
between the parameters of theory and simulation (see Sec. 3.2.2), it is precisely this
region that the theory finds a reentrant regime in (cf. Sec. 1.4.3).

Unfortunately, while at low φm and large φf the agreement with the theory is
fine, our simulations do not confirm the existence of the reentrant pocket. There are
several possible reasons for this finding. For instance, the reentrancy’s location within
the parameter space may differ from the predictions (even taking into account the
corrections of Sec. 3.2.2), and in particular it may be located at larger values of φm

and/or φf . This would be unfortunate since—as pointed out in Secs. 2.5.5, A.3.2,
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and A.3.3—in that region it is difficult to impossible to establish equilibrated HS-QA
systems and therefore to unveil any phenomena. Further, iso–relaxation time lines
may not always be representative of RMCT transitions lines since the theory defines
a transition strictly as the emergence of a nonzero LTV. Finally, the culprit may be
the very core of RMCT. In Ref. [161], Krakoviack explored the omission of either
the linear or the quadratic vertex from the theory (cf. Sec. 1.4.3). The result of this
exercise is illustrated in Fig. 4 of Ref. [161] in the form of a “hypothetic” KD for Fc(k, t).
Surprisingly, our iso-tc line in Fig. 3.13 closely resembles the RMCT transition line
obtained by disregarding the linear vertex. Since, according to Krakoviack, that vertex
accounts for the effects of confinement, this might indicate that RMCT’s predictions
for the collective properties of HS-QA systems are fundamentally flawed.

3.2.7 Total intermediate scattering function

In Secs. 3.2.5 and 3.2.6, we found that the functional behavior of Fc(k, t) as well as the
KD based on Fc(k, t) differ significantly between RMCT’s predictions and our simula-
tions. In order to shed additional light on the collective behavior of HS-QA systems,
in this section we will examine another collective quantity, namely the conventional
collective ISF, F (k, t), which we will refer to here as the “total” ISF so as to distinguish
it from other ISFs. As laid out in Secs. 2.5.3.2 and 2.5.3.3, F (k, t) and Fc(k, t) are
related by Eq. (2.79), which can be rearranged to read

F (k, t) =
Sc(k)

S(k)
Fc(k, t) +

Sb(k)

S(k)
, (3.2)

meaning that we can evaluate the total ISF not only from Eq. (2.70), but indepen-
dently also by combining Eqs. (2.73), (2.65), and (2.72). This allows to assess sys-
tematic errors inherent to F (k, t) and Fc(k, t) resulting for instance from insufficient
equilibration.

In Fig. 3.14, the versions of F (k, t) evaluated from Eqs. (2.70) and (3.2) are shown
as lines and symbols, respectively, with the depicted state points residing along path I
(φm = 0.05) and the wave vector being k = 7. As is evident, the two versions match
near-perfectly for φf ≤ 0.48, while beyond that value deviations are apparent. This
is in accordance with the notion that the equilibration of the large-φf systems along
path I is worse than that of the smaller-φf ones (cf. Sec. 3.2.5). Nevertheless, according
to the error bars, the two versions mostly agree within the statistical limits. The figure
also confirms the expectation that F (k, t) does not always relax to zero but instead
typically attains a nonzero LTV, ft(k). Interestingly, ft(k) varies not only with φm

(see below) but also with φf , and notably it is generally sizable.

Figures 3.15 and 3.16 illustrate the problems posed by nonzero LTVs when in-
terpreting the total ISF. Both figures depict KDs, i.e., the shapes and colors of the
symbols represent the value of some quantity at the respective state point. In Fig. 3.15,
this quantity is the time tt required by F (k, t) to relax to the value of 0.1, while in
Fig. 3.16, the quantity is the normalized blocked structure factor Ŝb(k) = Sb(k)/S(k).
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Figure 3.14: HS-QA total intermediate scattering function. Total (conven-
tional) intermediate scattering function, F (k, t), for state points along path I and
for the wave vector k = 7. Lines: direct evaluation from Eq. (2.70); symbols:
evaluation via Eq. (3.2) involving Fc(k, t), Sc(k), and S(k). Error bars: see
Sec. 3.1.

The latter, according to Eq. (3.2), is equal to ft(k) if we assume that the LTV of Fc(k, t)
vanishes3.7. Finally, in both figures the considered wave vector is k = 7.

Both figures show a thick solid red line, which represents an iso-tt line for tt ≃
3×100. Although the latter value is relatively small, it is close to the maximum of tt
for which an iso-tt line can be traced across large parts of the kinetic diagram. The
reason for this is revealed by Fig. 3.16, which as an extra-thick dash-double-dotted
gray line additionally includes an iso-Ŝb(k) line for Ŝb(k) = 0.1. As is obvious, the
iso-Ŝb(k) and the iso-tt lines largely coincide. This suggests that the latter line encodes
essentially no dynamic information (cf. Footnote 3.7), and it also explains why Fig. 3.15
depicts only few state points to the upper right of the iso-tt line: in that region, tt is
simply not defined for most state points due to ft(k) > 0.1. Therefore, in conclusion,
F (k) provides only marginal additional information about the dynamics of HS-QA
systems.

3.2.8 Long-time value of the single-particle ISF

In the previous sections, we repeatedly referred to times required by ISFs to relax to
some threshold value. These relaxation times, we noted, are undefined if the threshold

3.7Since S(k), Sb(k), and therefore Ŝb(k) are static (time-independent) quantities, Fig. 3.16 is not,
in the strict sense, a kinetic diagram. However, given that most depictions of the HS-QA parameter
space in this work do display a dynamic quantity, we chose to abide by this name and to highlight
the terminological misfit by quotes.
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Figure 3.15: HS-QA kinetic diagram: total ISF. Symbol colors and shapes:
relaxation time tt of F (k=7, t) at the respective state point. Thick solid red line:
interpolation between state points for which tt ≃ 3×100. Thin black lines: RMCT
transition predictions for collective properties (cf. Fig. 1.19).

value is exceeded by the LTV of the ISF in question. The example of F (k, t) revealed
that this may significantly impact the interpretation of KDs (cf. Sec. 3.2.7), which
suggested to evaluate threshold-value relaxation times preferably for fully-relaxing
quantities. This implied to consider Fc(k, t) in place of F (k, t) since those ISFs differ
only by time-independent quantities.

As we saw in Sec. 3.2.5, another ISF that may feature a nonzero LTV is Fs(k, t).
Unfortunately, there exists no simple ISF that fully relaxes in HS-QA systems and
differs from the self ISF merely by static quantities. However, in Sec. 3.2.5, we specu-
lated that the LTV of the self ISF, fs(k), assumes a nonzero value only in the presence
of trapped particles, meaning that Fs(k, t) would relax to zero if in its evaluation ex-
clusively the free (nontrapped) particles were considered. In the absence of a method
to distinguish trapped from free particles, it seems reasonable to emulate the result of
such a separation by purely mathematically reducing fs(k) to zero.

Our procedure of choice for this emulation is described in Sec. 2.5.3.5 and is
illustrated by Fig. 3.17. Panel (a) of the figure contains the same information as
Fig. 3.11(b), i.e., it depicts Fs(k, t) for state points along path III (φf = 0.1) and
for k = 7. Additionally, as thin dotted lines it includes fs(k) as determined by the
procedure in Sec. 2.5.3.5. Panel (b) of the figure shows F̂s(k, t), the result of that
procedure, which in a nutshell involves the subtraction of fs(k) and subsequently a
renormalization so that F̂s(k, t) ranges from zero to unity. Depicted as dark solid lines
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Figure 3.16: HS-QA “kinetic diagram”3.7: normalized blocked structure
factor. Symbol colors and shapes: normalized blocked structure factor, Ŝb(k),
for k = 7 at the respective state point. Extra-thick dash-double-dotted gray line:
interpolation between state points for which Ŝb(k) ≃ 0.1. Thick solid red line:
total-ISF arrest line from Fig. 3.15. Thin black lines: RMCT transition predictions
for collective properties (cf. Fig. 1.19).

and as faint dashed lines are the state points for which the procedure can and cannot
be applied, respectively, the distinguishing criterion being whether or not fs(k) can be
determined at the state point in question.

In Fig. 3.18, the symbol colors and shapes encode the time t̂s required by F̂s(k, t)
to relax to the value 0.1 for k = 7. The thick dashed blue line represents an iso-t̂s line
for t̂s = 100. Included for comparison are the self-ISF arrest line (thick solid blue line)
and the connected-ISF arrest line (thick dash-dotted red line) as inferred in Sec. 3.2.6.
Clearly, there is considerable similarity between the iso-t̂s and the iso-tc lines, whereas
both of these lines differ significantly from the iso-ts line. The principal difference is
found at large φm and small φf : while a slight extrapolation suggests that the iso-t̂s
line intersects the abscissa at φm ≈ 0.25, for the other two lines, such an intersection
can neither be confirmed nor ruled out by the depicted data. This finding lends further
credibility to the KD based on Fc(k, t). Finally, the lines indicate that at intermediate
and large φm, the relaxation of Fc(k, t) is faster than that of F̂s(k, t), which confirms
the pertinent notion established in Sec. 3.2.5.

Completing the picture, in Fig. 3.19, the symbol shapes and colors represent the
value of fs(k) at the respective state point. Included for comparison are the Fs(k, t)
and F̂s(k, t) arrest lines from Figs. 3.12 and 3.18, respectively. As the figure shows,
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Figure 3.17: HS-QA single-particle ISF: long-time value subtraction. Single-
particle ISF, Fs(k, t), and modified single-particle ISF, F̂s(k, t), for state points
along path III at the wave vector k = 7. Panel (a): same data as in Fig. 3.11(b);
additional thin dotted lines: long-time value fs(k) from the procedure in Sec.
2.5.3.5. Panel (b): result of applying the procedure to panel (a). Dark solid lines:
procedure is applicable; faint dashed lines: procedure is not applicable. (Details:
see text.)

fs(k) depends strongly upon φm but only weakly upon φf . Two features of the figure
reflect that determining fs(k) from simulations is difficult: firstly, according to the
symbol shapes and colors, fs(k) does not vary smoothly with φm and φf ; secondly, the
figure includes only few symbols to the upper right of the F̂s(k, t) arrest line. The
latter, as Fig. 3.10 reveals, is due to the final relaxation of Fs(k, t) towards fs(k),
which in this parameter-space region is very slow and therefore frequently not within
the simulated time interval.

Unfortunately, Fig. 3.18 demonstrates that fs(k) is a poor indicator of dynamic
arrest, even when disregarding the uncertainties. The reason for this assessment lies
in the iso-fs(k) lines, none of which even remotely coincides with any of the previously-
determined arrest lines. On the other hand, the strong dependence of fs(k) upon φm

supports the notion that nonzero LTVs of Fs(k, t) relate to trapped particles. The
additional weak dependence upon φf likely reflects the incapability of fluid particles
to rearrange within traps. In this view, fs(k) amounts to a static quantity largely
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Figure 3.18: HS-QA kinetic diagram: self ISF without long-time value.
Symbol colors and shapes: relaxation time t̂s of F̂s(k=7, t) at the respective
state point. Thick dashed blue line: interpolation between state points for which
t̂s ≃ 101. Thick solid blue line: Fs(k, t) arrest line from Fig. 3.12; thick dash-
dotted red line: Fc(k, t) arrest line from Fig. 3.13.

determined by the matrix (cf. Footnote 3.7). Alas, Fig. 3.18 also shows that fs(k)
is insensitive to the most important feature of the matrix structure—the percolation
threshold in the accessible volume (cf. Sec. 1.3.3.3). This is manifested in the con-
tinuous change of the LTV across the threshold at φm ≃ 0.25 (cf. Sec. 3.2.4). The
latter, however, is only moderately surprising considering that fs(k) for any specific
particle is determined essentially by the distance it may travel away from its original
position—and this distance does not change qualitatively across the threshold. In
summary, these findings strongly suggest further investigation of the matrix structure.

3.2.9 Self part of the Van Hove function

As the final act of our full-fluid investigation, we consider the self part of the Van
Hove function (the “self VHF”) as defined in Eq. (2.91). As laid out in the equation’s
derivation in Sec. 2.5.3.6, the self VHF, Gs(r, t), is closely related to both the MSD and
the single-particle ISF and complements the information encoded in these quantities
in at least two ways. Firstly, it spotlights the average local movement of the particles
and thereby may elucidate mechanisms of dynamic arrest. Secondly, the self VHF
reveals details of the matrix pores when considered in the infinite-time limit, the reason
being that in that limit it reflects essentially only the trapped particles. The latter
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Figure 3.19: HS-QA “kinetic diagram”: self-ISF long-time value. Symbol
colors and shapes: self-ISF long-time value, fs(k), for k = 7 at the respective
state point. Thick solid blue line: self-ISF arrest line from Fig. 3.12. Thick
dashed blue line: modified–self ISF arrest line from Fig. 3.18. Thin black lines:
RMCT transition predictions for single-particle properties (cf. Fig. 1.19).

originates in the fact that for t→∞, the contribution of the free particles to Gs(r, t) is
infinitesimally small at all r. Therefore, the probability for a random fluid particle to
be trapped may be estimated as

Ptrap ≃
∫ r̃

0
Gs(r, t̃) dr , (3.3)

where the allotted time t̃ and the cutoff distance r̃ should be chosen large enough for an
increase of either one to change Ptrap only by a marginal amount. Unfortunately, in the
simulation of some HS-QA systems, the free particles do not move significantly farther
than the trapped particles within any computationally achievable time. This is the case
in particular in systems containing large traps. In those cases, the achievable value of t
may not suffice to select r̃ and to evaluate Ptrap in a meaningful way. This constitutes a
problem in particular when attempting to determine the value φm = φ∗m beyond which
Ptrap = 1, that is, to pinpoint the percolation transition in the accessible volume (cf.
Sec. 1.3.3.3). Relying only on the self VHF, this transition is instead more reliably
determined from the functional form of limt→∞Gs(r, t), the reason being that in this
limit, the function reflects the average size of traps. As described in Sec. 1.3.3.3, the
latter is expected to be particularly large at the percolation transition, which implies
that φ∗m may be inferred as the value of φm at which Gs(r, t) attains a maximum if r
and t are held at some fixed, large value.
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Figure 3.20: HS-QA self Van Hove function: points A and B. Lines: self Van
Hove function, Gs(r, t), at times differing by a factor of ∼ 6

√
10. Thick colored lines:

selected times roughly coinciding across all panels of Figs. 3.20 and 3.21. Thin
gray lines: Gs(r, t) at other times. Panel (a): point A at (φm, φf) = (0.05, 0.50);
panel (b): point B at (φm, φf) = (0.20, 0.22). Error bars: see Sec. 3.1.

Figures 3.20 and 3.21 visualize the self VHF in the conventional way, that is,
the parameter r is considered as the continuous variable while the dependence upon
t is represented by a series of curves. As mentioned in Sec. 2.5.3.6, this approach
necessitates the focusing on a single state point at a time3.8. In the figures, the lines
represent the function at times spaced apart by a factor of ∼ 6

√
10, meaning that there

are about six curves per time decade. The thick colored lines highlight the self VHF
at selected times, with the same colors and symbols indicating roughly the same times
across all panels of Figs. 3.20 and 3.21. Depicted as thin gray lines is Gs(r, t) at all
other times considered.

Figure 3.20 illustrates the self VHF for the two state points A and B residing
at (φm, φf) = (0.05, 0.50) and (φm, φf) = (0.20, 0.22), respectively. As Fig. 3.2 shows,
these points are located close to the intersection of the MSD arrest line with path I
and with path II. In both cases, Gs(r, t) at short times roughly resembles a Gaussian

3.8In the case of the various ISFs investigated in this work, multiple state points are instead displayed
in a single plot at the expense of having to consider one specific wave vector k.
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distribution. As time progresses, the maximum of this distribution decreases while it
remains centered about approximately the same value of r. This is consistent with
the cage picture introduced in Sec. 1.2.7, where particles are restricted to small spatial
regions unless collective rearrangements take place. Upon such rearrangements, the
particles are expected to “hop” by approximately one particle diameter at a time. This
is confirmed in both panels in that a second maximum emerges at r ≃ 1.1 for t ≈ 102.
Beyond this time, even a modest third maximum can be identified at r ≃ 2, until
eventually Gs(r, t) recovers a shallow, essentially Gaussian shape centered at r > 3.

Aside from these commonalities, the two panels of Fig. 3.20 also exhibit differences.
For one, the distances between the depicted curves indicate that the first maximum
decreases considerably faster for point A than for point B. Also, all maxima are more
pronounced for point A. More significantly, at small r and large t, the self VHF differs
qualitatively between the two panels, namely in that in panel (b), it remains nonzero
at r < r̃ = 0.5 even for the largest depicted time, t̃ = 8.5×104. Since in that spatial
region, the self VHF changes only marginally for t > 104, it is reasonable to input r̃
and t̃ into Eq. (3.3), yielding the probability Ptrap ≃ 8% for a fluid particle to be
trapped in systems at point B. Further, since for t = t̃ the self VHF is very nearly
zero at r > r̃, there likely exist only few traps with a spatial extent exceeding r̃.

Figure 3.21 depicts the self VHF for points C and D, i.e., for (φm, φf) = (0.25, 0.10)
and (φm, φf) = (0.30, 0.05). Recalling Fig. 3.2 and Sec. 3.2.1, point C is situated both
on path III and close to the percolation transition in the accessible volume, whereas
point D resides at a φm value well past the transition. In panel (d), the curves at
large times are narrowly spaced at all r, meaning that the largest time in that panel,
t̃ = 7.8×104, excellently approximates the infinite-time limit. Therefore, for point D,
it is meaningful to use t̃ along with r̃ = 3 (the largest depicted distance) to evaluate
Eq. (3.3). The resulting Ptrap ≃ 98% very closely reflects the expectation that beyond
the percolation transition, all particles are trapped. In panel (c), in contrast, at the
largest depicted distance and time, r̃ = 3 and t̃ = 7.8×104, the self VHF significantly
exceeds zero while leveling off only very slowly with r. Therefore, in that case it
is uncertain whether Gs(r̃, t̃) reasonably represents limt→∞Gs(r, t) at all values of r.
Evaluating Eq. (3.3) anyway, the values of r̃ and t̃ as above yield Ptrap ≈ 58%, which
is a fairly small—and therefore probably unreliable—value considering that point C is
thought to be located in the vicinity of the percolation transition where Ptrap = 1.

The functional features of Gs(r, t) in Fig. 3.21 represent—to some degree—a con-
tinuation of the trend from Fig. 3.20(a) to Fig. 3.20(b): the larger φm is, the slower
the self VHF evolves and the less prominent its maxima are. However, there also exist
significant deviations from this pattern. For instance, for points C and D, the second
maximum persists even for t→∞ while for points A and B it does not, suggesting that
in the former cases, the average trap is sufficient in size to permit collective particle
rearrangements. Also, limt→∞Gs(r, t) at large distances is greater in panel (c) than in
panel (d). This implies that traps on average are larger at point C than at point D,
which is consistent with the notion of the average trap size attaining a maximum at
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Figure 3.21: HS-QA self Van Hove function: points C and D. Lines: self Van
Hove function, Gs(r, t), at times differing by a factor of ∼ 6

√
10. Thick colored lines:

selected times roughly coinciding across all panels of Figs. 3.20 and 3.21. Thin
gray lines: Gs(r, t) at other times. Panel (c): point C at (φm, φf) = (0.25, 0.10);
panel (d): point D at (φm, φf) = (0.30, 0.05). Error bars: see Sec. 3.1.

the percolation transition of the accessible volume. Thus, Figs. 3.20 and 3.21 estab-
lish that 0.22 < φ∗m < 0.30, which is in accordance with the previous sections (albeit
significantly less precise).

3.3 Structure of the accessible volume

In this section, we take on the task of quantifying the structural features of the accessi-
ble volume in monodisperse hard-sphere quenched-annealed (HS-QA) systems. Let us
briefly recall the subject matter. Under certain conditions, the fluid component of an
HS-QA system may include particles that cannot move infinitely far away from their
initial position. Those particles we will call “trapped”, while all other fluid particles
we will refer to as “free”. The trapping of fluid particles may occur if (i) sufficiently
many matrix particles are present and are appropriately arranged, and if (ii) the inter-
actions between the fluid and the matrix particles are of a suitable type. As discussed
in Sec. 2.4.1, both of these criteria hold in the systems investigated in this work. Since
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moreover in our systems the particles are monodisperse, each fluid particle experiences
the exact same matrix environment (cf. Sec. 1.1.3.2), which greatly simplifies the task
at hand.

Consider now system volume regions instead of particles. With respect to the
center of a fluid particle, the presence of the matrix particles gives rise to two types of
such regions: those in which the potential energy of a fluid particle diverges, and those
in which it vanishes. The latter regions we will collectively call the “accessible volume”.
The accessible volume exists in the form of distinct, noninterconnected “voids”, the
size of each of which may be infinite (“percolating voids”) or finite (“traps”). In
Sec. 2.4 and Appendix A.1, we discussed in excruciating detail how a Delaunay (“D-”)
tessellation may reveal for every void in a system whether it constitutes a trap or a
percolating void.

Figure 3.22 illustrates the D-tessellation of an actual HS-QA system realization,
namely of the one depicted in Fig. 3.3(b) located at point C where the matrix and fluid
packing fractions are (φm, φf) = (0.25, 0.10). Figure 3.22(a) focuses on the system’s
matrix particles (dark gray spheres) while neglecting its fluid particles. In panel (b),
superimposed onto those particles are all D-edges (red lines) of the pertinent D-tessel-
lation3.9. In panel (c), the matrix particles are removed as a segue to panel (d) where,
finally, the presence of a percolating void in the system is exposed by the highlighting
of all pertinent D-cells as solid green tetrahedra.

In Sec. 2.4.6, we specified an algorithm to estimate a void’s “size”, i.e., the amount
of the accessible volume associated with it. In brief, the algorithm essentially involves
the following steps:

(i) Given some D-cell, define a volume that completely contains the D-cell.

(ii) Within that volume, define a number of suitably distributed points.
Among these points, determine those located within the given D-cell.

(iii) Among the latter points, determine those representing allowed locations
for the center of a fluid particle.

The accessible volume within the given D-cell may subsequently be calculated from the
number of points resulting from steps (ii) and (iii), respectively. Once the accessible
volume of each D-cell in the system is known, and once the connectivity of the D-cells
has been determined, the size of any void in the system is easily evaluated.

Figure 3.23 illustrates the algorithm for the same system realization as in Fig. 3.22,
i.e., for a system at point C (cf. Fig. 3.2). In both panels of the figure, the colored
volumes collectively represent the entire accessible volume. Colored in green and red

3.9In Fig. 3.22(b), some Delaunay-edge end points appear to not coincide with the center of a
matrix particle. This is a mere artifact of the periodic boundary conditions (PBCs). As is typical in
visualizations of systems with PBCs, each element is included in the figure exactly once. Since the
definition of a Delaunay edge involves two matrix particles, it may come to pass that one of those
particles is represented in the figure by one of its periodic images.
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(a) (b)

(c) (d)

Figure 3.22: Delaunay tessellation of HS-QA systems. Illustration of the
Delaunay tessellation of an actual HS-QA system. Same system realization as in
Fig. 3.3(b), containing Nm = 715 matrix particles and residing at point C where
(φm, φf) = (0.25, 0.10). Panel (a): only matrix particles (dark gray spheres).
Panel (b): matrix particles superimposed onto all Delaunay edges (red lines)3.9.
Panel (c): only Delaunay edges. Panel (d): Delaunay edges of traps and Delaunay
cells of percolating void (solid green tetrahedra). Yellow lines: simulation cell
replicated by periodic boundary conditions (cf. Sec. 2.2.2.1).
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(a) (b)

Figure 3.23: Void size determination in HS-QA systems. Illustration of the
rastering algorithm for an actual HS-QA system. Same system realization as in
Fig. 3.3(b) and Fig. 3.22, containing Nm = 715 matrix particles and residing
at point C where (φm, φf) = (0.25, 0.10). Green volumes: percolating void; red
volumes: traps. Panel (a): exact visual appearance of voids determined by imaging
software3.11. Panel (b): extent of voids determined by rastering algorithm; grain
size: 0.065×0.065×0.065. Yellow lines: simulation cell replicated by periodic
boundary conditions (cf. Sec. 2.2.2.1).

are the system’s percolating void and its traps, respectively. The difference between
the two panels lies in the following. In panel (a), the appearance of the voids was
determined using the internal functions of the image generation software3.10, resulting
in a visual representation of the voids that is exact to the resolution of the image.
This image therefore provides a reference for panel (b), in which the extent of the
voids was determined by the algorithm described above. Close inspection of panel (b)
reveals that the voids are composed of small cubic elements (“grains”), each of which
represents the volume associated with one of the points defined in the algorithm’s
step (ii). The cubic shape of the grains reflects our choice of arranging the points on
a cubic lattice. In the figure, the lattice constant of that lattice is 0.065, equating to
about fifteen grains per particle diameter or ∼5.5×106 grains in the simulation cell.

3.10All three-dimensional illustrations in this work were realized using the ray-tracing software
POV-Ray3.11. The appearance of the voids in Fig. 3.22(b) and in several other visualizations was
determined by means of the “constructive solid geometry” features of that software. Generating the
images essentially involved two steps: (i) filling the volume with all cells of the Delaunay tessellation
in question, each cell in appropriate color, and (ii) boring spherical holes into those cells, each sphere
centered at a matrix particle and measuring 2σ in diameter (the sum of the diameters of a fluid and
a matrix particle).

3.11http://www.povray.org

http://www.povray.org
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Unless stated otherwise, the same lattice constant was employed in the remainder of
this investigation of the accessible volume’s structure. Finally, since the arrangement
and the processing of the grains in our algorithm is analogous to the rendering of
raster (i.e., pixel) computer graphics, we also refer to our algorithm as a “rastering”
algorithm (cf. Sec. 2.4.6).

3.3.1 Accessibility probabilities

Starting with this section, we report on our investigation of the key quantities that
characterize the accessible volume in monodisperse HS-QA systems. In infinitely-large
systems, these quantities would depend solely upon the matrix packing fraction, φm.
However, in computer simulations—including those in this work—it is merely possible
to mimic infinitely-large systems by means of periodic boundary conditions (PBCs;
see Sec. 2.2.2.1). This mimicking cannot account for structures spatially exceeding
the volume replicated by the PBCs, which is relevant recalling that porous media
may exhibit diverging length scales (cf. Sec. 1.3.3.3). Those scales will effectively be
cut off, leading to any associated quantity appearing to depend upon the system’s size.
Ironically, it is this very effect that renders observed quantities particularly sensitive to
diverging length scales. For this reason, we deliberately determine all possibly-affected
quantities not only for varying φm but also for varying system sizes as represented by
the number of matrix particles, Nm.

In the present section, we consider three different quantities for the description of
the accessible volume in HS-QA systems. The first one is the probability Pgrain(φm;Nm)
for a random spatial point to reside within the accessible volume. This quantity is
evaluated using the rastering algorithm3.12 (outlined further above and described in
detail in Sec. 2.4.6) and is particularly simple in that it does not require knowledge
about the D-tessellation of the system in question. This contrasts with the second
and third considered quantities, namely the probability Pface(φm;Nm) for a random
D-face to be crossable and the probability Pcell(φm;Nm) for a random D-cell to be
accessible. These quantities are meaningful only if the D-tessellation is known, with
the crossability and accessibility being determined by the criteria specified in Sec. 2.4.3,
respectively.

Figure 3.24 illustrates Pgrain, Pface, and Pcell for an interval of φm containing φ∗m, i.e.,
the value of φm at which the percolation transition in the accessible volume takes place.
Anticipating the analysis of Fig. 3.27(b), the most accurate value of φ∗m determined
in this work is indicated by the thin dashed gray line stretching vertically through
all panels of Fig. 3.24. Clearly, none of the considered quantities even remotely indi-
cates a transition at φ∗m; instead, they vary monotonically and only very moderately
within the considered φm range. Therefore, as has been pointed out before [196, 252],
the dynamics of HS-QA systems at φm ≈ φ∗m cannot be inferred from Pgrain, and

3.12The unusual abbreviation Pgrain serves as a reminder of the fact that the rastering algorithm by
which Pgrain is evaluated in this work involves distinct spatial units that we chose to call “grains”.
However, the definition of Pgrain is in fact ignorant of the notion of those grains (cf. Sec. 2.5.4.1).
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Figure 3.24: Accessibility probability: grains, D-faces, D-cells. Probabili-
ties for accessibility as functions of the matrix packing fraction, φm. Panel (a):
probability Pgrain(φm;Nm) for grains to be accessible. Panel (b): probabil-
ity Pface(φm;Nm) for Delaunay faces to be accessible, i.e., crossable. Panel (c):
probability Pcell(φm;Nm) for Delaunay cells to be accessible. Colors of thin lines:
results for different matrix particle numbers, Nm. Extra-thick light-gray line in
panel (a): PCS

grain(φm;Nm) as defined in Eq. (2.96). Dashed vertical line: percola-
tion threshold from Fig. 3.27(b). Error bars: see Sec. 3.1.
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neither can it be from Pface or Pcell. As is evidenced by the stupendous agreement
between the lines of different color, all quantities in Fig. 3.24 are independent of the
size of the system. Therefore, none of those quantities can involve a diverging length
scale, which further supports the notion of Pgrain, Pface, and Pcell being oblivious to
the percolation transition. Finally, Pgrain is in excellent agreement with the superim-
posed extra-thick light-gray line, the latter denoting the theoretically-inferred PCS

grain

as defined in Eq. (2.96). This, together with the near-invisibility of the error bars,
lends further credibility to the accuracy of our findings. In a final side note, we
found the average number of D-cells per matrix particle, ncell(φm), to monotonically
decrease from ncell(0.235) ≃ 6.584 to ncell(0.270) ≃ 6.547, the corresponding numbers
for D-faces equaling exactly the twofold of those figures in systems under PBCs (cf.
Appendix A.3.4).

3.3.2 Probabilities for percolation and trapping

In Sec. 2.4.5, we described an algorithm by which D-cell clusters—D-cells interlinked by
crossable D-faces—can be identified in D-tessellations of HS-QA systems. An essential
step of this algorithm is to resolve whether or not a D-cell cluster encompasses infinitely-
many D-cells when taking into account PBCs. Since each D-cell cluster circumscribes
precisely one void, the algorithm naturally deduces whether or not the accessible
volume in the system of interest is percolating. Infinitely-large systems always contain
a percolating void for φm < φ∗m and never do so for φm > φ∗m, meaning that a transition
takes place at φm = φ∗m. Realizations of finite systems in the vicinity of φ∗m, in
contrast, exhibit a percolating void only with some probability Ppercol(φm;Nm), the
latter generally assuming values between zero and unity (cf. Sec. 2.5.4.2).

Another application of the D-cell cluster algorithm is to determine the trapping
fraction, i.e., the probability Ptrap(φm;Nm) that a fluid particle is trapped after being
randomly inserted into the system (see again Sec. 2.5.4.2). This quantity may be
inferred as the fraction of accessible volume located within traps. Unlike Ppercol, the
trapping fraction at φm < φ∗m assumes values between zero and unity irrespective of the
system size, reflecting that HS-QA systems at φm > 0 on average always contain traps
(cf. Sec. 2.4.1). For φm > φ∗m, the trapping fraction is strictly unity if the considered
system is infinitely large. In contrast, finite systems at φm > φ∗m contain a percolating
void only with some sub-unity probability, meaning that in such systems Ptrap < 1
even in that φm range.

Panel (a) of Fig. 3.25 depicts Ppercol(φm;Nm) within a φm range coinciding with
that of Fig. 3.24. As postulated, Ppercol varies not only with φm but also considerably
with Nm. With respect to the step function expected for infinitely-large systems,
Ppercol is significantly enhanced for φm > φ∗m while it is equally depressed for φm < φ∗m.
This effect is most pronounced for the smallest simulated systems, which conforms
with the notion of large length scales being cut off in small PBC-replicated systems
(see above as well as Secs. 2.5.4.2 and 3.3.1). The value of φ∗m may be estimated from
the change of Ppercol from unity to zero for the largest considered Nm value. This
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Figure 3.25: Probabilities for percolation and trapping. Probabilities as func-
tions of the matrix packing fraction, φm. Panel (a): probability Ppercol(φm;Nm)
for the accessible volume to be percolating. Panel (b): probability Ptrap(φm;Nm)
for a fluid particle to be trapped. Line colors and symbol shapes: results for dif-
ferent matrix particle numbers, Nm. Dashed vertical line: percolation threshold
from Fig. 3.27(b). Error bars: see Sec. 3.1.

change takes place within the interval 0.248 . φ∗m . 0.254, which indeed contains the
more precise φ∗m value determined from Fig. 3.27(b) (thin dashed gray vertical line).
Notably, it is a coincidence that all Ppercol curves for different Nm intersect within
a narrow φm range; this finding is unrelated to scaling considerations and does not
provide a more precise estimate of φ∗m [248].

Panel (b) of Fig. 3.25 shows Ptrap(φm;Nm) within the same φm range as panel (a).
As expected, Ptrap is less suited than Ppercol for the task of inferring φ∗m. This is rooted
in the fact that the value of Ptrap is known a priori only for φm > φ∗m in infinitely-large
systems. Therefore, Ptrap in finite systems merely allows to deduce an upper limit of φ∗m,
namely the φm value at which Ptrap approaches unity for the largest considered Nm

value. As the figure evidences, the pertinent value φm ≃ 0.253 is slightly smaller
(and therefore more precise) than the upper limit inferred above from Ppercol. Finally,
reconsider the values of Ptrap at φm < φ∗m which we previously disregarded. Those
data illustrate that even if φm is as large as 0.95φ∗m, approximately 90% of the fluid
particles are free.
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3.3.3 Trap-size distributions

Having performed the D-cell cluster analysis (cf. Secs. 2.4.5 and 3.3.2) for a number of
systems, and having used the rastering algorithm (see the beginning of Sec. 3.3 as well
as Sec. 2.4.6) to evaluate the size of all voids in those systems, the natural next step is
to investigate the distribution of the void sizes. However, before continuing along these
lines, it is vital to call to mind that the rastering algorithm is subject to a fundamental
limitation: by its very principle, the algorithm yields only an approximate value V ′

for the size of a given void.

On average, the volume contributed to V ′ by a surface grain (a grain intersected
by the surface of the given void) deviates from the actual accessible volume within
that grain by one quarter3.13 of a grain volume, Vg. For two reasons, the resulting
relative error of V ′ is largest for small voids: (i) the number of surface grains scales3.14

only as Nsg ∝ V 2/3, and (ii) the contributions of the surface grains to the error tend
to cancel each other out if Nsg is large3.15. Therefore, given the system size (via φm

and Nm) as well as the total number of grains in the system, Ng, one may define
a void size Vmin beyond which the calculated size of a void is “probably sufficiently
accurate”. In this context, it is of importance that the achievable value of Ng is subject
to computational limits. The dominant limit in our implementation of the rastering
algorithm is that of memory, the reason being that we chose to store the data of
all Ng grains simultaneously in the computer’s RAM3.16. If in a given system, the
value of Vmin is dissatisfactory even when using the maximum-possible Ng value, one
may additionally reduce the size of the system, i.e., decrease Nm. Obviously, such a
decrease is advisable only if the relevant features of the system at large length scales
continue to be represented adequately.

Having established these limits, let us now consider two different representations
of the void size data. Firstly, we calculate the probability P (V ) for a randomly-chosen
void to contain the amount of accessible volume V (cf. Sec. 2.5.4.3), and secondly, we
compute the probability P (V )V that a randomly-chosen point of the accessible volume
is located within a void of size V . As alluded to by the notation, the latter quantity
simply equates to the volume-weighted version of the former (see again Sec. 2.5.4.3).

3.13Suppose that each surface grain were counted as fully covered by accessible volume (case A).
Then, the actual accessible volume within a surface grain would on average be represented with an
error of Vg/2. The same would hold if surface grains were always noted as devoid of accessible volume
(case B). Since the rastering algorithm allows for both case A and case B, the pertinent error amounts
to half of the aforementioned error.

3.14With respect to some linear extent L, surfaces scale as L2 while volumes scale as L3.

3.15If the contributions of the surface grains to the error of V ′ were normally distributed—which
they are not since the possible error values are bounded—, then the average error in the calculated
size of a void with Nsg surface grains would be

√

Nsg (Vg/4).

3.16In principle, it is fairly simple to avoid the problem of limited computer memory in implementa-
tions of the rastering algorithm. However, this usually comes at the cost of considerable increases in
the computing effort (the latter being substantial already in our implementation), thereby shifting
the limitation of Ng to this factor.
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Figure 3.26: Trap-size distributions. Panel (a): probability P (V ) for a trap to
be of size V . Panel (b): probability P (V )V for a random point of the accessible
volume to be located in a trap of size V . Same colors and symbols: systems of the
same matrix packing fraction, φm. The matrix particle numbers are Nm = 100 in
panel (a) and Nm = 64 000 in panel (b). Error bars: see Sec. 3.1.

For two reasons, in our investigation we disregard the possibly-present percolating void:
(i) its share of the accessible volume is known to be 1−Ptrap [compare Eq. (2.97)], and
(ii) in the void size distribution of infinitely-large systems, a percolating void merely
adds a contribution at V = ∞. Therefore, in more precise terms, in this section we
consider the distribution of trap sizes.

Panel (a) of Fig. 3.26 presents the unweighted distribution P (V ). In the figure,
V is considered as the continuous variable while the distribution’s dependence upon φm

(which is notationally suppressed) is represented by a series of curves. For the latter,
three distinct values of φm are considered, one of which coincides with the percolation
threshold φ∗m = 0.2512 [inferred from Fig. 3.27(b)] while the other two are located
slightly above and below φ∗m, respectively. Since the rastering algorithm was limited
to Ng ≃ 2×108 grains, the size of the investigated systems was adjusted to as few as
Nm = 100 matrix particles. By this adjustment, P (V ) is represented acceptably for
values of V as small as Vmin ≃ 10−5, the latter value being marked by the unphysical
upward kink of P (V ) at small V . Nevertheless, this choice of Nm retains the possibility
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for traps to attain sizes as large as V ≃ 101. The functional form of P (V ) overall is
relatively simple, with a single broad maximum located at V ≃ 10−3 for φm = 0.235
and at V ≃ 10−2 for φm = 0.270. Interestingly, a similar monotonic shift with φm

applies to the distribution as a whole. For all φm, a rapid decrease of P (V ) can be
observed at V > 101 while an analogous decrease for V < 10−5 seems plausible. Given
that these findings also hold for φm = φ∗m, it is likely that the traps in HS-QA systems
at the percolation transition are not self-similar and therefore not fractal3.17. In fact,
P (V ) in general is remarkably insensitive to the transition, its only indication being
the small shoulder at V ≃ 101 for φm = φ∗m.

Panel (b) of Fig. 3.26 illustrates the volume-weighted distribution P (V )V in the
same form and for the same φm values as P (V ) in panel (a). As is obvious from the
functional form of this quantity, the predominant technical issue in this case is the
representation at large values of V . This issue required the consideration of systems
with as many as Nm = 64 000 matrix particles, thus providing system volumes in
excess of V ≃ 104, where P (V )V essentially attains zero. As a result of the volume
weighting (which enhances features at large V ) the presence of a percolation transition
is clearly indicated by P (V )V . This finding—which is in stark contrast to panel (a)—is
manifested in the functional form of P (V )V , which differs significantly between φm =
φ∗m on the one hand and the other two φm values on the other hand. Specifically,
for φm = φ∗m, the distribution assumes the considerable value 0.05 for trap sizes as
large as 2×103, while P (V )V for the other two φm values approaches zero already
at V < 102. This clearly indicates the presence of very large traps at φm = φ∗m, which
is the hallmark feature of a percolation transition (cf. Sec. 1.3.3.3).

3.3.4 Moments of the trap-size distributions

In this section, we finally turn to the quantities that—disregarding finite size–scaling
techniques—allow for the most accurate [248] determination of the percolation transi-
tion in the accessible volume: the moments of the trap-size distribution. Specifically,
we consider the first moment, V̂1(φm;Nm), and the second moment, V̂2(φm;Nm), as
defined in Eqs. (2.100) and (2.101), respectively. Investigating these quantities con-
stitutes a natural extension of Sec. 3.3.3 in that both V̂1 and V̂2 correspond to the
(normalized) arithmetic mean of one of the distributions discussed in that section.

Panel (a) of Fig. 3.27 illustrates the first moment, V̂1(φm;Nm), for systems of four
different sizes (lines of different color). As the figure shows, V̂1 varies only weakly
with Nm and exhibits a maximum at φm ≃ 0.2525. Unfortunately, this maximum is
not centered at the percolation transition, as is evidenced by the much more accurate
value of φ∗m determined in panel (b) (dashed vertical line; see below). To rationalize
these findings, consider the substantial similarity between V̂1 in Fig. 3.27(a) and Ptrap

in Fig. 3.25(b). This similarity reflects the fact that both of the latter quantities
involve the combined accessible volume of all traps. This volume is merely normalized

3.17http://en.wikipedia.org/wiki/Fractal

http://en.wikipedia.org/wiki/Fractal
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Figure 3.27: Moments of the trap-size distribution. Trap-size distribution
moments as functions of the matrix packing fraction, φm. Panel (a): first moment,
V̂1(φm;Nm); panel (b): second moment, V̂2(φm;Nm). Line colors and symbol
shapes: results for different matrix particle numbers, Nm. Dashed vertical line:
percolation threshold inferred from panel (b). Error bars: see Sec. 3.1.

differently, namely by the total accessible volume for Ptrap as opposed to the number
of traps for V̂1. The latter implies that the number of traps increases monotonically
for φm > φ∗m, which gives rise to the existence of the maximum of V̂1 in the first place.

Panel (b) of Fig. 3.27, at last, presents the second moment of the trap-size distribu-
tion, V̂2(φm;Nm). The value of this quantity—by its very construction—is dominated
by the largest trap in the system. As discussed before at numerous occasions, infinitely-
large HS-QA systems are expected to contain an infinitely-large trap at φm = φ∗m. In
PBC-replicated systems, however, the maximum trap size is limited by the system size,
meaning that at φm ≃ φ∗m, one should observe a direct correspondence between the size
of the largest trap and the size of the system. The data presented in Fig. 3.27(b) con-
firm this expectation in that the values of V̂2 at φm . φ∗m sharply rise as Nm is increased.
Since in the present context, the percolating void is disregarded (cf. Sec. 3.3.3), this
rise of V̂2 is succeeded by an equally abrupt decrease at φm & φ∗m. This implies that
the percolation threshold is marked by the φm value at which V̂2 attains its maximum.
Clearly, the latter is most reliably determined from the largest Nm value, yielding the
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figure φ∗m ≃ 0.2512 for this work’s most precise estimation of the percolation transition
in the accessible volume of monodisperse HS-QA systems.

3.4 Free and trapped particles

As discussed before on numerous occasions, in hard-sphere quenched-annealed (HS-
QA) systems, the matrix component divides the particles of the fluid component into
the two classes of “free” and “trapped” particles. In Sec. 3.2, we speculated that
this distinction gives rise to some of the more unusual features of the investigated
quantities. Equipped with the background of Sec. 1.3, the methodology of Secs. 2.4
and 2.5, and the results of Sec. 3.3, this section thoroughly reiterates the investigation
of Sec. 3.2 with respect to this aspect. Among the considered quantities are the mean
squared displacement, the self intermediate scattering function, and the self part of
the Van Hove function, i.e., the entire set of single-particle observables investigated in
Sec. 3.2.

As in the previous sections, let us start out with a brief visual recollection of the
subject matter. Figure 3.28 visualizes the geometric aspects of the issue at hand using
the same HS-QA system realization as in Figs. 3.3(b), 3.22, and 3.23. Being located
at point C where (φm, φf) = (0.25, 0.10), this system in particular features the traits of
a percolation transition in the accessible volume (cf. Sec. 3.3). Panel (a) of the figure
illustrates how the matrix particles (dark gray spheres) determine the shape of the
voids, the latter being displayed exactly as in Fig. 3.23(a), with the green and the red
volumes representing the percolating void and the traps, respectively. In panel (b), the
matrix particles are removed in favor of the fluid particles (white spheres), with the
co-displayed voids emphasizing the allocation of the fluid particles within the voids.
Panel (c) differs from panel (b) merely in that the trapped particles are highlighted in
blue color while the white guise of the free particles is retained. In panel (d), finally,
the voids make room for the matrix particles, illustrating that from a visual standpoint
the distinction between trapped and free particles appears to be virtually arbitrary.

3.4.1 Mean squared displacement

In this section, we extend the discussion of the mean squared displacement (MSD) as
carried out previously in Sec. 3.2.4. Specifically, in line with the outset of Sec. 3.4,
we investigate the MSD separately for the free and the trapped particles in HS-QA
systems, referring to the respective quantities by the symbols δr2

free(t) and δr2
trap(t).

As before, we highlight details of the MSD by furthermore considering its logarithmic
derivative, which for the two particle classes we shall denote by zfree(t) and ztrap(t),
respectively. As in the case of the full fluid, the definitions of these quantities are
provided by Eqs. (2.66) and (2.67), the only modification over their previous use being
the involved sums, which are now limited to either the free or the trapped particles.
As in Sec. 3.2.4, we consider the MSD and its derivative for state points along certain
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(a) (b)

(c) (d)

Figure 3.28: Free and trapped fluid particles in HS-QA systems. Illustra-
tion of the distinction between free and trapped particles. Same HS-QA sys-
tem realization as in Figs. 3.3(b), 3.22, and 3.23, located at point C where
(φm, φf) = (0.25, 0.10). Panel (a): percolating void (green volume) and traps
(red volumes) superimposed onto matrix particles (dark gray spheres). Panel (b):
fluid particles (white spheres) superimposed onto voids as in panel (a). Panel (c):
same as panel (b), except for the blue color highlighting the trapped particles.
Panel (d): matrix particles, free particles, and trapped particles. Yellow lines:
simulation cell replicated by periodic boundary conditions (cf. Sec. 2.2.2.1).
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Figure 3.29: Mean squared displacement: free vs. trapped, path II. Mean
squared displacement for the particles that are free, δr2

free(t), and those that are
trapped, δr2

trap(t), at state points along path II (constant φm = 0.2). Error bars:
see Sec. 3.1.

paths in the parameter space (cf. Fig. 3.2), with our focus, however, being limited now
to paths II and III. The reason for this choice lies in the fraction of trapped particles
[cf. Fig. 3.25(b)], which exceeds marginal values only in the vicinity of the percolation
transition of the accessible volume at φ∗m ≃ 0.2512, that is, well beyond the low φm

value of path I.

Figures 3.29 and 3.30 show the MSD and its logarithmic derivative for the same
systems as Fig. 3.7, i.e., for state points along path II where φm = 0.2. As in the whole
set of figures that remain to be discussed, the figures illustrate data pertinent to the
free particles in panel (a) and to the trapped particles in panel (b). A comparison with
Fig. 3.7 evidences that δr2

free(t) and δr2(t)—the MSD of the full fluid component—do
not appreciably differ at any time scale. (Briefly recounting Sec. 3.2.4, depending
on the φf value, the initial ballistic behavior may be succeeded by a caging regime
and a subdiffusive regime until eventually ordinary diffusive behavior prevails in all
cases.) The agreement is substantiated by zfree(t) and z(t), which likewise are in unison
despite their considerable susceptibility to dynamic changes. Above all, this implies
that nearly all features of the full-fluid MSD originate in the free particles, notably
including the subdiffusive behavior at intermediate times where both z and zfree attain
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Figure 3.30: MSD’s logarithmic derivative: free vs. trapped, path II. Log-
arithmic derivative of the mean squared displacement for the particles that are
free, zfree(t), and those that are trapped, ztrap(t), at state points along path II
(constant φm = 0.2). Error bars: see Sec. 3.1.

a value of approximately 0.78.

The dominance of the free particles is not surprising recalling Fig. 3.25(b), where it
is shown that the probability for a fluid particle to be trapped remains well below 10%
at φm = 0.2. However, of comparable importance is the fact that the propagation
of the trapped particles essentially comes to a halt prior even to the caging regime
of the free particles. This quick cease of motion highlights the marginal extent of a
typical trap at φm values even as large as 0.2. Notably, while ztrap at t = 100 is close
to zero irrespective of φf , the long-time value (LTV) of δr2

trap(t) does vary with the
fluid packing fraction. This reflects the effect of “crowding” within traps, i.e., the fact
that from the perspective of a trapped particle, the size of the surrounding trap is
effectively reduced if that trap is populated by additional fluid particles and if the
particles within the trap cannot rearrange.

In Figs. 3.31 and 3.32, the free- and trapped-particle MSDs and their logarithmic
derivatives are illustrated for the same systems as in Fig. 3.8, i.e., for state points
residing along path III where φf = 0.1. As in the case of path II, the figures indicate a
considerable similarity between the MSD of the free particles and that of the full fluid
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Figure 3.31: Mean squared displacement: free vs. trapped, path III. Mean
squared displacement for the particles that are free, δr2

free(t), and those that are
trapped, δr2

trap(t), at state points along path III (constant φf = 0.1). Error bars:
see Sec. 3.1.

component shown in Fig. 3.8. Upon closer inspection, however, the cases with a φm

value of 0.25 or more3.18 also reveal significant differences between δr2
free(t) and δr2(t)

and, even more prominent, between zfree(t) and z(t). Specifically, the free-particle
MSD exhibits a clear tendency to recover diffusive behavior (zfree = 1) in the long-
time limit for all depicted φm values, as opposed to the full-fluid MSD, where this
is the case only for φm < 0.25 (cf. Sec. 3.2.4). In the vicinity of the percolation
transition in the accessible volume at φ∗m ≃ 0.2512 (cf. Sec. 3.3.4), the free particles
clearly undergo subdiffusive motion, meaning that the subdiffusion observed for the
full fluid component is not (or at least not only) a result of trapping. While the values
of zfree in the respective subdiffusive regimes slightly exceed the corresponding values
of z, both quantities assume a value close to 0.5 whenever φm is in the vicinity of φ∗m.

3.18Figures 3.31 and 3.32 include free-particle data for systems at φm > φ∗m ≃ 0.2512, i.e., for
systems beyond the percolation threshold in the accessible volume. This reflects the finite size of
the systems, which is owed to their realization as computer simulations. The finite size entails a
sub-unity probability Ptrap for a particle to be trapped even if φm > φ∗m (see Sec. 3.3.2). However,
Ptrap rapidly approaches unity for φm > φ∗m [cf. Fig. 3.25(b)], meaning that the effort for determining
the quantities of interest to satisfactory accuracy increases steeply with φm.
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Figure 3.32: MSD’s logarithmic derivative: free vs. trapped, path III. Log-
arithmic derivative of the mean squared displacement for the particles that are
free, zfree(t), and those that are trapped, ztrap(t), at state points along path III
(constant φf = 0.1). Error bars: see Sec. 3.1.

These findings are substantiated by the essentially-coinciding time regimes over which
subdiffusion is observed.

The differences between the free-particle and the full-fluid MSDs can be accounted
for by the trapped particles. The latter are, by definition, more restricted in their move-
ment than the free particles, which is reflected in Figs. 3.31 and 3.32 in that δr2

trap(t)
always tends to saturate whereas δr2

free(t) generally increases beyond any limit. Ac-
cording to the figures, the full-fluid MSD (Fig. 3.8) at φm & φ∗m is more similar to the
trapped- than to the free-particle MSD. This directly results from the probability Ptrap

for a particle to be trapped, which in the immediate vicinity of φ∗m well exceeds 50%
even in the investigated 1000-particle systems [cf. Fig. 3.25(b)]3.19. Further, consider

3.19For values of φm significantly smaller than φ∗m, it is challenging to determine the trapped-particle
MSD to an adequate accuracy. This originates in the fact that even for φm values as large as 0.95φ∗m,
the probability Ptrap for a particle to be trapped remains as low as 10% (see Sec. 3.3.2). While this
still allows to consider δr2

trap(t) for φm ≥ 0.15, the amplified fluctuations in the logarithmic derivative
limit a sensible study of ztrap(t) to φm ≥ 0.225. Notably, however, in contrast to the issue discussed
in Footnote 3.18, HS-QA systems at φm < φ∗m always contain trapped particles, meaning that to the
present issue, the system size is only of minor importance.
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that the LTV of δr2
trap(t) is determined largely by the sizes of a system’s traps. Fol-

lowing the curves in Fig. 3.31(b) in order of increasing φm, this means that the traps
grow for φm < φ∗m ≃ 0.2512 while they shrink for φm > φ∗m. This is in line with
Sec. 3.3.4, where by pure geometry we revealed that the second moment of the trap-
size distribution, V̂2, attains a maximum at φ∗m. Finally, Figs. 3.31 and 3.32 indicate
that for φm ≃ φ∗m and t . 103, the MSDs of the trapped and of the free particles are
comparable. This reflects not only the fact that traps in HS-QA systems are large
in the vicinity of the percolation transition (see above), but also that the traps and
the percolating void in this φm regime are structurally similar (as visually apparent
from Fig. 3.23). The latter in particular rationalizes the essentially-coinciding values
of ztrap, zfree, and z in the regimes of φm and t in question.

3.4.2 Single-particle intermediate scattering function

In this section, we take on the task of investigating the single-particle (“self”) inter-
mediate scattering function (ISF) separately for the free and the trapped particles in
HS-QA systems. We shall refer to the respective quantities by the symbols F free

s (k, t)
and F trap

s (k, t), and inspect them for state points along a subset of the parameter-space
paths considered for the self ISF of the full fluid component (see Sec. 3.2.5). The subset
merely includes paths II and III (cf. Fig. 3.2) since—as stated earlier in Sec. 3.4.1—at
the φm value of path I, the trapped particles are vastly outnumbered by the free parti-
cles (cf. Sec. 3.3.2) and are therefore essentially irrelevant. In analogy to the MSD (cf.
Sec. 3.4.1), both the free- and trapped-particle variants of the self ISF are defined by
Eq. (2.81), the difference to the full-fluid correlator being the sum within the equation,
which now involves only the free or only the trapped particles. Notably, we will not
examine the effects of trapping onto collective ISFs such as the connected ISF or the
total (conventional) ISF (see Secs. 2.5.3.2 and 2.5.3.3) since those quantities were not
found to exhibit noteworthy features in the vicinity of the percolation transition of the
accessible volume at φ∗m ≃ 0.2512 (cf. Secs. 3.2.5 and 3.3.4).

Figure 3.33 illustrates the self ISF for state points along path II (constant φm =
0.2) and for the wave vector k = 7, the latter residing close to the first maximum
of the static structure factor (see Sec. 3.2.3). Panel (a) displays F free

s (k, t), which
exhibits essentially the same functional features as the full-fluid self ISF as shown in
Fig. 3.10. This in particular includes the intermediate-time plateau for large φf , the
existence of which in the full-fluid correlator can therefore be attributed to the free
particles. Notwithstanding, consider the state points at which the pertinent systems
are well equilibrated according to Fig. 3.33, i.e., the cases in which F free

s (k, t) at the
largest depicted time likely resembles limt→∞ F free

s (k, t). In those cases, Fs(k, t) and
F free

s (k, t) differ noticeably in that the latter invariably relaxes to zero in the long-time
limit. This finding substantiates the assumption expressed in Sec. 3.2.5 that nonzero
LTVs of the self ISF are engendered by trapped particles.

The latter warrants a closer look at the trapped-particle self ISF, shown in panel
(b) of Fig. 3.33 for the same state points and the same wave vector as F free

s (k, t) in
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Figure 3.33: Single-particle ISF: free vs. trapped, path II. Self intermediate
scattering function for the particles that are free, F free

s (k, t), and those that are
trapped, F trap

s (k, t), at state points along path II (constant φm = 0.2) and for
the wave vector k = 7. Error bars: see Sec. 3.1.

panel (a). In the long-time limit, the trapped-particle correlator relaxes only partially
in all depicted cases, which is not surprising considering the definition of trapping. Of
a more intricate origin is the monotonic increase of limt→∞ F trap

s (k, t) with φf , which
arises from the fact that—as mentioned in Sec. 3.4.1—particles within densely popu-
lated traps may be incapable of switching places. In combination with the increasing
trapping probability Ptrap (cf. Sec. 3.3.2), this well accounts for the LTVs of Fs(k, t)
as observed in Fig. 3.10. On a different note, the functional form of F trap

s (k, t) differs
significantly from that of F free

s (k, t) in that the former does not exhibit signs of an
intermediate-time plateau. This substantiates the interpretation that the plateau is
present in Fs(k, t) only due to the corresponding feature of the free-particle self ISF
(see above). Therefore, the analysis at hand can contribute only marginally to the
clarification of this effect.

In complement to the investigation of F free
s (k, t) and F trap

s (k, t) for path II, let
us examine the same quantities for state points along path III (constant φf = 0.1).
The pertinent data are illustrated in Fig. 3.34, the considered state points coinciding
with those for Fs(k, t) in Fig. 3.8 and the wave vector being the usual k = 7 (see
above). As evidenced by the two figures just mentioned, the relaxation patterns of the
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Figure 3.34: Single-particle ISF: free vs. trapped, path III. Self intermediate
scattering function for the particles that are free, F free

s (k, t), and those that are
trapped, F trap

s (k, t), at state points along path III (constant φf = 0.1) and for
the wave vector k = 7. Error bars: see Sec. 3.1.

free-particle and the full-fluid self ISFs are substantially similar. However, consider
that F free

s (k, t) and Fs(k, t) in the figures consistently approximate their LTVs at the
largest depicted times3.20. Of the LTVs, only those of Fs(k, t) assume nonzero values
while those of F free

s (k, t) essentially vanish. This observation is comparable to the one
made for the free-particle and the full-fluid self ISF along path II (see above), where we
concluded that the nonzero LTVs of Fs(k, t) originate solely in the presence of trapped
particles.

This again suggests a closer inspection of F trap
s (k, t), the latter being displayed in

panel (b) of Fig. 3.34 for the same state points and the same wave vector as F free
s (k, t)

in panel (a). As the panel illustrates, the LTV of the trapped-particle self ISF signif-
icantly exceeds zero in all depicted cases. This is reminiscent of the trapped-particle
self ISF for path II (see above). Interestingly, however, an increase of φm entails a
nonmonotonic variation of limt→∞ F trap

s (k, t) in that the latter decreases for φm . φ∗m

3.20As Fig. 3.34 indicates, F free
s (k, t) for the case of φm = 0.2625 is associated with sizable uncertain-

ties. This circumstance is owed to the issue discussed in Footnote 3.18. In consequence, the pertinent
long-time limit of F free

s (k, t)—which appears to exceed zero—is likely unreliable.
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while it increases for φm & φ∗m. In other words, the relaxation of the trapped-particle
self ISF is most pronounced in the vicinity of the percolation transition. This feature
is analogous to the nonmonotonically-varying maximum of both the trapped-particle
MSD and its logarithmic derivative for path III (see Fig. 3.8), which we attributed
to the fact that the second moment of the trap-size distribution, V̂2, attains a max-
imum at φm = φ∗m (cf. Secs. 3.4.1 and 3.3.4). As in the latter case, and as in the
case of Fs(k, t) for path III, the long-time values of the corresponding trapped-particle
quantities as well as the trapping probability, Ptrap (cf. Sec. 3.3.2), soundly rationalize
the observed LTVs of the full-fluid quantities.

Finally, with the free-particle self ISF available, we are now in the position to
assess the hypothesis formulated in Sec. 3.2.8 that the modified self ISF, F̂s(k, t),
essentially equates to F free

s (k, t). Verifying this hypothesis is of the utmost importance
to comprehending the dynamics of HS-QA systems in general and to interpreting the
differences between the single-particle and connected ISFs in particular. In fact, it was
this hypothesis that incited our efforts to identify the free and the trapped particles
in HS-QA systems in the first place. Briefly recalling the story behind F̂s(k, t), this
quantity was obtained in Sec. 3.2.8 by removing the LTV from the full-fluid self ISF,
Fs(k, t), under the assumption that the presence of the LTV is due purely to trapped
particles.

The means to elucidate this hypothesis is Fig. 3.35, in which we juxtapose the
relevant ISFs for state points along path III (constant φf = 0.1). As in all depictions of
ISFs in this work, the quantities are displayed for the wave vector k = 7. Comparing
panels (a) and (b), it is clear that F̂s(k, t) indeed closely resembles F free

s (k, t). The
residual differences originate in at least two phenomena. Firstly, the structural relax-
ation of the trapped particles deviates from that of the free particles, the reason lying
in the different geometries of the traps and of the percolating void. This is noticeable
in the functional form of F̂s(k, t) whenever the probability for a particle to be trapped
significantly exceeds zero. Secondly, a close inspection of panel (b) reveals that at
elevated φm values, the LTV of F free

s (k, t) slightly exceeds zero. This is likely owed to
the fluid–fluid trapping effects detailed in Sec. 3.4.4.

In the light of these observations, the interpretations of Sec. 3.2.8 are clearly
vindicated. Above all, this includes the relaxation times inferred by the procedure
of Sec. 2.5.3.5, on the basis of which we concluded that the kinetic diagram based
on F̂s(k, t) (Fig. 3.18) and the kinetic diagram compiled from Fc(k, t) (Fig. 3.13) ex-
hibit similar traits. The residual differences are limited to an overall shift of the
relaxation times, which is evident when comparing F free

s (k, t) to the connected ISF,
Fc(k, t), depicted in panel (c) of Fig. 3.35.

3.4.3 Self part of the Van Hove function

As the final step of our exploration of free- and trapped-particle observable variants, we
consider the self part of the Van Hove function (the “self VHF”). In continuation of our
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Figure 3.35: Comparison of ISFs at path III. Juxtaposition of various ISFs at
path III (constant φf = 0.1) for the wave vector k = 7. Panel (a): modified full-
fluid self ISF, F̂s(k, t), as in Fig. 3.17. Panel (b): free-particle self ISF, F free

s (k, t),
as in Fig. 3.34. Panel (c): connected ISF, Fc(k, t), as in Fig. 3.11(a). Error bars:
see Sec. 3.1.
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Figure 3.36: Self Van Hove function: free vs. trapped, point B. Self VHF of
the free particles, Gfree

s (r, t), and of the trapped particles, Gtrap
s (r, t), at point B

where (φm, φf) = (0.20, 0.22) and for times differing by a factor of ∼ 6
√

10. Thick
colored lines: selected times roughly coinciding across Figs. 3.36 and 3.37. Error
bars: see Sec. 3.1.

previous notation, we shall refer to these quantities by the abbreviations Gfree
s (r, t) and

Gtrap
s (r, t), and in analogy to the discussions in Secs. 3.4.1 and 3.4.2, both variants are

defined by a single equation, Eq. (2.91), by limiting the sum therein to the respective
particles. The visual representations of this work consider the self VHF as a function
of the distance and account for its dependence upon time by series of curves, thereby
necessitating each self-VHF diagram to focus on a single set of external parameters
(compare Secs. 2.5.3.6 and 3.2.9). While in Sec. 3.2.9, we examined Gs(r, t) for the four
points A through D, the latter having been selected due to their proximity to the MSD
and the self-ISF arrest transitions (recall Figs. 3.2 and 3.12), the current investigation
will be conducted for the two points B and C only. The reason for this limitation lies in
the probability Ptrap for a particle to be trapped (see Sec. 3.3.2), which is very nearly
zero at point A (φm = 0.1) and extremely close to unity at point D (φm = 0.3) even
in the 1000-particle systems considered in our simulations (cf. Secs. 3.4.1 and 3.4.2).

Figure 3.36 illustrates the free- and trapped-particle variants of the self VHF at
point B where (φm, φf) = (0.20, 0.22). As a comparison of panel (a) with Fig. 3.20(b)
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Figure 3.37: Self Van Hove function: free vs. trapped, point C. Self VHF of
the free particles, Gfree

s (r, t), and of the trapped particles, Gtrap
s (r, t), at point C

where (φm, φf) = (0.25, 0.10) and for times differing by a factor of ∼ 6
√

10. Thick
colored lines: selected times roughly coinciding across Figs. 3.36 and 3.37. Error
bars: see Sec. 3.1.

evidences, both the temporal and the spatial features of Gfree
s (r, t) and Gs(r, t) are

very similar. This includes the essentially-invariant position at r ≃ 0.15 of the first
maximum and the rapid decrease of the latter, as well as the presence of a second
maximum (cf. Sec. 3.2.9), all indicating that the free particles undergo caging and
collective rearrangements of their own right. The approach to a Gaussian distribution
at long times likewise takes place on a similar time scale. The only significant difference
between free-particle and the full-fluid self VHF exists at r < 0.25 and at large times,
where the former exhibits decidedly smaller values than the latter. This is the case
in particular at r = 0, where Gfree

s (r, t) consistently remains in the immediate vicinity
of zero. Nevertheless, even at the largest depicted times, the free-particle self VHF
considerably exceeds zero at r < 0.25, which probably originates in one or more of the
fluid–fluid trapping effects portrayed in Sec. 3.4.4.

Allowing for the respective normalizations, the difference between Gfree
s (r, t) and

Gs(r, t) is embodied by Gtrap
s (r, t) as displayed in panel (b) of Fig. 3.36. While the for-

mer two quantities largely coincide (see above), the full-fluid and the trapped-particle
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Figure 3.38: Free particles in dead end. Cutaway sec-
tion of a representative hard-disk QA system, illustrating free
particles located in an extended dead-end branch of the ac-
cessible space. Solid black disks: matrix particles delineating
the dead end. Solid disks of blue to green hue: free particles
located within the dead end. Gray-and-white striped disks:
other matrix particles; gray circles: other fluid particles. The
“blueness” of the highlighted free particles corresponds to their
distance to the mouth of the dead end.

self VHF differ markedly in two aspects. Firstly, relative to Gs(r, t), the time required
by Gtrap

s (r, t) to closely resemble its long-time limit is minimal. Secondly, the func-
tional form of the trapped-particle self VHF is substantially simpler than that of the
full-fluid self VHF in that it is limited to a single, narrow maximum centered at r = 0.
This is in accordance with the trap sizes determined in Secs. 3.3.3 and 3.3.4, with the
minute magnitude of the second maximum of Gtrap

s (r, t) at r ≃ 1 highlighting that
only extremely few traps are sufficient in size to allow fluid particles trapped therein
to switch places. On a final note, recall that in Sec. 3.2.9, we estimated from the
full-fluid self VHF that Ptrap ≃ 8% of the particles are trapped in system realizations
at point B. Although the φm value of point B is not represented in Fig. 3.25, moderate
extrapolation suggests that the actual value of Ptrap is somewhat lower (irrespective
of the system size)3.21.

Figure 3.37 portrays Gfree
s (r, t) and Gtrap

s (r, t) for point C, the latter being located
at (φm, φf) = (0.25, 0.10), i.e., in proximity of the percolation transition of the accessi-
ble volume at φ∗m ≃ 0.2515 (cf. Sec. 3.3.4). Recalling Fig. 3.21(a), the full-fluid corre-
lator exhibits features reminiscent of both the free- and the trapped-particle self VHF
depicted in panels (a) and (b) of Fig. 3.37, respectively. Specifically, both Gfree

s (r, t)
and Gtrap

s (r, t) feature a pronounced and quickly-decreasing maximum at r ≃ 0.15, as
well as a second maximum at r ≃ 1.1, which confirms the interpretation of Sec. 3.2.9
that the free and the trapped particles undergo caging and collective rearrangements
independently. Further, both self-VHF variants at large distances remain significantly
above zero at large times, and in both cases, the approach to the infinite-time limit
requires considerable time. In the case of Gtrap

s (r, t), this starkly contrasts with the
case of point B. All of these findings are rooted in two properties of HS-QA systems
at the φm value in question: (i) in these systems, the probability Ptrap for a particle to

3.21In Sec. 3.2.9, the probability Ptrap for a particle to be trapped was estimated to be
∫ r̃

0
Gs(r, t̃) dr

based on the assumption that at the time t̃ most of the free particles have moved farther than the
distance r̃. This gives rise to two sources of uncertainty. On the one hand, if t̃ is chosen too small
or r̃ too large, then Ptrap is overestimated due to free particles contributing to the integral. On the
other hand, if r̃ is chosen too small, then Ptrap is underestimated as some trapped particles may not
be accounted for by the integral. Given the relatively-small value of r̃ used in the estimations of
Sec. 3.2.9, this suggests that in the case of point B, the considered time t̃ was insufficient.
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Figure 3.39: Free-particle motion. Visual appearance of the free particles in a
representative HS-QA system, visually averaged over one hundred different points
in time spaced evenly over 300 000 time units. Depicted is the same system
as in Figs. 3.3(a), 3.22, 3.23, and 3.28 located at point C, i.e., at (φm, φf) =
(0.25, 0.10). Circumscribed by a light red ellipse are two interlocking free particles;
encircled in light blue is a free particle blocked by a trapped particle.

be trapped is about 60% irrespective of the system size (see Fig. 3.25), and (ii) traps
in these systems may be very large (cf. Secs. 3.3.3 and 3.3.4).

However, Fig. 3.37 also reveals considerable differences between the free- and
trapped-particle self VHF at point C. These differences are most pronounced at large
times, where Gfree

s (r, t) relaxes to values close to zero at all distances whereas Gtrap
s (r, t)

remains well above zero in particular at r < 0.5. Naturally, as in the case of point B,
this reflects the finite distance that trapped particles may travel within their surround-
ing traps. Yet, at r > 0.5, the LTV of the trapped-particle self VHF likewise remains
noticeably larger than zero, which is a consequence of the sizes of the traps in the
respective systems (see above). Notably, the LTV of Gfree

s (r, t) at r = 0 slightly ex-
ceeds zero, which, as for point B, probably results from the fluid–fluid trapping effects
discussed in Sec. 3.4.4. Finally, consider the fraction of trapped particles in system
realizations at point C, which in Sec. 3.2.9 was estimated to be 58%. Contrary to
the assessment articulated in that section, and contrary to the relatively-poor Ptrap

estimation for point B (see above), this value is in fact in respectable agreement with
the value Ptrap ≃ 60% mentioned above.
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Figure 3.40: Interlocking free particles. Cutaway part
of a model hard-disk QA system, illustrating free particles
that mutually block their exiting from a pocket of the per-
colating void. Solid black disks: matrix particles delimiting
the pocket. Yellow area: visual aid to identify the pocket.
Solid blue disks: free particles within the pocket. Green
circle: indicator that the pocket’s mouth is crossable by a
fluid particle. Red circles: indicators that the free particles
within the pocket block each other’s way to the pocket’s
mouth. Gray-and-white striped disks: other matrix parti-
cles; gray circles: other fluid particles.

3.4.4 Fluid–fluid trapping effects

In the previous sections, we found that within the pertinent margins of uncertainty, the
free-particle variants of the observables of interest largely exhibit the expected features.
On few occasions, however, the respective uncertainties were too small to rationalize
the discrepancies between observation and expectation. Specifically, in Sec. 3.4.2, we
revealed that the LTV of the free-particle self ISF, F free

s (k, t), slightly exceeds zero and
that it does so particularly for φm values in the vicinity of the percolation threshold of
the accessible volume at φ∗m ≃ 0.2515 (cf. Sec. 3.3.4). Similarly, in Sec. 3.4.3 we noted
that the LTV of the free-particle self VHF, Gfree

s (r, t), remains somewhat above zero at
r = 0 in the regime of φm ≃ φ∗m. These observations deviate from the expectation that
both F free

s (k, t) and Gfree
s (k, t) generally relax entirely in this parameter-space region.

The purpose of the present section is to outline three effects that contribute to these
deviations.

The first one among the effects in question is illustrated in Fig. 3.38. The figure
shows a cutaway section of a representative hard-disk QA system3.22 in which the
matrix particles associated with the effect are represented by solid black disks and
the relevant free particles are depicted as solid disks of blue to green hue. Included
as gray-and-white striped disks and as gray circles are other matrix and other fluid
particles, respectively. The black matrix particles form the boundary of an extended
branch of accessible space that is connected to the percolating void at only one end
(the “mouth”). Within this “dead end”, the colored free particles reside. For one of
these particles to leave the dead end, the latter has to be exited by all of the free
particles located closer to the mouth of the dead end. The probability for such a
particle relocation to take place decreases dramatically with the number of involved
particles since it requires the complete vacating of substantial parts of the accessible
space. It is likely that movements of this kind are significantly less probable than
string- or loop-like collective rearrangements of the same number of particles in the

3.22Hard-disk QA systems constitute the two-dimensional analog of hard-sphere QA systems. Since
the trapping effects discussed in this section exist in both hard-disk and hard-sphere QA systems, we
illustrate these effects using the two-dimensional variant so as to increase the clarity of the arguments.
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Figure 3.41: Free particle blocked by trapped particle.
Cutaway section of a representative hard-disk QA system,
showing a trapped particle that blocks a free particle from
exiting a pocket of the percolating void. Yellow area: vi-
sual aid to identify the pocket. Solid purple disk: trapped
particle. Solid black disks: matrix particles that delineate
parts of the pocket and that confine the trapped particle.
Solid blue disk: free particle within the pocket. Green cir-
cles: indicators that the matrix particles by themselves do
not confine the free particle. Red circles: indicator that the
trapped particle together with one of the matrix particles
blocks the free particle’s path out of the pocket. Gray-
and-white striped disks: other matrix particles; gray circles:
other fluid particles.

bulk of the same fluid (cf. Fig. 1.12). However, we duly note that this effect is not
qualitative but only quantitative in nature, the reason being that the probability for
particles to vacate a dead end always exceeds zero.

This starkly contrasts with the two effects that remain to be discussed, both of
which were discovered by the author in examinations of animated visual representa-
tions of HS-QA systems. Unfortunately, there exists no straightforward procedure to
include and discuss video material in works such as this one. Therefore, we instead
created a substitute visualization that displays the graphically-averaged appearance
of the free particles in an HS-QA system at a large number of different points in
time (one hundred) spaced regularly over a large time interval (300 000 time units; cf.
Sec. 2.5.1.6). Figure 3.39 illustrates the result of this procedure for the same system
realization as depicted in Figs. 3.3(a), 3.22, 3.23, and 3.28, which is located at point C
where (φm, φf) = (0.25, 0.10). In the figure, the results of the effects in question are
immediately obvious in that the three affected particles appear crystal clear due to
the very near cessation of their motion.

Figure 3.40 exemplifies the effect of interlocking free particles. Like Fig. 3.38, the
figure shows a section of a representative hard-disk QA system wherein the black and
blue solid disks mark the matrix and free particles relevant to the effect, respectively.
The gray-and-white striped disks and the gray circles, as before, stand for other matrix
and fluid particles. Outlined by the yellow area is a pocket of the percolating void
bounded largely by the black matrix particles. As in the above dead-end case, and
as indicated by the green circle, this pocket is connected to the percolating void by a
“mouth” that can be passed by a free particle. Within the pocket reside the three free
particles in question. As the two red circles highlight, none of these particles is able to
move towards the pocket’s mouth since every conceivable path is obstructed by another
free and/or matrix particle. Further, the pocket geometry renders it impossible for the
blue particles to rearrange collectively (i.e., circularly; see Fig. 1.12) so as to maneuver
out of the yellow area. Thus, the blue particles are “interlocking” (mutually blocking)
and are effectively trapped despite residing within the percolating void.
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Figure 3.41, finally, illustrates the subtle effect of a trapped particle effectively
confining a free particle. The figure again depicts a cutaway part of a hard-disk QA
system in which the matrix and free particles of interest are shown as black and blue
solid disks, respectively. Additionally, the dark-purple solid disk represents a trapped
particle. The gray-and-white striped disks and the gray circles reprise their roles of
other matrix and fluid particles. Shaded in yellow is a small pocket of the percolating
void, the extent of which is determined by the following consideration. As the green
circles show, the black particles alone do not confine the blue particle. However, as
evidenced by the red circle, the purple particle together with one of the black particles
renders it impossible for the blue particle to leave the yellow area. An effective trapping
of this kind requires peculiar geometric conditions—in particular, the motion of the
trapped particle needs to be severely constrained by the surrounding matrix particles.
Nevertheless, our visual observations suggest that in HS-QA systems, the blocking of
free particles by trapped particles occurs with a frequency comparable to that of the
interlocking of free particles.





Conclusion

This concluding section serves a twofold purpose: firstly, it briefly summarizes the
principal results of this work, and secondly, on that basis, it outlines various routes
along which its research theme could be continued.

The paramount achievement of this work is the in-depth characterization that we
established for the static and in particular for the dynamic properties of hard-sphere
quenched-annealed (“HS-QA”) systems. As our key findings, we revealed that the
fluid particles of these systems may be subject to discontinuous or continuous dynamic
arrest transitions (Sec. 3.2.5), single-particle and collective dynamics on disparate time
scales (Sec. 3.2.5), subdiffusion (Sec. 3.2.4), trapping and collective rearrangements
(Sec. 3.2.9), and strong local ordering at large overall densities (Sec. 3.2.3). On a
global scale, we substantiated the relevance of these phenomena by means of “kinetic
diagrams”, i.e., by mapping out the quantities of interest over the entire accessible
parameter space (Secs. 3.2.1, 3.2.6, 3.2.7, and 3.2.8).

To elucidate the physics underlying our findings, we geometrically determined the
extent of the pores formed by the matrix in HS-QA systems. A pertinent statistical
analysis allowed us, among others, to pinpoint the matrix density at which the pores
undergo a percolation transition (Sec. 3.3). More importantly, however, on the basis
of the geometric information, we identified those fluid particles of an HS-QA system
that are located within finite-sized pores. Thus being able to separate fluid particles in
free and trapped particles, we showed that only the structure of the free particles fully
relaxes (Sec. 3.4.2), determined that both subdiffusion and collective rearrangements
occur separately among trapped and free particles (Secs. 3.4.1 and 3.4.3), and identified
mechanisms by which fluid particles may induce the trapping of free particles (Sec.
3.4.4). Yet, possibly our most significant discovery in the context of free and trapped
particles was a different one, namely the fact that the single-particle and the collective
dynamics of HS-QA systems are of considerable similarity if only the free particles are
considered—in stark contrast to the full-fluid case (Secs. 3.2.8 and 3.4.2).

Thanks to the level of detail of our characterization, we were furthermore in the
position to succinctly compare our simulation data with the various predictions of the
replica mode-coupling theory (RMCT; see Sec. 1.4.3). The comparisons showed that
for the single-particle properties of HS-QA systems, the predictions agree remarkably
well with our data. This agreement particularly holds for the relevant aspects of ki-
netic diagrams (Secs. 3.2.1 and 3.2.6) and also included many functional features of the



214 Conclusion

pertinent observables (Sec. 3.2.4 and 3.2.5). In contrast, for the collective properties of
HS-QA systems, our investigation revealed considerable differences between RMCT’s
predictions and our data. Here, the principal discrepancy involved the connected inter-
mediate scattering function (ISF), which in our simulations always fully relaxed while
it does not invariably do so according to RMCT (Sec. 3.2.5). In direct consequence,
the connected-ISF kinetic diagram differs significantly between theory and simulation
(Sec. 3.2.6). In the light of the similarity between the single-particle and the collective
dynamics when considering only the free particles of HS-QA systems (see above), we
speculated that RMCT’s difficulties in this context are rooted in the trapping of fluid
particles.

Going beyond this work, there are three avenues along which it would be sensible to
continue the research theme of dynamic arrest in HS-QA systems: one could

(i) refine the analysis of this work by considering larger systems, longer
simulation runs, and/or more points in the parameter space,

(ii) extend the examination by computing additional observables and/or by
focusing on other physical aspects, or

(iii) shift the investigation towards systems that are slightly different from
HS-QA systems yet related to them.

In the remainder of this concluding section, we shall outline a representative selection
of possible ways to continue this work in terms of the above classification.

In the context of avenue (i), consider for instance the following issue, which to
some degree has already been pursued by this author. Recall the case of path III
(fluid packing fraction φf = 0.1; cf. Sec. 3.2.2), where HS-QA systems exhibit long-
time subdiffusion in the vicinity of the percolation transition of the accessible volume
(matrix packing fraction φm = φ∗m = 0.2512; cf. Sec. 2.4). In Sec. 3.2.4, we determined
that the logarithmic derivative of the mean squared displacement (MSD) in these cases
attains the value zHS-QA ≃ 0.5. Consider further the Lorentz gas (cf. Sec. 1.3.4.2),
which like QA systems is defined in terms of a matrix and a fluid component, and
which differs from hard-sphere QA systems only in two aspects: its matrix particles
are distributed completely at random (allowing overlaps), and it contains only a single
tracer particle (i.e., φf → 0). Like the HS-QA matrix, the Lorentz gas matrix features
a percolation transition, and previous studies [111, 113] revealed that associated with
this transition is long-time subdiffusive motion of the tracer particle with zLorentz ≃
0.32.

In view of the significant difference between the values of zLorentz and zHS-QA, the
fluid particles in the respective systems might be subject to fundamentally distinct
physical effects. While this hypothesis is appealing, a trivial difference between the
systems in question is their value of φf . In order to rule out any influence of this
parameter, we performed additional simulations for HS-QA systems at φm = φ∗m and
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at φf → 0, with preliminary results suggesting that the long-time value of zHS-QA in
this case is nearly identical to zLorentz. Motivated by this finding, we conducted further
simulations of HS-QA systems at φm = φ∗m and at various values of φf between zero and
0.15. The simulations were substantially longer and the systems substantially larger
than those presented in this work, yielding the following results. Firstly, the value
zHS-QA = 0.5 found in Sec. 3.2.4 likely represents only an extended transient regime,
with zHS-QA subsequently tending towards zLorentz. Secondly, the value of zHS-QA in
the transient regime most certainly increases monotonically with φf . Thirdly, as φf is
increased towards the dynamic arrest transition, the transient regime probably persists
indefinitely. Finally, as an exciting by-product, the new data at last suggest that HS-
QA systems do feature a reentrant regime, namely in that the value of the MSD at
very long times might be marginally larger for φf & 0 than for φf → 0.

While these results are tantalizing—particularly due to pertinent predictions by
RMCT [162]—, they unfortunately are only preliminary and require significant sub-
stantiating before any publication is warrantedC.1. In continuation of these findings,
future work could for instance examine whether the single-particle ISF at the above
parameter-space points also indicates a reentrant behavior. A rather different imagin-
able undertaking would be to try to locate parameter-space regions that would corre-
spond to higher-order (“A3”) dynamic singularities predicted by RMCT [159, 161, 162],
which could be accomplished for instance by identifying logarithmic decay patterns of
ISFs [159, 197, 198, 211, 241, 242].

In terms of avenue (ii), there are several conceivable ways in which the study of HS-
QA systems could be extended. Possibly the simplest approach would be to reinterpret
data that already exist (or that could be easily obtained by established methods) so
as to extract additional information about the systems. By this approach, it would
for instance be possible to investigate the “fragility” of HS-QA systems—a quantity
defined via the relaxation times at different parameter-space points [3, 11, 154]—the
expectation being that the presence of the matrix alters this property of the fluid.
Also, one could determine the extent of the HS-QA parameter-space region in which
there exists long-range order among the fluid particles, thus assessing the degree of
frustration imposed onto the fluid by the matrix (cf. Sec. 1.3.3.2). This analysis could
be conducted on the basis of radial distribution function and/or static structure factor
data (cf. Sec. 3.2.3). A different approach in the context of avenue (ii) would be to
substantiate previous conclusions by inferring equivalent information with different
means, one example being the re-evaluation of ISF relaxation times by the use of
alternative methods, involving for instance integrations over the ISFs in question.

However, perhaps the most productive approach to extend this work would be to
consider both new observables and new physical aspects. As an example, in the afore-
mentioned context of frustration and crystallization, the extent and role of possibly-
present crystallites could be elucidated by the computation of spherical harmonics–

C.1Notwithstanding their uncertain status, the new results were discussed by the author in an oral
presentation at the 8th Liquid Matter Conference in Vienna in 2011.
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based bond-order parameters such as q6 and/or q4 [168, 255, 260]. Even more inter-
esting may be a more in-depth investigation of the slow dynamics of HS-QA systems.
For instance, examinations of video material suggest that under suitable circumstances,
the mobility of the particles of the QA fluid may be highly dependent upon the spatial
region. A widely-used simple quantity to characterize such “dynamic heterogeneities”
(cf. Sec. 1.2.5) is the “non-Gaussian parameter” α2 [89, 140, 220, 282], and a more
sophisticated one—which recently received tremendous attention—is the four-point
dynamic susceptibility χ4 [25–28, 36, 78, 155, 220]. Further, inspired by the notion of
spatial heterogeneity in systems with slow dynamics, a number of recent works have
determined various observables for small spatial regions and/or for small groups of par-
ticles [133, 171, 228, 244, 245, 255]. This concept could be adapted to many quantities
inspected in this work—characterizing for instance the local mobility of fluid particles
in HS-QA systems—, and might contribute to elucidating the microscopic origin of
many phenomena described in this work. In a broader sense, the quantities outlined
in this paragraph might ultimately even shed light onto the fundamental origin of dy-
namic arrest, an issue that eventually we did not address in the analysis part of this
workC.2.

With the latter consideration, we naturally segue to avenue (iii)—the shifting of
focus to somewhat different systems. In view of the multitude of systems that could
be investigated, the initial step of proceeding in this direction should be to establish
firm principles for selecting the system. For example, pertinent analyses would be
particularly efficient if the tools and methods of this work could be recycled. In this
spirit, one could for instance require that RMCT be capable of describing the system
or that the matrix feature a percolation transition. The former would narrow the
choice to systems with precisely three interaction types—matrix–matrix, matrix–fluid,
and fluid–fluid—, while the latter would suggest to focus on systems in which the
matrix–fluid interaction includes a hard-core part (cf. Secs. 1.1.3, 2.2, and 2.4).

Allowing for these restrictions, one possible alteration with respect to monodis-
perse HS-QA systems would be to change the dimensionality (for instance to two or
to four dimensions), the prospect being that it renders interesting phenomena more
pronounced and/or more accessible. Another conceivable modification would be to
consider matrix particles with a diameter differing from that of the fluid particles—a
scenario that has already been explored in terms of RMCT by the author and his
colleagues in article listed in the Preface. However, possibly the most productive type
of change would involve solely the matrix. Specifically, one could suppress the matrix–
matrix interaction altogether so as to obtain the matrix structure of the extremely
well-investigated Lorentz gas [18, 83, 104, 111–113, 159, 246, 247], which would be in-
teresting not least for the reasons outlined in the context of avenue (i). Alternatively, it
would be possible to modify the protocol by which the matrix is obtained (cf. Sec. 2.3)

C.2In the end, two circumstances deterred us from our plan of using HS-QA systems to elucidate
the nature of dynamic arrest: firstly, HS-QA systems turned out to be complex and interesting of
their own right; secondly, we came to realize that equilibrated-mixture systems as described in the
context of avenue (iii) might present a more suitable basis for the envisioned studies.
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since, as Krakoviack showed [164], RMCT is in fact capable of describing systems in
which the matrix component of a QA-like system is equilibrated in the presence of the
fluid particles before being frozen in place. Such “equilibrated mixture” (EM) systems
have likewise been studied extensively [131, 148–150, 163] and have been found to
exhibit many features similar to those of HS-QA systems. In addition, it has recently
been shown by a number of authors [29, 42, 47, 135–137, 253] that EM systems can
be interpreted in terms of point-to-set correlation functions (cf. Sec. 1.2.5), meaning
that a detailed characterization of these systems may contribute to a fundamental
understanding of the glass transition.

Jettisoning the requirements of the theory and of the established tools of analysis,
a more drastic path in modifying the investigated systems would be to closer resemble
real systems. One example to this end would be to introduce polydispersity, i.e., to
consider particles whose sizes obey some distribution. If the polydispersity remains
limited to the fluid particles while retaining monodisperse matrix particles, many
tools and methods of this work would still be largely applicable—including percolation
analyses, which could be conducted separately for each fluid particle (cf. Sec. 2.4
and Appendix A.1). In the more complex case of polydisperse matrix particles, in
contrast, many of the tools and methods would require substantial modification [48,
61, 179, 229]. Notwithstanding, a recent article [50] has studied the case of two-
dimensional QA systems with polydisperse hard-disk matrix particles and hard-disk
tracer fluid particles, the findings including a considerable impact of the polydispersity
onto the diffusivity of the tracers. In more general terms, the notion of polydispersity
is of significant relevance in the aforementioned context of frustration in glass-forming
systems (cf. Sec. 1.3.3.2)—an issue that has been highlighted in a number of recent
publications [46, 204, 255, 287].

The list of further conceivable system alterations is of course vast. However, in
view of the multitude of possible extension schemes outlined in the above paragraphs,
it is not too far-fetched to project that taking on even a fraction of these challenges
would easily fill another thesis of this kind. Therefore, we feel that at this point
it is due time to conclude this section, and consequently this work, in the hope to
have demonstrated that the glass formation of colloids in porous media holds many
fascinating phenomena and that the continued pursuit of this research theme would
be an occupation well worthwhile.





Appendix

A.1 Network picture of the accessible volume

In this appendix section, we shall be concerned with proving that the Delaunay tes-
sellation is indeed suited to determine the distinct voids present in a hard-sphere
quenched-annealed (HS-QA) system. As laid out in Sec. 2.4.1, if we are given some
d-dimensional hard-body QA system, then it is in principle relatively simple to identify
therein all tuples of d matrix particles that cannot be passed by a fluid particle (cf.
Fig. 2.15). A more intricate task is to relate these d-tuples to the volumes—and more
specifically to the individual voids—that are present in the system. Such a relation,
however, is vital to classify the fluid component of an HS-QA system into free and
trapped particles. In Sec. 2.4.3, it is asserted that the Delaunay tessellation constitutes
a solution to this problem. To mathematically prove this, we shall first discuss the
Voronoi tessellation and its properties the context of accessible volumes, on the basis
of which we will then put the tightly-related Delaunay tessellation in the same context.
As in Sec. 2.4, in this appendix we will substitute the shortcut “D-” for “Delaunay”,
and we will also frequently use the abbreviation “V-” for “Voronoi”.

A.1.1 Voronoi picture

In order to associate the noncrossable matrix-particle tuples with regions of accessible
volume, we need to essentially reverse the problem at hand, i.e., focus on points located
in the “depth” of the voids as opposed to on their boundaries. In the following, we will
reproduce, illustrate, and correct a method devised by Kerstein [142] and expanded
by Sastry et al. [229] to characterize the connectivity of the accessible volume in terms
of a “Voronoi network”. While the tuples may at first seem irrelevant in this method,
we will later see that they naturally reappear and assume a vital role.

A.1.1.1 Voronoi tessellation

Since Kerstein’s V-network method is fundamentally based on the concept of the
“Voronoi tessellation”, we first need to understand the nature and properties of this
very peculiar geometric construction. Like the D-tessellation (cf. Sec. 2.4.2), the V-tes-
sellation is defined on the basis of a set of distinct points that may be arbitrarily
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(a) (b) (c) (d)

Figure A.1: Voronoi tessellation. Features of a V-tessellation; explanation: see
text. Black disks: D-vertices; thick dark-turquoise lines: V-edges; lines of all
shades of turquoise: bisectors. In orange color, various features of the V-tessel-
lations are highlighted: a bisector [panel (a)], a V-vertex [panel (b)], a bounded
V-cell [panel (c)], and bisectors that are not part of a V-edge [panel (d)].

distributed in space and that (anticipating the relation between the V- and D-tes-
sellations) we will call “Delaunay vertices”. The tessellation—formally introduced by
Georgy VoronoiA.1 in 1908 [275]—divides the given space in “Voronoi cells” by defining
regions in space that are closer to one D-vertex than to all other D-vertices.

Figure A.1 illustrates the nature of V-cells in d = 2; generalizations to (and
particularities of) higher-dimensional cases will be discussed in the next paragraph.
Panel (a) shows a square-shaped area—without periodic boundary conditions (PBCs;
see Sec. 2.2.2.1)—that contains two D-vertices (small black disks, symbolizing points).
The area is divided into two V-cells, delimited by a “bisector” (highlighted in orange)
which contains all points that are equidistant from the two D-vertices. In the following,
by the term “Voronoi edge”, we will refer to a line or line segment that is equidistant
from two D-vertices and more distant from all other D-vertices. In panel (b), a third
D-vertex is introduced, which entails another two bisectors. As one can see, the
three lines—now shown in shades of turquoise—meet in a single point (marked by the
orange disk). Such points are equidistant from three D-vertices and shall henceforth be
referred to as “Voronoi vertices”. Further, panel (b) illustrates that in the general case,
some parts of the bisectors do contribute to the V-edges (thick dark turquoise lines)

A.1As a matter of fact, the V-tessellation was introduced several times by scientists in various
fields [15, 37]. The first scholar to come across this method was the famous mathematician Leje-
une Dirichlet, who in the 1850s [65] found similarities of this construction with quadratic forms as
discussed by another famous mathematician, Carl Friedrich Gauß [94]. Georgy Voronoi (Ukrainian:
Гео́ргiй Феодо́сiйович Ворони́й) is “merely” credited with the original generalization of the tessel-
lation to arbitrary dimension [275]. Nevertheless, in many fields, the name “Voronoi tessellation”
has prevailed, equivalently running under the names “Voronoi decomposition” or “Voronoi diagram”.
Notably, being a relatively-intuitive method, the construction was also used by a number of early
“geologists, foresters, agriculturalists, medical researchers, geographers, crystallographers, and as-
tronomers” [70], many of which, however, were not aware of previous descriptions of this method.
Therefore, in some fields, the tessellation is not associated with the name of Voronoi but instead
with that of researchers in the field, as is the case for instance in solid-state physics (Wigner and
Seitz [283]) and meteorology (Thiessen [257]).
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whereas other parts do not do so (thin faint turquoise lines). In panel (c), another
D-vertex is added, resulting in another three bisectors. Contrary to the V-cells in
panels (a) and (b), the V-cell of the newly-added center is entirely bounded by V-edges
that coincide with segments of bisectors (highlighted in orange). The V-cell therefore
assumes the shape of a polygon (here a triangle). In panel (d), another D-vertex
is added, thereby changing the shape of the central V-cell to a quadrilateral. Most
notably, however, among the

∑4
i=1 i = 10 bisectors, there are now two (marked in

orange) that do not contribute at all to the V-edges. In systems containing much
more D-vertices, most of the bisectors are of this type, which is the principal challenge
to face when actually computing V-tessellations.

In the general, d-dimensional case (which includes the important case d = 3),
a V-tessellation features much the same properties as in two dimensions. Notable
changes include the bisectors, which in d dimensions take the form of (d−1)-dimen-
sional hyperplanes instead of lines in d = 2. The V-cells are then bounded by segments
of such hyperplanes (“Voronoi faces”) and assume the topology of d-dimensional hy-
perpolyhedra. While the notion of V-vertices remains intact, in d dimensions they
represent points in which d+1 hyperplanes intersect. Therefore, a V-vertex in d di-
mensions is equidistant to d+1 D-vertices. From this it follows that there also exist
points in which only d hyperplanes intersect (which serves as the general definition of
V-edges), or d−1 hyperplanes, all the way to three hyperplanes as in two dimensions.

Finally, the V-tessellation—like the D-tessellation—is well defined also in the pres-
ence of PBCs (see Sec. 2.4.2); this follows directly from the local nature of the V-cells.
The similarity to the D-tessellation also extends to the nearest-image convention, in
the presence of which the V-tessellation likewise requires care if the system is small.
Unlike the D-tessellation—which may in principle involve degeneracies (see Sec. 2.4.2
and Fig. 2.19 therein)—, the V-tessellation is always unique.

A.1.1.2 Voronoi network

Kerstein [142] uses the peculiar features of V-tessellations to characterize the accessible
space in a three-dimensional arrangement of particles. Specifically, he considers the
V-tessellation in which the centers of the particles constitute the D-vertices. Since we
are concerned only with the space that the matrix particles leave accessible to fluid
particles in an HS-QA mixture, for the D-vertices we will consider only matrix particle
centers.

Kerstein formulates and proves a set of statements (one lemma and three theo-
rems) that, taken together, provide rules for how to interpret the V-tessellation as a
network that characterizes the accessible volume. In the following, we will recite these
statements (with adapted terminology) and illustrate Kerstein’s proofs.

Lemma 1 (Kerstein): A given point in the interior or on the bound-
ary of a Voronoi cell is connected to a Voronoi vertex by a path
which is never closer to the Delaunay vertex than is the given point.
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Figure A.2: Proof of Lemma 1. Same two-dimensional
V-cell V Ci as in Fig. A.1(c), slightly enlarged. Explana-
tion: see text. Purple disk: given point Pj ; black disk:
D-vertex DXi; red disk: V-vertex V X∗j,i of V Ci that is
most distant from DXi; yellow disk: projection Pj,i of Pj
onto V-face V Fj,i; green disk: projection of Pj,i onto
V-vertex V X ′j,i. Gray lines: delimiters of Kerstein’s trian-
gles; gray area: example triangle. Purple circle: points
with same distance to DXi as Pj . Yellow and green lines:
projection lines; dark yellow and green lines: desired path
connecting Pj and V X ′j,i; dark red line: path proposed
by Kerstein.

DXi

VXj,i
*

VFj,i

Pj
Pj,i

VX'j,i

Kerstein’s proof for Lemma 1 goes as follows. Say that, as illustrated in Fig. A.2, the
given point Pj (purple disk) resides in V-cell V Ci (turquoise lines) around D-vertex
DXi (black disk). Then, Kerstein considers triangles (gray lines and gray example
area) for which the triangle apex is DXi and the triangle base is a face of V Ci. If
V Ci has n faces, then it can be entirely covered by n such triangles; therefore, Pj
must be contained in one such triangle, Yj,i. In three dimensions (where the triangles
corresponds to pyramids), Yj,i contains at least three V-vertices, one of which (say
V X∗j,i, red disk) is the point within Yj,i that is farthest from DXi. Therefore, V X∗j,i is
farther from DXi than is Pj. Without further proof, Kerstein asserts that the path
referred to in Lemma 1 is a straight line (dark red line) between Pj and V X∗j,i. As
is obvious from Fig. A.2, the path suggested by Kerstein may intersect the purple
circle—the latter containing the points that have the same distance from DXi as Pj—,
which means that the path is not always farther from DXi than Pj, and consequently
that Kerstein’s proof is wrong.

However, Lemma 1 still holds if we modify the proof as followsA.2. Instead of
connecting the given point Pj to V X∗j,i, we connect Pj to some V-vertex, namely in
a way that the path by construction consists of line segments that successively lead
farther away from DXi. First, consider the straight line passing through DXi and Pj
(light-yellow line). Obviously, following this line from DXi beyond Pj (dark yellow
line) we always move farther away from DXi. The point on this line that is farthest
from DXi but still within V Ci is the intersection point Pj,i (yellow disk) of the line
with one of V Ci’s faces, V Fj,i. Next, we find the point on V Fj,i that is closest to DXi
by intersecting V Fj,i with its normal vector passing through DXi (dashed light-green
line). We then consider the straight line from this point to Pj,i (solid light-green line)
and follow it beyond Pj,i until we exit V Ci (dark solid green line). This line, again,
leads only farther away from DXi. In two dimensions, the exit point is marked by
some V-vertex, V X ′j,i. Since Lemma 1 does not demand that V X ′j,i = V X∗j,i, we can
identify V X ′j,i with the required V-vertex and the line Pj → Pj,i → V X ′j,i with the

A.2The proof to Lemma 1 provided in this work is original to this work, i.e., published nowhere else
(yet).
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desired path. In d dimensions, the projection procedure described above has to be
carried out d times in an analogous way; in d = 3, for instance, we first project onto
a V-face, then onto a V-edge, and only then onto a V-vertex. Notably, this reasoning
is very similar to Kerstein’s proof to Theorem 2 (see further below).

Theorem 1 (Kerstein): Every point in the accessible space is con-
nected to some Voronoi vertex by a path contained within the
accessible space.

Theorem 1 is a direct consequence of Lemma 1 since by definition every point (whether
accessible or not) is contained in some V-cell.

Theorem 2 (Kerstein): If two Voronoi vertices are connected by the
accessible space, then they are connected by Voronoi edges.

Theorem 2 is easily proven by a procedure similar to this work’s proof to Lemma
1. Suppose that two V-vertices, V Xi and V Xj, are connected by some path in the
accessible volume. Then, by d−1 successive projections it is possible to map every point
of that path onto some V-edge. Since this mapping is affine with fixed points V Xi
and V Xj, the projected points (and thus the V-edges) connect the given V-vertices
without gaps.

Theorem 3 (Kerstein): A Voronoi edge is contained within the ac-
cessible space if and only if its point of closest approach to the plane
of the adjacent Delaunay vertices (i.e., the Delaunay vertices of the
three Voronoi cells sharing the Voronoi edge) is in the accessible
space.

Here, we follow Kerstein’s proof: By definition, each point on V-edge V Ei is equidistant
from the d D-vertices {DXj}i and more distant from all other D-vertices. The points
equidistant to the {DXj}i are located on a straight line Li perpendicular to the plane
defined by the {DXj}i. The point Pi,L ∈ Li that is closest to the {DXj}i is the
intersection of Li and the plane. If Pi,L is a member of V Ei, then Pi,L is identical
with Pi,V E, the point of V Ei closest to the {DXj}i. If Pi,L is not a member of V Ei,
then Pi,V E is instead constituted by the point on V Ei that is closest to Pi,L. In either
case, if Pi,V E is in the accessible space, then all points of V Ei are in the accessible
space.

Consider now some arrangement of matrix particles A. For any such arrange-
ment, the stated theorems and lemmas allow to translate the question “What is the
connectivity of the accessible space of A” to the question “Which V-edges connect
which V-vertices in the V-tessellation of A”. The initial question is thereby recast in
terms of a network percolation problem as discussed in Sec. 1.3.3.3, namely by treating
the V-vertices as “sites” and the V-edges as “bonds” (cf. Ref. [248]). This recasting
reduces the investigator’s task to identifying V-vertex clusters, i.e., V-vertex groups
in which every member is connected to at least one other member by a V-edge. Since
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Figure A.3: Voronoi network. Voronoi representation of the same system as
in Figs. 2.16, 2.17, and 2.20. Green lines: connecting V-edges; red lines: dis-
connected V-edges; green dot: isolated accessible V-vertex. Small black disks:
reminders of the matrix particle positions. The green elements trace the percolat-
ing void and evidence the presence of five traps.

each V-vertex is defined by a local environment of matrix particles, a V-vertex cluster
has to count infinitely-many members in order to correspond to a percolating void;
correspondingly, clusters with a finite number of members represent traps. Thus, the
V-network allows to determine how many traps and percolating voids are present in a
given system.

Figure A.3 illustrates the V-network for the same system as shown in Figs. 2.16,
2.17, and 2.20. In the figure, connecting V-edges are marked as thick green lines,
whereas disconnected edges are shown as thin red lines. Additionally, shown as a
green dot is the lone V-vertex that is accessible but otherwise disconnected from other
V-verticesA.3. For reference, the small black disks serve as reminders of the positions of
the matrix particles. As expected, some of the green elements (actually the majority
in this case) map out the percolating void, while others indicate that there are five
traps present in the system.

Albeit certainly valuable, the V-network unfortunately does not provide a means

A.3The finder may keep it.
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Figure A.4: Delaunay tessellation. Two-dimensional D-tes-
sellation and its Voronoi counterpart; same arrangement of
D-vertices as in Figs. 2.18 and A.1(d). Thick pink lines:
D-faces; light-turquoise lines: V-edges. Small black disks:
D-vertices. Orange dashed lines: extensions of V-edges to
their corresponding D-faces.

to determine which void a random accessible point is located in. Therefore, the V-net-
work is not directly suited for identifying whether a given fluid particle in a QA mixture
is free or trapped (which is our ultimate aim). Also, the number of V-vertices in a
cluster is not an immediate measure of the size of the corresponding void. As shall be
detailed in the following, these deficiencies are remedied by the D-tessellation.

A.1.2 Delaunay picture

In this section, we shall give the proof that—as asserted in Sec. 2.4.3—the D-tes-
sellation is suited to determine which void a given accessible point belongs to in a
system with particulate obstacles. While a considerable number of authors have ap-
plied the D-tessellation in precisely this way [39, 48, 107, 246, 251, 252], it was only
Sastry et al. [229] who attempted a systematic validation of this application. Unfor-
tunately, we discovered a major flaw in one of the proofs by the latter authors; this
circumstance, however, we shall remedy in this work. In the following, we will first
point out the relationship between the D- and V-tessellations, then elaborate on the dif-
ferences between the associated networks, and finally describe in detail the mechanism
by which the D-tessellation associates accessible points with voids.

A.1.2.1 From Voronoi to Delaunay

Our first task is to substantiate the statement that—as mentioned before in Sec. 2.4
and in this appendix—the D- and V-tessellations share a tight relationship. Perhaps
the most striking consequence of this relationship is the possibility to construct either
one of the tessellations exclusively from information encoded in the respective other
tessellation. Using, for instance, as starting point some V-tessellation in d dimensions,
the corresponding D-tessellation can be obtained from the following simple rules:

(i) For each V-edge V Ei, identify the d associated D-ver-
tices {DXj}i. Connect the {DXj}i such that they form
a (d−1)-dimensional hypersurface element DFi.

(ii) Interpreting the DFi’s as D-faces, find all groups of d+1
faces that enclose a d-dimensional D-cell.
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This prescription is illustrated in Fig. A.4, in which the pink lines indicate the D-tessel-
lation as in Fig. 2.18, and the turquoise lines outline the corresponding V-tessellation
as in Fig. A.1(d). It is easily verified that the figure contains precisely one D-face for
each V-edge (in d = 2, both faces and edges are straight lines or segments thereof), and
that each D-face is perpendicular to its corresponding V-edge. Also, it is evident that
a D-face does not necessarily intersect its associated V-edge; this is indicated by the or-
ange dashed lines, which extend the respective V-edges to their corresponding D-faces.
This particular property of the D-tessellation means that there exist D-cells that do
not host a V-vertex, which has significant ramifications for the pertinent network (see
Appendix A.1.2.2).

On a more mathematical note, the one-to-one correspondence between V-edges
and D-faces as well as between V-vertices and D-cells is tantamount to the D- and V-tes-
sellations being “dual” to each other in the graph-theoretical senseA.4. Since neither
of the tessellations allows isomorphisms—relocations of vertices under bond structure
preservation—, the respective dual construction is unique and encodes exactly the
same information. The only exception to this rule are degenerate D-tessellations (cf.
Sec. 2.4.2), which contain more information than their respective Voronoi counterpart.
However, the duality still holds in the sense that different realizations of a degenerate
D-tessellation (as in Fig. 2.19) correspond to the same V-tessellation.

A.1.2.2 Network pictures: Delaunay /= Voronoi

As pointed out before, a considerable number of authors have used the D-tessellation
to identify voids in condensed-matter systems with obstacle particles [39, 48, 107,
229, 246, 251, 252]. Surprisingly, however, most of these authors provide only little
justification for this proceeding, be it in the form of proofs or references. The only
exception to this unfortunate finding is the previously-mentioned work by Sastry et al.
[229], which forms the basis for many parts of this appendix.

Figure A.5 illustrates the necessity to validate that by the method detailed in Sec.
2.4.3 the D-tessellation indeed identifies voids correctly. The figure shows two different
tessellations of the same two-dimensional matrix particle arrangement, namely (a) the
D-tessellation, and (b) some arbitrary other triangulation. The colors encode the
connectivity picture that emerges from the different tessellations, with noncrossable
faces highlighted as thick red lines (similar to Fig. 2.16) and groups of cells flood-
filled in yellow if entirely bounded by noncrossable faces. Additionally, inaccessible
cells are marked in dark gray, and crossable faces are indicated by thin green lines.
Clearly, the two tessellations suggest very different connectivity patterns, which is
unfortunate since obviously there exists only a single physically correct pattern for a
given arrangement of matrix particles. Therefore, good (geometric) reasons have to
be brought forth for favoring one tessellation over the other.

One approach to this puzzle is the following. As laid out in Sec. 2.4.3, the D-tessel-
lation can be interpreted as a network representation of the accessible volume. Since we

A.4http://en.wikipedia.org/wiki/Dual_graph

http://en.wikipedia.org/wiki/Dual_graph
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(a) (b)

Figure A.5: Connectivity following from different tessellations. Panels (a)
and (b) show two different triangular tessellations of the same arrangement of
matrix particles. Black disks: matrix particles. Green (red) lines: triangle “faces”
that are (non)crossable by a fluid particle when disregarding all but the two matrix
particles connected by the face. Yellow areas are entirely bounded by red lines;
gray triangles are inaccessible. Like in Figs. 2.16, 2.17, and 2.20, the system is
subject to PBCs (cf. Sec. 2.2.2.1), with the dark gray box indicating the “original”
volume.

have already validated the network arising from the V-tessellation (Appendix A.1.1.2),
a comparison with the D-network may shed light on the validity of the latter. Un-
fortunately, despite the duality between the tessellations (Appendix A.1.2.1) the two
networks happen to differ slightly. However, it is premature to discard the D-tessel-
lation solely on the basis of this disparity. Instead, it is prudent to first investigate
the nature of the difference in order to assess the repercussions on the D-tessellation’s
capability to describe voids. For this investigation consider Fig. A.6, which shows
the D- and V-tessellations for an arrangement of five matrix particles, with the matrix
particles displayed as in Fig. 2.17, i.e., with possibly-present fluid particles of point
size and the accessible volume represented by the white areas.

First, we remember that the sites in the D-network are considered accessible
based on point (1) in the beginning of Sec. 2.4.3. This criterion effects a one-to-one
correspondence between the sites of the D- and of the V-networks. Since in panel (b)
of Fig. A.6, all V-vertices are located in the accessible area (see magnified section at
the far right), all D-cells in panel (a) are deemed accessible. However, the same figure
evidences that the entire accessible volume is located within merely one of the three
D-cells (namely D-cell x). From this it follows that according to the above criterion
an accessible D-cell can be “empty”—i.e., devoid of accessible volume.

Second, consider the D-faces in Fig. A.6. Here, a disparity between the D- and
V-networks is obvious: while the D-face z–x is noncrossable [thick red line in panel (a)],
the V-edge z–x is connecting [thick green lines in panel (b)]. This disparity arises from
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Figure A.6: Differences between the Delaunay and Voronoi networks. Pan-
els (a) and (b) show the same arrangement of five matrix particles. Black and dark
gray disks: matrix particles drawn as in Fig. 2.17; white area: accessible space.
Panel (a): D-tessellation; red lines: noncrossable D-faces; green line: crossable
D-face. Panel (b): V-tessellation; red lines: nonconnecting V-edges; green lines:
connecting V-edges. The circle to the very right shows an enlarged view of the
central white circle in panel (b). Most noteworthy is the fact that the D-face
between D-cells x and z is noncrossable whereas the V-edge between V-vertices x
and z is connecting.

the fact that a V-vertex can reside outside of its pertinent D-cell, which is connected to
the circumstance that a V-edge does not necessarily intersect its corresponding D-face
(cf. Fig. A.4). Therefore, the D- and V-networks generally differ in the “bonds” aspect.

To assess these findings, is essential to remember that our ultimate aim is to
characterize the connectivity of the accessible volume in a way that trapped and free
particles can be identified. From this perspective, the “accessible-but-empty” aspect is
fairly uncomplicated in that an empty D-cell cannot contribute to any void’s accessible
volume—irrespective of the network. The “different bonds” aspect is, unfortunately,
not quite as simple when viewed from the same perspective. In fact, it is mainly this
issue that the remainder of this appendix shall be devoted to, the ultimate conclu-
sion being that bond differences do not affect the superordinate goal of describing
voids. Unfortunately, proving this assertion is a relatively-complicated matter since
it requires knowledge about two additional, nontrivial properties of the D-tessellation
in the context of accessible volume. However, since for this work it is of paramount
importance that the D-tessellation indeed correctly identify voids, we will in the fol-
lowing section (Appendix A.1.2.3) describe and prove these additional properties in
detail. Subsequently, in Appendix A.1.2.4, we will assemble the proof for the desired
capability of the D-tessellation, which then concludes this appendix.

A.1.2.3 Additional Delaunay tessellation properties

In this section, we will describe and prove two properties exhibited by the D-tessellation
in connection with the accessible volume in HS-QA systems. These properties serve to
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Figure A.7: Subcells for proof of Lemma 2. Two-dimensional scheme for
constructing right-angle subcells that entirely cover a D-cell. The vertices of the
subcells fulfill the following criteria: one vertex is adjacent to edges that all meet
in right angles (pink disks), one vertex is a V-vertex (turquoise disks), and one
vertex is a D-vertex (black disks). The pink lines are D-faces, and if only matrix
particles at the pictured D-vertices are considered, then the turquoise lines are
V-edges. Gray lines complete the boundaries of the subcells; light-gray shades
indicate example subcells. For the latter, small arrows indicate the origin and
base vectors of the coordinate systems defined by the edges meeting in the right-
angle points. Panel (a) shows D-cell x from Fig. A.6, where the corresponding
V-vertex resides inside x. Panel (b) shows D-cell z from the same figure, where
the corresponding V-vertex is located outside z.

validate that the D-tessellation provides a correct description of the voids in a system.
The properties in question have been first described in the elaborate work by Sastry et
al. that we quoted before [229]. Like for Kerstein’s lemmas and theorems (see Appendix
A.1.1.2), we will recite the properties as described by Sastry and coworkers (with
adapted terminology) and provide the pertinent proofs. As in the case of Kerstein, we
unfortunately found one of the proofs by Sastry et al. to be flawed; this circumstance
we will correct in this section.

Lemma 2 (Sastry): If any point in a Delaunay cell belongs to the
accessible space, the corresponding Voronoi vertex belongs to the
accessible space.

The proof by Sastry and coworkers starts off by considering a particular D-cell DCi
with D-vertices {DXj}i, D-faces {DFk}i, and corresponding V-vertex V Xi. The cen-
tral concept of Sastry et al. is to construct several “subcells” from DCi [229]. Fig-
ure A.7 illustrates the two-dimensional analog of their procedure: First, for each DFk,i,
find the orthogonal projection of V Xi onto that DFk,i and call the projected point Zk,i.
Then, define nonoverlapping subcells, with V Xi as the first, one of the {Zk}i as the
second, and one of the {DXj}i as the third vertex. For any subcell defined this way,
the respective Zk,i is adjacent to a right angle. As can be seen from Fig. A.7, if V Xi is
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located inside DCi, then all possible subcells combined precisely cover DCi [panel (a)];
if on the other hand V Xi resides outside DCi, then all subcells stretch beyond DCi
and merely a subset of the subcells is needed to entirely cover DCi [panel (b)]. The
generalization of this subcell-construction scheme to d dimensions is straightforward:
one of the vertices of a subcell is V Xi, one is an orthogonal projection of V Xi onto a
(d−1)-dimensional face, one is the projection of such a vertex onto the (d−2)-dimen-
sional boundary of a face, and so on until the dth projection (and vertex) is some DXj,i.
This way, akin to the d = 2 case, each d-subcell features one vertex (the one obtained
from the first projection) at which all edges mutually enclose right angles [229].

The right-angle property is central to the proof of Lemma 2 since it allows to define
a simple coordinate system in each subcell on the basis of the edges that enclose the
right angles [229]. Choosing as the origin the one and only DXj,i that constitutes a
vertex of a given subcell, it is possible to scale each of the orthogonal base vectors
with +a or −a (with a ∈ R being the same for all base vectors) such that V Xi
assumes the highest coordinate of all points in that subcell (see Fig. A.7). Thus,
for each subcell, V Xi is the point within that subcell that is furthest away from the
subcell’s DXj,i. Now, assume that a given point Pk is located in the accessible space
and within D-cell DCi. Since we can select the subcells such that they wholly cover
the D-cell, we can guarantee Pk to be contained in one of the subcells. Say in the
following that Pk resides in the subcell associated with D-vertex DXk,i. There are
then two characteristics of Pk:

(1) The distance DXk,i → Pk is shorter than the distance DXk,i →
V Xi, which follows from the coordinate consideration.

(2) Pk is not rendered inaccessible by any of the d matrix particles
residing at the {DXj}i, which is a simple consequence of Pk being
accessible.

Characteristics (1) and (2)A.5 directly entail that V Xi is left accessible by the matrix
particles at the {DXj}i if this is the case for Pk. By the very definition of a V-vertex,
there then exists no other matrix particle that is closer to V Xi than those residing at
the {DXj}i, meaning that if the matrix particles at the {DXj}i leave V Xi accessible,
then V Xi is in the accessible space. Thus Lemma 2 is proven.

Lemma 2 merely makes a statement about the conditional accessibility of two
points. In the context of the present work, however, it is of paramount importance
that there also exist a connecting path between these two points. Therefore, we will
next consider a theorem by Sastry and coworkers that in its proof implies the existence
of such a path.

Theorem 4 (Sastry): Given a set of Voronoi vertices that belong to
a void, the union of Delaunay cells corresponding to the Voronoi
vertices completely encloses the void.

A.5In the proof to Lemma 2 by Sastry et al., the important logical step in characteristic (2) goes
entirely unmentioned.
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Figure A.8: Proof of Lemma 3 and Theorem 4. Panel (a): same D-cell as
in Fig. A.7(a). Panel (b): enlarged section of the D-cell in Fig. A.7(b). Black
disks: D-vertices (at each of which a matrix particle resides); pink lines: D-faces
of D-cell DCi; green circle: surface Si of DCi’s sphère vide. Orange disk: given
point Pk; turquoise disk: DCi’s V-vertex V Xi; orange line: line Lk,i connecting Pk
and V Xi. Light-gray disk: point Ak,i on Si that is closest to Pk; dashed light-gray
line: line connecting Ak,i and Pk. Light-blue area: points that are outside Si and
are closer to some point on Lk,i than to Pk. Blue dashed line: line perpendicular
to Lk,i and passing through Pk; blue disks: intersection of the latter line with Si,
marking the points of the light-blue area that are closest to Lk,i. Red dotted
circle: circle around Pk that passes through DXk,i, the D-vertex most proximate
to Pk. Black dashed lines: connecting lines between Pk and the intersection
points of Si and the red circle; black dotted arc: indicator for the angle between
the black dashed lines. In panel (a), the V-vertex resides inside the D-cell, whereas
in panel (b), it is located outside of the D-cell.

As Sastry et al. show [229], Theorem 4 is a straightforward consequence of a specific
precondition. This precondition, which we here state as a separate lemma, reads as
follows:

Lemma 3: An accessible point within a Delaunay cell belongs to
the same void as the Voronoi vertex of the Delaunay cell.

From Lemma 2, we already know that the V-vertex V Xi of a D-cell DCi is accessible
if there is any accessible point Pk in DCi. Therefore, the task in proving Lemma 3
(and thus Theorem 4) is to show that there exists a connecting path between V Xi
and every accessible Pk within DCi. Proving Lemma 3 therefore amounts precisely to
showing that the requirement formulated further above holds.

For their pertinent proof, Sastry et al. invoke the scheme of falsification, which in
the present context means to consider the case that no path exists between Pk and V Xi
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and to show that this cannot be the case. Unfortunately, while this proof scheme is
perfectly valid, Sastry and coworkers execute it in an erroneous way. To understand
their logical mistake, we first follow their reasoning. Consider Fig. A.8(a), which shows
the same D-cell as Fig. A.7(a). Sastry et al. name the straight line Lk,i that connects Pk
and V Xi (thick orange line) as their candidate for the sought-after path. Then, they
find the spatial point Ak,i (light-gray disk) that is closest to any of the points of Lk,i
and that is—at the same time—an allowed position for another matrix particle. By
the definition of the D-tessellation, Ak,i has to be located outside (or at most on
the surface) of the sphère vide corresponding to DCi (green circle in Fig. A.8(a), cf.
Sec. 2.4.2). As is easily verified, Ak,i is constituted by the intersection point between
the extension of Lk,i beyond Pk (dashed light-gray line) and the surface Si of the empty
sphere. Clearly, Ak,i is the point on Si that is closest not only to Pk but to any point
of Lij (except for V Xi, which by definition is equidistant to all points of Si). Moreover,
Pk is the point of Lij that is closest to Ak,i. Therefore, if a matrix particle resides
at Ak,i and Pk is accessible, Lk,i is accessible in its entirety. This, Sastry and coworkers
incorrectly consider as proof of Theorem 4.

The logical mistake lies in the following. Contrary to the assertion by Sastry
et al., the falsification scheme actually requires to prove that no additional matrix
particle placed anywhere (subject to the empty-sphere constraint) renders the path Lk,i
disconnected. However, Sastry and coworkers instead focus on merely one possible
choice for the location of the additional matrix particle (namely one the closest to Pk)
and show that in this case Lk,i is connecting. This however, does not suffice to preclude
the existence of other matrix particle locations for which Pk is accessible but Lk,i is
disrupted. In the following, however, we will prove that such locations indeed do not
existA.6.

Suppose, as before, that Pk is the given (accessible) point within D-cell DCi,
that Lk,i is the straight line connecting Pk and V Xi (the V-vertex associated with DCi),
and that DXk,i is the vertex of DCi that is closest to Pk. To prove Lemma 3, we need
to put constraints on the possible position of an additional matrix particle that would
leave Pk accessible but would render Lk,i nonconnecting. Specifically, such a position
would have to be

(I) located outside of the empty sphere of DCi,
(II) farther from Pk than from some other point on Lk,i, and

(III) far enough from Pk to leave the latter accessible.

Let us consider these conditions for a two-dimensional example. Figure A.8(a) shows
the same D-cell as Fig. A.7(a), i.e., a D-cell for which the corresponding V-vertex
resides inside the D-cell. As indicated by the light-blue crescent, the points that fulfill
both condition (I) and (II) cover a half-plane with parts of a disk removed. The
points Zk,i and Yk,i (small blue disks) mark the locations within this area that are
closest to Lk,i. These points are obtained by intersecting the surface Si of the sphère

A.6The proof to Theorem 4 provided in this work is original to this work, i.e., published nowhere
else (yet).
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vide (green circle) with the line that is perpendicular to Lk,i and passes through Pk
(dashed blue line). Note that by the latter construction, Zk,i and Yk,i are on the surface
of the light-blue area, meaning that actually it is Pk,i that is the point on Lk,i closest to
these two points. Strictly speaking, this is in violation of condition (II). However, to
meet condition (II) it suffices to move only infinitesimally far away from those points
“into” the light-blue area. Next, we show that by the above construction, the distance
from Pk to Zk,i is always larger than that from Pk to DXk,i. Consider a circle Ck,i
(red dotted circle) that is centered about Pk and runs through DXk,i. Clearly, for Zk,i
and Yk,i to reside inside Ck,i, the angle marked by the black dotted arc would have
to be larger than 180◦. However, the latter is possible only if Pk resides outside the
D-cell—which is in clear contradiction to our assumption. From this it follows that if
a matrix particle resides at Zk,i and renders any of the points of Lk,i inaccessible, then
the matrix particle located at DXk,i certainly renders Pk inaccessible—which again
contradicts our assumption.

Figure A.8(b)—which shows a section of the D-cell in Fig. A.7(b)—evidences that
the same reasoning holds if V Xi is located outside DCi. However, if at this point
we considered Lemma 3 proven, we would commit same mistake as Sastry et al. in
that we would have shown merely for a particular case that Lk,i is entirely accessible.
Therefore, consider now that none of the candidate locations in the light-blue area is
closer to Pk than Zk,i is (notably Yk,i and Zk,i are equidistant from Pk). Reiterating the
reasoning in the previous paragraph, this means that none of these candidate locations
can render a point on Lk,i inaccessible without DXk,i rendering Pk inaccessible. This
entails that conditions (I)–(III) cannot be fulfilled simultaneously, which finally proves
Lemma 3 (and thus Theorem 4).

The generalization of the above argument to d dimensions is straightforward. The
most significant modifications concern the set of the points that adhere to conditions (I)
and (II) and are closest to the given point Pk, and the set of the points that mark
the intersection of Si and Ck,i. The points in both of these sets actually form the
surface of a (d−1)-dimensional hypersphere, meaning that whereas in d = 2 both sets
encompass precisely two points, in three dimensions each set describes a circle.

Finally, two simple corollaries follow directly from Lemma 3 and Theorem 4,
namely that

(i) a D-cell overlaps at most one void [229], and that

(ii) if a V-vertex is inaccessible, then no point within the cor-
responding D-cell is accessible.

A.1.2.4 Accessible volume in void: Delaunay = Voronoi

We will now, finally, forge the proof that the D-tessellation indeed provides a valid
description of the voids in an HS-QA system (cf. Sec. 2.4.3). To achieve this, we
will make use of the properties detailed in Appendix A.1.2.3 and of the findings of
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Appendix A.1.2.2, the latter having been that the “sites” are identical whereas the
“bonds” may differ among the D- and V-networks.

As the last prerequisite of the proof, we need to determine under which circum-
stances a specific bond can be different in the D- and V-networks. For this, consider
a D-face DFi and a V-edge V Ei that represent the same bond in the two networks.
Following from the definition of V-edges, each point on V Ei is equidistant from the
D-vertices {DVj}i that define DFi. The point Mi that is equidistant from and closest
to the {DVj}i is obtained by intersecting DFi with the straight line that V Ei is a
segment of. According to step (2) in the beginning of Sec. 2.4.3, whether or not DFi is
crossable depends solely upon whether Mi is accessible. Theorem 3, on the other hand,
entails that the connectivity of V Ei is determined by Mi only if V Ei intersects DFi.
If such an intersection is not the case, then whether or not V Ei is connecting depends
upon the point M ′i ∈ V Ei that is closest to Mi. Since M ′i is always more distant
from the {DVj}i than Mi, it follows that V Ei is always connecting if DFi is cross-
able. Therefore, the only possible way for the D- and V-networks to differ is for some
connecting V-edge to correspond to a noncrossable D-face.

On the basis of this finding, we are finally in the position to validate the void
picture resulting from the D-tessellation. The ensuing reasoning is as follows. Suppose
that the V-edge V Eij links the V-vertices V Xi and V Xj, and that the corresponding
D-cells DCi and DCj are joined by D-face DFij. Suppose further that both D-cells are
accessible, and that both DCi and DCj do actually contain accessible volume. (We
merely need to consider this case here since—as laid out in Appendix A.1.2.2—“empty”
D-cells are irrelevant to the void picture.) Suppose, finally, that the V- and D-networks
that the above elements are part of are identical except possibly for V Eij and DFij.
There are then precisely two cases for the latter two elements:

(1) The V-edge and the D-face in question render the networks entirely identi-
cal, meaning that either the former is connecting and the latter is crossable
or V Eij is nonconnecting and DFij is noncrossable. Since we know the
V-network to correctly identify all voids (Appendix A.1.1.2), the same
property trivially holds for the D-network in this case.

(2) The V-edge and the D-face in question cause the networks to be different.
From the prerequisite established in this section’s second paragraph, we
know that the only way for V Eij and DFij to differ is that the former is
connecting whereas the latter is noncrossable. Considering the accessible
volume, by Lemma 3, any accessible point inside DCi has to be in the same
void as V Xi; the same is true for V Xj and accessible points within DCj.
By the assumption that V Eij is connecting, we know that V Xi and V Xj
reside in the same void. Combining these statements, under the given
conditions the accessible volume inside DCi belongs to the same void as
the accessible volume inside DCj—irrespective of whether the D-face is
crossable or notA.7.

A.7Interestingly, since the crossability of D-faces is physically meaningful, a noncrossable D-faceDFij
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In combination with corollary (i) in Appendix A.1.2.3 (“a D-cell overlaps at most
one void”), the above two cases mean that the D-tessellation is capable of associating
every accessible point in the system with the correct void. Therefore, by the methods
in Secs. 2.4.3 and 2.4.5 the D-network delivers a correct representation of the void
connectivity, which finally allows to reliably identify free and trapped particles.

A.2 Finite-size effects in simulations

Due to the compulsory averaging of observables over multiple matrix realizations
(Sec. 2.5.1.5), the large number of investigated state points (Chapter 3), and limited
computational resources, most of the simulations in this work had to be conducted on
relatively-small hard-sphere quenched-annealed (HS-QA) systems. Unfortunately, it
is possible that observables in small systems do not (as usually intended) resemble the
same observables in larger systems, the cause being not mere statistical errors but the
very size of the system. This unwanted behavior is commonly referred to as “finite-size
effects” [9, 85, 218], and the purpose of this appendix is to ensure that for all of the
state points considered in this work, the size of the simulated systems was sufficient
to avoid the presence of such effects.

The first origin of problems in this context lies in the existence of large length
scales in systems at certain state points (combinations of φm and φf). Specifically, such
length scales occur whenever the packing fractions of the fluid, φf , and/or of the matrix,
φm, are elevated, with the former causing large dynamic correlations in the process
of dynamic arrest (Sec. 1.2.5), and the latter leading to a fractal structure of voids
in the process of localization (Sec. 1.3.3.3). Since the reliability of reproducing large
length scales in simulations is dependent primarily upon the overall size of a system,
we decided to perform most simulations with the same total number of particles, N =
Nm+Nf . This decision is reasonable also considering the fact that the computational
effort for advancing an HS-QA system by a certain amount of simulated time depends
predominantly upon N for a wide range of state points (see Appendix A.3.2). As a
trade-off between admissible program run time and desired system size, we opted for
the specific value N = 1000 (cf. Sec. 3.1), and it is this value of N that we shall put
to a test here.

The second issue at call is the large disparity between φm and φf for a number of
state points considered in Chapter 3. Upon fixing the total number of particles (see
above), such a disparity entails a comparatively low value of either Nm or Nf , neither
of which is desirable since it will cause an imprecise calculation of the properties
pertaining to either the matrix or the fluid. Among the systems considered in this
work, the most extreme case for low Nm is the state point (φm, φf) = (0.050, 0.505), in
which our choice of a constant N = 1000 entailed a mere Nm = 90. The corresponding

between two nonempty D-cells requires that the connection between the accessible volume in the
D-cells somehow “bypass” DFij . This means that the path has to leave and enter the two D-cells
through faces other than DFij and thereby involve at least three D-cells.
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Figure A.9: Finite-size effects in intermediate scattering functions (ISFs).
Assessment of the state point (φm, φf) = (0.2500, 0.0125) close to the percolation
transition of the accessible volume and to the fluid tracer case. Panel (a): con-
nected ISF, Fc(k, t); panel (b): single-particle ISF, Fs(k, t). Both panels: wave
vector k ∈ {1, 2, 4, 8}; total particle numbers N = 1000 (red solid line, squares),
N = 4000 (green dashed line, circles), and N = 10 000 (blue dotted line, trian-
gles).

extremal case for low Nf is the state point (φm, φf) = (0.3000, 0.0025), which for
N = 1000 left only eight fluid particles to move in a matrix of 992 particles. Hence,
of the problems caused by disparate packing fractions, low values of Nf is the much
more severe one.

In order to curtail the latter issue, we chose to increase N whenever N = 1000
would effect one of the particle numbers Nm or Nf to be below the (arbitrary) limit
N∗ = 50. The previous brief analysis shows that in none of our systems, the matrix
particle number is below N∗, which limits the discussion to state points for which Nf

is low. In the following, we will investigate whether or not the choices of N and N∗

are appropriate; this we will do by considering a state point representative of the
problem of both low Nf and a large length scale in the void structure. Specifically,
we will inspect various observables at (φm, φf) = (0.2500, 0.0125), a state point close
to the percolation transition of the voids (cf. Sec. 3.3) and to the tracer case φf →
0. Using N = 1000, this system attains Nf = 48, which is reasonably close to N∗.
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Figure A.10: Finite-size effects in mean squared displacement. Assessment
of (φm, φf) = (0.2500, 0.0125), the same state point as in Fig. A.9. Panel (a):
mean squared displacement (MSD), δr2(t); panel (b): MSD’s logarithmic deriva-
tive, z(t). Both panels: N = 1000 (red solid line, squares), N = 4000 (green
dashed line, circles), and N = 10 000 (blue dotted line, triangles).

To investigate finite-size effects, we computed the quantities Fc(k, t;N), Fs(k, t;N),
δr2(t;N), and z(t;N), which are now taken to also depend upon the total particle
number in addition to the arguments defined in Sec. 2.5.3. Specifically, we considered
the cases N = 1000, 4000, and 10 000, and as usual, we averaged the observables over
ten matrix configurations.

Figure A.9 visualizes the dependence of two intermediate scattering functions
(ISFs) upon N , namely that of the connected ISF, Fc(k, t;N), and of the single-particle
ISF, Fs(k, t;N). The ISFs are shown for selected wave vectors, where any finite-size
effects should be most prominent for the smallest k since the latter corresponds to
the longest wave length. Indeed, for k = 1 and t > 101, there are noticeable dis-
crepancies between the curves of Fc(k, t;N) for N = 1000, 4000, and 10 000; however,
this is hardly surprising considering that even for N = 10 000, the corresponding
length scale 2π/k = 2π is only slightly smaller than half of the edge length of the
simulation box. In fact, already for k = 2, there is no distinguishable difference be-
tween Fc(k, t;N=1000), Fc(k, t;N=4000), and Fc(k, t;N=10 000). On the other hand,
Fs(k, t;N) displays small consistent discrepancies between the curves for N = 1000,
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4000, and 10 000; however, even the worst-case deviation—which occurs at k = 8
and t = tmax = 2.25×104—is no more than ∼12% between Fs(k, t;N=1000) and
Fs(k, t;N=10 000). It is, however, not surprising that the single-particle ISF curves
exhibit larger deviations from one another than the curves of the connected ISF, the
reason being that Fc(k, t;N) approaches zero relatively quickly whereas Fs(k, t;N)
does not completely relax. Also, we point out that all discrepancies in the self ISF for
different N are well within the range of statistical uncertainty.

Similarly, Fig. A.10 illustrates the dependence upon N of the mean squared dis-
placement (MSD, cf. Sec. 2.5.3.1), δr2(t;N), and its logarithmic derivative, z(t;N). For
the MSD, the differences between δr2(t;N=1000) and δr2(t;N=10 000) for t = tmax

amount to ∼24%; this discrepancy can be considered minor since throughout this
work, we are interested in δr2(t;N) on logarithmic scales. The derivative z(t;N), on
the other hand, is clearly more susceptible to stochastic errors, which dominate finite-
size effects for t > 3.6×103 and N = 1000. For t = 3.6×103, we find a difference
of 17% between z(t;N=1000) and z(t;N=10 000), which—with some care—permits
quantitative interpretation.

In conclusion, our limited analysis suggests that a minimum system size of N =
1000 and the statistics of Nf ≥ N∗ is sufficient to yield reasonable results for all state
points and observables considered. None of the investigated quantities exhibited a
deviation of more than 20% between N = 1000 and 10 000, which lends credibility to
the results presented and the conclusions drawn in Chapter 3.

A.3 Validation and performance of numeric algorithms

A.3.1 Validation of molecular-dynamics algorithm

In computer investigations of statistical-mechanical systems, it is imperative that the
core simulation algorithm generate correct data, the reason being that the validity of
conclusions drawn on these data hinges on their correctness. In order to warrant the
proper operation of the core program—which in this work is the molecular-dynamics
(MD) algorithm of Sec. 2.2—we employed two independent approaches: monitoring of
conserved quantities, and comparison with previous works.

A.3.1.1 Conserved properties

For the validation of this work’s MD algorithm, we considered three quantities that are
by definition conserved in event-driven MD: energy, linear momentum, and angular
momentum (cf. Sec. 2.2.1.1). Formally, these three invariants can be expressed as

∑N

i=1
(mi/2) |vi|2 = const,

∑N

i=1
mi vi = const, and

∑N

i=1
mi ri×vi = const,

(A.4)



A.3. Validation and performance of numeric algorithms 239

where N is the total number of particles in the system, ri, vi, and mi denote the
location, velocity, and mass of particle i, respectively, and the symbol “×” as usual
denotes a cross product. The first two lines in Eq. (A.4) reflect the conditions from
which the collision physics in Sec. 2.2.1.4 was derived; the conservation of angular
momentum follows from the absence of external torques and provides an additional
independent check. Notably, to machine precision, the properties in Eq. (A.4) are
conserved exactly in event-driven MD.

In the case of systems with a matrix of quenched particles, the equalities in Eq.
(A.4) require some modifications in order to qualify as valid checks. The problem
lies in the fact that despite their special properties, the matrix particles have to be
included in the respective sums. As alluded to in Sec. 2.2.1.4, mathematically it is
efficient to describe the collision behavior of the matrix particles by considering the
limit of an infinitely-large mass; this way, the product of mass and velocity after a
collision remains well defined. In computer simulations, however, the immobility of
a particle is most conveniently achieved by simply setting its velocity strictly to zero,
which, unfortunately, renders its contribution to the sums in Eq. (A.4) strictly zero
and thereby invalidates the conservation laws.

One way to remedy this complication is as follows. If a particle i is artificially and
rigorously fixed in space, then this information can be stored as a mere flag without
loss of flexibility. Any information about the velocity and mass of i is then irrelevant to
the MD algorithm, meaning that the corresponding memory fields can be filled with
arbitrary numbers—for instance with values that, if used in the sums in Eq. (A.4),
restore the conservation properties. The most convenient way to achieve this is to fix
the “mass” field of the matrix particles to some value (unity, for instance), and to
then adjust their “velocity” entries such that the artificial momentum accounts for the
recoil from collisions between mobile and immobile particles.

In addition to the three dynamic conservation laws in Eq. (A.4), a property “con-
served” by definition in event-driven MD is the absence of overlaps between particles.
Therefore, the MD code can generally be assumed to be flawed if such overlaps oc-
curA.8. The only exception to this rule is minute overlaps due to numerical round-off
errors, which regularly occur on real computers (cf. Footnote 2.17). We implemented
an independent overlap-check routine with a simplified version of the underlying dis-
tance evaluation—one without bucket lists—in order to increase the robustness of the
validation. Unfortunately, this choice comes at the expense of O(N2) operations for a
single checking of the complete system for the presence of overlaps.

A.8An interesting, straightforward consequence of Eqs. (2.12) and (2.16) is that the check for the
next collision of a particle (Sec. 2.2.1.2) always yields a time in the “past” if the checked particle
overlaps another particle. Since by construction, such a time is automatically the highest-priority
item in the list of future collisions (Sec. 2.2.2.5), processing that event will cause the algorithm to run
“backwards” for a short time. Due to the fact that such a reverse operation—even if brief—probably
results in additional particle overlaps in the system, it is likely to mark the beginning of a sustained
time reversal of the algorithm. Unfortunately, while easy and computationally cheap to identify, the
start of such a backward operation is not directly informative since the causative MD algorithm error
may have taken place many operations earlier.
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In the context of computational expense, it is important to note that the validation
criteria discussed in this section have been applied merely to representative extended
test runs. In production runs, all such routines were switched off in order to enhance
the algorithm’s performance.

A.3.1.2 Comparison with literature

As laid out at length in Chapters 1 and 2, the primary objective of this work is
to investigate the dynamic features (i.e., the physical time evolution) of hard-sphere
systems. Since the time-dependent quantifiers of a system are highly sensitive to errors
in the MD routine, we complemented the consistency checks in Appendix A.3.1.1 by a
comparison of dynamic observables as obtained from sample runs of our MD algorithm
and from investigations reported in the literature. We shall here illustrate selected
results that are specifically concerned with the velocity auto-correlation function, an
observable defined by

ψ(t) =
1

N

N
∑

i=1

〈vi(t) · vi(0)〉
〈vi(0) · vi(0)〉 , (A.5)

whereN is the number of particles, vi(t) is the velocity vector of particle i at time t, and
the symbol 〈· · · 〉 denotes a thermodynamic average (cf. Sec. 2.5.1). The velocity auto-
correlation function, like any single-particle property, is self-averaging (i.e., it can be
averaged over different particles; see Sec. 2.5.3.1), which alleviates unwanted statistical
errors; also, ψ(t) is well investigated for hard spheres (see for instance Refs. [4, 7, 8,
285]). Since the mathematical and physical basis of correlation functions is discussed
in more detail in Sec. 2.5, we shall here only focus on our effort to validate the MD
algorithm.

Figure A.11 displays two distinct sets of data that both represent ψ(t) in one-
component hard-sphere systems at various densities. Lines, on the one hand, denote
results that were obtained by Williams et al. (these data were digitally extracted
from Fig. 1 in Ref. [285]); symbols, on the other hand, indicate data generated by
this work’s MD algorithm for the same external parameters. In both cases, the system
under investigation is a collection of identical hard spheres, the only control parameter
being the volume fraction φf as defined in Sec. 2.5. Notably, for all investigated values
of φf , the system is in its fluid phase, and both sets of data employ the same unit of
time τ as defined in Sec. 2.5.1.6, which facilitates the comparison.

As can be seen from Fig. A.11, there is an excellent agreement between the ψ(t) val-
ues from Ref. [285] and from this work’s MD algorithm; the slight residual differences
are easily explained by the imperfect extraction of data from a published plot as well
as by the small statistical errors in all data. Provided that the results from Ref. [285]
are reliable themselves, the coinciding data suggest that other observables evaluated
from similar runs of our MD code are valid as well.
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Figure A.11: Validation through comparison with literature data. Velocity
auto-correlation function, ψ(t), for a system of identical hard spheres at various
volume fractions φf . Lines: results by Williams et al. [285] (∼11 000 particles);
symbols: data from this work’s MD algorithm (1000 particles).

A.3.2 Performance of molecular-dynamics algorithm

In Sec. 2.2.2, we asserted that the event-driven MD algorithm detailed in Sec. 2.2
requires O(N logN) operations to advance a simulation with a total of N = Nm+Nf

particles by a fixed time interval ∆t. In this section, we assess this assertion by
investigating the collision rate Rs(N,φm, φf), i.e., the number of collisions computed by
the MD algorithm in one second of real time in a simulation at the state point (φm, φf).

Figure A.12 shows Rs for systems of varying N at three different combinations
of φm and φf . The first state point—the red solid line—is tantamount to a moderately
dense fluid located in the quasi-bulk regime at (φm, φf) = (0.050, 0.400); the second
state point—the green solid line—contains a balanced number of matrix and fluid
particles at (φm, φf) = (0.100, 0.100); and the third state point—the blue solid line—is
in the regime of the matrix dominating a dilute fluid at (φm, φf) = (0.200, 0.025). The
values for each point of the solid curves in Fig. A.12 have been obtained by measuring
the time that the MD algorithm needed to complete 106 collisions on an Intel Xeon
X5650 CPU. As for any observable, the systems have been equilibrated (albeit only
up to δr2(t) = 1 since equilibration is not as important in this context), and the values
have been averaged over multiple—here: ten—matrix realizations. These realizations
also form the data basis of the error bars in Fig. A.12, the latter indicating the standard
error of the mean (cf. Secs. 2.5.1.5 and 2.5.5).

The first, expected feature of the MD algorithm—which is immediately evident
from Fig. A.12—is its decreasing performance as N is increased. Bearing in mind
that O(1) events per particle are required for some simulation time ∆t to elapse
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(cf. Sec. 2.2.2), this dependence is expected to be Rs ∝ 1/(logN) for fixed (φm, φf).
However, this dependence is not quite followed by Rs for all of the depicted state points;
this can be seen from a comparison with the dotted lines, each of which indicates an
idealized 1/(logN) law that at N = 102 coincides with the solid line of the same
color. Interestingly, relative to those idealized laws the algorithm exceeds the expected
collision rate for 102 < N < 104, whereas for 104 < N < 106 its performance is
roughly in accord with the prediction. These findings result from two circumstances.
Firstly, the MD algorithm—as any simulation program—involves operations that do
not depend upon system size. Since the time fraction spent on such operations is larger
in smaller systems, the algorithm performs relatively poorly for small systems, which
in turn explains the apparent overachievement for moderate system sizes. The second
effect is—in short—an interplay of the amount of simulation-relevant data with the
sizes of the various data caches of the computing systemA.9. This effect entails the
pronounced decrease for N ≈ 104 and probably also the drop-off for N ≥ 106. All in all,
however, the pattern of the collision rate is consistent with a 1/(logN) dependence—
especially taking into account the large range of the investigated values of N .

The second feature visible from Fig. A.12 is the higher performance of the algo-
rithm for systems with a larger proportion of matrix particles. This is hardly surprising
in view of the fact that matrix particles can simply be skipped in the particle advance-
ment (Sec. 2.2.1.3) and—partially—in the next event–search (Sec. 2.2.1.2) routines.
However, the effect is not as pronounced as one might expect, with Rs increasing only
approximately twofold upon decreasing the fraction of fluid particles by a factor of
eight (from 89% fluid particles in the system of the red curve to 11% in the system of
the blue curve). Therefore, the performance of the MD algorithm in terms of Rs can
be considered approximately constant for the state points of interest to this work.

In the context of state-point dependence, however, it is due to note that Rs alone
is not quite suited to indicate the “speed” of a simulation. The natural quantification

A.9In order to perform computations, a computer’s CPU has to load data from some memory
structure. The memory structures of modern computers are—simply put—arranged in a “cascade”
along which data flow “towards” the CPUA.10. Usually, the CPU’s data access is limited to the
lowermost cascade level, typically called the “L1 cache”. If there is a “cache miss”—i.e., requested
data are not available in that cache—, then data first have to be loaded to the L1 cache from the
“L2 cache” (one level up the cascade); if the L2 cache also returns a cache miss, then data first have
to be moved to the L2 cache from the “L3 cache”—and so on. This architecture is motivated by the
different speeds at which data can be retrieved from the caches, with the L1 cache being fastest, and
each level being orders of magnitude faster than the respective one above. Unfortunately, for physical
and engineering reasons, faster caches are generally smaller, which entails the following effect on the
performance of a program. Say a simulation A operates on an amount of data that precisely fits into
the L2 cache, meaning that in this simulation, the CPU is supplied with information at the speed of
the L2 cache. If a simulation B operates on more data than simulation A, then frequent accesses to
the L3 cache are necessary. Since the L3 cache is much slower than the L2 cache, the CPU obtains
data at a correspondingly slower rate, which effectively renders the computing system slower for
simulation B than for simulation A. Notably, the impact of this effect is difficult to estimate a priori
since it depends upon a number of factors such as the type of computations and the “intelligence” of
the caches.

A.10http://en.wikipedia.org/wiki/CPU_cache

http://en.wikipedia.org/wiki/CPU_cache
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Figure A.12: Performance of the molecular-dynamics algorithm. Solid
curves: number of collisions, Rs(N,φm, φf), computed per second on an Intel
Xeon X5650 CPU by this work’s event-driven MD algorithm for systems with
N = Nm+Nf particles in total. Dotted curves: expected 1/(logN) law, adjusted
to fit simulation data at N = 102. Red: quasi-bulk regime; green: equal amounts
of fluid and matrix; blue: fluid dominated by matrix. Error bars: standard error
of the mean (ten system realizations).

of this property is instead the ratio Θ = τ/s, i.e., the number of simulated time units
that elapse per real-time second. Yet, if we denote by Rτ the average number of
collisions per simulated time unit τ , then we can “recycle” Rs in the expression

Θ(N,φm, φf) =
Rs

Rτ
. (A.6)

Like Rs, the rate Rτ varies with the state point and with the size of the system; however,
since Rτ (N,φm, φf) is obviously simply proportional to N , the information of interest
is encoded in the dependence of Rτ upon φm and φf . It is therefore more insightful to
consider the quantity rτ (φm, φf) = Rτ (N,φm, φf)/N ; and in fact, inserting this equality
into Eq. (A.6) renders the factor N that we neglected in this section’s third paragraph
visible. Notably, rτ does not vary with temperature since the time unit τ is designed
to render all dynamic quantities independent of temperature; this, once again, reflects
the athermal nature of hard-sphere systems (cf. Secs. 1.1.3.2 and 2.5.1.6).

Figure A.13 shows the values of rτ (φm, φf) for the same state points as in the
kinetic diagram for the connected intermediate scattering function (Fig. 3.13). The
different symbols encode different value ranges of rτ , and the thick red solid line in-
terpolates through points for which rτ ≃ 24. For comparison, the figure also includes
lines of dynamic arrest as defined by two different criteria: the mean squared displace-
ment δr2(t), shown as a green dotted line (see Sec. 3.2.1), and the connected interme-
diate scattering function Fc(k, t), indicated by the blue dotted line (as in Sec. 2.5.3.3,
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Figure A.13: Collisions per particle and per simulated time unit. Symbols:
different ranges of the average number of collisions rτ (φm, φf) undergone by each
particle per simulation time unit τ . Thick red solid line: interpolation through
points for which rτ ≃ 24. Shown for comparison are the criteria for dynamic arrest
based on the mean squared displacement δr2(t) (green dotted line; see Sec. 3.2.1)
and on the connected intermediate scattering function Fc(k, t) (blue dotted line;
as in Sec. 2.5.3.3, but with tc ≃ 5×100).

but with tc ≃ 5×100). As can be clearly seen from the figure, rτ increases with both φm

and φf ; this is to be expected since with every added particle—mobile or not—, the
mean free path between successive collisions of a fluid particle decreases. Strikingly,
as φf is increased in the region φm < 0.2, the growth of rτ goes hand-in-hand with
the approach of dynamic arrest. However, deviations from this correlation appear for
φm > 0.2, with rτ in this regime assuming an intermediary position in that its increase
is less pronounced than the slowing of the single-particle properties but more rapid
than the collective slow-down. This is interesting in itself concerning the relationship
between the collision rate and the pressure of a hard-sphere systemA.11. In any case,
an unfortunate consequence of rτ being larger in the vicinity of dynamic arrest is that
in this regime not only relaxation times are large, but also relatively-long real times
are required to advance a simulation by a fixed simulated time span.

A.11In ordinary hard-sphere (HS) systems, the pressure is directly proportional to the rate of collisions
[115]. Unfortunately, pressures in QA systems are a considerably more complicated matter [145, 224];
therefore, we did not attempt to evaluate precise values for the pressure in our HS-QA systems.
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Figure A.14: Performance of the system-setup routine. Comparison of ac-
cessible system parameters with selected dynamic features of the system. Thick
red solid line: probability P (N, θ) ≃ 50% to set up a system instance with
N = Nm+Nf ≃ 1000 particles within θ = 10 CPU minutes (Intel Xeon X5650)
using the custom algorithm described in Sec. 2.3.3. Upper right: P (N, θ) < 50%,
lower left: P (N, θ) > 50%. Superimposed are the criteria for dynamic arrest based
on the mean squared displacement δr2(t) (green dashed line; see Sec. 3.2.1) and
on the connected intermediate scattering function Fc(k, t) (blue dashed line; as
in Sec. 2.5.3.3, but with tc ≃ 5×100).

A.3.3 Performance of initial-states algorithm

In Sec. 2.3.3, we introduced a custom method for establishing initial states of hard-
sphere (HS) QA systems. Prior to a large-scale application of that algorithm, it is
prudent to systematically investigate at which packing fractions of the matrix (φm)
and of the fluid (φf) we can expect the algorithm to succeed in setting up systems.
In Figure A.14, we consider the case of systems with N = Nm+Nf ≃ 1000 particles
(the case that dominates throughout our work), and we determine whether the custom
algorithm accomplishes the set-up of instances of such systems within the arbitrary
time frame of θ = 10 minutes when running on an Intel Xeon X5650 CPU. The thick
red solid line in Fig. A.14 marks the state points at which the set-up of systems was
achieved with probability P (N≃1000, θ=10 min) ≃ 50%. To the lower left of this
line, the probability to obtain systems is larger than 50%, whereas to the upper right,
P < 50%. For comparison, Fig. A.14 also includes the dynamic arrest criteria based
on the mean squared displacement δr2(t) (green dashed line; see Sec. 3.2.1) and on the
connected intermediate scattering function Fc(k, t) (blue dashed line; as in Sec. 2.5.3.3,
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but with tc ≃ 5×100).

As is evident from Fig. A.14, our setup routine generates a sufficient number of sys-
tems instances for all state points that exhibit interesting features in the single-particle
dynamic properties. The collective dynamics, however, cannot be fully investigated
since in the regime of large φm and moderate φf , even our highly-optimized algorithm
fails to create valid HS-QA systems (see also Sec. 2.5.3.3). While this is unfortunate
and unsatisfactory, the inability of our algorithm to set up systems merely reflects a
fundamental feature of HS-QA systems, namely that there exist state points for which
only few or even no system instances can be realized.

Notably, in practice, a probability of 50% is inadequate. Ideally, none of the setup
attempts should be rejected since as little bias as possible should be exerted on the
statistics. However, already at relatively-low φm, it is strictly impossible to achieve
a probability P = 100% in finite systems, the reason being that there exist peculiar
matrix configurations that prohibit all fluid particles to be inserted. Nonetheless, by
prolonging the CPU time θ, it is possible to increase P since more theoretically possible
system configurations can actually be realized. Throughout this work, only state
points have been considered for which P ≥ 90%; typically, we allowed for θ = 1 hour
to achieve this threshold.

A.3.4 Validation of Delaunay-tessellation algorithm

Since in this work, a number of conclusions were drawn on the basis of a separation of
QA fluids into free and trapped particles (see Sec. 3.4), it is essential that the algorithm
in Sec. 2.4.4 generate flawless Delaunay tessellations. To ascertain this, we pursued
three different approaches, which we shall illustrate in the following.

The first of our methods is to reverify that each D-cell in a Delaunay tessellation
is indeed associated with a sphère vide (cf. Sec. 2.4.2). In order for this verification to
be somewhat independent and more robust, we reimplemented the particle distance
evaluation that underlies the emptiness check; like in Sec. A.3.1.1, this is accomplished
by looping over all particles instead of using bucket lists. Since this procedure requires
O(N2) operations to validate all D-cells, this check was conducted only for a limited
number of representative test runs.

The second method is based on the fact that in a Delaunay tessellation under
periodic boundary conditions (PBCs, see Sec. 2.2.2.1), each d-dimensional D-cell is
formed by precisely d+1 distinct D-faces, and that—regardless of dimensionality—a
D-face always borders two distinct D-cells. Checking these two features for all D-faces
and D-cells is straightforward if the Delaunay tessellation is available as a whole. A
simple, easily-verifiable consequence of these properties is the fact that a Delaunay
tessellation under PBCs always contains (d+1)/2 times as many D-faces as D-cells.

The third method is based on the so-called “Euler characteristic”A.12, a rule for
the number of constituent elements of constructs like hyperpolyhedra, graphs, and

A.12http://mathworld.wolfram.com/EulerCharacteristic.html
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tessellations. A construct of dimensionality d contains elements for each dimensionality
from the range {d, d−1, . . . , 0}; for example, a two-dimensional Delaunay tessellation
consists of D-cells (d = 2), D-edges (d = 1), and D-vertices (d = 0). Denoting the
number of elements of dimension d by the symbol Ed, the Euler characteristic states
that the elements of a construct obey the relationA.12

Πd =
d
∑

i=0

(−1)dEi = 1− (−1)d+1 − 2g , (A.7)

which in the specific cases d = 2 and d = 3 reduces to

Π2 = E0 − E1 + E2 = 2− 2g and (A.8)

Π3 = E0 − E1 + E2 − E3 = − 2g . (A.9)

The symbol g in the above equations denotes the so-called “genus”A.13, a quantity that
essentially encodes the number of holes in the construct of interest. As laid out in Sec.
2.2.2.1 and Fig. 2.7 therein, PBCs render the topology of a simulated d-dimensional
space to be that of a (d+1)-dimensional torus; since for a three-dimensional torus the
genus is gd=3

torus = 1, the right-hand side of Eq. (A.8) is zero. The interested reader
may verify Eq. (A.8) with g = gd=3

torus for instance for Fig. A.5(a), the latter containing
12 D-vertices, 36 D-edges, and 24 D-cells.

Unfortunately, this work’s author did not succeed in discovering literature that
would state the genus of a four-dimensional torus as defined by a cube under PBCs.
However, a strong indication for Eq. (A.9) to be fulfilled is if Π3 takes the same
value for each sampled Delaunay tessellation. Empirically, in each investigated case
we found that gd=4

torus = 0, which unfortunately is at odds with the expectation that a
four-dimensional torus has at least one hole, i.e., that gd=4

torus > 0.

Verifying the Euler characteristic and the number of D-cells adjacent to D-faces
(and vice versa) is computationally cheap. Therefore, these checks have been per-
formed for every Delaunay tessellation constructed by the algorithm in Sec. 2.4.4.4.

A.3.5 Performance of Delaunay-tessellation algorithm

In this section, we briefly investigate the performance of the algorithm outlined in
Sec. 2.4.4.4 for constructing Delaunay tessellations. The quantification of the perfor-
mance is conducted in terms of Rs, the number of Delaunay cells constructed per
second of real time. Rs may vary with the size of the system—here measured by the
number of matrix particles Nm—and with φm, the packing fraction of the matrix. The
latter dependence is nonnegligible since φm affects the uniformity of the particle distri-
bution, with nonuniform distributions containing comparatively large Delaunay cells
with correspondingly large circumhyperspheres. In order to verify the empty-sphere
property for such D-cells, a relatively-large number of buckets need to be considered
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Figure A.15: Performance of the Delaunay-tessellation algorithm. Number
of constructed Delaunay cells per second, Rs(Nm, φm), for φm = 0.05 (red curve)
and φm = 0.30 (green curve) at various matrix particle numbers Nm. Error bars
indicate the standard error of the mean over ten different system realizations.

in the nearest-neighbor search (cf. Sec. 2.4.4.3), which has repercussions on the algo-
rithm’s performance.

In Fig. A.15, the rate Rs is considered for two different values of the matrix packing
fraction—one at the lower and one at the upper end of the φm values of interest
to this work (cf. Chapter 3). Each depicted value represents an average over ten
different realizations, and for every realized system, a complete Delaunay tessellation
has been constructed. The first observation from the figure is that Rs is essentially
independent of φm for the QA systems of interest; this can be seen from the difference
of corresponding values on the red and green curves, which in no case is more than 20%.
Concerning the dependence upon system size, the figure shows that for Nm ≥ 103 the
performance of the tessellation algorithm is virtually independent of Nm. This is in
accordance with the assertion in the end of Sec. 2.4.4.4 that the algorithm requiresO(1)
operations to construct one D-cell.

However, deviations from this behavior occur for the (relatively-irrelevant) cases
of very small systems; in this Nm range, the algorithm surprisingly yields considerably-
higher D-cell construction rates than for larger Nm. This is contrary to the expectation
that for small systems, the algorithm perform sub-par due to the large time fraction
spent on system size–independent operations (cf. Sec. A.3.2). Similar to the event-
driven MD algorithm, however, there is also the effect that the amount of data relevant
to the tessellation algorithm interplays with the capacities of the computer’s various
memory containers (see again Appendix A.3.2 and Footnote A.9 therein). Taking into

A.13http://mathworld.wolfram.com/Genus.html
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account that the combined number of D-cells and D-faces exceeds Nm by one and a
half orders of magnitude (see Sec. 3.3.1) and that the data structures for Delaunay
tessellation elements and for MD-simulation particles require comparable amounts of
memory, the sharp performance decrease of the MD algorithm at 3×103 < N < 3×104

(cf. Fig. A.12) suggests that such a drop-off occur at 102 < Nm < 103 for the tessellation
algorithm—which is precisely what is seen in Fig. A.15.
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