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Kurzfassung

Für bestimmte Systeme der weichen Materie, wie etwa Makromoleküle mit niedriger

Monomerdichte in ihrem Inneren, kann man die effektiven Wechselwirkungen zwischen den

Molekülen durch rein abstoßende, beschränkte Potentiale darstellen. FÜr das Phasenver-

halten solcher Systeme wurden zwei unterschiedliche Szenarien vorausgesagt: einerseits “re-

entrant melting”, wo eine Flüssigkeit bei Kompression zuerst friert und schließlich wieder

schmilzt, und andererseits das “clustering” Phänomen, wo überlappende Teilchen Klumpen

bilden, die sich an den Gitterplätzen von Kristallen anordnen. Das erste Szenario wurde

sowohl theoretisch als auch experimentell an zahlreichen Systemen der weichen Materie un-

tersucht und bestätigt. Der Bildung von Cluster-Phasen ist hingegen bislang noch wenig In-

teresse geschenkt worden. In dieser Arbeit wird dieses Phänomen daher eingehend studiert:

einerseits wird aufgezeigt, wie man geeignete Makromoleküle, die dieses Phasenverhalten

zeigen, synthetisieren kann. Andererseits wird eine eingehende Analyse der Eigenschaften

und Thermodynamik dieser exotischen Systeme präsentiert. Somit werden in dieser Ar-

beit sowohl die mikroskopischen als auch die mesoskopischen Aspekte dieses Phänomens

behandelt.





Abstract

Effective interactions in particular soft matter systems, such as macromolecules of low inner

monomer concentration, can be described by purely repulsive, bounded potentials. For such

systems, two different phase behaviours have been predicted: re-entrant melting, where a

fluid freezes and re-melts again upon compression, and clustering, where particles agglom-

erate in groups at the lattice sites of perfect crystals. The former has been studied and

confirmed by both theory and experiments for a wide range of soft matter systems. Cluster-

ing, however, has not yet received due attention despite its intriguing and counterintuitive

character. Our investigations range from tailoring suitable macromolecules—demonstrating

that clustering can indeed be realised in certain soft matter systems—to an thorough exam-

ination of the properties and thermodynamics of such exotic systems. In our detailed study

of this phenomenon we thus bridge the scales between the microscopic and the mesoscopic

level.





In any field, find the strangest thing and then explore it.

John Archibald Wheeler
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Chapter 1

Introduction

Soft-matter physics is a rapidly developing and challenging field for both experimentalists and

theoreticians. Due to several reasons, particular effort has been dedicated in recent years to

investigations on this topic. The applied aspect is undoubtedly based on the fact that we are

surrounded by soft matter in our daily lives. Everyday examples of soft-matter systems range

from food and food additives, through paints, rubbers, foams, gels and liquid crystals to cosmetics

and pharmaceuticals. Therefore, soft matter plays a key role in many technological applications

and processes. From the academic point of view, soft matter offers a broad range of possibilities

where experiment and theory can cooperate in a very constructive and complementary manner.

The fact that soft-matter particles are considerably larger than particles in atomic systems makes

experimental investigations much easier, using modern tools such as video microscopy or optical

tweezers (for an overview see [1]). Moreover, by suitably changing, on the one hand, relevant

properties of the suspension such as solvent quality, salt concentration and temperature, or, on

the other hand, the number, structure and length of the constituent polymer chains, it is possible

to tune the effective interactions in a well defined way, leading to the freedom to tailor potentials.

This brings a direct comparison between theory and experiment within reach.

In the present work, we will focus on a particular class of soft-matter systems, i.e., suspensions

of mesoscopic particles (ranging in size from 1 µm to 1 nm) immersed in a solvent formed by

particles of atomic size. The mesoscopic particles, in turn, are usually complex aggregates built

up from a large number of atoms or molecules.

The huge number of constituent entities is one of the key problems in theoretical investiga-

tions of soft-matter systems. It is impossible to use concepts based on statistical mechanics that

take all the degrees of freedom of these building particles explicitly into account. It is there-

fore more appropriate to focus rather on a simplified representation of the interaction between

two macromolecules which may be obtained by applying suitable coarse graining procedures [2].

These techniques average over the internal degrees of freedom of the constituent particles of the

macromolecules, leading to “effective” spherical particles. These are identified by their centre of

1
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mass position and momentum and the interaction between two such effective particles is mod-

elled by an effective pair potential. For a few colloidal dispersions such effective interactions have

been proposed or derived in the literature, sometimes even in closed, analytical form: neutral and

charged star polymers and microgels [3–5] are a few examples (for an overview see [2]).

In the special case of polymeric macromolecules of low inner monomer concentration, such as

polymer chains [6–8], dendrimers [9, 10], microgels [4, 5, 11, 12] or block copolymers [13, 14], it is

conceivable that—as a consequence of their complex internal structure—these particles may over-

lap, mutually penetrate, or even intertwine when being compressed. As apparent from Fig. 1.1,

the centres of mass of two such macromolecules might even coincide as long as their constituent

monomers do not overlap and still obey the excluded volume conditions at the microscopic level.

Thus, since full overlaps between these effective particles are possible, the resulting effective in-

teraction remains finite, i.e., bounded, at zero separation.

(r)φ

r

Figure 1.1: Top row: two macromolecules of low inner monomer density. The centers of mass are indicated
by black squares. The coarse-grained effective particle is represented by the spherical shape. Bottom row:
two effective macromolecules, which can even fully overlap without any monomers violating the excluded
volume conditions. This leads to a bounded effective interaction φ(r).

In striking contrast to the harshly repulsive interatomic potentials typically known from atomic

systems, the effective potentials characteristic of soft-matter systems lead to completely new fea-

tures and a richer variety of ordered phases. Among those are not only the face-centred cubic ar-

rangement assumed by colloidal spheres at high concentrations [15–17] and low-symmetry crystals

formed by soft spheres [18], but also a variety of alloys observed for charged colloidal mixtures [19]

and the gyroid phases assembled in block copolymer solutions [20–22]. Furthermore, in the phase

diagram of star polymers and charged microgels a new and completely unexpected feature was

encountered, namely re-entrant melting processes [11, 23], where the liquid freezes and re-melts
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again upon incessant compression.

In this thesis, the thermodynamics of materials with soft, bounded effective interactions is

studied using simulation and theory. After classifying the different types of phase behaviour

expected for these systems in Chap. 2, their physics is quantitatively investigated. To this end,

we give a short introduction to the concepts of statistical mechanics in Chap. 3, and then present

the theoretical apparatus adequate to study such systems in Chap. 4. In Chap. 5, we present

the various Monte Carlo simulation techniques that are used to test the theoretical predictions on

the one hand, and to investigate the connection between a system’s microscopic details and its

mesoscopic properties on the other hand. In Chapters 6 and 7, we consider soft-matter systems

that we predict to effectively interact via soft, bounded interactions, and discuss in detail the

properties of the different anticipated types of phase behaviour. Finally, we present a summary of

our findings and the most relevant conclusions of our work in Chap. 8.





Chapter 2

Models

2.1 System parameters

In this thesis, we consider one-component systems, i.e., systems consisting of only one species

of particles interacting via a radially symmetric, density-independent pair potential φ(r) = φ(r),

where |r| = r is the interparticle distance. We study classes of potentials which can be written as

φ(r) = εf(r/σ) with ε being an energy and σ a length scale. f(r/σ) is a dimensionless function.

Let N denote the number of particles in the system and V the volume to which these particles

are confined, then the number density % is defined by

% =
N

V
. (2.1)

To fix the thermodynamic state of the system it is also necessary to specify its temperature T or,

equivalently, its inverse

β =
1

kBT
, (2.2)

where kB is Boltzmann’s constant.

2.2 Phase behaviour of bounded, purely repulsive poten-

tials

In the following, we are going to present the two most frequently studied examples for bounded,

purely repulsive model interactions. The first one is the penetrable sphere model (PSM) [24],

defined by

φ(r) =





ε r < σ

0 else
. (2.3)

5



6 2.2. PHASE BEHAVIOUR OF BOUNDED, PURELY REPULSIVE POTENTIALS

two phase
  regionliquid

liquid

solid structures
clustered

solid structures

ρσ 3ρσ 3

k  TΒ
ε

k  TΒ
ε

uT

Figure 2.1: Schematic representation of the topology of the phase diagrams of the PSM (left) and the
GCM (right): while the PSM freezes at all temperatures into crystals with multiply occupied lattice sites,
the GCM shows re-entrant melting below an upper freezing temperature Tu.

The other is the Gaussian core model (GCM), defined as

φ(r) = εe−(r/σ)2 , (2.4)

which was introduced by Stillinger in the 1970s [25]. Both models were extensively studied by

both computer simulations and different theoretical approaches (see [24, 26–34] for the PSM and

[25,35–42] for the GCM).

In these studies, the phase diagrams of both systems were investigated and discussed in detail.

Surprisingly, the phase diagrams of the two models show a qualitatively very different topology

schematised in Fig. 2.1. Upon increasing the density at fixed temperature in a system interacting

by the PSM, homogeneously sized clusters of overlapping particles begin to form which arrange

themselves in an ordered phase. This phenomenon is referred to as “clustering”. On the other

hand, compressing a GCM-system at constant T , one observes below an upper freezing temperature

a first order phase transition from the fluid to a crystalline cubic phase with singly occupied lattice

sites. Upon further increase of the density, the system might undergo a structural phase transition,

which depends on the temperature, but eventually, the solid will melt again. Therefore, this

behaviour is called “re-entrant melting”. Above the upper freezing temperature, the fluid phase

is stable at all densities.

Since both these model potentials are non-negative, bounded and monotonically decaying1,

their fundamentally different phase behaviour gives rise to the simple question: what is the essential

difference between the PSM and the GCM?

The answer was given by Likos et al. [43]. Based on an analysis of the behaviour of the struc-

ture factor within the mean field approximation (MFA), these authors established a criterion that

determines whether clustering or re-entrant melting behaviour will be observed in systems inter-

1Note that the discontinuity of the PSM has no effect on the following considerations.
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acting via bounded, non-negative potentials. For the criterion to be applicable, these interactions

have to decay sufficiently fast to zero for large distances so that they are integrable and their

Fourier transforms exist. Then, there are two possibilities for the functional behaviour of the

Fourier transform φ̃(q), where q is the wave number:

� φ̃(q) is a non-negative and monotonically decaying function, i.e., φ̃(q) ≥ 0 for all q. Such po-

tentials are called Q+-potentials and a system of such particles will show re-entrant melting.

Since the Fourier transform of Eq. (2.4) is of Gaussian shape, the GCM obviously belongs

to this kind of potentials (cf. Sec. 2.3).

� The Fourier transform φ̃(q) oscillates, i.e., it attains negative values for certain ranges of

the wave number q. Such potentials are called Q±-potentials and are expected to lead to

clustering behaviour. The PSM is a representative of this class.

To find out to which class a potential belongs, an explicit evaluation of φ̃(q) is not required.

A sufficient condition can be deduced along the following lines. We start from the inverse Fourier

transform of a (bounded) potential φ(r)

φ(r) =
1

2π2

∞∫

0

dq q2 φ̃(q)
sin qr

qr
. (2.5)

Then, the second derivative of φ(r) at r = 0 is given by

φ′′(r = 0) = − 1

6π2

∞∫

0

dq q4 φ̃(q). (2.6)

Thus, if φ′′(r = 0) ≥ 0, then φ̃(q) must necessarily have negative parts and hence φ(r) is a

Q±-potential [44].

2.3 The Gaussian core model

The GCM has been introduced in Sec. 2.2. Its Fourier transform reads

φ̃(q) = π3/2ε σ3e−q2σ2/4. (2.7)

As already mentioned before and as can be seen from above equation, φ̃(q) ≥ 0 for all q.

Due to the absence of an infinitely repulsive core of φ(r) we have to address the question of

thermodynamic stability against collapse, i.e., the existence of the thermodynamic limit. Accord-

ing to Ruelle [45], the total interaction energy, Φ(rN ), of a system of N particles positioned at

{r1, ..., rN} = rN enclosed in a fixed volume V and interacting via a pair or higher order potential
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is stable if there exists a constant B ≥ 0 so that

Φ(rN ) ≥ −NB, (2.8)

for all N and all possible particle configurations rN in V .

In the case of pair potentials φ(r), the total potential energy of the system is given by

Φ(rN ) =
∑

i<j

φ(|ri − rj |). (2.9)

For purely repulsive potentials, such as the GCM, Eq. (2.8) is trivially satisfied with B = 0,

implying that the thermodynamic limit exists.

2.4 The double Gaussian core model

To generalise the GCM, we introduce a family of model potentials which we call double Gaussian

core model (DGCM). Its functional form φ(r) is defined as the difference between two Gaussians,

i.e.,

φ(r) = ε
[
e−(r/σ)2 − ηe−(r/ζσ)2

]
, (2.10)

where η and ζ are dimensionless real parameters and η ≥ 0 and ζ > 0. Depending on the values of

η and ζ, this potential can develop locally or globally attractive regions2 (see Figs. 2.2 and 2.3).

The Fourier transform of this potential is given by

φ̃(q) = π3/2ε σ3
(
e−q2σ2/4 − ηζ3e−ζ2q2σ2/4

)
. (2.11)

Since the DGCM develops negative parts for certain combinations of η and ζ, it is not obvious

that Ruelle’s stability criterion Eq. (2.8) is fulfilled. To avoid these complications, we restrict our

studies to potentials of this family that are non-negative, i.e.,

φ(r) ≥ 0, ∀r (2.12)

to guarantee thermodynamic stability, which is fulfilled for

0 < ζ ≤ 1 and 0 ≤ η ≤ 1. (2.13)

To find out for which pairs of parameters the potentials of the DGCM-class show re-entrant

2Here, locally attractive is defined by φ′′(rm) > 0, φ′(rm) = 0 and φ(rm) > 0 while globally attractive cor-
responds to φ′′(rm) > 0, φ′(rm) = 0 and φ(rm) < 0, rm being the location of the minimum of the attractive
region.
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Figure 2.2: Four members of the DGCM family of potentials for fixed η and varying ζ.
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Figure 2.3: Four members of the DGCM family of potentials for fixed ζ and varying η.
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melting, we have to select those members for which

e−q2σ2/4 − ηζ3e−ζ2q2σ2/4 ≥ 0, ∀q. (2.14)

We can reformulate this condition as two inequalities, i.e.,

q2σ2 ≤ 4
log
(
ηζ3
)

ζ2 − 1
, if ζ < 1, (2.15)

and

q2σ2 ≥ 4
log
(
ηζ3
)

ζ2 − 1
, if ζ > 1. (2.16)

These conditions have to be fulfilled for all q. However, since q can attain arbitrarily large values,

the first inequality can never be fulfilled. On the other hand, the second condition does not meet

our stability requirement Eqs. (2.12) and (2.13). Thus, the DGCM potentials will show clustering

for 0 < ζ < 1 and 0 < η ≤ 1. For the special cases ζ = 1 or η = 0, the DGCM reduces to a single

Gaussian and will show re-entrant melting.

2.5 The generalised exponential model

A different generalisation of the GCM is given by the family of bounded, strictly repulsive poten-

tials termed the generalised exponential model of index n (GEM-n) [46–48],

φ(r) = ε e−(r/σ)n

, (2.17)

where n > 0 is a real parameter. For n = 2, the GCM is recovered, whereas the limit n → ∞
yields the special case of the PSM. Since φ(r) > 0 in Eq. (2.17) for all n and r, Ruelle’s stability

criterion (2.8) is automatically fulfilled.

In Sec. 2.3 it was already shown that the GCM, which is identical to the GEM-2, belongs to the

Q+-class. On the other hand, the PSM, which corresponds to the GEM-∞, is known to belong to

the Q±-class. Thus, there has to be a threshold value for the index n, where the phase behaviour

of the GEM potentials changes from re-entrant melting to clustering. As no closed expression of

the Fourier transform exists for the potential of the GEM-n for arbitrary index n, we rather study

the second derivative of the potential given by

φ′′(r) =
εn

σ2
e−(r/σ)n

[
n
( r

σ

)2(n−1)

− (n − 1)
( r

σ

)n−2
]

. (2.18)

We find that for the GEM-n family, φ′′(r = 0) = 0 for n > 2. Therefore, it follows that the

threshold value of the index is 2 and that for n > 2, the GEM-n potentials belong to the class of

Q±-interactions [44, 46, 49].
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Figure 2.4: Four members of the GEM-n family: the GCM (n = 2), the GEM-4, GEM-10, and the PSM
(n = ∞).





Chapter 3

Statistical mechanics in a nutshell

Statistical mechanics [50–53] provides the mathematical framework to derive the macroscopic

properties of materials, which are accessible in experiments, from the knowledge of the microscopic

properties and dynamics of its constituent entities, such as atoms, molecules or macromolecules.

Statistical mechanics thus forms the basis for thermodynamics, which otherwise would just be

a phenomenological theory. It also allows for the calculation of static and dynamical properties

using the formalism of spatial and time correlation functions.

3.1 Basic concepts

At any time, the microscopic state of a classical system of N spherical particles is fully determined

by the 3N coordinates r1, r2, ..., rN and 3N momenta p1,p2, ...,pN of the particles, presenting a

point in the 6N -dimensional phase space. The dynamics of the system is governed by the Hamilton

function H(rN ,pN ) and the equations of motion read

∂H(rN ,pN )

∂pi
= ṙi (3.1)

and
∂H(rN ,pN )

∂ri
= −ṗi, (3.2)

where the dot denotes a time derivative. These differential equations have to be solved with

suitable initial conditions.

Since typical macroscopic systems usually consist of a huge number of particles of the order

of N ∼ 1023, it is impossible to determine the trajectory of the system through phase space, even

with the most modern computers. Fortunately, we do not need the details of the specific behaviour

of every single particle. It is more convenient to introduce the concept of an “ensemble”, i.e., a

large number of realisations of one and the same system where each member of the ensemble is

compatible with fixed macroscopic parameters which describe the thermodynamic state of the

13
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system. At the same time, however, each member is assumed to evolve under the microscopic

laws of motion from its particular initial condition, i.e., its specific time evolution will be different

from that of all other members in the ensemble. Nevertheless, we can determine macroscopic

properties common to all members of the ensemble by performing so-called “ensemble averages”.

Let A = A(rN ,pN ) denote a macroscopic, time-independent property. Then, the ensemble average

of A, denoted as 〈A〉ens, is obtained by calculating the value of A in each member of the ensemble

and performing an average over all these values:

〈A〉Mens =
1

M

M∑

i=1

Ai, (3.3)

where M is the number of realisations of the system in the ensemble and Ai is the value of A

in the ith realisation. Usually, only a single system is considered and measurements are made at

different points in time and we can determine a time average given by

〈A〉ttime =
1

t

t∫

0

dt′ A(t′). (3.4)

A system is called ergodic if

〈A〉M→∞
ens = 〈A〉t→∞

time , (3.5)

i.e., given an infinite amount of time, such a system will visit all possible microscopic states

available to it in phase space.

3.2 The canonical ensemble

We consider a system of identical particles with fixed particle number N confined in a fixed volume

V and in thermal equilibrium with an infinite large heat reservoir, thereby assuring that the system

will have fixed temperature T .

The partition function Q(N, V, T ) of this so-called canonical or NV T ensemble is given by

Q(N, V, T ) =
h−3N

N !

∫∫
drNdpN e−βH(rN ,pN ), (3.6)

where h is the Planck constant and the factor N ! accounts for the indistinguishability of the

particles. This function links statistical mechanics to thermodynamics via the relation

F = −kBT log Q(N, V, T ), (3.7)

where F is the Helmholtz free energy, which is the appropriate thermodynamic potential for a

system of fixed N , V and T .

If F = F (N, V, T ) were known, all other thermodynamic state functions could be obtained by
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differentiation with respect to its variables. Thus, the free energy or equivalently the partition

function contain essentially the entire information about the macroscopic thermodynamic proper-

ties of the system. For instance, it can be shown [54] that the internal energy U can be calculated

via

U = 〈H〉 = −
[
∂ log Q(N, V, T )

∂β

]

V,N

=

(
∂βF

∂β

)

V,N

. (3.8)

Further, the pressure P of the system is given by

P = kBT

[
∂ log Q(N, V, T )

∂V

]

N,T

= −
(

∂F

∂V

)

N,T

(3.9)

and the chemical potential µ by

µ = −kBT

[
∂ log Q(N, V, T )

∂N

]

T,V

=

(
∂F

∂N

)

V,T

. (3.10)

Also, second derivatives of the free energy can be determined, like the bulk modulus B, which is

given by

B = V

(
∂2F

∂V 2

)

N,T

= κ−1
T , (3.11)

where κT is the isothermal compressibility.

For the systems considered in this thesis, the Hamilton function H can be separated into two

contributions due to the kinetic and potential energy, thereby allowing for an explicit integration

over the momenta in Eq. (3.6), which then can be rewritten as

Q(N, V, T ) =
Λ−3N

N !
zN (V, T ), (3.12)

where

zN (V, T ) =

∫
drN e−βΦ(rN ) (3.13)

is the configurational integral, Φ(rN ) is the total potential energy (cf. Eq. 2.9) and

Λ =

√
2πβ~2

m
(3.14)

is the de Broglie thermal wavelength. Here, m is the mass of the particles and ~ = h
2π . For an

ideal gas, Φ(rN ) = 0 and zN (T, V ) = V N . Therefore, the partition function of the ideal gas is

given by

Qid(N, V, T ) =
Λ−3N

N !
V N . (3.15)

Based on this result, we can rewrite the partition function of a system of interacting particles as

Q(N, V, T ) = Qid zN(V, T )

V N
, (3.16)
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which upon taking the logarithm of both sides naturally separates the free energy into an ideal

and an excess part

F = F id + F ex. (3.17)

Here, the excess part takes into account all contributions to the free energy that stem from

interactions between the particles.

Using Stirling’s approximation for large N

log N ! ∼ N log N − N, (3.18)

F id is given by
βF id

N
= log % + 3 logΛ − 1 (3.19)

and the excess part F ex of the free energy is

F ex = −kBT log
zN(V, T )

V N
. (3.20)

In a similar manner, the internal energy can also be separated according to

U = U id + U ex, (3.21)

where U id = 3
2NkBT and

U ex =
1

zN(T, V )

∫
drN Φ(rN )e−βΦ(rN) = 〈Φ〉. (3.22)

3.3 The isobaric-isothermal ensemble

Experiments are usually performed at constant pressure and temperature rather than constant

volume and temperature, leading thus to the isobaric-isothermal or NPT ensemble. Similar to

the canonical ensemble we can imagine the system being in contact with a heat reservoir at

temperature T , and in addition the system will also be put under the action of a piston which is

controlled by an external pressure P .

Following similar lines as before, a partition function Q(N, P, T ) can be introduced which is

related to the one of the canonical ensemble via a Laplace transform

Q(N, P, T ) = βP

∞∫

0

dV e−βPV Q(N, V, T ). (3.23)

The thermodynamic potential of the isobaric-isothermal ensemble is the Gibbs free energy,
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G(N, P, T ), which can then be calculated via

G(N, P, T ) = −kBT log Q(N, P, T ). (3.24)

It can also be obtained by performing a Legendre transformation of the Helmholtz free energy

G(N, P, T ) = F [N, V (P ), T ] − V (P )
∂F

∂V
= F [N, V (P ), T ] + PV (P ). (3.25)

Again, Q(N, P, T ) and G(N, P, T ) contain all the information about the macroscopic behaviour of

the system. The volume is now given by

V = −kBT

[
∂ log Q(N, P, T )

∂P

]

N,T

=

(
∂G

∂P

)

N,T

. (3.26)

and the chemical potential µ can be obtained by

µ = −kBT

[
∂ log Q(N, P, T )

∂N

]

P,T

=

(
∂G

∂N

)

P,T

. (3.27)





Chapter 4

Theory

To be able to study the phase behaviour of the systems under consideration, we have to choose

theories suitable to describe the different states of matter. In this effort, we decided to investigate

the fluid state by integral equation theories (cf. Sec. 4.1) and the solid state via genetic algorithms

(cf. Sec. 4.2) and density functional theory (cf. Sec. 4.3).

4.1 The fluid - integral equation theories

4.1.1 The radial distribution function and its connection to thermody-

namic properties

The key element of integral equation theories (IETs) is the pair distribution function which for a

system of N spherical particles confined in volume V at constant temperature T is defined as

gN (r1, r2) =
N(N − 1)

%2zN (V, T )

∫
...

∫
dr3...drN e−βΦ(rN), (4.1)

where zN (V, T ) is the configurational integral given by Eq. (3.13).

On physical grounds, gN (r1, r2)dr1dr2 can be understood as a measure for the probability

to find particle 1 within a volume dr1 at r1 while particle 2 is located in a volume dr2 at r2,

irrespective of the positions of all other particles in the systems.

For isotropic systems, gN(r1, r2) only depends on the distance |r1 − r2| = r between the

particles and can be written as an ensemble average over pairs [54, 55]

g(r) =
V

N2

〈∑

i6=j

δ (r − rij)

〉
. (4.2)

g(r) is called radial distribution function (RDF) represents the ratio of the probability to find a

particle at a certain distance from a given particle compared to the same probability in an ideal

gas. The fundamental importance of g(r) stems from the fact that the knowledge of this function

19



20 4.1. THE FLUID - INTEGRAL EQUATION THEORIES

is sufficient to calculate all thermodynamic properties of the system under study [54].

Provided that all particles in a system interact only via pairwise additive interactions φ(r) and

that φ(r) is density independent, the equation of state can be expressed as

βP

%
= 1 − 2π

3
β%

∞∫

0

dr r2g(r)

[
r
dφ(r)

dr

]
. (4.3)

This equation is commonly referred to as virial equation, since it expresses the pressure as an

ensemble average of the virial.

There are two further routes to determine the pressure. The so-called energy route is based

on the excess (over ideal) pressure, P ex, which can be determined by rewriting Eq. (3.9) as

P ex = −
(

∂F ex

∂V

)

T

. (4.4)

The excess free energy, F ex, on the other hand, is given by

βF ex

N
(%) =

β∫

0

dβ′ U ex

N
(β′, %). (4.5)

Here, the integral is evaluated along an isochore and the excess internal energy, U ex, is related to

g(r) via

U ex

N
= 2π%

∞∫

0

dr r2g(r) φ(r). (4.6)

The last route leads to the so-called compressibility equation, which in contrast to the two

routes presented above is also valid for systems where particles interact through more general

than pairwise additive forces. In this approach, the pressure can be obtained by integrating

κT = − 1

V

(
∂V

∂P

)

T

=

[
%

(
∂P

∂%

)

T

]−1

, (4.7)

along an isotherm with respect to % or V , where the isothermal compressibility κT is obtained

from the RDF according to

% kBTκT = 1 + 4%

∫
dr [g(r) − 1]. (4.8)

4.1.2 The Ornstein-Zernike equation and integral equation theories

In 1914, Ornstein and Zernike [56] introduced in a heuristic way the so-called direct correlation

function c(r) via the following equation

h(r) = c(r) + %

∫
dr′ c(|r − r′|) h(r′). (4.9)
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This equation is valid for translationally invariant and isotropic fluids and is referred to as Ornstein-

Zernike equation (OZE). It expresses the total correlation h(r) = g(r) − 1 between two particles

in the fluid separated by distance r as the sum over the direct correlation c(r) between those two

particles and all indirect correlations mediated by c(r) through an infinite number of many-body

correlations over the other particles of the fluid.

The pair and direct correlation function can be systematically analysed in terms of configu-

rational integrals over clusters of particles. Within the scope of this cluster expansion it can be

shown that [54]

g(r) = e−βφ(r)+h(r)−c(r)+B(r), (4.10)

where the bridge function B(r) is the sum of an infinite number of terms, each consisting of integrals

whose kernels are products of increasing order of correlation functions and simple functions of the

potential. Since the exact B(r) is not known for any system, approximations have to be made,

thereby giving rise to IETs. Then, Eq. (4.10) can be used as a so-called closure to the OZE.

Whereas in an exact closure the virial, compressibility and energy routes to the equation of state

would provide identical results [54], the approximate nature of the various IETs leads to different

ones, i.e., they suffer from thermodynamic inconsistency.

In the following sections we will present the IETs considered in this thesis.

4.1.3 The mean field approximation

The mean field approximation (MFA) [57] was originally proposed for systems interacting via pair

potentials consisting of a hard sphere interaction

φ(r) = ∞, for r < σ, (4.11)

with diameter σ plus a tail for r > σ that can take different functional forms. For such potentials,

the MFA is based on an ansatz for c(r),

c(r) = −βφ(r), for r > σ, (4.12)

along with the so-called core condition that expresses the impenetrability of the particles

g(r) = 0, for r < σ. (4.13)

The relation (4.12) is motivated by a detailed investigation of the long-range behaviour of c(r).

Thereby, it can be generally shown that

c(r) ∼= −βφ(r), for r → ∞, (4.14)
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which implies that the MFA is correct in the limit r → ∞ and can be considered as an extension

of the realm of validity of Eq. (4.14) to short distances. This feature will be further discussed in

Sec. 6.5.

As bounded potentials lack a hard core, Eq. (4.13) is not applicable and the MFA reduces to

c(r) = −βφ(r), ∀r. (4.15)

Supplementing the OZE with this closure, Eqs. (4.12) and (4.13), or (4.15), respectively, yield an

integral equation for the RDF.

Despite the simple form assumed for c(r), the MFA provides reasonable results for many model

systems, both with harshly repulsive and soft interactions. The most attractive feature of the MFA,

however, is the fact that it can be solved analytically for a number of model potentials of physical

interest, including the hard core Yukawa potential [58] and the charged hard sphere model [54].

In the case of soft potentials, however, the MFA suffers from some deficiencies, like, e.g., yielding

negative values for the RDF at low densities (cf. Sec. 6.5), which is unphysical. This effect does

not occur in the case of hard core potentials, as such a behaviour is then explicitly ruled out by

Eq. (4.13).

4.1.4 The hypernetted chain closure

The hypernetted chain closure (HNC) [59] is obtained by setting

B(r) = 0. (4.16)

Then, Eq. (4.10) becomes

g(r) = e−βφ(r)+h(r)−c(r), (4.17)

which is equivalent to

c(r) = −βφ(r) + h(r) − log[h(r) + 1]. (4.18)

For the HNC, no analytical solutions are available. Usually, this approximation yields good results

for bounded potentials [44, 47] and for long-ranged interactions such as in ionic systems [54].

4.1.5 The Percus-Yevick approximation

The Percus-Yevick approximation (PY), proposed in 1958 by Percus and Yevick [60], assumes that

c(r) =
[
1 − eβφ(r)

]
g(r), (4.19)
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so that c(r) equals zero wherever the potential vanishes.

In this case, the RDF is given by

g(r) = e−βφ(r)[1 + h(r) − c(r)]. (4.20)

Since expanding the HNC expression (4.17) with respect to [h(r)− c(r)] up to the first order gives

g(r) = e−βφ(r)+h(r)−c(r) =

= e−βφ(r)eh(r)−c(r) '

' e−βφ(r)[1 + h(r) − c(r)], (4.21)

we see that the PY approximation is the result of linearising the HNC closure. A cluster analysis

of both closures shows that the HNC approximation is obtained by summing up a higher number

of terms than the PY closure [54]. In most cases, the solution of the OZE in combination with

Eq. (4.19) has to be found numerically, but in some cases, e.g., for the hard sphere fluid or for

adhesive hard spheres, it can be obtained analytically [54].

In particular for systems with short-ranged, steeply repulsive potentials, the PY equation is

very successful. Its better performance for this kind of potentials in comparison to other conven-

tional IETs might to some extent be due to the cancellation of errors while summing up the terms

of the cluster expansion. On the other hand, as will be demonstrated in Sec. 7.3 and as was shown

in [46], the PY approximation is usually not a good choice for bounded potentials.

4.1.6 The self-consistent Ornstein-Zernike approximation

Over the past decades, considerable effort has been devoted to the formulation of thermodynam-

ically self-consistent liquid state theories, which, in turn, have most of all led to an improved

description of the structural and thermodynamic properties of liquids with harshly repulsive po-

tentials. In the first generation of these concepts, such as the Rogers-Young (RY) [61], the modified

hypernetted chain (MHNC) [62], or the Zerah-Hansen approach (HMSA) [63,64], simple functions

were introduced in the respective closure relations to the OZE which use an adjustable but not

explicitly state-dependent parameter to interpolate between two conventional closures (such as,

e.g., between PY and HNC in the case of the RY approach). Since self-consistency was enforced

for each state point independent of the neighbouring ones, we shall call this approach locally self-

consistent. The concepts of the second generation of the self-consistent liquid state theories were

based on more sophisticated ideas. The self-consistent Ornstein-Zernike approximation (SCOZA),

introduced in 1984 by Høye and Stell [65], proposed an explicitly state-dependent function in the

MFA closure relation in order to enforce thermodynamic self-consistency between different ther-

modynamic routes [65, 66]. The hierarchical reference theory (HRT) [67–69], on the other hand,

successfully merged ideas of microscopic liquid state theory and renormalisation group concepts.
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In both these advanced liquid state approaches thermodynamic consistency was enforced in the

entire space of system parameters, which we shall call global self-consistency. In the following, we

focus on the extension of SCOZA to soft systems.

The original formulation of the SCOZA for hard core systems [65, 66] is based on the MFA

(cf. Sec. 4.1.3). Both concepts require the RDF to vanish inside the core and set the direct correla-

tion function proportional to the potential for distances larger than the core diameter. In SCOZA,

the proportionality factor now contains a state-dependent function that imposes global thermody-

namic consistency. Following the lines of generalising the MFA to soft potentials (cf. Sec. 4.1.3),

we extend the original SCOZA ansatz:

c(r) = βKi(%, β)φ(r), ∀r, i = EC or VC, (4.22)

where Ki(%, β) are as yet undetermined, state-dependent functions and the subscripts EC and VC

specify whether thermodynamic consistency is enforced between the energy and the compressibility

or between the virial and the compressibility routes (cf. Sec. 4.1.1). For the formulas common to

both cases, the generic subscript i will be used. Since the MFA is recovered for Ki(%, β) ≡ −1,

deviations from this value are a measure of thermodynamic inconsistency in the MFA.

Applications of the SCOZA concept [65, 66, 70] to liquid systems were up to now restricted

to those cases where the respective interactions can be expressed as a hard core plus a linear

combination of Yukawa tails outside the core (HCY systems) [71,72]. This restriction can be traced

to the fact that the rather elaborate SCOZA formalism is intricately linked to the availability of

the analytic solution of the MFA for such a system [73, 74]. From this point of view the obvious

counterpart of HCY systems in soft matter is the GCM [25], which also can be treated semi-

analytically within MFA [40, 41, 46]. The formalism of the SCOZA applied to the GCM will be

presented in Sec. 6.3.

4.1.7 Integro-differential equation SCOZA approach

The availability of a semi-analytical framework provided by the MFA for specific systems, such

as hard core Yukawa systems or the GCM, represents a rather singular exception and therefore,

straightforward applications of SCOZA are limited. In an effort to overcome these restrictions one

may ask whether the SCOZA concept may be formulated for the case of a general system, i.e.,

when a semi-analytic solution to the MFA is not at hand. This is indeed possible as we show in

the following. Let us assume a SCOZA-type closure relation, i.e.,

c(r) = βK̄φ(r), ∀r, (4.23)

with a state-dependent function K̄(%, β). Once K̄ is specified, this leads in combination with

the OZE directly to the RDF g(r) = g(r; %, β; K̄), which is thus also a function of K̄. Since K̄

is explicitly state-dependent, i.e., K̄ = K̄(%, β), the compressibility as determined by the virial
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route, i.e., differentiating Eq. (4.3), is given by

[
%kBTκV

T

]−1
= 1 − 4π

3
%

∞∫

0

dr r3 dβφ(r)

dr
g(r; %, β; K̄) − 2π

3
%2

∞∫

0

dr r3 dβφ(r)

dr

∂g(r; %, β; K̄)

∂%

−2π

3
%2 ∂K̄

∂%

∞∫

0

dr r3 dβφ(r)

dr

∂g(r; %, β; K̄)

∂K̄
. (4.24)

Thermodynamic self-consistency between the virial and the compressibility route is now enforced

by choosing K̄ such that κC
T , given by the compressibility equation (4.8), is equal to κV

T , i.e., by

finding at fixed temperature T a root of the function

f(K̄) = κC
T − κV

T . (4.25)

Here, derivatives with respect to % and K̄ have to be calculated numerically. We call this the

integro-differential equation (IDE) approach to SCOZA.

It was exactly this idea that was realised in previous applications of parameterised closure

relations such as RY [61], HMSA [63,64], or MHNC [62]. There, however, consistency was achieved

only locally, i.e., considering each state point in isolation and neglecting the state dependence of

K̄. This corresponds to setting ∂K̄/∂% = 0 and dropping the last term in Eq. (4.24). In the

present approach, in contrast, we consider K̄ to be explicitly state-dependent and thus this term

is retained. Consequently, the consistency criterion involves not only isolated state points but

also neighbouring state points via the density derivative. Therefore, we have decided to call our

criterion a global one. The quantitative difference between the local and the global approaches

will be discussed in Sec. 6.5.

4.1.8 HNC-based SCOZA

The above approach to thermodynamic consistency represents an IDE based re-formulation of the

SCOZA. It is now not only entirely independent of the semi-analytic solution provided by the

MFA for the GCM. More importantly, it has become completely general in the sense that in the

present formulation self-consistency can be enforced for systems with arbitrary (soft) potentials

and in combination with other, parameterised closure relations.

To demonstrate the power of this idea we introduce a HNC-based SCOZA (for clarity we will

refer to the SCOZA approaches introduced above as “MFA-based SCOZA”). This particular choice

is motivated by the fact that the HNC has been found to work very well for the GCM and other

soft potentials [40, 41, 44, 47]. For the closure relation of our HNC-based SCOZA we propose

g(r) = exp
[
βK̄HNC(%, β) φ(r) + h(r) − c(r)

]
, (4.26)

where the unknown, state-dependent function K̄HNC(%, β) is determined such as to make the right
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hand side of the consistency requirement (4.25) vanish, i.e., by enforcing equality between the

compressibility and the virial route. Numerically, this is achieved by solving Eq. (4.24), where

g(r; %, β; K̄HNC) is obtained from the solution of the OZE along with the closure relation (4.26).

4.2 The solid at zero temperature - genetic algorithms

Compared to the liquid state, the description of the properties of the solid phases is more delicate.

Due to the many exotic structures that can form in soft matter systems (cf. Chap. 1), we do not

know a priori which ordered structures our systems will form in equilibrium. The conventional

approach is to select a set of possible lattices, based on more or less plausible arguments, and

to calculate their respective free energies. The one with the lowest free energy is then assumed

to be the stable structure. While this strategy is in general successful in hard (atomic) systems,

the situation is entirely different in soft matter systems. Due to the arbitrariness involved, this

pre-selection process is highly unsatisfactory, a problem that we solve by using a genetic algorithm

(GA) [75], i.e., a tool which searches among all possible lattices for the equilibrium structure. On

several occasions, this approach turned out to be a very reliable and convenient means to determine

the equilibrium structures of different soft matter systems in an unbiased and parameter-free

search [11, 12, 75].

The basic idea of the GA is to mimic the concepts of evolution, which can be outlined as

follows. In an initial step we consider a large number of randomly generated possible candidate

structures which are denoted as individuals. The collection of these individuals forms a so-called

(first) generation. A fitness value is assigned to each individual which is a measure of its aptness for

survival and reproduction in the sense that a better solution has a higher fitness value. Since in our

case we search for the thermodynamically most favourable arrangement of particles in a crystalline

structure, we associate a lower free energy of a given lattice with a higher fitness value. Among

the individuals of the current generation suitable pairs of parents are chosen according to their

fitness and via recombination they create the individuals (i.e., lattice structures) of the subsequent

generation. With a certain probability, these individuals are then subject to a mutation process

which avoids inbreeding and introduces new or previously lost genetic material. We proceed in this

way for a sufficiently long sequence of generations, keeping track of the individual with the highest

fitness value, i.e., the lattice structure with the lowest free energy so far. In general, the algorithm

converges rapidly towards the equilibrium structure for a given state point. For conceptual details

we refer to [75, 76].

The GA is used to search for the energetically most favourable ordered structures at T = 0,

which are then considered as candidates for the phase diagram at finite temperatures. This search

is particularly challenging for systems that show clustering behaviour. At T = 0, these solids

behave ideally: all clusters are populated by the same number of particles, denoted by nc, which

sit perfectly on top of each other at the positions of an ideal lattice. Our measure of fitness is
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related to the free energy, F , which at T = 0 is identical to the internal energy, U , and is given by

F (T = 0)

N
=

U

N
=

nc − 1

2
φ(R = 0) +

nc

2

∑

R6=0

φ(R), (4.27)

where {R} denotes the set of Bravais lattice vectors of a candidate structure for the cluster phase.

Here, the first term is the interaction energy of a particle with the (nc − 1) particles of the same

cluster, while the second one describes the particle’s interaction with all other clusters of the

crystal. In employing the GA, we minimise the lattice sum per particle, U/N , with respect to

both the Bravais lattice and the cluster occupation number nc.

Strictly speaking, at T = 0, nc can only assume integer values, if we insist that each site is

occupied by an identical number of particles. However, rational values of nc arising from populating

different sub-lattices with different integer occupation numbers and periodically repeating the

pattern, are in principle also allowed. In our calculation, we avoid these cases by employing a kind

of mean-field approach. Possible corrections to the lattice sum from short-range correlations that

lead to differently populated sub-lattices are ignored, and the occupation number of all sites is

set equal to the average value 〈nc〉, a general real number. In reality, irrational occupations are,

of course, forbidden for a ground state, pointing to the possibility of phase separation between

optimally occupied states with rational occupation. However, at finite temperatures, it is expected

that hopping processes will allow for the migration of particles and lead to an equalisation of

the average number 〈nc〉 of particles on every site. Our approximation of setting nc = 〈nc〉 is

expected to be valid for temperatures that are low enough so that the entropic contribution, −TS,

associated with the hopping processes can be ignored in comparison with the lattice energy, U , in

the expression F = U − TS for the free energy F . Moreover, since we do not expect sub-lattices

to be populated by vastly different particle numbers even at T = 0, the error in replacing nc by

〈nc〉 is very small and the approach offers reliable information on the possible crystal structures

at T = 0.

4.3 The solid at finite temperatures - density functional

theory

With the possible candidate structures predicted by the GA at hand we can now proceed to finite

temperatures where it is most convenient to describe the ordered phases within the framework of

classical density functional theory (DFT) [77]. For the systems considered in this work we use a

mean-field format for the free energy functional F [%],

F [%] = Fid[%] + Fex[%], (4.28)
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where the ideal part Fid[%] is given by

Fid[%] = kBT

∫
dr %(r) {log[%(r)Λ3] − 1}. (4.29)

Λ is given by Eq. (3.14). Further, the excess part, Fex[%], is obtained via

Fex[%] =
1

2

∫∫
dr1dr2 %(r1) %(r2) φ(|r1 − r2|). (4.30)

This choice of the functional is explicitly justified in [44].

In the case of clustering systems, where particles can overlap or even sit on top of each other,

we use a periodic array of Gaussian cluster density profiles,

%cl(r) = nc

(α

π

)3/2

e−αr2

, (4.31)

localised at the lattice sites {R} as an ansatz for the inhomogeneous density field, %(r), i.e.,

%(r) ≡
∑

{R}

%cl(r −R) = nc

(α

π

)3/2∑

{R}

e−α(r−R)2 . (4.32)

Our choice of this particular shape for the density profiles was anticipated in [44] and will be

justified a posteriori when comparing the theoretical data with the simulation results (cf. Sec. 7.3).

The inhomogeneous density field %(r) is uniquely determined by two parameters characterising the

cluster density profiles, i.e., the width α of the profile and the cluster occupancy number or cluster

size, nc. To find the equilibrium density field, the functional given by Eqs. (4.28) to (4.30) has to

be minimised with respect to both α and nc, at fixed % and T , giving us the theoretical predictions

for the equilibrium values of α and nc at the state point under consideration.

Inserting the ansatz (4.32) into the functional (4.28) to (4.30), F [%]/N reduces to a function

f = f(nc, α) that can be split into an ideal, an inter-, and an intra-cluster contribution

f(nc, α) = fid(nc, α) + finter(nc, α) + fintra(nc, α). (4.33)

For the ideal contribution, we find

fid(nc, α) = kBT
[
log nc + 3/2 log(ασ2/π) − 5/2 + 3 log(Λ/σ)

]
, (4.34)

which is an excellent approximation to the ideal free energy, provided that the Gaussians in

Eq. (4.32) do not overlap, which is the case for ασ2 & 30, representing thus a physically reasonable

lower bound for α [78]. Further, it is easy to see from Eqs. (4.29) and (4.32) that for α → 0 the

ideal free energy per particle tends to kBT
[
log(%Λ3) − 1

]
, the finite free energy of the ideal gas,

whereas the approximate expression of Eq. (4.34) has a negative, logarithmic divergence there,

signalling the breakdown of the approximation for low α-values.
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For the other two terms in Eq. (4.33) we find

finter(nc, α) = nc

√
α

8π

∑

R6=0

∞∫

0

dr
r

R

[
e−α(r−R)2/2 − e−α(r+R)2/2

]
φ(r) (4.35)

and

fintra(nc, α) = (nc − 1)

√
α3

2π

∞∫

0

dr r2e−αr2/2φ(r), (4.36)

where R denotes the modulus of the Bravais lattice vector R. For a given density %, the modulus

of the lattice vectors depends on the degree of clustering nc, since the elementary cell can expand

by accumulating more particles per lattice site.





Chapter 5

Monte Carlo simulations

Monte Carlo (MC) methods are special kinds of computer simulations that are based on stochastic

algorithms, i.e., by using random numbers a wide variety of problems spanning from finance and

economics through mathematics to chemistry and physics become numerically tractable.

5.1 Conventional Monte Carlo simulations

We explain the idea of Monte Carlo simulations [55,79–81] for the canonical ensemble (cf. Sec. 3.2).

Via suitable modifications, the formulas presented in the following can readily be generalised to

other ensembles.

5.1.1 Master equation

A system of N particles confined in a simulation box of volume V at temperature T is assumed

to be in a state τ characterised by the positions of the particles. At time span dt later the system

will be in state ν with probability P (τ → ν) dt. Statistical mechanics allows to define transition

probabilities for all states that are accessible to the system.

Let {wτ (t)} be the set of weights which represent the probability that the system will be in

state τ at fixed time t. Then, we can write the master equation which governs the time evolution

of wτ (t)
dwτ (t)

dt
=
∑

ν

[wν(t)P (ν → τ) − wτ (t)P (τ → ν)] . (5.1)

The first term on the right hand side describes transitions of the system from states ν into state

τ , while the second one takes into account transitions leaving state τ for other states ν. Since the

system has to be in some state at a given time t, the probabilities wτ (t) have to obey the sum rule

∑

τ

wτ (t) = 1, ∀t. (5.2)

31
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Now, the ensemble average at time t, 〈A〉t, of some arbitrary macroscopic property A of the

system can be calculated with the help of these weights via

〈A〉t =
∑

τ

Aτwτ (t), (5.3)

where Aτ is the value that A takes in state τ .

5.1.2 Equilibrium and expectation values

In equilibrium, the weights {wτ (t)} converge with time towards time-independent values pτ , called

equilibrium occupation probabilities. They are defined by

pτ = lim
t→∞

wτ (t). (5.4)

Consequently, dwτ (t)/dt = 0 for t → ∞.

For a canonical ensemble

pτ =
1

Q(N, V, T )
e−βHτ , (5.5)

where Hτ is the Hamilton function of the system being in state τ and Q(N, V, T ) is the partition

function defined by Eq. (3.6). Using this distribution of the pτ , which is commonly referred to as

Boltzmann distribution, we can rewrite the ensemble average for a macroscopic quantity A of the

system as

〈A〉 =
1

Q

∑

τ

Aτe−βHτ . (5.6)

For instance, the internal energy U , i.e., the expectation value of the Hamilton function, can be

obtained as

U = 〈H〉 =
1

Q(N, V, T )

∑

τ

Hτe−βHτ . (5.7)

MC simulations allow us to steer a model system through a variety of states in such a way that

the probability that the system is in state τ is equal to pτ . This is achieved by choosing the rules

for changing from one state to another so that the equilibrium solution to the master equation is

precisely the Boltzmann distribution given by Eq. (5.5).

The idea of MC simulations is that only relatively few, representative states but not all possible

states have to be sampled to gather good estimates of physical quantities of the system. Due to

the limited number of states in this simulating procedure, the results are of course subject to

statistical noise, which is one of the main disadvantages of this method. Taking derivatives of

functions affected by statistical fluctuations leads to significant errors, so that the calculation

of expectation values of, e.g., derivatives of Q(N, V, T ) as discussed in Sec. 3.2 is problematic.

Therefore, it is highly recommendable to calculate as many quantities as possible directly via

expectation values.
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For instance, the pressure P can be obtained via

P = %kBT − 〈W 〉
3V

, (5.8)

where the virial W is defined as

W =
∑

i<j

rij
∂φ(r)

∂r

∣∣∣
r=rij

. (5.9)

Further, the bulk modulus B, which measures the resistance of the system against uniform com-

pression, is given by (cf. Eq. 3.11)

B = κ−1 = −V

(
∂P

∂V

)
. (5.10)

In [82, 83], it was shown that B can be calculated directly in simulations via

B =
2P + %kT

3
+ 〈Θ〉 − N

%kT
〈δ(Π)2〉. (5.11)

Π = %kT − W

3V
(5.12)

is the pressure function, while the pressure P is the canonical average of Π (cf. Eq. 5.8)

P = 〈Π〉. (5.13)

The pressure fluctuations are given by

δ(Π)2 = 〈Π2〉 − 〈Π〉2. (5.14)

Further, in the case of pairwise additive potentials the function Θ is given by

Θ =
1

9V

∑

i<j

r2
ij

∂2φij

∂r2
ij

. (5.15)

5.1.3 Importance sampling

As already explained before, the aim of MC simulations is the calculation of the ensemble average

〈A〉 of some observable quantity A given by Eq. (5.3). The ideal route to determine such an

expectation value is to average the weighted quantity of interest over all states τ of the system.

In reality, the “true” average has to be replaced by the average over a finite sample, introducing

necessarily some statistical inaccuracies in the calculation.

While a naive approach would be to choose states at random with uniform probability and

then multiply the contributions Aτ to 〈A〉 by pτ , the idea of importance sampling is to right away
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select a subset of states according to their probability pτ . Then, the given system will spend most

of the simulation time in a representative number of states and the relative frequency with which

a configuration is chosen corresponds to the amount of time a real system would spend there,

limiting the evaluation of A to those states that make important contributions to it.

Supposing that the system has visited M such states {τ1, ..., τM} during the course of the

simulation, the estimator AM of quantity A is then simply given by the arithmetic mean of the

values of Aτi
in states τi (cf. Eq. 3.3):

AM =
1

M

M∑

i=1

Aτi
. (5.16)

with

lim
M→∞

AM = 〈A〉. (5.17)

Therefore, it is decisive to find an algorithm that selects states according to the probability dis-

tribution pτ . This can be achieved by using a Markov chain [55, 79, 80].

5.1.4 Markov chains

A naive way to generate states according to the Boltzmann distribution (5.5) would be to choose

states at random and accept or reject them with a probability exp(−βHτ ). Since nearly all

configurations would be rejected due to their acceptance probabilities being exponentially small,

this is a very slow algorithm. Instead, a time-homogeneous Markov chain [84–86] is commonly

used, which consists of Markov transitions generating a new state ν of the system from a given

system state τ by a random walk. The probability of generating the state ν from a given τ is called

transition probability P (τ → ν). In the case of a time-homogeneous Markov chain, all transition

probabilities have to satisfy the following three criteria:

� They do not vary with time.

� They only depend on the properties of the states τ and ν and not on any other states the

system has visited in the past.

� They satisfy the sum rule ∑

ν

P (τ → ν) = 1, (5.18)

since the system has to end up in some state ν.

Note that the probability that the system will remain in its current state, i.e., P (τ → τ), does not

need to be zero.

MC simulations make repeated use of Markov transitions to generate a chain of states, i.e., a

Markov chain. Starting from an arbitrary state of the system, these transitions are chosen such

that when the Markov chain is sufficiently long it will come to equilibrium and will then produce
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a sequence of states which appear with the probabilities given by the Boltzmann distribution.

To achieve this, the Markov transitions have to fulfil two further conditions, i.e., ergodicity and

detailed balance.

5.1.5 Ergodicity

The requirement that the Markov chain has to be able to reach any state of the system from any

other state in a finite number of steps is called ergodicity. Let ν be a state with some non-zero

probability in the Boltzmann distribution. If this state were inaccessible from another state τ

no matter how long the Markov chain is continued, then the probability of finding state ν in the

simulation will be equal to zero, and not pν , as required. Consequently, the sampled states would

follow a different distribution function. The condition of ergodicity allows for some of the direct

transition probabilities to be equal to zero, as long as there is always at least one compound path

of non-zero transition probabilities between any arbitrary states τ and ν.

5.1.6 Detailed balance

The condition of detailed balance is the second condition imposed on the Markov transitions which

ensures that we sample the Boltzmann distribution once the systems has reached equilibrium.

Equilibrium implies that the rate at which the system makes transitions out of a given state τ

must be equal to the number of transitions into that state [cf. Eqs. (5.1) and (5.4)]

∑

ν

pτP (τ → ν) =
∑

ν

pνP (ν → τ). (5.19)

Using Eq. (5.18), this relation can be simplified to

pτ =
∑

ν

pνP (ν → τ). (5.20)

Commonly, an even stronger criterion, called detailed balance, is imposed on the transition prob-

abilities

pτP (τ → ν) = pνP (ν → τ), (5.21)

In other words, the system should switch from state τ to ν just as often as from ν to τ . If the

chosen Markov chain fulfils Eq. (5.21), then the probability distribution of the states tends to the

Boltzmann distribution pτ and Eq. (5.21) becomes

P (τ → ν)

P (ν → τ)
=

pν

pτ
= e−β(Hν−Hτ ). (5.22)

This relation along with Eq. (5.18) are the constraints imposed on the transition probabilities

P (τ → ν). If they are satisfied, and the condition of ergodicity is met, then the equilibrium

distribution of states sampled by the Markov chain will be the Boltzmann distribution.
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5.1.7 Acceptance probabilities

As long as Eqs. (5.18) and (5.21) are fulfilled, there are several possibilities to choose the transition

probabilities P (τ → ν). Since contriving an algorithm for the Markov chain to directly generate

the correct transition ratios would be quite intricate, the following trick is used: at first, consider

the probability that the system stays in its current state. If ν = τ in Eq. (5.21), the equation

simplifies to the tautology 1 = 1, i.e., detailed balance is always satisfied for every P (τ → τ), no

matter what its actual value. Furthermore, P (τ → ν) and P (ν → τ) can be adjusted arbitrarily

without violating detailed balance as long as the original ratio P (τ→ν)
P (ν→τ) is preserved. As only this

ratio but not the absolute values are needed during the course of a simulation, the transition

probabilities do not even have to be normalised, allowing for violation of the sum rule (5.18).

Next, the transition probabilities are split into two factors

P (τ → ν) = s(τ → ν) a(τ → ν), (5.23)

where s(τ → ν) denotes the selection probability, i.e., the probability that the algorithm generates

a new state ν given an initial state τ , and a(τ → ν) is the acceptance probability, which indicates

the probability with which the change from τ to ν will be accepted as a new state. In case of

rejection, the system stays in state τ .

Using Eq. (5.23), relation (5.21) now becomes

P (τ → ν)

P (ν → τ)
=

s(τ → ν) a(τ → ν)

s(ν → τ) a(ν → τ)
. (5.24)

Since Eq. (5.24) only fixes the ratio a(τ → ν)
a(ν → τ) , it allows to simply set the larger of the two

acceptance probabilities to 1 while the other one takes the required value in order to satisfy the

condition of detailed balance. This guarantees that when switching between states τ and ν, moves

will always be accepted for at least one direction, resulting in a so-called asymmetric rule1.

5.1.8 Metropolis Monte Carlo

In 1953, Metropolis et al. proposed an algorithm [87] fulfilling all the requirements discussed in

the preceeding subsections. While the selection probabilities s(τ → ν) for all those states ν that

can be reached from state τ are chosen to be equal, the selection probabilities for all other states

are set to zero.

This is done in the following way. At first, the N particles of the system are placed within

a box of volume V . This starting configuration can be arbitrary or some regular arrangement.

Repeatedly, a particle i is chosen at random and moved according to

ri → ri + ∆ξξξi, (5.25)

1Symmetric rules, where a(τ → ν) = a(ν → τ) and a(τ → ν) 6= 1, are often used in the simulation of spin
systems.
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∆ is the maximum allowed displacement. It is arbitrary, has a fixed value and is limited by the

constraint that ∆ ≤ L/2, where L is the length of the (cubic) simulation box. It is chosen to

produce an acceptance ratio of 30 to 50 % [55]. Further, the ξξξi are some vectors of uniformly

distributed random numbers in the interval [−1, 1]. After such a move, the particle is with equal

probability expected to be anywhere in a cube of side 2∆ centred around its original position.

As s(τ → ν) = s(ν → τ), Eqs. (5.22) and (5.24) simplify to

P (τ → ν)

P (ν → τ)
=

s(τ → ν) a(τ → ν)

s(ν → τ) a(ν → τ)
=

a(τ → ν)

a(ν → τ)
= e−β(Hν−Hτ ). (5.26)

Therefore, to choose the acceptance ratios a(τ → ν), we need to calculate the change in energy

∆H = Hν − Hτ of the system due to the displacement of the particle. If the move leads to a

decrease in the energy, i.e., ∆H < 0, the trial move is accepted and the particle left at its new

position. On the other hand, if ∆H > 0, the trial move is only accepted with a probability of

exp(−β∆H), which is achieved by generating another uniformly distributed random number ξ̂

between 0 and 1. Then, if ξ̂ > exp(−β∆H) the particle remains at its old position, while it is

moved to the new coordinates if ξ̂ < exp(−β∆H) (see Fig. 5.1). No matter whether the new

configuration has been accepted or not (i.e., the system is still in the old configuration), it is

considered to be in a new configuration for the purpose of taking averages according to Eq. (5.16).

This procedure is repeated with another randomly chosen particle, and so forth, thereby generating

a random walk through phase space.

To summarise, the algorithm chooses the acceptance ratios to be

a(τ → ν) = min
[
1, e−β(Hν−Hτ )

]
. (5.27)

Since Eq. (5.27) satisfies the condition of detailed balance (5.24), the Metropolis algorithm gen-

erates states according to the Boltzmann distribution. Due to its efficiency, it has become the

algorithm of choice in the majority of MC studies of simple statistical models.

5.2 Monte Carlo simulations in the isobaric-isothermal en-

semble

Simulations in the isobaric-isothermal (NPT ) ensemble [88,89] are often more convenient than in

the NV T ensemble since they allow to mimic exactly the conditions given in the laboratory. The

basic concepts of this ensemble were already described in Sec. 3.3.

In NPT simulations, the volume V adjusts in such a way as to keep the pressure fixed. Thus,

apart from the standard trial moves of the particles, described in Sec. 5.1.8, we additionally have

to carry out trial moves in V that have to obey detailed balance.
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Figure 5.1: Acceptance probabilities in the Metropolis MC simulation. Moves with ∆H < 0 are always
accepted, while for ∆H > 0, moves are accepted with a probability of exp(−β∆H).

Let us assume a trial move in volume, i.e., a change of volume

Vτ → Vν = Vτ + ∆V, (5.28)

where ∆V is a uniformly distributed random number in the interval [−∆Vmax, +∆Vmax]. Here,

Vmax depends on the state point under consideration and is chosen to produce an acceptance ratio

of 30 to 50 percent [55, 89]. Note that such a move also re-scales all particle positions. Then, the

Metropolis rule for acceptance of this attempted volume change is given by

a(τ → ν) = min
[
1, e−β(Hν−Hτ )+P (Vν−Vτ )−NkBT log(Vν/Vτ )

]
. (5.29)

A more convenient sampling might be achieved by conducting trial moves in the logarithm of

the volume instead of the volume itself [90]. Then, the acceptance rule changes slightly to

a(τ → ν) = min
[
1, e−β(Hν−Hτ )+P (Vν−Vτ )−(N+1)kBT log(Vν/Vτ )

]
. (5.30)

For most potentials, volume moves are computationally very expensive to analyse [79]. Since

all particle positions have to be rescaled after such a move, all interaction energies have to be

recomputed, rendering one volume move as expensive as N positional particle moves. Therefore,

it is common practice to alternate randomly between the two types of moves, such that volume

moves are attempted with a probability of 1/N , while standard particle moves are carried out

with a probability of 1 − 1/N .
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5.3 Tricks of the trade

5.3.1 Boundary conditions, minimum image convention and tail correc-

tions

While MC simulations aim at providing information about the thermodynamic and structural

properties of a macroscopic sample of the system of interest, only rather small systems can be

handled in reality by present-day computers. Thus, most simulations only probe the behaviour

of systems that contain several hundreds to few thousands of particles, which is by many orders

of magnitude smaller than realistic systems. For such small systems the choice of boundary

conditions does have a significant effect on the properties of the system. For instance, in a three-

dimensional N -particle system, the fraction of particles located at the surface is proportional to

N−1/3. Especially in simulations of small systems, this fact makes it decisive to choose boundary

conditions in a way that the surface effects are minimised.

In order to correctly simulate bulk phases, we require boundary conditions which mimic the

presence of an infinite bulk surrounding the simulation box. One strategy is to impose periodic

boundary conditions. Here, the simulations box is treated as the primitive cell of an infinite

periodic lattice of identical cells. There are no walls at the boundary of the central box and

therefore, no surface particles. As we move a particle in the original box, all its images in the cells

of this infinite lattice will move in a coherent way. Therefore, when a particle leaves the box, one

of its images is going to enter at the opposite side of the box. As a consequence of the infinite

array of surrounding cells, particle i in the central box interacts not only with all other particles

in the same cell, but also with all the other particles, including its own periodic image, in all

other cells (cf. Fig. 5.2). When calculating the potential energy, we would thus need to sum up an

infinite amount of terms. However, MC simulations often only deal with short-range interactions,

where the pair potential decays faster than r−3 for r → ∞. Therefore, the potential energy of a

given particle i is dominated by interactions with neighbouring particles that are closer than some

cutoff distance rc. In particular, if rc ≤ L/2 only interactions of a given particle with the nearest

periodic image of (at most) all other particles j have to be considered. This so-called minimum

image convention is schematised in Fig. 5.3.

If the intermolecular potential is not rigorously zero for r > rc, truncation of φ(r) at rc will

result in a systematic bias in the calculation of thermodynamic properties. This bias can be

corrected to some extend by adding so-called tail corrections. For instance, for the expression for

the potential energy, we find

Φ '
∑

i<j

φc(rij) +
N%

2

∞∫

rc

dr 4πr2φ(r), (5.31)
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Figure 5.2: Schematic representation of periodic boundary conditions. The system of interest (grey) is
surrounded by an infinite amount of identical copies of itself.

where φc(r) denotes the truncated potential energy function

φc(r) =





φ(r) r ≤ rc

0 r > rc

, (5.32)

with the spherical cutoff rc. The second term in Eq. 5.31 follows from the assumption that

g(r) = 1 for r > rc, (5.33)

i.e., for r ≥ rc, the tail correction replaces the discrete particle system by an infinite continuum.

In a similar way, a correction term is added to the expression for the virial

W '
∑

i<j

rij
∂φc(r)

∂r

∣∣∣
r=rij

+
N%

2

∞∫

rc

dr 4π% r2r
∂φ(r)

∂r
. (5.34)

5.3.2 Cell lists

To speed up simulations of systems with a large number of particles, Quentrec and Brot [91]

developed the so-called cell list method. Assuming a cubic simulation cell of length L, the box is

divided into M × M × M sub-cells with size rm = L/M > rc. Further, it is assumed that each

particle in a given cell only interacts with particles in the same or in the surrounding cells. A

two dimensional visualisation of this idea is shown in Fig. 5.4. Using this method, we only need

to consider 27NNm pairs of particles in the calculation of Φ instead of 1
2N(N − 1) (cf. Sec. 5.1).

Here, Nm = N/M3 is the average number of particles per cell.
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Figure 5.3: Schematic representation of the minimum image convention. The dashed box around one of
the particles contains the same number and relative configuration of particles as the central one. The
dashed circle represents a potential cutoff of L/2, i.e., only those particles lying within the circle interact
directly with the particle in the centre.

To realise this method, linked lists can be used [79]. At the beginning of the simulation, all

particles have to be assigned to their respective cells, which is a rapid process. In an array called

“head-of-chain”, the identification number of one particle of each cell is stored. This number is

then used to address the element of a linked list array which contains the identification number of

the next particle in the cell. In turn, the array element for this particle is the index of the next

one, and so forth. Using this method, one can address all the particles in a cell until the element

’zero’ is reached, which signals the end of the list. Then, one has to move on to the head of chain

of the next cell. After each accepted MC move, there is the possibility that the moved particle

has left its cell. Instead of the time-consuming creation of a new list after every accepted move,

the existing linked list can instead be updated at the cost of some extra book-keeping.

5.4 Lattice Monte Carlo simulations

In simulations of systems that freeze into singly occupied crystals ∼500 particles often provide

sufficiently reliable results. However, the situation is completely different in systems where parti-

cles agglomerate to clusters at the lattice sites of perfect crystals. This behaviour is observed for

the PSM and also expected for the GEM-n introduced in 2.5. In this case, to guarantee a suf-

ficiently large number of clusters, we need considerably more particles in our simulation volume,

rendering the use of conventional MC techniques computationally rather expensive. In particular

it is the determination of the distance between particles and the evaluation of the potential energy

of a given particle configuration which is the most time consuming part. Therefore, a significant

speed-up of the MC simulations is needed to make them feasible for systems that show clustering
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Figure 5.4: Schematic representation of the cell list method in two dimensions: the simulation box is
divided into M × M cells of length rm. A particle in cell i interacts only with particles of its cell (cross
hatched) or of the neighbouring cells (hatched).

transitions.

5.4.1 Canonical Lattice Monte Carlo simulations

Motivated by previous work [49, 92, 93], we use Lattice Monte Carlo (LMC) simulations, a tech-

nique originally proposed by Panagiotopoulos [94]. The central idea of LMC is to transform the

continuous system into a lattice model by restricting the possible particle positions within the

simulation box to a finite number of discrete coordinates, as illustrated in Fig. 5.5.

Consider a particle with a characteristic diameter σ. We construct a series of lattice models,

where we restrict allowed particle positions to the sites of a simple cubic grid of some characteristic

spacing. The lattice discretisation parameter ζ specifies the number of grid sites per particle

diameter σ and measures how closely the lattice model mimics the continuum behaviour. It can

easily be seen from the upper panels of Fig. 5.5 that choosing a small value of ζ will have a strong

effect on the structural as well as the thermodynamic properties of the system. However, artefacts

due to the lattice discretisation are bound to decrease as ζ is increased.

For our implementation of the LMC method, we use a cubic box of length L (in units of σ).

The box is discretised via a grid of 2b (i.e., b bits) possible positions in each dimension. Thus, the

discretisation parameter takes the form

ζ =
2b

L
. (5.35)

It should be noted that the product L× ζ has to be an integer (even though L and ζ can take any

real value individually) so that we can use periodic boundary conditions for the LMC simulations.

Due to the discretisation there is now only a finite number of possible distances between

two particles. Assuming that the interaction potential between any two sites is translationally
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ζ=1 ζ=2

ζ=4 ζ=8

Figure 5.5: Schematic representation of the refinement process of the lattice model with increasing lattice
discretisation parameter ζ = 1, 2, 4 and 8 as described in the text. For clarity, a two dimensional system
is shown, but the generalisation to three dimensions is straightforward. Note that the number of grid
points per particle (grey sphere) grows as ζ increases.

invariant, we can write the potential energy as

Φ(rN ) =
∑

i<j

φ(rij ), (5.36)

where rij is the modulus of the vector connecting sites i and j

rij =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2. (5.37)

The particle positions xi, yi and zi, etc., are integers between 0 and 2b − 1. Since there is only

a reasonably small, finite number of distances rij , it is obvious from Eq. (5.36) that we need to

calculate interactions φ(rij) for all these possible distances only once, at the beginning of the

simulation, storing them as function of r2.

Depending on the functional form of the potential studied, the LMC method allows for a speed-

up by a factor of ∼20 compared to the conventional MC scheme [49, 92, 93]. This considerable

reduction in computational time is due to the elimination of the time consuming evaluations of

the potential for every pair of interacting particles. If—as in our case—we use a power of 2 as the

number of grid sites per dimension, a further speed-up can be achieved since periodic boundary

conditions reduce to a bit operation. As soon as a particle leaves the box, its coordinates will

need more than b bits to be represented as a binary number. Truncating this to the lowest b bits,

periodic boundary conditions are automatically fulfilled (see Fig. 5.6). Since computers use the

binary representation of numbers, bit operations are extremely fast.
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x = 11 x = 101 x = 01
00   01   10   11  100  101

Figure 5.6: Schematic representation of periodic boundary conditions within the LMC simulations using a
discretisation of 2 bits per dimension. Before the move (left panel), the particle has the x-coordinate x=11
in the binary representation. During the move (central panel), the particle leaves the simulation box. To
store the new coordinates (x=101) on the computer, 3 bits are needed. Truncating the coordinates to 2
bits leads to the correct new coordinates within the box (right panel).

5.4.2 The radial distribution function in NV T -LMC

In liquid state theory [54], the RDF is defined by Eq. (4.1). In conventional MC simulations, g(r)

is obtained from a histogram of all observed particle distances, which, at the end of the simulation,

has to be scaled according to the pre-factors in Eq. (4.1) and accounting for the volumes of the

spherical shells in which we measured the histogram. The bin size ∆r of this histogram (i.e.,

the thickness of the spherical shells) has to be chosen small enough to obtain g(r) with sufficient

resolution, but large enough to minimise the statistical error per bin. By measuring a histogram,

the RDF is averaged per bin which leads to a significant statistical error at short distances since

the small volumes of the spherical shells over which we average allow only for few events in this

regime.

In LMC simulations, this problem is even more pronounced due to the fact that short distances

are only represented by a few grid points and that the number of available grid points representing

a certain distance interval is not exactly proportional to the volume of a corresponding spherical

shell. Fortunately, one can measure the RDF in a different, more efficient and accurate way by

not calculating a histogram but recording, for every possible interparticle separation on the grid,

how often that distance was observed in the simulation and normalising by the number of times

this separation can occur [92].

The advantage of this approach is that the RDF measured in LMC contains valuable qualitative

information on the state of the system compared to the RDFs measured in conventional MC. In

the fluid phase, particles can—in principle—occupy any distance relative to each other. During the

course of the simulation, most possible distances on the grid will be realised, giving the impression

that the RDF is a continuous curve. If, on the other hand, the system is in the solid phase and

the amplitude of the particles’ vibrations around their (physical) lattice sites is comparable to

the spacing of the computational grid, only a small set of specific interparticle distances will be

observed. In this case, the RDF will show pronounced peaks at the corresponding distances, so

that it is easy to tell when crystallisation has occurred (see Fig. 5.7). By averaging, the RDF can

be smoothed and reduced to the form usually obtained by conventional MC [92].
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Figure 5.7: Simulation results of the RDF of a typical cluster solid as obtained by conventional MC (grey)
and LMC (black). While the clustering phenomenon is reflected in the peak at r = 0, the crystal structure
of the system can be seen from the pronounced peaks in the LMC data at certain distances.

5.4.3 Discretisation errors

By discretising the simulation cell as outlined in Sec. 5.4.1, we introduce two new kinds of errors

to the determination of structural and thermodynamic properties of the system [92,93]. They are

additional to the statistical error which is inherent to all MC simulations. The first error is a

structural defect. It will be non-negligible in case the underlying grid is not sufficiently fine, as the

use of discretised coordinates introduces anisotropies. However, the Shannon-Nyquist sampling

theorem [95] tells us that discrete samples are a complete representation of the original property

if we choose the lattice discretisation parameter ζ = 2b/L sufficiently large so that all relevant

wave-numbers of the structure factor of the system (which is proportional to the Fourier transform

of the RDF) are captured. If this condition is fulfilled, the sampling of the structure of the system

(i.e., the measurement of the RDF) is fine enough to contain all information [92].

The second error concerns the calculation of averages. Due to the underlying grid particle

positions are no longer sampled from the continuous domain [0, L) × [0, L) × [0, L) but rather

from a set of discrete values {xi, yj , zk}, with i, j, k = 0, . . . , 2b − 1. Let δ = 1/ζ be the mesh-

size of the grid. Then, all possible positions in the volume element [xi − δ/2, xi + δ/2) × [yj −
δ/2, yj + δ/2) × [zk − δ/2, zk + δ/2) are mapped to the single point {xi, yj , zk}. Taking averages

of a property A, only the function values at these points are used. Therefore, in LMC simulations

integrals are reduced to Riemann sums over all grid sites (cf. Fig. 5.8). Thus, we can conclude
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that this discretisation error scales the same way as Riemann sums scale. It has to be stressed

that even when performing an LMC simulation of infinite length, the final result would still be

affected by this systematic error since the discretisation of the grid remains fixed throughout the

simulation [49, 92].

a b x

f(x)

Figure 5.8: One-dimensional representation of the integration of some function f in the LMC scheme.
Since only discrete positions (dashed lines) are allowed in the interval [a,b), the MC summation converges
towards the Riemann sum rather than the true integral.

5.4.4 Comparison conventional MC - LMC

First, we want to study the influence of the lattice discretisation parameter ζ, which is determined

by the number of bits used per Cartesian dimension, on the structural properties in a qualitative

way. Fig. 5.9 shows three simulation snapshots of a typical cluster solid (cf. Sec. 7.3). The upper

left panel shows the system at a resolution of b = 5 bits (corresponding to ζ ∼ 4). In each

direction, there are only 32 positions available, a limitation that strongly influences the structure

of the system. Another snapshot of the same system is shown for a grid at b = 6 (corresponding

to ζ ∼ 8, upper right panel). Now, the structure is already reproduced in a more appropriate way,

though the effects of the grid are still visible. At b = 8 (corresponding to ζ ∼ 32, lower panel),

the discretisation is sufficiently fine to obtain an acceptable resolution of the positions and reliable

results for the structure.

In Fig. 5.10 we investigate the effects of LMC on the structure in a more quantitative way by

calculating the RDF for the system presented in the snapshots in Fig. 5.9. Qualitative agreement

with the data from conventional MC simulations is already achieved for a discretisation of 6 bits

per direction, while at 8 bits, all the characteristic features of the RDF are fully captured. Since

the data presented are for a GEM-4 system (cf. Sec. 2.5) frozen into an fcc crystal, the raw RDF

measured in the LMC simulation exhibits sharp peaks at certain distances (cf. Fig. 5.7), while the

data presented in Fig. 5.10 have already been smoothed. As can be seen in Fig. 5.11, in the fluid

state the data for the RDF are much closer to conventional simulation data.

We conclude the discussion of structural properties by showing the RDF of the centres of mass
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Figure 5.9: Snapshots from LMC simulations of a typical cluster solid (GEM-4, %σ3 = 9, kBT/ε = 1, fcc)
for discretisations of b = 5 (upper left), 6 (upper right), and 8 (lower panel). Depth cueing is used to
indicate the distribution of the particles in the direction perpendicular to the plane of the paper.

of the clusters (instead of the individual particles) in Fig. 5.12. It can be seen that already at very

low values of b, we obtain qualitatively correct results. The curves obtained with b = 7, 8, and 9

coincide and reproduce the conventional-MC data perfectly.

Even though the results for the structural properties might suffer from small (fluid) to con-

siderable (cluster solid) fluctuations, the situation is different for the thermodynamic properties,

such as the pressure or the internal energy. They are calculated as configurational averages and

hence are less affected by deficiencies in the details of the structural properties. From our results

for different levels of discretisation and by comparing them to the results of the conventional MC

approach, we conclude that 8 bits are sufficient to guarantee the required numerical accuracy in

the structural and the thermodynamic properties. We want to stress that higher levels of discreti-

sation go along with a considerably larger memory requirements, since the size of the array that

stores all the possible interactions scales as 22(b−1) (cf. Sec. 5.4.1). Moreover, for these levels of

discretisation, considerably increased array access times have to be taken into account once the

lookup table exceeds the cache size.

Especially in the study of systems that show clustering behaviour, the LMC technique [aug-

mented by the cell list method (cf. Sec. 5.3.2)] result in an average speed-up of ∼15, which brings

extensive quantitative MC studies of these systems within reach.
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Figure 5.10: The RDF for a typical cluster solid (GEM-4, %σ3 = 9, kBT/ε = 1, fcc) as obtained by LMC
simulations at b = 6 and 8 and compared to conventional MC simulation results.
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Figure 5.11: The RDF of a supercooled liquid (GEM-4, %σ3 = 9, kBT/ε = 1) as obtained by LMC
simulations at b = 6 (left) and b = 8 (right) in comparison with conventional MC simulation results.
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Figure 5.12: The RDF of the centres of mass of a typical cluster solid (GEM-4, %σ3 = 9, βε = 1, fcc) as
obtained by LMC simulations at different levels of discretisation and compared to results of conventional
MC simulations.

5.4.5 Isobaric-isothermal Lattice Monte Carlo simulations

Of course, the LMC technique is not limited to the canonical ensemble and can be generalised to

the isobaric isothermal ensemble (cf. Sec. 3.3 and 5.2).

One possible implementation of LMC in the NPT ensemble could be based on discretised

volume changes keeping the number of spatial grid points constant. Starting at volume V , the

interaction array has to be computed and stored. Whenever the volume is modified during the

simulation, the particles retain their position on the grid, but since the absolute grid spacing

varies as V 1/3, all interparticle distances are rescaled. Thus, a new interaction array has to be

determined, which will be stored for the case that the system visits this volume again. Since

the volume normally fluctuates only slightly around its mean equilibrium value, only a small

set of interaction arrays will be needed, keeping the memory requirement of the simulation at a

reasonable level.

Another, computationally slightly more expensive implementation was suggested in [92]. While

particle positions are discretised, volume moves are not. As before, each time we perform a volume

change, ζ changes since we keep b fixed. At this point we have to recompute all interaction energies

on the grid and store them in a second, provisional array. The outcome of the acceptance test

of a volume move decides which interaction array will be kept. This approach only doubles the

memory requirements to store all possible particle interactions. In terms of demand in CPU time,
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this approach has proven reasonable. Note that the technique to measure the RDF discussed in

Sec. 5.4.2 cannot be used for NPT -LMC since ζ is not fixed.

5.5 Free energies and phase equilibria in MC simulations

As already explained in Chap. 3, knowledge of the Helmholtz or Gibbs free energy comprises the

knowledge of all thermodynamic properties of a system. In particular, if we know the free energy

for a system, we can calculate its phase diagram. Unfortunately, it is not possible to measure free

energies directly within simulations, since they are not averages of functions of the phase space

coordinates. Rather, they are directly connected to the partition function Q of the system, and

to determine this function we would need to count all states of the system [79].

Still, special techniques have been developed to make the free energies accessible also to MC

simulations. In the following, we will present a few of them.

5.5.1 Widom or particle insertion method

I(n the canonical ensemble, the chemical potential µ is defined as [cf. Eq. (3.10)]

µ =

(
∂F

∂N

)

V,T

. (5.38)

With

F = −kBT log Q(N, V, T ) (5.39)

and µ ' F (N +1, V, T )−F (N, V, T ) for large values of N , the chemical potential can be rewritten

as

µ = −kBT log (Q(N + 1, V, T )/Q(N, V, T )) . (5.40)

Inserting Eq. (3.6), we find that

µ = −kBT log

(
V

Λ3(N + 1)

)
− kBT log

{∫
drN+1 exp

[
−βΦ(rN+1)

]

V
∫

drN exp [−βΦ(rN )]

}
. (5.41)

Here, the first term is the chemical potential of the ideal gas, µid, which can be calculated analyt-

ically. The second term is the excess part, µex, and can be rewritten as

µex = −kBT log〈exp(−β∆Φ)〉N , (5.42)

which now expresses the excess chemical potential as an ensemble average over an N -particle

system that can easily be sampled. During a conventional NV T simulation, we periodically insert

an additional particle at a uniformly distributed, random position within the simulations box

and measure the difference in potential energy ∆Φ caused by this process. Then, we compute
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exp(−β∆Φ) and average this quantity over all insertion positions and all configurations of the

original N particles generated throughout the course of the simulation.

For the NPT ensemble, µ is defined by Eq. (3.27), which allows for an equivalent relation to

be derived. Now, µ ' G(N + 1, P, T )− G(N, P, T ) for large N and therefore

µ = kBT log
(
PΛ3

/
KBT )− kBT log

P

(N + 1)kBT
〈V exp(−β∆Φ)〉NPT , (5.43)

where the average is taken over the uniformly distributed random positions of a ghost particle

and over all configurations of the original N particles and the volume. In contrast to Eq. (5.41),

the first term corresponding to the ideal gas term is now defined at constant pressure rather than

constant density.

Using the relation that at constant temperature

F = µN − PV, (5.44)

we can then determine the free energy from simulations. Similarly, G can be determined via

G = µN. (5.45)

Note that for systems that show cluster behaviour, special care has to be takes when using the

last two formulae (cf. Sec. 7.2).

For systems where the pair potential φ diverges strongly at the origin the particle insertion

method works well at moderate densities. In the case of bounded potentials the method also works

for the solid phases since—in contrast to harshly repulsive potentials—overlaps of particles (which

might occur upon the insertion) only cost a finite amount of energy.

5.5.2 Overlapping distribution method in the NV T ensemble

Of course, analogously to Eqs. (5.40) and (5.42), it is possible to express µ via

µ = −kBT log (QN+1/QN)

= µid + kBT log〈exp(+β∆Φ)〉N+1, (5.46)

where ∆Φ now corresponds to the change in potential energy that stems from removal of one

particle from the (N + 1)-particle system. Straightforward sampling of this equation, however,

does not work. Significant contributions to the ensemble average in Eq. (5.46) correspond to

configurations with very low Boltzmann weight, which is a measure of the probability of sampling

this state during the course of the simulation. In other words, the important contributions to this

average stem from configurations that are hardly ever visited [79].

Still, it is possible to measure the chemical potential by taking both particle insertions and
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removals into account, a technique called overlapping distribution method (ODM) [96–98]. Con-

sider two systems (labelled 0 and 1) at equal N , V and T and let all particles have the same mass.

However, these systems interact via different pair potentials φ0 and φ1 and are characterised by

the partition functions Q0 and Q1. The difference in free energy between these two systems can

be written in a similar way to Eq. (5.40)

∆F = −kBT log(Q1/Q0)

= −kBT log

(∫
drN exp

[
−βΦ1(rN )

]
∫

drN exp [−βΦ0(rN )]

)
. (5.47)

Carrying out a standard NV T MC simulation for system 1, we can measure the potential energy

difference ∆Φ with respect to system 0 by also evaluating Φ0 for the sampled configurations rN .

Then, the probability density for this energy difference, p1(∆Φ), is given by

p1(∆Φ) =
1

z1
N

∫
drN exp

(
−βΦ1

)
δ
(
Φ1 − Φ0 − ∆Φ

)
, (5.48)

where z1
N is the configurational integral given by Eq. (3.13) and δ is the Dirac δ-function. This

equation can then be simplified to

p1(∆Φ) =
1

z1
N

∫
drN exp

[
−β(Φ0 + ∆Φ)

]
δ
(
Φ1 − Φ0 − ∆Φ

)

=
z0

N

z1
N

exp(−β∆Φ) p0(∆Φ), (5.49)

where p0(∆Φ) is the probability density to measure the same energy differences ∆Φ when simu-

lating system 0, i.e.,

p0(∆Φ) =
1

z0
N

∫
drN exp

(
−βΦ0

)
δ
(
Φ1 − Φ0 − ∆Φ

)
, (5.50)

From Eqs. (5.47) and (5.49), we find that

log p1(∆Φ) = β(∆F − ∆Φ) + log p0(∆Φ) (5.51)

It is convenient to define two functions2 f0 and f1 as

f0(∆Φ) = log p0(∆Φ) − β∆Φ

2

f1(∆Φ) = log p1(∆Φ) +
β∆Φ

2
. (5.52)

We can then write

β∆F = f1(∆Φ) − f0(∆Φ). (5.53)

2In the literature, these functions are sometimes also called g and f and the ODM is then referred to as f-g-
sampling.
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Note that f0 and f1 have to be measured in two separate simulations. This method can be

used to calculate the chemical potential. Here, system 1 commonly consists of N + 1 interacting

particles while system 0 contains N interacting particles plus one ideal gas particle. For system 1,

∆Φ can be measured as the energy change due to a transformation of a random particle into an

ideal gas particle. Similarly, in system 0, ∆Φ can be obtained by turning the ideal gas particle into

an interacting one. In both cases, we measure the histograms of the energy differences, which then

can be used to calculate the functions f 0 and f1. Once we know the excess part of the chemical

potential, which is given by

∆F = βµex = f1(∆Φ) − f0(∆Φ), (5.54)

we can determine the free energy of the system via Eq. (5.44).

From Eq. (5.54) it is apparent that f 0 and f1 have a constant offset equal to the excess chemical

potential. To get good statistics, it is important that these two functions overlap on a significant

range of the abscissa (cf. Fig. 7.47). Thereby, the overlapping distribution method can also serve

as test of reliability of the Widom insertion method, hinting at possible sampling problems. This

can be visualised in the following example. Consider a system that interacts via some hard-core

potential. At high densities, it will be virtually impossible to insert test particles. Such trial

insertions will always generate an overlap with the existing particles in the system, leading to

high energy differences and thus to negligible Boltzmann factors. Only rarely will trial insertions

find holes in the system large enough to accommodate a whole particle, which is necessary to

make a relevant contribution to Eq. (5.42). In other words, the statistical accuracy of the particle

insertion method will be poor in such cases. This will then also be reflected in the results of the

ODM, since the functions f0 and f1 will hardly overlap.

5.5.3 Overlapping distribution method in the NPT ensemble

While the formalism of the ODM for the NPT ensemble [99,100] can be developed along the same

lines as for the canonical ensemble, it is slightly more intricate due to the fluctuations in volume.

Again, we have to perform two simulations: one simulation using a system of (N + 1) particles

interacting via potential Φ and a second one containing N interacting particles and one ideal gas

particle.

For the system of (N + 1) particles, the probability distribution of energy difference ∆Φ with

respect to the second system is given by

pN+1(∆Φ) =
1

zN+1,P,T

∫
dV e−βPV

∫
drN+1 e−βΦN+1δ (ΦN+1 − ΦN − ∆Φ) , (5.55)

where the configurational integral of an NPT system is given by

zN,P,T =

∫
dV e−βPV

∫
drNe−βΦN . (5.56)
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The probability distribution, pN (∆Φ), for the system of N interacting particles and one ideal gas

particle is given by

pN (∆Φ) =

∫
dV e−βPV

∫
drN+1 e−βΦN δ (ΦN+1 − ΦN − ∆Φ)∫

dV e−βPV
∫

drN+1 e−βΦN
. (5.57)

As we will show in more detail in Appendix B, the following relation can be derived

pN+1(∆Φ) =
zN,P,T

zN+1,P,T
〈V 〉NPT e−β∆ΦpN (∆Φ) =

= eβµ 〈V 〉NPT

Λ3(N + 1)
e−β∆ΦpN (∆Φ). (5.58)

Taking the logarithm of the last equation, we arrive at

log pN+1(∆Φ) = βµ + log
〈V 〉NPT

Λ3(N + 1)
− β∆Φ + log pN (∆Φ), (5.59)

which can be rewritten as

βµ = log
(
βPΛ3

)
+ β∆Φ + log [pN+1(∆Φ)] − log

[
pN(∆Φ)

〈V 〉NPT βP

(N + 1)

]
=

= βµid + β∆Φ + log [pN+1(∆Φ)] − log

[
pN (∆Φ)

〈V 〉NPT βP

(N + 1)

]
. (5.60)

The excess chemical potential is then given by

βµex = β∆Φ + log [pN+1(∆Φ)] − log

[
pN (∆Φ)

〈V 〉NPT βP

(N + 1)

]
(5.61)

We define two functions, f0 and f1 by

f0(∆Φ) = log

[
pN (∆Φ)

〈V 〉NPT βP

(N + 1)

]
− β∆Φ

2

f1(∆Φ) = log [pN+1(∆Φ)] +
β∆Φ

2
. (5.62)

Then, the excess part of the chemical potential can again be determined via

βµex = f1(∆Φ) − f0(∆Φ). (5.63)

5.5.4 Non-Boltzmann sampling

Consider the following task: within simulations, we want to determine the effective potential

between two interacting macromolecules as function of the separation R of their centres of mass.

As they get closer to each other, the repulsion between these molecules increases, preventing

further approach. Thus, in equilibrium the macromolecules will spend most of the simulation time

at large separations, while short distances will be observed only rarely, leading to rather poor
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statistics. However, some of the most valuable information can be obtained from the rare event of

the macromolecules being close to each other. It is therefore necessary to focus attention on those

events in order to obtain meaningful statistics without wasting time on irrelevant, though easily

accessible configurations.

To overcome such bottlenecks, we can use non-Boltzmann sampling (also called umbrella sam-

pling) [79,101]. Its idea is described in the following. In addition to the interactions acting between

the macromolecules, we impose a so-called window or umbrella potential W i(R) on the centres of

mass. This potential is defined as follows

W i(R) =





0 Ri
min < R < Ri

max

∞ else
. (5.64)

It forces the centres of mass to remain between the minimum and maximum distances, Rmin and

Rmax, respectively. For this range of separations, a standard Metropolis MC simulation is carried

out. If a trial move leads the system outside the prescribed distance range, the move is rejected and

the old configuration is counted as a new one. By making a series of simulations using a sequence

of umbrella potentials W i(R), we systematically vary the separations between the macromolecules.

Now, also short distances will be probed often enough since the trajectory will be able to sample

these regions efficiently. Since within each window states are sampled according to the Boltzmann

distribution, this technique allows the system to move reversibly through all relevant states.

Within each of these windows i, a separate histogram of the probability of finding the molecules’

centre of mass at a certain distance, P i(R), is recorded. At the end of the simulations, the effective

potential Φeff(R) between the molecules is obtained by merging the effective potentials obtained

within each window, Φi
eff(R)

βΦi
eff(R) = − log

[
P i(R)

]
+ ci, (5.65)

where ci is a normalisation constant. Since the ci are initially unknown, the concatenation of

Φi
eff(R) will display discontinuities at the windows’ edges. To obtain a continuous Φeff(R) with

Φeff(R → ∞) = 0, the ci are chosen such that the data are aligned to each other at the edges

of the windows and then Φeff(R = Rm) is subtracted for all R, where Rm is equal to Rmax of

the outermost window. A schematic representation of this simulation procedure can be found in

Fig. 5.13.

Using the non-Boltzmann sampling technique, care has to be taken on various levels. First,

the variation of the effective interaction within each window should not exceed 1-2 kBT to reliably

sample the entire window. Further, statistics are usually poor at the edge of the windows [102],

therefore, it is advisable to use overlapping windows and to smooth the data of each window using

Savitzky-Golay filters [103] before constructing the continuous Φeff(r). Third, we have to make

sure that Rm is chosen in a way that the effective interaction at this distance is really zero, which

is usually the case if [∂Φeff(R)/∂R] ∼ 0 for R ∼ Rm.
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Figure 5.13: Schematic representation of umbrella sampling: In every window, we measure in a standard
MC simulation the probability of the macromolecules being at distance R (left panel). After taking the
logarithm (middle panel), the effective interaction Φeff(R) is obtained by aligning the data at the edges of
the windows and shifting it so that Φeff (Rm) = 0 (right panel).

5.5.5 Thermodynamic integration for cluster solids

Determination of the free energy in solids is usually more complicated than for fluids, since

Widom’s particle insertion method cannot be reliably used due to the complications of inserting

particles into crystals. For such situations, Frenkel and Ladd [104] developed a simple technique

of high accuracy. Assuming that the system of interest is governed by the interaction potential

Φ(rN ), they showed that its free energy at a given state point can be related to the known free

energy of a reference system interacting via Φref(r
N ). During the course of the simulations, the

system’s intermolecular interactions are slowly turned off while the interactions of the reference

system are turned on at the same time. The easiest way to achieve this is to consider the linear

potential energy function

Φλ(rN ) = (1 − λ)Φ(rN ) + λΦref(r
N ), (5.66)

where λ is the coupling parameter. For λ = 0, our system of interest is recovered, while for

λ = 1, we deal with the reference system. The free energy of our system can be calculated via the

coupling parameter formalism as

F = Fref +

λ=0∫

λ=1

dλ

〈
∂Φλ

∂λ

〉
. (5.67)

Using Eq. (5.66), this last equation reduces to

F = Fref +

λ=0∫

λ=1

dλ [Φref − Φ] . (5.68)

This equation expresses the free energy difference as an ensemble average, which can be readily

measured in MC simulations. Using the linear interpolation (5.66) is especially convenient since
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we can then derive the Gibbs-Bogoliubov inequality [79]

(
∂2F

∂λ2

)

N,V,T

= −β
{〈

(Φ − Φref)
2
〉

λ
− 〈Φ − Φref〉2λ

}
≤ 0, (5.69)

i.e., (∂F/∂λ) can never increase with λ. This can be used to check the accuracy of the simulation

results.

In [104], the reference system was chosen to be an Einstein solid, where particles are connected

to their respective lattice sites via harmonic springs [79]. This is a reasonable choice for perfect

single occupancy crystals. However, in multiple occupancy crystals, several particles can be found

per lattice site and particles can hop between lattice sites. In this case, a more convenient reference

system is a system of ideal gas particles that move in potential wells centred around the lattice

sites (cf. Fig. 5.14). A typical shape of the curve ∂F/∂λ can be seen in Fig. 5.15 for a cluster solid

and a liquid system.

barrier

well

(particle density)
clusters

Figure 5.14: Schematic, one-dimensional representation of thermodynamic integration, confining particles
in potential wells of increasing height. Lattice sites are indicated by black circles.

If we set,

Φref(r) =
N∑

i=1

φref(ri) (5.70)

where

φref =





0 r ∈
Nc⋃
i=1

v0(Ri)

Umax else

, (5.71)

with Umax being the maximal height of the potential barrier. Hereby, v0 are small volumina

centred around the Nc perfect lattice sites located at the lattice vectors R of the crystal under

study. The free energy calculation does not depend on the size or shape of these small regions v0,

as long as they allow to construct a reversible path between the two systems. It is evident that the

crystal structure will melt if these regions are too big, therefore the path would not be reversible

anymore. Conveniently, the linear extent of the regions is chosen to roughly fit the width of the

cluster density distribution, i.e., the distribution of particles around a lattice site (cf. Fig. 5.14).
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Figure 5.15: Typical progression of the curve ∂F/∂λ as function of λ for a cluster solid (GEM-4, %σ3 = 8.5,
kBT/ε = 1.1, fcc; Umax = 10kBT , cubic v0 of box-length 0.1σ; solid line) and a liquid, where an unconfined
ideal gas was used as a reference system (GEM-4, %σ3 = 1.3, kBT/ε = 0.2, dashed line).

Since the height of the barrier between the lattice sites is finite, Umax < ∞, the partition

function of the reference system is given as

Qref =
1

Λ3NN !

(
V0 + Vbarre

−βUmax
)N

(5.72)

where V0 = Ncv0 is the sum of all small volumina v0 around the Nc lattice sites and Vbarr = V −V0

is the volume excluded by the barrier. Then, the reference free energy is obtained via

F = −kBT log Qref . (5.73)

The integral in Eq. (5.68) can be evaluated via Gauss-Lobatto quadrature [105]. For every quadra-

ture point λ, a separate Monte Carlo simulation in the NV T -ensemble has to be performed with

particles interacting via Φλ given by Eq. (5.66), measuring 〈∂Φλ/∂λ〉.

Apart from the standard particle moves, two additional trial moves are introduced to avoid

sampling problems. At λ = 0, the barrier is completely turned off and has therefore no influ-

ence on the evolution of the system. Still, the barrier enters the formalism in the evaluation of

Eq. (5.68). Since the system’s centre of mass motion is not restricted, the system might exhibit

a drift and particles can slowly move on top of the barrier. Therefore, 〈∂Φλ/∂λ〉λ=0 = Φref − Φ

can change quite drastically during the course of the simulation, resulting in large uncertainties
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in 〈∂Φλ/∂λ〉λ=0. To avoid this problem and to enhance statistics, we introduce a random move

of the system’s centre of mass via an arbitrary shift. Such a move does not change the potential

energy of the system at λ = 0, thus, these moves will always be accepted. Another problem is

encountered at the other end of the λ-range, i.e., for λ ∼ 1. Now, the barrier might be so high

that particles cannot cross from one potential well to a neighbouring one via standard MC moves.

Therefore, we implement Widom-like moves, where a particle is moved to a completely random

position within the simulation box. At λ = 1, these moves will be accepted with a probability

given by the ratio V0/V .

5.5.6 The Gibbs ensemble

Coexistence between two phases of a one-component system is possible if the chemical potentials

µ, the temperature T and the pressures P of the respective phases are the same. Therefore, one

might think that a constant µPT -ensemble would be the right means to study phase transitions.

However, since all of these three variables are intensive, no such ensemble exists [79].

Panagiotopoulos [106–109] circumvented this problem and developed the so-called Gibbs en-

semble method, which allows to simulate coexisting phases, i.e., at equal µ, P and T . This

technique uses the trick to fix the two phases at constant difference in chemical potential, ∆µ = 0,

while their absolute values are still undetermined [79].

The idea is to consider two simulation boxes, labelled 0 and 1, at constant temperature T ,

whose numbers of particles and volumes are allowed to fluctuate while the total particle number,

Ntot = N0 + N1, and the total volume, Vtot = V 0 + V 1, remain fixed. This is achieved by

implementing three different kinds of trial moves, which are illustrated in Fig. 5.16:

� Standard particle displacements: let ν be the configuration reached from configuration τ via

displacement of some random particle in box 0. Then, the acceptance rule for this move is

given by

a(τ → ν) = min
(
1, e−β∆Φ

)
, (5.74)

where Φ = Φ(rN0

ν )−Φ(rN0

τ ), i.e., the standard acceptance rule (5.27) already derived for the

canonical ensemble.

� Volume changes: if, e.g., V 0
τ → V 0

ν = V 0
τ +∆V , then at the same time V 1

τ → V 1
ν = V 1

τ −∆V ,

thus keeping the total volume fixed. The acceptance rule is given by

a(τ → ν) = min



1,

(
V 0

ν

)N0 (
V 1

ν

)N1

(V 0
τ )

N0

(V 1
τ )

N1 e−β[Φ(rNtot
ν )−Φ(rNtot

τ )]



 , (5.75)

These moves eventually lead to P 0 = P 1.

� Random particle transfers between the boxes: assuming that a particle in box 1 gets trans-
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Figure 5.16: Sketch of the different moves leading to phase coexistence in the Gibbs ensemble: particle
displacements, volume moves and particle transfers.

???

Figure 5.17: The Gibbs ensemble method fails when one of the studied phases is a single occupancy solid
of harshly repulsive particles, since particle transfers will hardly ever get accepted.

fered to box 0, the acceptance rule3 reads

a(τ → ν) = min

{
1,

N1V 0

(N0 + 1)V 1
e−β[Φ(rNtot

ν )−Φ(rNtot
τ )]

}
, (5.76)

These moves guarantee that µ0 = µ1.

To ensure detailed balance, the type of move executed at each step of the simulation is chosen

at random with prescribed probabilities [79].

Monitoring the pressures and chemical potentials in the two boxes, the systems will slowly

move to equilibrium, which is reached once the pressures and chemical potentials are equal. Then,

each subsystem will be at its coexistence density, which can easily be measured and used to draw

the phase diagram. Please note that special care has to be taken when the simulation is carried

out close to a critical point, as the boxes might change identity [79].

The advantage of the Gibbs ensemble is that it needs only a single simulation to determine

the coexistence densities at a given T . In the free energy simulations presented before we need

to calculate the free energies for a range of densities (and at each density for several integration

points) for the two phases of interest before the coexistence densities can be determined via the

3Note that this acceptance rule is only correct if first a box is chosen at random and then one of the particles
is selected within this box. Just choosing a random particle from Ntot and transferring it to the other box would
lead to a slightly different acceptance rule [79].
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Figure 5.18: In cluster solids, particle transfers are possible due to the finite energy penalty for placing
particles on top of each other.

common tangent construction. One disadvantage of the Gibbs ensemble technique, however, is that

it fails when one of the coexisting phases is a solid. As illustrated in Fig. 5.17, particle transfers

will be accepted only with very low probability, since vacancies in the crystal will be extremely

rare [79]. Thus, the chemical potentials are not going to equilibrate. However, in crystals of

particles interacting via bounded potential, i.e., especially in cluster solids, the situation is different

(cf. Fig. 5.18). Now, transfer moves have a finite probability to be accepted since particles are

allowed to sit on top of each other. Still, in this case extreme caution has to be exercised for other

reasons, which will be discussed in Sec.7.2.

5.6 Data analysis

5.6.1 Cluster analysis

To study the properties of a clustered phase in detail, we first need a definition of a cluster. In

Fig. 5.19, we show how a typical RDF of a clustered system varies with increasing density. One

indicator of the clustering phenomenon is the rise of the value of g(0). In a system where particles

interact via a continuous potential, it is of course not possible to define sharp limits of a ’cluster’

in the fluid phase. As we show in the inset of Fig. 5.19, the RDF does not completely vanish for

this particular state-point, so that the location of the first minimum only gives an indication of

the spatial extent of the clusters. However, as soon as the system freezes, the space between two

clusters becomes nearly depleted, thereby allowing for a definition of the extent of a cluster. The

cluster size, nc, can then either be defined by integration of g(r) up to its first minimum at rc,

i.e.,

nc = 1 + 4π%

rc∫

0

dr r2g(r), (5.77)

or via a cluster analysis, where rc is used as a threshold value to group particles in clusters. In

simulations, this is done as follows: Every particle in the simulation gets a label indicating its

cluster identity. We start with particle 1 and calculate the distance to all other particles in the
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Figure 5.19: The RDF g(r) as a function of r/σ of a clustering system (GEM-4, kBT/ε = 0.5). With
increasing density, the first minimum of g(r) tends to zero at r/σ ∼ 0.75, thus allowing for the definition
of the spatial extend of a cluster.

system. Every particle within the threshold radius of rc is considered to be part of the cluster and

these particles themselves are again checked for other neighbouring particles within the threshold

distance. When no more new neighbours are found, we proceed to the next particle that has

not been labelled yet and repeat the procedure until every particle has been assigned a cluster

identity. Of course, this algorithm does not work in all situations. Occasionally, particles hop

between clusters and then might be located in between two clusters. Depending on the size of

rc, this algorithm will then either merge these two clusters or will eventually even issue three

distinct cluster identities, where the intermediate particle is considered as a cluster of its own.

There are various ways to fix these problems by keeping track of cluster sizes and/or modifying

the threshold value during the cluster analysis. However, these additional manipulations render

the analysis more expensive in time, while simply neglecting such rare events has little to no effect

on the final result.

Once particles have been grouped to clusters, it is straightforward to determine their centres

of mass and to perform analyses on the cluster level. It is then possible to calculate the RDF of

the clusters, gcl(r), and to evaluate the distribution of particles around their respective centre of

mass. In addition, the cluster size distribution as well as the mean cluster size can be determined.

Finally, we can analyse the crystal structure of the system, as will be discussed in the next section.
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5.6.2 Bond order parameters

To determine the full phase diagram of a system under consideration, it is indispensable to identify

the structure of the system within the simulation box, i.e., whether the system is in the fluid or

in some crystalline state. Depending on the density and the temperature, particles in (cluster)

solids have a certain freedom to fluctuate around their equilibrium positions, i.e., the perfect

lattice sites. Thus, we expect our crystals to be slightly distorted and we are therefore in need

of a quantitative measure of the degree of “crystallinity” in our system. Such an analysis has to

fulfil several requirements. First, it evidently has to be capable of unambiguously distinguishing

between the fluid and a crystalline phase. Second, it has to be insensitive to the orientation of

the crystal in space. Third, it has to be able to reliably identify the different crystal structures

expected to occur in the phase diagram. And last, it should not be computationally too expensive.

In the search of such an identification tool it is important to recall the specific differences

between a fluid and a crystal. These are the translational and orientational order that characterise

the solid and are absent in the fluid phase. In other words, the particles form an infinite periodic

array in three-dimensional space. At short range, every crystal can be characterised by the number

of neighbours in a certain distance from a reference particle and their positions relative to this

particle. Bond order parameters take advantage of these features [110–113], and are thereby indeed

quantitative measures of crystallinity, meeting all the aforementioned prerequisites.

To calculate these bond order parameters, we first have to define the neighbours j of a tagged

particle i, which are connected to this particle via bonds rij . Then we search for an appropriate

choice of the distance r0, which defines whether a particle is considered to be a neighbour or

not. To this end we recall that the first peak of the RDF at non-zero distance corresponds to the

location of the nearest neighbours. Thus, we choose r0 to be slightly bigger than this distance,

thereby assuring that also distorted crystals will still be correctly identified. In this thesis, we are

going to concentrate on cubic crystals. In this case, care has to be taken to guarantee that in case

of a bcc structure also the second coordination shell, which is situated very close to the first one,

falls within the range of r0.

For every particle i and its corresponding bond rij with neighbour j, we can then calculate

the quantity

Qlm(r̂ij) = Ylm [ϑ(r̂ij), ϕ(r̂ij )] , (5.78)

where Ylm are spherical harmonics and ϑ(r̂) and ϕ(r̂) are the polar and the azimuthal angles of

the bond described by the unit vector r̂ with respect to an arbitrary reference coordinate system.

We can average above parameters by summing over all bonds of particle i and obtain

Qlm(i) ≡ 1

Nb

Nb∑

j=1

Qlm(r̂ij), (5.79)

where the sum has to be taken over all Nb neighbours within r0. It can be shown that in the case
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of cubic structures, the first nonzero values (apart from Q00) occur for l = 4 [110]. As we will see,

it is convenient to also use the Q6m(i) to distinguish different cubic structures in a reliable way.

Since above parameters also depend on the choice of the coordinate system, we construct

rotationally invariant versions of second order of the Qlm(i) via

Ql(i) ≡

√√√√ 4π

2l + 1

l∑

m=−l

|Qlm(i)|2 (5.80)

and of third order via

Ŵl(i) ≡
W l(i)[

l∑
m=−l

|Qlm(i)|2
]3/2

, (5.81)

where

W l(i) ≡
∑

m1,m2,m3

m1+m2+m3=0


 l l l

m1 m2 m3


Qlm1

(i) Qlm2
(i) Qlm3

(i). (5.82)

The term in brackets in the last equation is a Wigner 3j-symbol, which is related to the Clebsch-

Gordan coefficients via


 j1 j2 j3

m1 m2 m3


 ≡ (−1)j1−j2−m3

√
2j3 + 1

〈j1m1j2m2|j3 − m3〉 . (5.83)

They are implemented in Mathematica as ThreeJSymbol [114].

The bond order parameters described above represent a measure of the local order around a

particle i. It is obvious that in a perfect Bravais crystal the contributions of all particles will be the

same and thus we obtain global values for these parameters, characteristic for the crystal structure

under consideration. In Tab. 5.1, we summarise these global bond order parameters for l = 4 and

l = 6 for the fluid and for ideal cubic structures. In our simulations, however, the crystals will not

be perfect but somewhat distorted. The neighbourhood of every particle will be slightly different,

resulting in a distribution of Ql and Ŵl values. We show typical distributions of these for cluster

crystals in Fig. 5.20. Depending on the structure of our system, we expect these distributions

to either have peaks around the values of the corresponding perfect crystal structures or, in case

of the fluid, to be broadly distributed around zero. This reflects the important fact that also in

the liquid, local order exists. In contrast to crystal structures, the global order parameters (i.e.,

summing over all particles in the system) vanish since all local order parameters add up in an

incoherent way [111–113].

Though the probability densities of the bond order parameters might be rather broad, consider-

able differences between different structures are observed. Thus these distributions are fingerprints

that enable us to not only distinguish crystals from the fluid but also to identify different crystal
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geometry Q4 Q6 Ŵ4 Ŵ6

fcc 0.191 0.575 -0.159 -0.013
bcc 0.036 0.511 0.159 0.013
sc 0.764 0.354 0.159 0.013
fluid 0 0 0 0

Table 5.1: Global bond order parameters for the fluid and different cubic Bravais lattices [111].
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Figure 5.20: Typical bond order fingerprints of different cubic cluster crystals (black - bcc; light grey -
fcc) and the fluid (dark grey).

structures. This can be done in the following way.

L v̂ be a unit vector whose elements correspond to the concatenation of the histograms of all

bond order parameters measured during a simulation. Then, the vector v̂ obtained for a particular

system under study may be approximated by a linear combination of corresponding vectors for

equilibrated crystal structures and the pure fluid by minimising equilibrated crystal structures

and for the fluid by minimising

∆2 =

[
v̂ −

(∑

s

fsv̂s

)]2

(5.84)

where s corresponds to the structures under consideration. Therefore, v̂s are the vectors associated

with the histograms of the equilibrated structures and the coefficients fs are indicators of the

crystal structure. The value ∆2 is a measure of the quality of the fit. Decomposing such a

fingerprint into a linear combination of the corresponding distributions of known structures allows
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for a quantitative determination of the structure of the system in the simulation box [112,113].



Chapter 6

Re-entrant melting

In Sec. 2.2, we introduced the phenomenon of re-entrant melting. A wide range of soft matter

systems was found to show this sort of phase behaviour and we are going to present a few examples

and theoretical studies of those in the following.

One of these systems are star polymers. Here, the macromolecules consist of a central core and

a well-defined number, f , of polymer chains attached to it. By increasing f , one can vary the inter-

penetrability of these molecules and cover the range from the polymeric regime, where f = 1 or 2

to rather hard, colloidal particles for f � 1. It was shown in [3] that the effective interaction for

these macromolecules may be approximated by a soft potential that diverges only logarithmically

for short distances. In [23], the phase diagram for star polymer systems was determined and found

to show the characteristic behaviour of re-entrant melting, where f acts as a control parameter

equivalent to the inverse temperature in the GCM (cf. Sec. 2.2). Similar to the upper freezing

temperature in the GCM, there exists a lower bound in f below which no solid structures are

found and the system remains fluid at all densities.

Re-entrant melting was also found for microgels, i.e., mesoscopically sized, covalently linked

polymer networks carrying a net charge Z. Like star polymers, these networks can be shown

to interact via soft, Gaussian potentials that are charge- and density-dependent [12]. Here, the

charge Z acts as the control parameter in the phase diagram, which again displays this specific

phase behaviour [11].

As a last example we mention diblock copolymers, which are linear chain molecules consisting

of two sub-chains that are linked covalently to each other and which were shown to interact via

bounded effective interactions [115]. Here, re-entrant melting occurs upon lowering the tempera-

ture and upon constantly increasing the monomer fraction of one of the sub-chains [116].

These theoretical studies are complemented by experimental investigations. Re-entrant melting

behaviour was observed in a series of small angle X-ray scattering (SAXS) experiments performed

for copolymer micelles. Even a second freezing and re-entrant melting transition was found for a

micellar solution which is physically very close to star polymers [117–119].

67
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These examples establish re-entrant melting as a phase behaviour frequently encountered in

soft matter systems.

6.1 The Gaussian core model as effective interaction

In Sec. 2.2, we have introduced the GCM as one of the most prominent model potentials in the

class of bounded potentials that are known to show re-entrant melting behaviour. This model was

studied extensively within theoretical approaches and computer simulations [25, 35–42], but still,

one important question remains: how realistic is such an interaction?

In 1950, Flory proposed a Gaussian-like potential as effective interaction between polymer

chains [120]. Some of the quantitative characteristics of this potential turned out to be wrong,

such as the prediction that upon increasing the degree of polymerisation the interaction becomes

steeper which is in disagreement with the later findings of [7]. The functional form of the po-

tential, however, was shown in a series of theoretical studies as well as in on- and off-lattice

simulations [6–8,121–128] to be correct for good solvents. Most recently, Louis et al. [8] calculated

the effective pair potential for systems consisting not only of two but considerably more polymer

chains, covering a broad range of concentrations ranging from dilute solutions up to five times the

overlap concentration. These authors confirmed the validity of the Gaussian shape of the inter-

action for this system and thus the pair potential picture for the whole concentration range, with

only slight modifications of the length- and energy-scales beyond the overlap concentration [2, 8].

More recently, another class of macromolecules, namely so-called athermal dendrimers, were

also shown to interact via Gaussian-shaped effective potentials [9, 129]. We are going to discuss

these substances in more detail in Sec. 7.1.

Above examples give evidence that the GCM is indeed a realistic and important model for

the effective interactions between various polymeric macromolecules. Therefore, it is essential to

study its behaviour thoroughly.

As already mentioned before, both the fluid and the solid phases of the GCM were studied in

detail, leading to the phase diagram of the GCM [40,42].

In the following, we use the GCM and the detailed knowledge about its thermodynamic prop-

erties to test the applicability of the SCOZA scheme (cf. Sec. 4.1.6) to bounded potentials. We

start with an MFA study of the GCM.

6.2 The MFA for the GCM

Within the framework of the MFA, the structural and thermodynamic properties of the GCM can

be expressed semi-analytically to a large extent [40, 41, 46]. Here, we add a few details that have

not been documented in the literature yet.

For the specific case of the GCM the MFA ansatz, Eq. (4.15) immediately leads to an analytic
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expression for the static structure factor, S(q),

S(q) = [1 − %c̃(q)]
−1

=
1

1 + α exp[−(q2σ2/4)]
, (6.1)

where α = π3/2%σ3βε. For the RDF, we find

g(r) = 1 − α

%

1

8π3

∫
dq e−iqr 1

eq2σ2/4 + α
. (6.2)

In particular

g(0) = 1 +
βε

α
Li3/2(−α). (6.3)

Here, Lin(x) is the polylogarithm of order n which is discussed in detail in Appendix A.

The thermodynamic properties of the GCM can be calculated semi-analytically using one of

the three thermodynamic routes described in Sec. 4.1.1 or in [54]. The results for the dimensionless

equation of state, βP/%, obtained via the compressibility route (’C’)

(
βP

%

)C

= 1 +
1

2
α (6.4)

and the virial route (’V’)

(
βP

%

)V

= 1 +
1

2
α − βεℵ(α), (6.5)

where

ℵ(α) =
1

2α

[
Li3/2(−α) − Li1/2(−α)

]
(6.6)

have already been reported in [40, 41].

The energy route (’E’) has not been considered in the literature so far. To obtain (βP/%)
E

we

first calculate the excess (over ideal gas) internal energy per particle

βU ex

N
= 2πβ%

∞∫

0

dr φ(r)g(r)r2 =
α

2
− βε

2α

[
α + Li3/2(−α)

]
, (6.7)

from which we obtain the excess free energy per particle

βF ex

N
=

β∫

0

dβ′ Uex(β′, %)

N
=

α

2
− βε

2α

[
α + Li5/2(−α)

]
, (6.8)

and, finally, the equation of state

(
βP

%

)E

= 1 + %
∂

∂%

(
βF ex

N

)
= 1 +

1

2
α − βεℵ(α). (6.9)
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Thus we find that the virial (6.5) and energy route (6.9) lead exactly to the same expression

for the dimensionless equation of state.

In our numerical investigations of similar bounded systems within the MFA, we have observed

an analogous, remarkable coincidence of the virial and the energy route [47]. In fact, it was recently

shown rigorously [130] that thermodynamic consistency between the energy and virial routes is

not just guaranteed for the GCM within the MFA but for a whole set of “soft” potentials fulfilling

the conditions

lim
r→0

r3φ(r) = 0, lim
r→∞

r3φ(r) = 0. (6.10)

and for a wider range of closure approximations of the form

h̃(q; %, β) =
1

%
G(z), with z ≡ %βφ̃(q), (6.11)

where G(z) is an arbitrary function. The first condition in (6.10) defines how to interpret the term

“soft” in this context. It not only includes bounded potentials but also logarithmically diverging

potentials as well as potentials diverging weaker than r−3. The second condition, on the other

hand, requires the potential to be sufficiently short ranged.

6.3 The MFA-based SCOZA for the GCM

When applying the concept of the MFA-based SCOZA to systems with soft potentials, the GCM

represents the ideal candidate. Based on the analytic expressions given by the MFA for the energy

and the virial route of the GCM, it is possible to derive a partial differential equation (PDE) for the

state-dependent function Ki introduced in the closure relation of the SCOZA which relates both

density and temperature derivatives. Two alternative ways to enforce thermodynamic consistency

can be formulated by using the virial and the compressibility route. On the one hand, this leads

to an ordinary (ODE) that can be solved for each isotherm independently. On the other hand, we

have proposed an integro-differential-equation (IDE) based formulation of the SCOZA, which has

to be solved fully numerically on a T -% grid (cf. Sec. 4.1.7).

The conventional formulation of the SCOZA presented here takes advantage of the availability

of the semi-analytic solution of the MFA for the GCM discussed in Sec. 6.2. Therefore, closed

expressions can be derived for the thermodynamic properties also within the MFA-based SCOZA.

To simplify the notation we introduce a function α̂i(%, β) = π3/2%σ3βεKi(%, β) = αKi(%, β), which

is explicitly state-dependent, but for simplicity suppress the arguments of α̂i in the following. As

already introduced in Sec. 4.1.6, i = EC or VC, where the subscripts EC and VC specify whether

the energy and the compressibility or the virial and the compressibility routes are used to enforce

thermodynamic self-consistency. For the formulae common to both cases, the generic subscript i

will be used.

According to the compressibility route the density derivative of the equation of state is given
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by
(
κC

red

)−1
=
(
%kBTκC

T

)−1
= 1 − % c̃(0) = 1 − α̂i, (6.12)

where κC
T is the isothermal compressibility and the reduced isothermal compressibility κC

red is the

zero wave-vector value of the structure factor S(q).

Using the virial route one finds the following expression for the dimensionless equation of state

(
βP

%

)V

= 1 − 2π

3
β%

∞∫

0

dr r2

[
r
dφ(r)

dr

]
g(r) = 1 +

1

2
α − βε

2α̂i

[
Li5/2(α̂i) − Li3/2(α̂i)

]
. (6.13)

Finally, according to the energy route the dimensionless excess energy per particle is given by

βU ex

N
=

1

2
α +

βε

2α̂i

[
Li3/2(α̂i) − α̂i

]
. (6.14)

The thermodynamic inconsistency can be removed either via the energy/compressibility or via the

virial/compressibility route. Both possibilities will be considered in the following subsections.

6.3.1 Energy and compressibility route

To enforce thermodynamic consistency between the energy and compressibility route we utilise the

version of the MFA-based SCOZA-formalism proposed in [70, 131], which brought along a break-

through of this concept for systems with repulsive potentials. From a historical perspective, this

represents the conventional approach to the MFA-SCOZA. It is based on replacing the differential

equation for KEC(%, β) by a differential equation for the excess energy density u = U ex/V . To

derive this equation, we consider the following thermodynamic relation (see, e.g., [132])

∂

∂β

(
1

κE
red

)
= %

∂2u

∂%2
. (6.15)

Expressing at constant density κE
red as a function of u, the left hand side can be rewritten as

∂

∂β

[
1

κE
red(u)

]
=

∂

∂u

[
1

κE
red(u)

]
∂u

∂β
, (6.16)

so that finally Eq. (6.15) becomes

∂u

∂β
=

{
∂

∂u

[
1

κE
red(u)

]}−1

%
∂2u

∂%2
. (6.17)

This relation contains derivatives with respect to both % and β and is a PDE of the diffusion type.

However, the diffusivity, D(%, β) =
{

∂
∂u%

[
1

κred(u)

]}−1

, is state-dependent1 and turns out to be

1Note, that the ’correct’ diffusion equation for non-constant diffusivity D(%, β) would read

∂u

∂β
=

∂

∂%

»

D(%, β)
∂u

∂%

–

.
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negative. κred(u) is now identified with the expression obtained by the compressibility route (6.12)

[
κC

red(u)
]−1

= 1 − α̂EC, (6.18)

where KEC(u) is determined by inverting the result of the energy route

u =
%

β

{
1

2
α +

βε

2α̂EC

[
Li3/2(α̂EC) − α̂EC

]}
. (6.19)

From the numerical point of view, solving the diffusion-type MFA-based SCOZA-PDE (6.17) is a

delicate task, as we have to face the problem of a state-dependent diffusivity D(%, β). Since this

quantity is even negative (and one would obviously want to solve the parabolic equation starting

at βε = 0), not only the solution to the PDE but any numerical error incurred in obtaining it

may be expected to grow exponentially. For example, small errors made in the formulation of

the boundary conditions and the inversion of the highly non-linear relation (6.19) to determine

D(%, β) will eventually become dominant. Together, these difficulties make it practically impossible

to reliably solve this PDE. Reversing the direction in which the PDE is solved would represent a

solution to this problem. Unfortunately, the initial condition for βε = ∞ is not known.

6.3.2 Virial and compressibility route

As an alternative to the approach presented in the preceding subsection, we can calculate the

compressibility via the virial route, κV
T , which is achieved by differentiating Eq. (6.13) with respect

to %,

(
∂βP

∂%

)V

= 1 + α − 1

2σ3π3/2KVC(%, β)2

{
KVC(%, β)

%

[
Li3/2(α̃VC) − Li1/2(α̃VC)

]

+
∂KVC(%, β)

∂%

[
2Li3/2(α̃VC) − Li5/2(α̃VC) − Li1/2(α̃VC)

]}
. (6.20)

Equating this result with the compressibility as obtained via the compressibility route (6.12) leads

to the following ODE for the unknown function KVC(%, β)

∂KVC(%, β)

∂%
=

KVC(%, β)
{
2π3βε%2σ6KVC(%, β) [KVC(%, β) + 1] −

[
Li3/2(α̂VC) − Li1/2(α̂VC)

]}

%
[
2Li3/2(α̂VC) − Li5/2(α̂VC) − Li1/2(α̂VC)

] .

(6.21)

Analysing the ODE, we note that the right hand side (RHS) of Eq. (6.21) contains two singularities.

Obviously the denominator vanishes for % → 0, but expanding numerator and denominator around

% = 0, we find that

KVC(% = 0; β) = − 4
√

2

4
√

2 + βε
. (6.22)
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Further, the denominator also vanishes at α̂VC = α̂VC,0 ≈ −7.7982, a singularity, which, however,

turns out to be removable and which can be treated by appropriate means (see below).

This MFA-based SCOZA-ODE (6.21) has the attractive feature that it can be solved for each

isotherm independently and represents thus a fast route to determine KVC(%, β). We have used an

implicit fourth-order Runge-Kutta algorithm [103] to solve this ODE numerically. In general, this

approach works very well except for those state points where the expression in the square brackets

of the denominator of the RHS of Eq. (6.21) vanishes. A closer analysis shows that this singularity

at α̂VC = α̂VC,0 is removable, since both numerator and denominator vanish simultaneously. In

fact, splitting the density range in two regions, depending on whether α̂VC is smaller or larger

than α̂VC,0, and integrating the ODE “forward” [starting at % = 0 with initial value (6.22)] in the

former and “backward” (from a sufficiently high density so that KVC = −1) in the latter, we were

able to smoothly join the partial solutions at α̂VC = α̂VC,0 and thus to obtain KVC(%, β) over the

entire density range. We point out that reliable solutions of this ODE can only be obtained if an

efficient and accurate evaluation of the polylogarithm is guaranteed (cf. Appendix A).

Alternatively, we have also solved this ODE with MATHEMATICA using a Livermore solver for

ordinary differential equations with automatic method switching (LSODA) [133]. The polyloga-

rithms encountered in the RHS of Eq. (6.21) are evaluated in MATHEMATICAwith high accuracy (for

details see [133]). Although the differential-equation-solver package is not able to deal properly

with the removable singularity noted above and breaks down for α̂VC ∼ α̂VC,0, outside this small

range, MATHEMATICA provides quasi-exact reference data for the function KVC(%, β).

6.4 IDE SCOZA approach for the GCM

The IDE-based formulation of the SCOZA, i.e., Eq. (4.25) along with Eq. (4.24), has been solved

iteratively using both the MFA-based and the HNC-based closure, i.e., Eq. (4.23) and Eq. (4.26),

respectively. We introduce a density grid (with spacing ∆%) and assume a starting value K̄ = −1.

We solve the OZE (4.9) with the appropriate closure relation using standard integral-equation

solver algorithms for a given state point (i.e., we fix % and β) and the neighbouring density values

(i.e., for %±∆%). Thus, the derivatives on the RHS of Eq. (4.24) can be calculated numerically. Due

to the presence of the derivative ∂K̄/∂%, Eq. (4.24) has to be solved iteratively and leads to K̄(%, β)

for the entire density range considered. As a consequence of the iterative and purely numerical

character of the solution strategy, this approach is more time consuming than the solution of the

ODE (6.21).

6.5 Results of the different SCOZA approaches for the GCM

As a solution to the PDE could not be obtained, we concentrate our discussion on the results of

the ODE and the IDE, which represent equivalent approaches to enforcing consistency between
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the compressibility and virial routes. Thus, they are expected to lead to identical results. We

start by specifying the range in (%, β)-space where the MFA and the MFA-based SCOZA provide

unphysical results, i.e., where g(r) also attains negative values (cf. Fig. 6.1). While this failure of

the MFA was briefly addressed in [41], we think that a more quantitative analysis is in order, since

similar problems might be encountered in applications of the MFA (and of related concepts) to

other systems with soft potentials. In fact, also for the MFA-based SCOZA unphysical results can

be obtained for certain system parameter combinations. For the MFA the limits of this range of

unphysical behaviour are easily determined via Eq. (6.3), and for the MFA-based SCOZA they are

found from the equivalent, generalised expression (i.e., replacing α by α̂VC). Results are shown

in Fig. 6.1, indicating that at low temperatures the MFA and the MFA-SCOZA both become

unphysical if the density becomes smaller than some threshold density % = %(β). It is interesting

to note that similar problems of unphysical solutions for the GCM and thus restricted applicability

have also been reported for other self-consistent schemes, such as the RY- or the zero-separation

concepts [40].

Detailed numerical investigations have shown that—as expected—the solution to the ODE

provides indeed the same results as the one from the IDE. Thus, we present the state-dependent

function KVC(%, β) ≡ K̄(%, β) as obtained from the solution of the MFA-based SCOZA-PDE

(6.21) [and the IDE approach to the MFA-based SCOZA closure (4.23), respectively] in Fig. 6.2

in a representative part of the parameter space. Bearing in mind that the MFA is recovered

for K̄(%, β) ≡ −1, we observe that this function differs substantially from unity at low densities

(with a pronounced temperature dependence), thus indicating those regions where the MFA is

thermodynamically inconsistent. At high densities we confirm earlier results reported in [40, 41],

which have stated that in this regime the MFA becomes exact and thus self-consistent. While

in [41] this conclusion was based on an analysis of the high-density behaviour of the function ℵ(α)

as defined in Eq. (6.6), our argumentation follows directly from a visual inspection of the function

K̄(%, β).

Taking into consideration that the virial and the energy route coincide within the MFA, an

open question that remains is whether this also holds for the MFA-based SCOZA. In fact, when

we take KVC(%, β) as obtained from the ODE (6.21) and insert it into Eq. (6.17), we find that this

relation is numerically fulfilled very accurately. This can be seen as an indication that KVC(%, β)

imposes thermodynamic consistency between all three thermodynamic routes. However, this fact

cannot be proven analytically.

For the HNC-based SCOZA, the corresponding function, K̄HNC(%, β) is shown in Fig. 6.3.

Taking the deviation of this function from −1 as a measure of the thermodynamic inconsistency

of the simple HNC-approach (similar to the case of the MFA), we observe that the HNC is to a

large degree self-consistent. It is only at small densities and low temperatures that K̄HNC(%, β)

slightly deviates from −1. This large degree of thermodynamic self-consistency of the HNC for

systems with bounded potentials was already observed for selected state points in [40,41], but was
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Figure 6.1: Region in the density-temperature space, where the MFA and the MFA-based SCOZA provide
unphysical results, i.e., where g(r) attains negative values.

never demonstrated on a quantitative level for a wider range of system parameters.

We conclude our discussion of the thermodynamic self-consistency of the MFA and HNC-based

SCOZA concepts by a direct comparison between local and global self-consistency, as defined in

Sec. 4.1.7. Let K̄g(%, β) denote the explicitly state-dependent function K̄(%, β), as introduced

to enforce thermodynamic self-consistency in the IDE formulation of the (MFA- or HNC-based)

SCOZA (cf. Sec. 4.1.7). Thus, the subscript ’g’ stands for global self-consistency. On the other

hand, if the last term in Eq. (4.24) is neglected thermodynamic self-consistency is only enforced

for a single, isolated state point, and in this case we denote the function by K̄l(%, β) (local self-

consistency). In Fig. 6.4 we show the relative difference between these functions for the MFA-

based SCOZA and we observe that it amounts to at most a few percent and is perceptible only

for small densities, even down to intermediate temperatures. Fig. 6.5 shows the same function

for the HNC-based SCOZA. Here, the differences become noticeable only at small densities and

low temperatures. Thus, over a large parameter range local consistency is in both cases already a

good substitute for global consistency.

We now turn to the structural properties of the GCM by comparing the RDFs for two different

thermodynamic states. In Fig. 6.6, we have chosen a state-point (βε = 1.1, %σ3 = 0.04) in

the regime where MFA is already unphysical, while the MFA-based SCOZA is not (cf. Fig. 6.1).

We observe that, compared to the MC reference data, the MFA-based SCOZA provides a slight

improvement over the MFA. On the other hand, the results provided by the HNC and the HNC-
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Figure 6.2: KVC(%, β) ≡ K̄(%, β) as obtained from the solution of the SCOZA-PDE (6.21) [and the IDE
approach to the MFA-based SCOZA closure (4.23), respectively] over a representative range of %σ3 and βε.
Note that βε is the inverse reduced temperature, i.e., high values of βε correspond to low temperatures.

based SCOZA both reproduce the MC-data perfectly. Fig. 6.7 shows the RDF for the GCM at

a low temperature and low density (βε = 10 equiv. kBT = 0.1, %σ3 = 0.14). Here, we are in

the regime where both the MFA and the MFA-based SCOZA yield unphysical results. We see

that while the conventional HNC results already reproduce the MC data rather well, the HNC-

based SCOZA leads to a perfect agreement with the simulations. We conclude that although the

MFA-based SCOZA for the GCM does not bring along the same improvement for the structural

properties as documented for HCY-systems the concept of self-consistency by itself proves to be of

great value when used with a closure better adapted to bounded potentials, such as a HNC-based

closure.

We conclude this section by examining thermodynamic properties and present the results

for the dimensionless equation of state, βP/%, for two different temperatures, i.e., kBT/ε = 10

(cf. Fig. 6.8) and kBT/ε = 0.1 (cf. Fig. 6.9 and 6.10). For kBT/ε = 10, we find that the SCOZA

results coincide with high accuracy with the MC data. For kBT/ε = 0.1 we observe (Fig. 6.9) that

the MFA-based SCOZA provides data that are very close to those obtained by simulations, while

the HNC-based SCOZA data fit them perfectly. A more detailed comparison, including now also

other liquid state theories, such as the MFA, the PY, or the HNC approximations, is displayed on

an enlarged scale in Fig. 6.10. We observe that also the virial route of the PY and of the HNC (as

expected [40,41]) reproduce the MC data nicely. However, while the SCOZA is self-consistent, this

is not the case for the conventional closure relations HNC and PY. Their respective compressibility
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data sometimes differ substantially from their virial and/or energy results (not shown in Fig. 6.10).

Thus, we can conclude that the general concept of the SCOZA does achieve an improvement

over conventional liquid state theories for a thermodynamically consistent description of the prop-

erties of the GCM, in particular if used in combination with a modification of the HNC closure. It

is especially remarkable that also the structural properties are enhanced, even though the SCOZA

scheme only enforces self-consistency for the thermodynamic properties. Still, it has to be stressed

that in contrast to systems with harshly repulsive potentials the improvement of the MFA-based

SCOZA approach over the MFA data is less spectacular. While it coincides with the MFA results

in the limiting case of high densities where the MFA is already self-consistent, the MFA-based

SCOZA only represents a substantial improvement at small densities and low temperatures where

the thermodynamic inconsistency of the MFA is more pronounced. Replacing the conventional

SCOZA relation by an HNC-type closure that contains an analogous state-dependent function

K̄HNC(%, β), we are able to improve the HNC-data for the structural as well as for the thermody-

namic properties of the system. With this generalised approach we have not only demonstrated

the flexibility and power of the IDE approach but have also proposed what may turn out to become

a reliable liquid state theory for systems with bounded potentials.
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Chapter 7

Clustering

While re-entrant melting has been found in theoretical and experimental studies of various soft

matter systems (cf. Sec. 6), clustering has not been observed in experiments or in simulations of

monomer-resolved models of macromolecules up to date1.

Thus, one key question that arises is whether it is possible to tailor substances that show

clustering. In Sec. 2.5 we showed that the GCM represents the limit of re-entrant melting within

the GEM-n family, while other members that are slightly steeper are expected to show clustering.

With the aim of designing such interactions, we focus on a special class of macromolecules, so-called

dendrimers, and investigate in Sec. 7.1 how modifications to the architecture of these substances

can affect their interaction potentials and thus their phase behaviour.

In Sec. 7.2, we concentrate on the thermodynamics of clustering systems. Furthermore, in an

effort to draw a comprehensive picture of such systems, we thoroughly investigate the properties

of a representative model system that is expected to show clustering behaviour in Sec. 7.3.

7.1 Real systems - dendrimers

Dendrimers are synthetic macromolecules characterised by a high degree of monodispersity in both

size and shape and a well-defined, highly branched internal structure. Hence their name, which

stems from the Greek “τ ò δένδ%oν”, meaning “tree”. A schematic representation of a dendrimer

is shown in Fig. 7.1.

Ever since their first synthesis in 1978 by Vögtle and co-workers [135], dendrimers have rapidly

become highly appreciated colloidal systems. One of the reasons for this growing interest in den-

drimers was the conjecture that they show a so-called dense-shell conformation, where end-groups

reside at the periphery of the macromolecule, leaving the inner part of the macromolecule hollow.

This idea was supported by de Gennes et al. [136], who predicted this particular conformation

1A possible verification of repulsion-induced clustering has been observed in two-dimensional electron systems
in magnetic fields, with partially filled Landau levels. These give rise to soft effective potentials between the
electrons [134], which lead to the formation of cluster or bubble solids.

83
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Figure 7.1: Schematic representation of a 5th generation dendrimer in dense-shell configuration.

based on theoretical considerations. Meanwhile, however, it was shown that this study was erro-

neous. Numerous theoretical and simulation studies confirmed that dendrimers with flexible bonds

will exhibit a high degree of back-folding of their end-groups, which mix with the lower-generation

monomers in the inner part of the molecule, thereby giving rise to the very compact, so-called

dense-core structure [10,137,138]. These findings are further supported by a series of small angle

neutron scattering (SANS) and SAXS experiments [139–141].

Progress in theory and simulations opened up the possibility to actually design dendrimers

(and other macromolecules). The ability to directly map chemical structures onto simulation

data [10] serves as a guide for synthesis in the lab. In these recent investigations, it was shown

that dendrimers do not only exist in the dense-core, but also in the dense-shell conformation. Such

an open structure can for instance be realised via the usage of stiff bonds [142], as also confirmed in

experiments [143]. In addition, it was shown that changing the pH and/or the salt concentration

of the solvent can bring about conformational changes from the dense-core to the dense-shell

structure and vice versa [144], a fact which has also been corroborated in experiments [145, 146].

This new insight brought the synthesis of so-called dendritic boxes within reach, which can be

used as carrier substances for smaller molecules, boosting once more interest in dendrimers.

Nowadays, dendrimers offer a wide range of technologically and medically relevant applications

[147]. Their unique and perfect molecular composition and their high biocompatibility paired with

low toxicity make them perfect candidates for use in humans. Typically, dendrimers are used for

gene transduction and drug delivery, as bio-sensors or magnetic resonance imaging contrast agents

or even for the prevention of infection with HIV or other sexually transmitted diseases [147–154].

Since the synthesis of dendrimers is rather time consuming and expensive, their commercial
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availability is up to now limited to only a few substances [155]. Traditionally, dendrimers are

grown in a repetitive process based on the activation of the end groups. This is either achieved

in a divergent approach, i.e., growing from the central core unit outward, or in a convergent

way [156], i.e., from the periphery inward. Especially for high generation dendrimers, this is a

cumbersome technique because the chemistry needs to be quantitative since inefficient reactions

lead to byproducts and imperfections, giving rise to tedious purification procedures. Recently,

however, progress in the synthesis of dendrimers was achieved as it was shown that they can also

be grown under accelerated conditions combining so-called Click chemistry [157] with traditional

esterification and etherification reactions, where no purification steps are needed [155].

Let us now consider the special architecture of a single dendrimer [10]. Its centre, which

represents the particles of generation 0, is a unit of functionality f , where most commonly f = 3.

From there, f polymer chains consisting of P bonds branch out, where P is the so-called spacer

length. At the end of each of these chains, we find another functional unit for the dendrimer to

branch out and to build the next generation of monomers. The last-generation monomers are called

end-groups. In summary, dendrimers are characterised by three numbers, i.e., the functionality f ,

the spacer length P and the total number of generations, denoted by G. Then, the total number

of monomers forming the macromolecule can be determined via

N = 1 + fP
(f − 1)G+1 − 1

f − 2
. (7.1)

The overall size of a dendrimer can be characterised by its radius of gyration, Rg. Let ri be the

instantaneous positions of the monomers i = 1, ..., N , and let R be the coordinates of the centre

of mass of the dendrimer, then

R2
g =

1

N

〈
N∑

i=1

(ri −R)2

〉
. (7.2)

This quantity can readily be measured in SANS experiments, therefore allowing for direct com-

parison between theory, simulations and experiments.

Insight into the conformation of the dendrimer, on the other hand, can be gained by studying

the monomer density %(r), where r is the vector connecting the centre of mass of the dendrimer

to the reference point. It is given by

%(r) =

〈
N∑

i=1

δ(r − ri)

〉
, (7.3)

where ri, i = 1, . . . , N , are the coordinates of the monomers of the dendrimer and the 〈. . . 〉
denotes an average over different configurations. %(r)dr can be interpreted as being proportional

to the probability of finding a monomer in the infinitesimal volume dr around r. Further, it

is also possible to calculate generation resolved density profiles, where especially the end-group

distribution contains valuable information on the conformation of the dendrimer, since it allows
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to easily see whether the end-groups fold back or remain at the periphery of the molecule.

The form factor of the dendrimer allows for direct comparison between theoretical and exper-

imental studies, since it can be directly measured in scattering experiments. It is defined as

F (q) = 1 +
1

N

〈
N∑

i=1

N∑

j 6=i

e[−iq(r−rij)]

〉
. (7.4)

Introducing

Ĝ(r) = δ(r) +
1

N

〈
N∑

i=1

N∑

j 6=i

δ(r − rij)

〉
, (7.5)

with rij being the distance vector between monomers i and j, we obtain

F (q) =

∫
dr Ĝ(r)e−iqr. (7.6)

7.1.1 Effective interactions

Due to their large number of constituent monomers, dendrimers (and macromolecules in general)

are highly complex entities. To be able to gain insight into the equilibrium properties of such

systems, one therefore has to resort to coarse-graining procedures [2, 9, 129] which help to reduce

the degree of complexity and which we present in the following.

Dendrimers are usually dissolved in solvents of particles that are roughly three orders of magni-

tude smaller than these macromolecules themselves. We can coarse-grain the problem by treating

the solvent as continuum. It is then considered as an effective medium and the solubility of the

dendrimers can still be accounted for by a small set of parameters that affect the excluded volume

or the form of the monomer-monomer interactions. However, we still have to take into account

all microscopic degrees of freedom of the dendrimers themselves, which represents a level of detail

we are not interested in. Therefore, it is convenient to choose a set of effective coordinates repre-

senting the macromolecule as a whole and average over the degrees of freedom of the constituent

monomers. Thereafter, the dendrimers can be regarded as point particles interacting by means

of an effective interaction (also called potential of mean force), which includes all effects of the

monomers while preserving the thermodynamics of the system.

Let us consider two dendrimers, labelled τ = 1, 2, each consisting of N monomers, labelled

i = 1, ..., N , positioned at riτ and with momenta piτ . The Hamilton function H of the system can

be split according to

H(rN
1 , rN

2 ,pN
1 ,pN

2 ) = H11(r
N
1 ,pN

1 ) + H12(r
N
1 ,pN

1 , rN
2 ,pN

2 ) + H22(r
N
2 ,pN

2 ) (7.7)

into the interactions between monomers of the same dendrimer, i.e., H11 and H22, and a cross-term

describing the interactions between monomers of different dendrimers, i.e., H12. The (canonical)
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partition function of the system is given by

Q =
1

h6N

∫∫
dpN

1 dpN
2 drN

1 drN
2 e−βH. (7.8)

Let us now introduce the centre-of-mass densities

%̂CM
τ (Rτ ) = δ

(
Rτ − 1

N

N∑

i=1

riτ

)
, (7.9)

where Rτ is the centre of mass of dendrimer τ . Keeping the Rτ fixed at R1 and R2, the effective

interaction, Φeff(R1,R2), can be defined as [9]

βΦeff (R1,R2) = − log

{
Ω2

Q2
1h

6N

∫∫
dpN

1 dpN
2 drN

1 drN
2 %̂CM

1 (R1) %̂CM
2 (R2) e−βH

}
, (7.10)

where Ω is the volume of the system, while Q1 is the partition function of a single dendrimer and

is given by

Q1 =
1

h3N

∫∫
dpN

1 drN
1 e−βH11 . (7.11)

Combining Eqs. (7.8) and (7.10), we arrive at

Q =
Q2

1

Ω2

∫∫
dR1dR2 e−βΦeff(R1,R2). (7.12)

As the effective potential only depends on the separation R = |R1 −R2| between two dendrimers,

we can write Φeff(R1,R2) = Φeff(R).

Since the effective potential has the form of a Landau free energy, it cannot be computed

directly in simulations (cf. Sec. 5.5). Therefore, special techniques are required (cf. Sec. 5.5), such

as relating Φeff(R) to the correlation function G(R) between the centres of mass via

G(R) ∝ e−βΦeff (R). (7.13)

This then allows for an efficient determination of Φeff(R) within simulations.

7.1.2 Athermal dendrimers

In the literature, several studies on so-called athermal dendrimers can be found. Here, bead-spring

models were considered [9], where the monomer excluded volume was either modelled as a hard

sphere or a Lennard Jones interaction, while the spacers were described via threads or a finite

nonlinear extensible elastic model (see below). Computer simulations showed that the effective

interactions of these macromolecules do not depend on the details of the model used and can

be described by Gaussians with very high accuracy. The strength of the effective repulsion was

found to be dependent on the spacer length, where shorter spacers bring about more repulsive

potentials due to increased crowding in the centre of the macromolecule. This fact allows to
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tune the interactions to a certain extent. Due to the Gaussian shape of the effective interaction,

we expect these dendrimers to show re-entrant melting (cf. Sec. 6). Closely linked with these

findings is the dense-core structure of these dendrimers, arising from back-folding of the terminal

groups [9, 10, 138].

Since the calculation of the effective potential outlined in Sec. 7.1.1 is a pair potential ap-

proximation, the question of its validity arises. Which role do many-body forces play as soon as

more than two dendrimers interact? In [158], Götze and Likos compared results from simulations

of point particles interacting via the coarse-grained, Gaussian effective interaction with data ob-

tained from monomer resolved simulations of several hundred athermal dendrimers. They found

that similar to the case of polymer chains, the effective interaction describes the behaviour of

dendrimers very well in the dilute regime. Beyond the overlap density the dendrimers slightly

reduce their radius of gyration as a reaction to the diminished amount of space available to them,

which has to be taken into account when setting the length-scale of the coarse-grained potential.

This shows that the assumption of a pair potential as an effective interaction is successful even in

highly concentrated dendrimer solutions [158].

Last, results for the structure factor obtained from simulations with the effective interaction

are also in good agreement with SANS data [129], thus once more confirming the validity of the

Gaussian shape of the effective interaction for this kind of dendrimers.

7.1.3 Amphiphilic Dendrimers

As we discussed in Sec. 2.2, clustering is predicted for purely repulsive, bounded potentials with

oscillatory Fourier transforms. The intuitively expected formation of stable clusters in the presence

of short-range attractions and long-range repulsions, as predicted by theory and simulations [159],

has found experimental verification [160]. However, systems displaying solely repulsion-induced

aggregation have not been discovered to-date. In this work, we show that dendrimers are suitable

colloids for the experimental realisation of this phenomenon if their architecture is modified in

suitable ways.

Our studies are motivated by the Flory theory for the effective interactions between athermal

dendrimers [129], which is based on the fact that the monomer density profile of a single dendrimer,

%(r), is a Gaussian. Considering two such dendrimers separated by distance R and assuming that

their profiles are not distorted by their mutual presence, the effective interaction between the two

dendrimers takes the form

Φeff(R) =

∫∫
dr1dr2 %(r1) %(r2 −R) φ(|r1 − r2|), (7.14)

where φ(|r1 − r2|) is the monomer-monomer interaction. By introducing a Flory-type interaction

potential, βφ(|r1 − r2|) = v0δ(|r1 − r2|), with a monomer-monomer excluded volume parameter
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v0 > 0, the integral in Eq. (7.14) reduces to a simple convolution

βΦeff (R) = v0

∫
dr1 %(r1) %(r1 −R). (7.15)

Assuming radial symmetry, the Fourier transform of Φeff(R) has the form

βΦ̃eff(q) = v0%̃
2(q). (7.16)

From this equation it can be seen that due to the presence of the square on the right-hand

side Φ̃eff(q) is strictly positive, so there is no possibility of realising a Q±-interaction within this

framework.

In the following we want to generalise the Flory model to amphiphilic dendrimers, which consist

of a solvophobic core that we label ’C’ and a solvophilic shell, labelled ’S’. This means that we

now have to introduce three different Flory potentials, characterised by the respective excluded

volume parameters, vCC, vCS, and vSS. Proceeding along similar lines as above leads to the Fourier

transform of the effective interaction between our amphiphilic dendrimers

βΦ̃eff(q) = vCC%̃2
C(q) + 2vCS%̃C(q)%̃S(q) + vSS%̃2

S(q), (7.17)

where the %̃τ (q) are the Fourier transforms of the individual density profiles %τ (r), τ = C, S.

Due to their solvophobicity, the core regions try to arrange themselves close to each other in

order to minimise their surface facing the solvent, thus, vCC < 0. The other parameters are

purely repulsive, i.e., vCS and vSS > 0. Therefore, Φ̃eff(q) is not necessarily positive, offering the

possibility to parameterise Q±-interactions within our generalised Flory theory.

To justify our approach we recall that the Gaussian effective interaction is at the threshold

to clustering (cf. Sec. 2.5). Thus, we require the following changes in Φeff(r) to achieve clus-

tering behaviour: a flatter core region, such as those of, e.g., GEM-n potentials with n > 2,

which—compared to a Gaussian—also display a steeper decay of the repulsion for larger separa-

tions. Alternatively, a positive effective interaction with a local minimum at r = 0 also leads to

oscillations in Φ̃eff(q), as we have Φ′′
eff(r = 0) > 0 in that case2.

To realise this goal, we aim for a more open structure and stronger segregation between outer

and inner particles. As we are going to show, this can be realised by assembling the aforementioned

amphiphilic dendrimers. In Fig. 7.2, we qualitatively illustrate how our modifications lead in the

correct direction. As the macromolecules start overlapping, the solvophilic, mutually repulsive

shells cause a steeply increasing potential wall. This effect is reinforced upon further decreasing

the distance since core and shell repel each other due to their different nature. Eventually, the

attractive core regions overlap and slow down further growth of the repulsion, leading to a rather

flat region or even a local minimum in Φeff(r) at small distances.

2These functional forms can be realised for instance by members of the double Gaussian core model (cf. Sec. 2.4).
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Figure 7.2: Different interactions between the solvophobic core (light grey) and the solvophilic shell (darker
grey) region of our amphiphilic dendrimers lead to an effective interaction (dashed line) that is steeper
than a Gaussian (solid line) at intermediate, and flatter at small distances. ε and σ are characteristic
energy and length scales.

With this in mind we study the effective interactions between dendrimers in MC simulations.

For this purpose, we decide to model second generation amphiphilic dendrimers (i.e., G = 2)

consisting of two central units in silico. Further, we choose the spacer length to be P = 1 and the

functionality as f = 3. Therefore, the number of particles in the macromolecule is given by

N = 2G+2 − 2. (7.18)

We choose the end-groups to form the shell, while all inner monomers represent the core.

The bonds between monomers are modelled by the finitely extensible nonlinear elastic (FENE)

potential [10, 144]

βφFENE
τν (r) = −KτνR

2
τν log

[
1 −

(
r − l0τν

Rτν

)2
]

, τν = CC, CS, (7.19)

which is similar to a harmonic spring potential but restricts the bond-length to be in the interval

[lmax
τν , lmin

τν ]. Kτν is the spring constant and Rτν = lmax
τν − l0τν , with l0τν = (lmax

τν + lmin
τν )/2 being the

equilibrium bond length. All other interactions between monomers separated by a distance r are
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Morse ε αdCC d/dCC

6.4 (D1 - D4, D6, D7)CC 0.714
4.8 (D5)

1

1.5 (D3 - D6)CS 0.014 19.2
1.25 (D1, D2, D7)
2 (D3 - D6)SS 0.014 19.2
1.5 (D1, D2, D7)

FENE K/d2
CC l0/dCC R/dCC

40 (D1, D2, D4 - D7)CC
80 (D3)

1.875 0.375

3.75 (D1 - D6) 0.75 (D1 - D6)CS 20
2.8125 (D7) 0.5625 (D7)

40 (D1, D2, D4 - D7) 2.8125 (D1, D3 - D5) 0.5625 (D1, D3 - D5)ZZ
80 (D3) 1.875 (D2, D6, D7) 0.375 (D2, D6, D7)

Table 7.1: Potential parameters [cf. Eqs. (7.19) and (7.20)] of the dendrimers considered in this work.
Parameter sets are labelled D1 to D7. ZZ refers to the two central monomers.

modelled by the Morse potential [10, 144]

βφMorse
τν (r) = ετν

{[
e−ατν(r−dτν) − 1

]2
− 1

}
, τν = CC, CS, SS, (7.20)

which is characterised by a repulsive core at short and an attractive tail at long distances whose

depth and range are parameterised by ετν and ατν , respectively. The dτν are the monomer

diameters. We modelled seven different dendrimers, labelled D1 to D7, studying the influence

of changes in, e.g., spacer-lengths or monomer size. The respective potential parameters are

summarised in Tab. 7.1 and are within the limits of what can be realised experimentally [144]. A

sketch of our dendrimer model can be seen in Fig. 7.3.

Employing Metropolis MC simulations of a single dendrimer, we can now measure the density

profiles %C(r) and %S(r) which are depicted in Figs. 7.5, 7.9, 7.13, 7.17, 7.21, 7.25 and 7.29, for the

dendrimers D1 to D7. We observe that in all cases that both profiles can be approximated with

high accuracy by a Gaussian shape.

Comparing the density profiles of amphiphilic and athermal dendrimers in Fig. 7.4, we find

that due to the amphiphilic nature of our dendrimers and in striking contrast to the results of

athermal dendrimers, the core and shell particles are indeed more segregated. The distributions of

the core monomers have their maximum close to the origin, while the profiles of the shell particles

are centred around r ∼ 0.85Rg to Rg (cf. Tab. 7.2). Thus, amphiphilicity prevents the end-groups

from folding back to the centre, leading now to a rather open, dense-shell configuration. Snapshots

of the various amphiphilic dendrimers, which are presented in Figs. 7.7, 7.11, 7.15, 7.19, 7.23, 7.27

and 7.31, illustrate the spherical shape of the molecules and thus justify the assumption of radially

symmetric density profiles.
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Figure 7.3: A sketch of the dendrimer model used in this work. We show a fourth generation dendrimer.
The end-groups form the shell, while the inner monomers represent the core. Bonds are modelled via a
FENE potential, while all other interactions are described by a Morse potential. In the background, we
show the chemical structure of a real dendrimer (courtesy M. Ballauff [10]).

Encouraged by these results, we model the monomer densities %τ (r) within our generalised

Flory theory as Gaussian functions

%τ (r) = Sτ e−γτ (r−rτ )2 , (7.21)

τ = C, S. The values for Sτ , γτ and rτ are obtained by fits to the simulation data and are given
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dendrimer SτR3
g γτR2

g rτ/Rg dendrimer SτR3
g γτR2

g rτ/Rg

D1: %C 6.719 4.057 0.074 D5: %C 7.554 4.123 0.051
%S 0.681 2.917 0.873 %S 0.685 3.554 0.930

D2: %C 9.760 5.025 0.049 D6: %C 10.323 5.500 0.061
%S 0.666 3.751 0.958 %S 0.667 4.190 0.996

D3: %C 6.857 4.411 0.093 D7: %C 6.219 4.810 0.122
%S 0.683 3.450 0.924 %S 0.693 2.942 0.865

D4: %C 6.985 4.220 0.077
%S 0.685 3.486 0.923

Table 7.2: Fitting parameters for the density profiles of the core and the shell regions of the seven den-
drimers considered, assuming a Gaussian profile, %τ (r) = Sτ exp

ˆ

−γτ (r − rτ )2
˜

, τ = C, S. The respective
radii of gyration, Rg, of the dendrimers are given in Tab. 7.3.

D1 D2 D3 D4 D5 D6 D7

Rg/dcc 3.54 3.36 3.61 3.62 3.59 3.43 2.91

Table 7.3: Radii of gyration Rg for the amphiphilic dendrimers D1 to D7.

in Tab. 7.2. The Fourier transforms of these densities are approximately given by [161]

%̃τ (q) = %̃τ (0)
e−

q2

2γτ

1
2γτ

+ r2
τ

[
cos(qrτ )

2γτ
+

r2
τ sin(qrτ )

qrτ

]
, (7.22)

with

%̃τ (0) = 2πSτ


rτe−γτr2

τ

γτ
+

√
π
(
1 + 2γτr2

τ

) [
1 + erf(

√
γτr2

τ )
]

2γ
3/2
τ


 . (7.23)

The excluded volume parameters vτν with τν = CC, CS, or SS in Eq. (7.17) are given by the

second virial coefficients [162]

vτν =

∫
dr
[
1 − e−βφτν(r)

]
, (7.24)

where φτν(r) are the non-bonded monomer-monomer interactions. We find that vCC/d3
CC = −1.90

(D1 - D4, D6, D7) or −4.33 (D5). Further, vSS/d3
CC = 11.31 (D1, D2) or 28.40 (D3 - D7). Finally,

vCS/d3
CC = 6.25 (D1, D2) or 11.31 (D3 - D7). Thus, we have all the ingredients to calculate Φ̃eff(q)

and hence Φeff(r) within the scope of the Flory theory [cf. Eq. (7.17)].

To put this extension of the Flory theory to the test, we perform umbrella sampling simulations

as explained in Sec. 5.5.4. The maximum separation of the dendrimers is chosen to be Rm = 5Rg.

For each of the 15 slightly overlapping umbrella windows, simulations of 2 × 108 MC sweeps are

performed and P (r) is determined to within an additive constant due to normalisation. Then,

βΦeff(r) is evaluated via Eq. (5.65). The results for the seven dendrimers specified in Tab. 7.1 are

shown in Figs. 7.7, 7.11, 7.15, 7.19, 7.23, 7.27 and 7.31.
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Figure 7.4: Monomer density profiles of the core (circles) and the shell region (squares) for a typical
amphiphilic dendrimer (D4) in comparison with an athermal dendrimer for G = 2 (inset). Distances are
scaled to the respective radii of gyration.

dendrimer a/kBT b/Rg c/kBT d/Rg

D1 7.544 1.149 6.291 1.004
D2 27.77 1.098 26.693 1.049
D5 22.773 1.158 20.468 1.066
D6 36.702 1.159 33.741 1.096

Table 7.4: Fit parameters for the effective interactions of dendrimer D1, D2, D5 and D6 assuming a
DGCM type of interaction with Φ(r) = a exp

ˆ

−(r/b)2
˜

− c exp
ˆ

−(r/d)2
˜

.

The effective interactions indeed show a steep increase as the macromolecules approach each

other and eventually become rather flat or even exhibit a locally attractive dip for smaller distances.

To classify these interactions within known families of functional forms, we fit them to members of

the GEM-n and DGCM potentials and present the fitting parameters in Tabs. 7.4 and 7.5. Since

for all fits Φ′′
eff(r = 0) > 0, the clustering character of these potentials is confirmed. This is further

corroborated by the fact that the Fourier transforms exhibit negative components, as can easily

be seen in Figs. 7.8, 7.12, 7.16, 7.20, 7.24, 7.28 and 7.32.

Finally, we compare our MC data to the results of the modified Flory theory. Differences

between the two data sets can be attributed to the simplifying assumptions of Flory theory that

the monomer densities of the isolated dendrimers do not change upon close interaction with other

dendrimers and that the monomer-monomer interaction can be expressed by a Dirac delta function
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dendrimer a/kBT b/Rg n

D3 3.059 1.665 3.09
D4 3.045 1.658 3.11
D7 2.725 1.641 3.16

Table 7.5: Fit parameters for the effective interactions of dendrimer D3, D4 and D7 assuming a GEM-n
type of interaction with Φ(r) = a exp [−(r/b)n].

weighted by the second virial coefficient of the full inter-monomer potential [162]. In view of

these simplifying assumptions, the good qualitative agreement between simulations and theory is

astonishing. Since the negative Fourier components, shown in Figs. 7.8, 7.12, 7.16, 7.20, 7.24, 7.28

and 7.32, are less pronounced within Flory theory than in the MC data, the former provides a

comfortable lower threshold indicating the onset of the clustering phenomenon.

To motivate possible experimental realisations let us summarise our guidelines for assembling

clustering dendrimers. In a first step, suitable solvophobic core and solvophilic shell groups have

to be chosen, based on the expertise of experimentalists. For these, simulations on an isolated den-

drimer are performed, leading to the core- and shell-density profiles. While Flory theory provides

a reliable qualitative indicator whether the threshold to clustering has already been reached, full

evidence can then be gathered by measuring the effective interactions in the more time-consuming

simulations of two interacting dendrimers. From our observations for all dendrimers investigated,

the following remarks on the trends of the effective interaction upon changing the dendrimers’

architecture should prove useful:

� Bigger end-groups and/or shorter spacer lengths of the end-groups lead to a stronger repul-

sion in Φeff(r) at short distances.

� If the spacer length of the end-groups is increased and/or the distance between the two

central particles and/or the end-group particle size is reduced, Φeff(r) becomes flatter or

even develops a dip at small distances.

� Alternatively, if the range of the attraction is reduced and/or the size of the end-groups is

reduced, Φeff(r) also becomes flatter or even develops a dip at small distances.

The fact that only a small number of generations is sufficient to lead to clustering is encour-

aging for experimentalists because it hints at a rather straightforward synthesis process [155].

Since Φeff(r = 0) ∼ kBT , clustering can easily be realised under ambient conditions in thermally

activated processes.
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Figure 7.5: The density profiles of dendrimer D1 for the core (circles) and the shell (squares) region
according to MC simulations (symbols) and fitted to Gaussian functions (lines). The inset shows a close-
up of the shell density profile.
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Figure 7.6: The form factor of dendrimer D1. The inset shows a close-up on the oscillations observed in
a double logarithmic plot.
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Figure 7.7: Dimensionless effective interaction βΦeff(r) between two D1 dendrimers obtained by MC
simulations [symbols, DGCM fit - solid line] and by the modified Flory theory (dashed line). The inset
shows a simulation snapshot of a D1 dendrimer. Particle diameters are drawn to scale.
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Figure 7.8: The Fourier transform of the effective interaction between two D1 dendrimers obtained by
MC simulations [symbols, DGCM fit - solid line] and by the modified Flory theory (dashed line).
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Figure 7.9: Same as Fig. 7.5 but for D2.
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Figure 7.10: Same as Fig. 7.6 but for D2.
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Figure 7.11: Same as Fig. 7.7 but for D2, using a DGCM fit.
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Figure 7.12: Same as Fig. 7.8 but for D2, using a DGCM fit.
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Figure 7.13: Same as Fig. 7.5 but for D3.
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Figure 7.14: Same as Fig. 7.6 but for D3.
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Figure 7.15: Same as Fig. 7.7 but for D3, using a GEM-n fit.
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Figure 7.16: Same as Fig. 7.8 but for D3, using a GEM-n fit.
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Figure 7.17: Same as Fig. 7.5 but for D4.
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Figure 7.18: Same as Fig. 7.6 but for D4.
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Figure 7.19: Same as Fig. 7.7 but for D4, using a GEM-n fit.
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Figure 7.20: Same as Fig. 7.8 but for D4, using a GEM-n fit.
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Figure 7.21: Same as Fig. 7.5 but for D5.
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Figure 7.22: Same as Fig. 7.6 but for D5.
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Figure 7.23: Same as Fig. 7.7 but for D5, using a DGCM fit..
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Figure 7.24: Same as Fig. 7.8 but for D5, using a DGCM fit..
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Figure 7.25: Same as Fig. 7.5 but for D6.
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Figure 7.26: Same as Fig. 7.6 but for D6.
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Figure 7.27: Same as Fig. 7.7 but for D6, using a DGCM fit..
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Figure 7.28: Same as Fig. 7.8 but for D6, using a DGCM fit..
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Figure 7.29: Same as Fig. 7.5 but for D7.
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Figure 7.30: Same as Fig. 7.6 but for D7.
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Figure 7.31: Same as Fig. 7.7 but for D7, using a GEM-n fit.
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Figure 7.32: Same as Fig. 7.8 but for D7, using a GEM-n fit.
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7.2 On the thermodynamics of cluster crystals

In equilibrium single-occupancy crystals the number of particles N is nearly equal, but usually

smaller than the number of perfect lattice sites Nc in the system [79]. The principal contribution

to the inequality is the finite-temperature concentration of vacancies and interstitials. This means

that the ratio between N and Nc is not fixed by geometry alone. Swope and Andersen [163]

developed a formalism to take this effect into account when determining the thermodynamic

properties of a crystal through computer simulations. However, in simple crystals the equilibrium

concentration of point defects is usually so low that their effect on the phase behaviour is negligible.

For instance, at melting, the chemical potential of a hard-sphere crystal with vacancies roughly

differs by as little as 10−3kBT from that of a defect-free crystal for which N = Nc [164]. This is

one of the reasons why the aforementioned formalism of Swope and Andersen has received little

attention so far [165,166]. However, for systems showing clustering behaviour, the usually subtle

question of lattice-site occupancy takes on increasing importance for simulations since the particle

number and the lattice-site count become completely decoupled at high densities %, with N > Nc.

In a bulk cluster crystal, the number of lattice sites changes until the free energy is minimised,

which can be achieved by making adjustments at surfaces, interfaces, and boundaries. However,

in a simulation box, where particle number N , volume V , and temperature T are fixed, the

system is constrained by the initial choice of lattice geometry. In almost all simulations involving

crystals, the average number of particles per primitive cell, nc = N/Nc, is fixed at the outset of the

simulation. The fixed volume and the use of periodic boundary conditions make the free-energy

cost of creating a new lattice site too high to be observed on a simulation timescale, unless the

system is very far from equilibrium [163]. The constrained free energy is determined not only by

the conjugate variables entropy S/ temperature T , pressure P/ volume V , and chemical potential

µ/ particle number N , but also by the lattice site chemical potential µc/ number of lattice sites

Nc, where µc is the work necessary to introduce a new lattice site in the system. This last quantity

does not introduce a new degree of freedom, but solely constrains the other variables. Accordingly,

we can write an infinitesimal change in the constrained Helmholtz free energy, F (µc), as

dF (µc) = −S(µc)dT − P (µc)dV + µ(µc)dN + µcdNc. (7.25)

Then, the constrained pressure P (µc) is given by

P (µc) = −
(

∂F

∂V

)

N,T,Nc

, (7.26)

the constrained chemical potential µ(µc) by

µ(µc) =

(
∂F

∂N

)

V,T,Nc

, (7.27)
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while the lattice site chemical potential µc is defined as

µc =

(
∂F

∂Nc

)

V,T,N

. (7.28)

Since no new thermodynamic quantity has been introduced, equilibrium properties are recov-

ered when µc = µc [N, V, T, N eq
c (N, V, T )] = 0, where N eq

c is the equilibrium number of lattice

sites. This condition can be tested using

µc =
F (µc) + P (µc)V − µ(µc)N

Nc
. (7.29)

Therefore, the equilibrium pressure P is related to the constrained pressure P (µc) via

P (N, V, T ) = P (µc = 0) = P [N, V, T, N eq
c (N, V, T )] (7.30)

and in a similar way, the equilibrium chemical potential µ is connected to the constrained one via

µ(N, V, T ) = µ(µc = 0) = µ[N, V, T, N eq
c (N, V, T )], (7.31)

which provides the relation between the properties of the (small) constrained and the unconstrained

(bulk) system.

In single occupancy crystals, the condition for phase coexistence in a one-component system is

that values for the temperature, the pressure and the chemical potential of the respective systems

have to be equal. In the following, let the labels 1 and 2 denote the systems involved. Plotting

the specific free energy, F/N of these two systems as functions of the specific volume, V/N , we

can determine the coexistence densities via the common tangent construction, where we consider

tangents to the respective free energy curves, F/N vs. V/N . The requirement P1 = P2 states

that the tangents have equal slopes, since P = − (∂F/∂V ). The condition µ1 = µ2, on the other

hand, results in a common intercept, since µ = F/N + PV/N (cf. Fig. 7.33). The coexistence

volumina are then given by the location of the points where the free energy curves touch the

common tangent.

However, the situation is different when simulating cluster crystals. By fixing Nc (while varying

V ), we only determine the free energy curve of the constrained free energy, which will be different

for different values of Nc. The equilibrium free energy may then be imagined as a sort of “envelope”

to these curves, i.e., as those points where µc = 0 (cf. Fig. 7.34).

If we consider these constrained free energy curves, F/N vs. V/N at fixed Nc, we find that

the intercepts are given by µ1 +
µc,1

nc,1
and µ2 +

µc,2

nc,2
. Requiring the chemical potentials of the two

phases to be equal, the difference in the intercepts is

∆I =
µc,1

nc,1
− µc,2

nc,2
. (7.32)
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Figure 7.33: The common tangent construction in single occupancy crystals: the coexistence requirements
of equal pressure and equal chemical potential result in a common tangent (dot-dashed line) to the free
energy curves of the different phases (solid grey and black lines).
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Figure 7.34: The equilibrium free energy curve of a cluster crystal can be found as those points of the
constrained free energy curves (Nc = const.) where µc = 0.

Hence, the common tangent construction is only correct when µc = 0, i.e., only when it is applied

to the equilibrium (i.e., unconstrained) free energy curves (see Fig. 7.35).

Due to the success of Widom’s particle insertion method (cf. Sec. 5.5.1) for clustering systems,

one could think of performing a kind of Gibbs-ensemble simulation where two systems exchange

both particles and volume [106–109]. However, this is not thermodynamically appropriate when

determining the fluid-solid or solid-solid phase coexistence in systems showing clustering behaviour.

Setting up the two coupled simulation boxes (cf. Sec. 5.5.6) still leaves the freedom to lock into

states where µc 6= 0. Then, even though the phase coexistence conditions P1 = P2 and µ1 = µ2

are fulfilled, the intercepts are not the same anymore (see Fig. 7.36). One would need to be very

lucky to prepare the Gibbs simulation such that µc = 0 (see Fig. 7.37). Violating the condition

µc = 0 will allow to tune the location of the transition from one crystal phase to another at will.



7.2. ON THE THERMODYNAMICS OF CLUSTER CRYSTALS 113

N  = const.c

N  = const.c

µ  = 0c

phase 2

1

2

phase 1

V/N

F/N

Figure 7.35: In the simulation of cluster crystals, the common tangent (dot-dashed line) construction is
only correct if applied to the equilibrium free energy curves (solid grey and black lines) of the respective
phases.

A similar phenomenon might even be observable in rapidly quenched experimental systems, if the

resulting cluster crystals end up in states with µc 6= 0. The long-lived non-equilibrium structures

would then undergo phase transitions at different state points than those predicted by equilibrium

thermodynamics.

The condition µc = 0 is normally not considered in the discussion of the Gibbs phase rule.

However, in his original formulation, Gibbs does allow for the possible existence of other thermo-

dynamic “fields” in addition to µ, P and T [167].

Since thermodynamic equilibrium is only obtained when µc = 0, it would appear that once

the equilibrium points are found, all references to the artificial µc field can be discarded. Yet,

for second derivatives of the constrained free energy, such as the bulk modulus B [cf. Eq.(3.11)],

µc does matter, unless one already has the complete equilibrium free energy curve at hand. In

single-occupancy crystals, B = −V
(

∂P
∂V

)
N,T,Nc

, which can be computed directly in simulations

for a given state point through Eq. (5.11). For cluster crystals, however, the artificial system

conditions further modify the bulk modulus. Starting from Eq. (7.30), we can write

B ≡ −V

[
∂P (N, V, T )

∂V

]

N,T

= −V

[
∂P (µc = 0)

∂V

]

N,T

. (7.33)

Deriving Eq. (7.30) with respect to V , we can rewrite this to

B = −V

[
∂P (µc)

∂V

]

N,T,Nc

− V

[
∂P (µc)

∂Nc

]

N,T,V

(
∂Nc

∂V

)

N,T

= Bvir − Bcorr, (7.34)
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phase 2

phase 1F/N
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Figure 7.36: Setting up the two simulation boxes of the Gibbs ensemble leaves the freedom of locking into
µc 6= 0 states, resulting in an incorrect phase coexistence.

where the right hand side is evaluated at µc = 0. The first term corresponds to a quenched system

where particle rearrangements are not possible. Since obviously Bcorr > 0, Bvir is an upper bound

to B. As for Bcorr, we can use a Maxwell relation to replace the first derivative by

[
∂P (µc)

∂Nc

]

N,T,V

= −
(

∂µc

∂V

)

N,T,Nc

. (7.35)

Introducing the volume of the primitive cell, vc = V/Nc, we can rewrite the last factor in Eq. (7.34)

as

(
∂Nc

∂V

)

N,T

=
1

vc
− V

v2
c

(
∂vc

∂V

)

N,T

=
1

vc

[
1 − Nc

(
∂vc

∂V

)

N,T

]
. (7.36)

The correction term to the bulk modulus of clustering systems can then be obtained in simulations

by evaluating

Bcorr =
%2

nc

(
∂µc

∂%

)

T,nc

[
1 +

%

vc

(
∂vc

∂%

)

T,µc=0

]
, (7.37)

where the partial derivatives are evaluated at an equilibrium state point.

If sound waves have a period shorter than the time it takes for particles to redistribute between

primitive cells, then we can distinguish between two different sound modes in cluster solids. Density

fluctuations stem either from changes to the primitive-cell volume vc at fixed cluster occupancy nc

or from fluctuations in nc at fixed vc, as schematised in Fig. 7.38. To describe these fluctuations,

we consider once more the variation in the free energy, given by Eq. (7.25). Keeping T and V
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Figure 7.37: Using the Gibbs ensemble technique, one would need to be quite lucky to set up the boxes
in a way that µc = 0, which would allow to determine the correct phase coexistence.

constant and using the fact that N = Ncnc, we can rewrite this as

dF = µNcdnc + (µc + µnc)dNc (7.38)

It is convenient to rather consider the total differential of the free energy density, f ≡ F/V , given

by

df = µ%cdnc + (µc + µnc)d%c, (7.39)

where %c = Nc/V is the cluster density. Since the average value of the density fluctuations is zero,

we consider the variation in f to second order, ∆f , which is given by

∆f = c11%
2
c(∆nc)

2 + 2c12%cnc∆nc∆%c + c22n
2
c(∆%c)

2, (7.40)

where

c11 =
1

2%c

(
∂µ

∂nc

)

%c,T,V

, c12 =
1

2%

[
∂(µ%c)

∂%c

]

nc,T,V

,

c22 =
1

2n2
c

[
∂(µc + µnc)

∂%c

]

nc,T,V

. (7.41)

Especially in simulations, these coefficients can be obtained numerically via the following relations:

� c11: (
∂µ

∂nc

)

%c,T,V

=
Nc

V

(
∂µ

∂%

)

%c,T,V

. (7.42)
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Figure 7.38: Density fluctuation contributions in multiple occupancy crystals either stem from fluctuations
in the primitive-cell volume (left) or from rearrangements of particles between lattice sites (right).

� c12: There are two equivalent possibilities to calculate the cross-term, i.e.,

[
∂(µ%c)

∂%c

]

nc,T,V

=

[
∂(µc + µnc)

∂nc

]

%c,T,V

. (7.43)

This last version of the cross-term can be rewritten as

[
∂(µc + µnc)

∂nc

]

%c,T,V

= µ + Nc

(
∂µc

∂N

)

%c,T,V

+ N

(
∂µ

∂N

)

%c,T,V

. (7.44)

� c22: (
∂µc

∂%c

)

nc,T,V

= V

(
∂µc

∂Nc

)

N,T,V

, (7.45)

where the last derivative can be rewritten to

(
∂µc

∂Nc

)

T,N,V

= −

(
∂µc

∂N

)
Nc,T,V(

∂Nc

∂N

)
µc,T,V

= −

(
∂µc

∂N

)
Nc,T,V[

∂(1/vc)
∂%

]
µc,T

=
v2

c

V

(
∂µc

∂%

)
%c,T(

∂vc

∂%

)
µc,T

. (7.46)

Further, using Eq. (7.43) and the fact that

[
∂(µ%c)

∂%c

]

nc,T,V

= µ + %c

(
∂µ

∂%c

)

nc,T,V

, (7.47)
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we obtain [
∂(µnc)

∂%c

]

nc,T,V

=
nc

%c

[
Nc

(
∂µc

∂N

)

%c,T,V

+ N

(
∂µ

∂N

)

%c,T,V

]
. (7.48)

Finally, a change of variables, x± =
(√

c11%c∆nc ±
√

c22nc∆%c

)
/
√

2, allows to diagonalise the

second order variation of f as

∆f = (1 + ω)x2
+ + (1 − ω)x2

−, (7.49)

where ω = c12/
√

c11c22. At the end of the following section, we are going to apply this formalism

in the study of a representative model system that shows clustering behaviour.

7.3 Clustering model systems by example of the GEM-4

In Sec. 2.5, we showed that for the GEM-n family of potentials, clustering is expected for n > 2.

Determining the zero-temperature phase diagram for this class for various potential indices n via

the GA (cf. Sec. 4.2), we find that for this index range, only fcc and bcc lattices are realised

(cf. Fig. 7.39), a result that is in full agreement with the predictions in [44]. This seems to

indicate that the effective cluster-cluster interactions are harshly repulsive, a typical feature for

systems that freeze into fcc and bcc solids, such as, e.g., the Lennard-Jones fluid. As we see from

Fig. 7.40, for n = 2 (the GCM) the GA yields single-occupancy crystals, in agreement with the

exact calculations of Stillinger [37]. We find that for low densities, %σ3 . 0.2, the GA predicts fcc

to be the stable phase, in agreement with the results obtained by Stillinger in [37], which predict

this phase for %σ3 < π−3/2 ∼ 0.18. For higher densities, we obtain the bcc structure.

From the GA results shown in Fig. 7.39, we see that for the densities considered (0.2 < %σ3 <

10) the bcc structure is dominant for n-values close to the clustering threshold n = 2, while for

n & 3, fcc becomes more favourable. At the boundary between the two regimes (n ∼ 3) the energy

difference between the two structures is vanishingly small, resulting in the GA having considerable

difficulties to decide unambiguously between the competing structures in this particular situation

[75]. This is reflected in the small fluctuations in the data of the GEM-3 in Fig. 7.40. Of course,

clustering (i.e., nc > 1) is expected for all n > 2, a fact that is fully corroborated by the GA results

for selected values of n (see Fig. 7.40). Further, in [44], it has been shown that nc is proportional

to %/q∗, where q∗ is the value of the wavenumber for which φ̃(q) has a minimum. The results of

Fig. 7.40 fully confirm this proportionality relation for n up to 5. We note that the slope of the nc

vs. % lines decreases with n. This is due to the fact that q∗ grows with n, as can be easily verified

from analysing φ̃(q).

Let us now turn to finite temperatures and start the discussion of the GEM-4 system by

showing its phase diagram based on results from simulations and predictions from theory, depicted

in Fig. 7.41. To give a qualitative understanding of the clustering phenomenon, we also show three

simulation snapshots in the same Figure, all taken at the same temperature, i.e., kBT/ε = 1.1,
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Figure 7.39: Zero temperature phase diagram of the GEM-n system showing the structures of the solid
cluster phases as predicted by the GA as a function of ρσ3 and for a representative set of index values n.
For key to symbols see legend.

but at different densities and in different phases. The explicit values for the densities are %σ3 = 6,

where the system is evidently in the fluid phase, %σ3 = 7.5 for the cluster bcc and %σ3 = 8.5 for

the cluster fcc phase.

In the following, we will focus on the different phases encountered in the phase diagram

(cf. Fig. 7.41) and explain in detail how we determined the coexistence lines. We start by analysing

the disordered, homogeneous phase. At %σ3 = 6 and kBT/ε = 1.1 the system is already very close

to the freezing line. A closer investigation of the particle positions shows that the fluid phase is

actually a mixture of strongly aspherical clusters of particles with a vast variation of cluster sizes,

nc. The definition of a cluster in simulations is given in Sec. 5.6.1. From the RDF displayed in

Fig. 7.42, we see that upon increasing the density, the value of g(0) starts to rise. This maximum,

which is already present in the RDF of the fluid, indicates that particles indeed agglomerate to

clusters. As specified in the inset of the same figure, the space between two clusters becomes

nearly depleted as soon as the system freezes. This depopulated region becomes broader as %

is increased, which reflects the tendency that at higher densities an increasing potential energy

barrier between the clusters drives particles out of these interstitial regions and into the clusters.

Such a behaviour seems completely counter-intuitive since this formation of stable clusters occurs

in the complete absence of attraction. Nevertheless, it can be understood by considering the fact

that full overlaps of particles create additional space for the clusters, thus offering the system a
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Figure 7.40: The cluster size nc at kBT = 0 as a function of density for different index values n of the
GEM-n potentials as predicted by the GA. As we can see, the GA predicts nc = 1 for all densities for
the GCM. The small fluctuations in the data of the GEM-3 stem from the fact that the free energy
differences between fcc and bcc are so small that the GA has difficulties to decide unambiguously between
the competing structures.

possibility to increase its entropy. Moreover, above the overlap density, even an energetic gain

may be achieved, since a single full overlap could be less expensive than the sum of the imminent

costs due to the partial overlaps with the approximately 12 neighbours in a highly coordinated,

dense fluid. This is most evident in the case of the PSM, for which the energy cost is indepen-

dent of separation once the particles overlap. A detailed account of these contributions for the

PSM is given in [24] in real space, whereas a more general argument based on reciprocal-space

considerations can be found in [44].

In Fig. 7.43 we show the structure factor, S(q), for the fluid phase according to MC simula-

tions. We see that the first peak considerably exceeds the value of 2.85, which, according to the

Hansen-Verlet criterion [168,169], indicates the freezing transition in harshly repulsive fluids. This

demonstrates that the GEM-4 system can sustain a higher degree of spatial correlations than hard

matter systems before it freezes.

Although the MFA does not capture the structural properties of clustering in the fluid phase

on a quantitative level, it turns out that it can reproduce the increase in g(0) on a qualitative

level, which we show in the inset of Fig. 7.42. We can see that this feature is also predicted by

the HNC or the PY approximations (cf. Secs. 4.1.4 and 4.1.5) with different levels of success.

Moreover, the thermodynamic results obtained via the MFA energy route agree very well with
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Figure 7.41: The phase diagram of the GEM-4 system (as discussed in the text). The circles are the
coexistence points as obtained from MC simulations and the black solid lines serve as guide to the eye.
The dashed grey lines show the MFA-DFT results. Please note that the bcc-fcc coexistence region is very
narrow and not visible on the scale of the figure. The dashed black line shows the analytical prediction of
the freezing line calculated in [44]. We also display three simulation snapshots of the system at kBT/ε = 1.1
for the fluid phase (%σ3 = 6), the cluster bcc phase (%σ3 = 7.5), and the cluster fcc phase (%σ3 = 8.5).
Note that for the two higher densities, every lattice site is multiply occupied. The particle diameters are
not to scale and were chosen arbitrarily to optimise visibility.

results of computer simulations. To visualise this we present in Fig. 7.44 as an example the data

for the reduced, dimensionless pressure, βP/%, for the GEM-4 at a rather low temperature of

kBT/ε = 0.5. To put the success of the energy route of the MFA into a broader context, we also

show in the same figure MFA results using different thermodynamic (i.e., virial or compressibility)

routes, as well as data obtained by other liquid state theories, such as HNC or PY. We see that

PY fails to reliably reproduce the simulation data especially at high densities. HNC, on the other

hand, performs very well but breaks down (i.e., fails to converge) shortly after clustering sets in,

i.e., where g(0) & 1 and well before the actual transition to a cluster solid. The results of the

virial and energy route of MFA lie on top of those of the virial route of HNC, while the MFA

compressibility data lie close to those of the virial route of PY. Despite being the simplest among
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Figure 7.42: g(r) as a function of r/σ for the GEM-4 system at kBT/ε = 1.1 as determined from MC
simulations for the states shown in the snapshots in Fig. 7.41. For the fluid phase at %σ3 = 6, also results
from MFA, HNC and PY are shown in the inset for a selected r-range.

the various closures to the OZ equation, the MFA outperforms all other closures since results

can still be obtained when approaching the freezing transition. Note that at higher temperatures

MFA reaches a level of accuracy close to the one of HNC in reproducing the data of simulations,

as was shown in [44]. All these considerations leave the energy route of MFA as the best option

to describe the thermodynamic and structural properties of the fluid. A more detailed analysis of

MFA data in direct comparison with computer simulation results can be found in [46, 170].

Being able to calculate the equation of state, and hence the free energy of the fluid via MFA,

we turn to the solid phases, which are treated within DFT. In Fig. 7.45 we show for a particular

state point of the GEM-4 system the typical dependence of f(nc, α), defined in Eq. (4.33), on nc

and α. It can be seen that the surface takes the shape of a trough that runs parallel to the α-axis,

i.e., for each α the minimum with respect to nc is located at a nc-value that is α-independent.

This is connected with the tendency of the system to adjust its lattice constant in such a way that

the modulus of the first shell of reciprocal lattice vectors (RLVs) coincides with the value q∗ at

which φ̃(q) attains its negative minimum, confirming the analytical results of [44].

A detailed consideration of the separate contributions to f(nc, α) [given by Eqs. (4.34) to

(4.36)] as functions of nc at fixed α (shown in Fig. 7.46) offers the key to understand the existence

of stable clusters of finite size in this system. On increasing nc, the lattice constant widens, the

values of R in Eq. (4.35) grow and expensive close contacts with nearest neighbour clusters are
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Figure 7.43: Structure factor S(q) as a function of qσ as obtained by MC simulations for a fluid GEM-4
system close to freezing, i.e., at kBT/ε = 1.1 and %σ3 = 6. The value of the first peak of S(q) is considerably
higher than the Hansen-Verlet threshold value that indicates freezing in systems interacting via harshly
repulsive potentials.

avoided as shown by the fact that finter(nc) drops monotonically with nc. On the other hand, the

entropy loss due to particle aggregation, expressed by the term log nc in Eq. (4.34), and the ‘self-

interaction’ within the cluster, given by Eq. (4.36), both disfavour the formation of clusters, which

can be seen from the monotonic increase of the respective terms with nc. Nevertheless, very large

values of nc are unlikely because, at constant particle density, this would reduce the cluster density

to such an extent that even the nearest neighbour distance between clusters exceeds the range

of the potential φ(r). At this point, the entropic and self-interaction terms dominate and stop

further aggregation. The interplay of these two competing contributions—intra-cluster interaction

and entropy, on the one hand, and inter-cluster contribution, on the other hand—lead to an overall

shape of f(nc, α) which shows a global minimum at a finite value of 1 < nc < ∞, representing

the optimal, equilibrium cluster size for this state point and rendering the clusters stable both

against decomposition (nc = 1) and unlimited growth (nc → ∞). Uncontrollable growth of nc

would be unfavourable not only on the basis of the thermodynamic arguments presented above

but also on more fundamental, mechanical grounds. Indeed, should nc and, correspondingly, the

lattice constant, grow too large, there would be no appreciable restoring force from neighbouring

clusters to provide the stabilisation mechanism against small lattice oscillations and the crystal

would lose its ordered structure.

Since we are now able to calculate the free energy of the fluid and of the competing solid



7.3. CLUSTERING MODEL SYSTEMS BY EXAMPLE OF THE GEM-4 123

0 1 2 3

ρσ3

0

5

10

15

βP
/ρ

MFA - E
MFA - V
MFA - C
HNC - V
PY - V
PY - C
MC  solid

Figure 7.44: Reduced, dimensionless pressure, βP/%, as a function of %σ3 for the GEM-4 system at
kBT/ε = 0.5, calculated via different thermodynamic routes (’V’ - virial, ’C’ - compressibility, and ’E’ -
energy route) and using various IETs. MC simulation data are given by the symbols. While PY fails to
reliably reproduce the simulation data especially at high densities, HNC initially provides a reasonable
approximation but fails to converge well before the system crystallises at this temperature for densities
around %σ3 ∼ 3. This leaves the energy route of the MFA as the best option to describe the properties of
the fluid. Note that the MC data point at the highest density already corresponds to the solid phase.

structures (i.e., fcc and bcc) within the scope of the various accurate, yet in principle approxi-

mate theories, we turn to MC simulations for the determination of the exact free energy curves.

Here, in accordance with Sec. 7.2, the locus µc = 0 must be identified for each (%, T ) state

point. At given N , V , T , and Nc, the quantities F (µc), P (µc), and µ(µc) may be directly com-

puted from MC simulations, using thermodynamic integration (cf. Sec. 5.5.5), the virial equation

[cf. Eq. (5.8)], and Widom’s particle insertion method (cf. Sec. 5.5.1), respectively. Eq. (7.29)

is used to check whether the chosen constraints correspond to the equilibrium conditions of the

system (i.e., whether µc = 0). This procedure is repeated for different N and V , keeping % and T

constant, until the equilibrium configuration for the given state point is identified. We present our

results for various temperatures and densities in Appendix C. The most computationally involved

aspect is the determination of the free energy through thermodynamic integration. Due to cluster-

ing and particle hopping between lattice sites, an ideal gas in potential wells (cf. Sec. 5.5.5) proves

to be a more appropriate reference state than the conventional Einstein crystal [79, 104]. As can

be seen from Fig. 7.47, the validity of Widom’s particle insertion method even at high densities

can readily be verified with the help of the overlapping distribution method (cf. Sec. 5.5.2).
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Figure 7.45: βf(nc, α) given by Eq. (4.33) as a function of nc and ασ2 for the GEM-4 system at kBT/ε =
0.5 and %σ3 = 6 in the fcc phase.

In Figs. 7.48 to 7.52 we show the modified (equilibrium) free energy density, βF̃σ3/V ≡
βFσ3/V − K%σ3, for the different phases as a function of density at several fixed temperatures

kBT/ε. The terms K%σ3, where the specific values of K are indicated in the captions of the plots,

were added to enhance visibility, but they are irrelevant for the determination of the coexistence

densities. From these figures it is apparent how small the energy differences between the competing

solid cluster phases are. Therefore, simulation techniques that are able to determine the free energy

with high accuracy are indispensable, and thermodynamic integration turned out to be a reliable

tool to meet this requirement.

With the theoretical predictions and simulation data of the free energy at hand, we can now

employ the common tangent construction to determine the coexistence densities and therefore the

phase diagram, which was already shown in Fig. 7.41 and which we are going to discuss on a more

quantitative level in the following. The approximate, analytical theory of [44] predicts for the

freezing line (’f’) a straight line of the form

kBTf

ε
= 1.393|φ̃(q∗)|%fσ

3 ≈ 0.177%fσ
3. (7.50)

where |φ̃(q∗)| ∼ 0.127 is the absolute value of the negative minimum of the Fourier transform of

the GEM-4 potential. Plotting the line specified in Eq. (7.50) in the phase diagram depicted in

Fig. 7.41, we see that it lies reasonably close to the coexistence line predicted by the present full

numerical MFA and DFT calculations. These data provide an almost straight line that can be
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Figure 7.46: Contributions to βf(nc; α) according to Eqs. (4.34) to (4.36) as functions of nc for an fcc
crystal formed in a GEM-4 system at kBT/ε = 1, %σ3 = 9 and ασ2 = 45.51, i.e., the α that minimises the
free energy. The minimum in βf(nc; α) is located at nc ∼ 18.4.

fitted by
kBTf

ε
= 0.186(1)%fσ

3 − 0.080(5). (7.51)

MC simulations, on the other hand, give

kBTf

ε
= 0.187(3)%fσ

3 − 0.08(1), (7.52)

and demonstrate the excellent accuracy of the full numerical MFA and DFT treatment in predicting

the freezing transition. The approximate Eq. (7.50), on the other hand, slightly overestimates the

region of stability of the solid because it neglects contributions from non-zero RLVs, resulting

thereby in an artificial lowering of the free energy of the crystal.

Upon isothermal compression, the low-density fluid undergoes a first order transition into

a cluster bcc phase, which occupies a wedge-like shape in the (T, %)-plane. As can be seen in

Fig. 7.41, the prediction of MFA and DFT for the solidification line is only slightly different

from the MC results. As the density is further increased, the system exhibits another first order

transition into the cluster fcc phase which remains stable for all higher densities. Due to the small

differences in the free energies and densities between the competing phases (shown in Figs. 7.48

to 7.52), this solid-solid transition becomes a stringent test for the accuracy of the DFT results.

Indeed, we find that even though the DFT free-energy predictions are only off by a small amount,

the location of the phase transition is shifted by roughly 10% in density. While the width of



126 7.3. CLUSTERING MODEL SYSTEMS BY EXAMPLE OF THE GEM-4

0 10 20 30 40
∆Φ

-40

-30

-20

-10

0

10

20

30

f 0 , f
 1 , β

µex

βµex
(Widom)

f
 0

f
 1

f
 0

- f
 1

Figure 7.47: The validity of Widom’s particle insertion method can easily be checked with the help of the
overlapping distribution method, where βµex = f1 − f0 (cf. Sec. 5.5.2). Data is shown for an fcc crystal
at kBT/ε = 1.1 and %σ3 = 8.5 in equilibrium (i.e., at µc = 0).

the stable region of the bcc phase is underestimated by DFT, its prediction of the width of the

bcc-fcc coexistence region is accurate and found to be very narrow and not visible on the scale

of Fig. 7.41 in both approximations. This is confirmed on a quantitative level by the data of the

coexistence densities as obtained by DFT and MC, presented in Tab. 7.6. Furthermore, MFA and

DFT predict that at kBT/ε ∼ 0.4, the liquid and the two ordered cluster phases coexist at a triple

point. Below this temperature, the bcc phase vanishes and the liquid freezes directly into the now

thermodynamically more favourable cluster fcc crystals.

The P -T phase diagram, as obtained by MC simulations and shown in Fig. 7.53, displays the

various state points considered, accompanied by tangents predicted by the Clausius-Clapeyron

relation [79]. This equation is given by

dP

dT
=

∆s

∆v
, (7.53)

where ∆s is the difference in entropy per particle, s = S/N , and ∆v is the difference in specific

volume, v = V/N = 1/%, between the two coexisting phases. Here, the entropy can readily be

obtained from the simulation free energy and internal energy results via

S =
U − F

T
. (7.54)
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Figure 7.48: MC results of the modified free energy density βF̃σ3/V ≡ βFσ3/V − K%σ3 of the GEM-4
system as function of %σ3 at kBT/ε = 0.2 for the three coexisting phases. A term K%σ3, with K = 26 and
irrelevant for the determination of the coexistence densities, has been subtracted for clarity of presentation.
The solid, dashed and dot-dashed curves interpolate the MC results and serve as guides to the eyes. The
grey points and drop down lines indicate the coexistence densities, while the grey lines are the common
tangents.

Inspecting the P -T phase diagram, the intersection point of the liquid-bcc and the bcc-fcc coexis-

tence lines suggest a liquid-bcc-fcc triple point around kBT/ε ∼ 0.15 , which is less than half the

DFT prediction. This dramatic shift is a consequence of the small differences between the slopes

of the liquid-bcc and the bcc-fcc coexistence curves, which makes the location of the triple point

very sensitive to any modification of these curves.

It is important to mention that—as already shown in [43]—the mean field assumption, which

both the MFA and the DFT rest upon, breaks down at very low temperatures. Therefore, using the

present theoretical methods, no reliable prediction of the location of the phase boundaries can be

made for this region of phase space. At very low T and %, the GEM-4 can be approximated by soft-

kBT/ε %DFT
liq σ3 %DFT

bcc σ3 %MC
liq σ3 %MC

bccσ3 %DFT
bcc σ3 %DFT

fcc σ3 %MC
bccσ3 %MC

fcc σ3

0.2 - - 1.56 1.64 - - 1.92 1.93
0.5 3.10 3.39 3.05 3.34 3.50 3.52 4.10 4.13
0.8 4.73 5.20 4.74 5.13 5.64 5.67 6.22 6.26
1.1 6.38 7.03 6.36 6.91 7.77 7.82 8.35 8.41

Table 7.6: Coexistence densities for the liquid(’liq’)-bcc and the bcc-fcc phase transitions as predicted by
DFT and MC at various temperatures. For kBT/ε = 0.2, no DFT data is shown since the mean field
assumption is not valid at such low temperatures.
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Figure 7.49: DFT and MC results of the modified free energy density βF̃σ3/V ≡ βFσ3/V −K%σ3 of the
GEM-4 system as function of %σ3 at kBT/ε = 0.5 for the fluid and the bcc phase. A term K%σ3, with
K = 22 and irrelevant for the determination of the coexistence densities, has been subtracted for clarity
of presentation. The dashed and the solid lines serve as guide to the eye. All other lines and symbols as
indicated in the plot. The grey points and drop down lines indicate the coexistence densities, while the
grey line is the common tangent.

3.25 3.5 3.75 4 4.25 4.5

ρσ3

-52.5

-52

-51.5

-51

-50.5

σ3 βF
/V

 -
 K

ρσ
3

bcc - MC
fcc - MC
bcc - DFT
fcc - DFT

Figure 7.50: Same as Fig. 7.49 but for the bcc and fcc phases and for K = 27.
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Figure 7.51: MC and DFT results of the modified free energy density βF̃σ3/V ≡ βFσ3/V −K%σ3 of the
GEM-4 system as function of %σ3 at kBT/ε = 1.1 for the fluid and the bcc phase. A term K%σ3, with
K = 20 and irrelevant for the determination of the coexistence densities, has been subtracted for clarity
of presentation. The dashed and the solid lines serve as guide to the eye. All other lines and symbols as
indicated in the plot. The grey points and drop down lines indicate the coexistence densities, while the
grey line is the common tangent.
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Figure 7.52: Same as Fig. 7.51 but for the bcc and fcc phases and for K = 26.
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Figure 7.53: P -T phase diagram (points) as obtained from MC simulations with the corresponding
Clausius-Clapeyron tangents (black segments) to the coexistence curve. The grey lines interpolate the
simulation data and are guides to the eye. Their intersection point indicates a triple point at kBT/ε ≈ 0.15.

sphere potentials, for which the phase diagrams are well known [171]. From these considerations,

we expect for this temperature regime a phase transition between a liquid and a single-occupancy

fcc crystal, while clustering only sets in after this freezing transition. These predictions have to

be complemented by simulation results, which will be the topic of future work.

The use of MC simulations is indispensable to gain deeper insight into the clustering phe-

nomenon, since they provide the connection between the microscopic details of the system and

the (mean field) assumptions of the theories involved. Therefore, we proceed to a more detailed

analysis of the clusters. Based on the data gathered for the three states corresponding to the sim-

ulation snapshots in Fig. 7.41 and an additional data set, we show in Fig. 7.54 how the cluster size

distribution changes at fixed temperature when compressing the system. As already mentioned

before, in the fluid phase (%σ3 = 6) the cluster size distribution is very broad. This is also partly

due to the difficulties to define clusters in an unambiguous manner (cf. Sec. 5.6.1). For the bcc

structures formed at intermediate densities (%σ3 = 7 and 7.5), the distribution of cluster sizes is

already considerably narrower than in the fluid. Also, we see that the mean occupancy number

increases upon compression. For the fcc phase at %σ3 = 8.5, we see from the data in Fig. 7.54

that the mean cluster size has increased further and the cluster size distribution has become even

narrower. This implies that the effective inter-cluster potential has become more repulsive with

increasing %. Summarising, two tendencies are clearly visible with increasing density: the position

of the maximum of these curves, indicating the most probable cluster size, shifts to higher values
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while their width is reduced. This confirms on a more quantitative level the observations made at

the beginning of this section that with increasing % the clusters become larger and more uniform

in size.
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Figure 7.54: Probability distribution of cluster size nc as obtained from MC simulations of a bcc phase
at %σ3 = 7 and the three states of the GEM-4 system shown in Fig. 7.41 (i.e., at kBT/ε = 1.1). With
increasing density, the maximum of nc shifts to higher values and the distribution becomes narrower.

In Fig. 7.55, we plot the MC data for the mean value of nc along the kBT/ε = 1.1 isotherm

as a function of % for the corresponding stable cluster solid. These data are complemented by the

theoretical prediction of DFT, where nc is the value minimising f(nc, α) at a given state point.

We point out that there is a discontinuity in nc as the system undergoes a first order transition

from the bcc to the fcc phase. Further, DFT predicts nc to be proportional to the density, i.e.,

nc = c%σ3, c being a constant. This would have far-reaching consequences on the behaviour of our

system, since then the lattice constant a of the conventional cubic unit cell can be expressed as

a

σ
=

(
γnc

%σ3

) 1
3

= (γc)
1
3 = const., (7.55)

where γ = 2 for bcc and γ = 4 for fcc crystals. This relation implies that the lattice constant should

be density-independent and should not change under compression. This remarkable behaviour has

already been predicted in [43] and has been put on a rigorous theoretical basis in [44]. It would

mean that in striking contrast to harshly repulsive systems, the GEM-4 system should not react to

an increase in density by diminishing its lattice constant. Rather, it is evidently more favourable

for additional particles that are inserted into a fixed volume to join the clusters that have already
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formed at the lattice sites while leaving the lattice constant unchanged. For the GEM-4, DFT

predicts abcc ∼ 1.58σ and afcc ∼ 2.00σ. In [44], it has been argued that the emergence of this

single length scale is set by q∗, the location of the negative minimum in φ̃(q), i.e., it is a property

solely determined by the functional form of the interaction potential. Using the values of the

lattice constants quoted above, it is straightforward to show that the first non-vanishing RLVs of

the bcc and fcc lattices have the magnitudes σq1,fcc ∼ 5.44 and σq1,bcc ∼ 5.62, respectively. Thus

both lie very close to the value σq∗ ∼ 5.57, in agreement with the arguments put forward in [44].

Within very good approximation, these values are constant at all densities, a feature that has also

been seen in similar, two-dimensional models and has been termed ‘the unwavering magnitude of

the wave vector’ [172].

It is interesting to compare this prediction of the DFT treatment to our MC results. DFT claims

the lattice constant, and thereby primitive-cell volume volume, vc = V/Nc, to be independent of

density. This feature is known to break down in low-density crystals [93] and also within our

MC simulations this prediction is found to be slightly violated at intermediate temperatures and

densities. Though the linear relationship of nc vs. % holds, the proportionality is shifted by a

constant d, i.e., nc = c%σ3 + d. This then leads to a non-constant vc, as can be gathered from

Fig. 7.56, where we show that the change of vc with density, (∂vc/∂%)T,µc=0, is non-zero. However,

it decreases with increasing T and %, suggesting that the DFT approximation is then asymptotically

valid.
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Figure 7.55: nc and ασ2 as function of %σ3 for the GEM-4 systems at kBT/ε = 1.1. Discontinuities of
both quantities at the density of the first order bcc-fcc phase transition are visible and indicated by dotted
lines for both the DFT and MC prediction of the phase transition. Lines: DFT results, symbols: MC
simulations.
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Figure 7.56: Variation of the primitive-cell volume, vc, with density in equilibrium (i.e., at µc = 0) for three
different temperatures in the respective stable crystal structures [fcc (black) and bcc (grey) at kBT/ε = 0.5
(solid line), kBT/ε = 0.8 (dashed lined), and at kBT/ε = 1.1 (dot-dashed line)].

Let us return to Fig. 7.54, and investigate another characteristic feature of the system, namely

the decrease of the width of the cluster size distribution with increasing density, which can be

understood on energetic grounds. An increased density brings about a concomitant growth in the

energetic barrier separating particles on one lattice site from those occupying another, neighbour-

ing one. Thus, hopping between sites becomes prohibitively expensive and the clusters tend to

show reduced “polydispersity” in occupancy. In addition, the localisation parameter α increases

linearly with % (cf. Fig. 7.55), i.e., the clusters become more compact as the density is increased,

corresponding to a reduced polydispersity in size and shape. While the MC data for nc nearly

coincide with the DFT results, the agreement between the theoretical predictions for α and its

corresponding value extracted from the simulations is slightly worse, while the tendencies are ex-

cellently reproduced on a qualitative level. We point out that the linear dependence of both nc

and α on % has also been predicted in the theoretical framework presented in [44].

Finally, we proceed to a structure analysis of the clusters. In Fig. 7.57, we analyse the spheri-

cally averaged distribution %cl(r) of the particles inside a cluster. Following the assumption made

in the DFT calculations [cf. Eq. (4.31)] we fit the raw MC simulation data with a Gaussian shape

for %(r), where α is now an adjustable parameter, while nc is measured during the simulations.

Though we observe small differences at small r (where the statistics of MC is, as expected, rather

poor), the good qualitative agreement between simulation data and the fitted curve justifies a

posteriori the assumption for the shape of the density profile %(r) postulated in Eq. (4.31).
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Figure 7.57: Cluster density profile %cl(r) for a cluster fcc crystal of the GEM-4 system at kBT/ε = 0.1
and %σ3 = 9. The semi-logarithmic plot of %cl(r) vs. r2/σ2 in the inset corroborates the Gaussian shape
of the distribution.

Due to the limitations of the MC simulations we use (i.e., fixed number of particles and constant

box size and shape), spontaneous phase transitions from bcc to fcc are highly unlikely to take place.

However, the spontaneous freezing of an initially liquid system as well as the melting of a crystal

during the course of a simulations are observed. Thus, it is indispensable to unambiguously identify

the crystalline structures within MC simulations. In Fig. 7.58 we show the RDF of the centres of

mass of the clusters, i.e., gcl(r), for the three systems shown in Fig. 7.41. At %σ3 = 6, i.e., still

in the fluid phase, gcl(r) shows a behaviour that is typical for a disordered phase. At the higher

densities, %σ3 = 7.5 and %σ3 = 8, the occurrence of pronounced peaks is yet another imprint of

the regular solid structures that the clusters have formed. The fact that these peaks become more

pronounced at higher densities corroborates once more our observation that the lattice structure

is then less distorted and thus better defined. The positions of the markers in Fig. 7.58 indicate

the distances Rfcc
i or Rbcc

i of the different shells of neighbours around a central particle for the fcc

or the bcc lattices. As expected, for %σ3 = 7.5, the positions of the peaks in gcl(r) coincide with

the Rbcc
i of the bcc lattice, while for %σ3 = 8.5, they coincide with the fcc ones, confirming that

the initial structures did not melt or transform. Also the height of the peaks of gcl(r) is correlated

with the height of the respective markers. Thus, gcl(r) can serve as an indication of the respective

crystalline structure of the systems.

As we can see from Fig. 7.57, the particles have a certain freedom to fluctuate around their

equilibrium positions, i.e., the perfect lattice sites. These fluctuations are responsible that the
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Figure 7.58: Radial distribution function gcl(r) of the centres of mass of the clusters for the three states
of the GEM-4 system displayed in Fig. 7.41 (i.e., at kBT/ε = 1.1). The markers indicate the positions of
the various shells of neighbours of perfect bcc and fcc lattices.

perfect crystal is subject to slight distortions (see Fig. 7.59). Therefore, it is convenient to use

bond order parameters (cf. Sec. 5.6.2) as a more quantitative measure of the degree of crystallinity

in our system. In the case of our MC simulations for the GEM-4 system this tool has proven

to be a reliable tool for unambiguously distinguishing between the liquid phase and the different

hyper-crystals.

Finally, let us turn to the elastic behaviour of the GEM-4 system by studying the bulk modulus

within MC simulations [cf. Sec. 7.2]. The results for B [obtained by Eq. (7.37)] for the respective

stable solids at different temperatures (cf. Fig. 7.41) are compared in Fig. 7.60 to the values

obtained by direct numerical differentiation of the equilibrium (i.e., µc = 0) free energy results.

A remarkable agreement is obtained between the two approaches. Being far from negligible, the

correction to the “quenched” bulk modulus, Bvir, amounts to a reduction of over 40% of its value,

as can be seen in Tab. 7.7 and in Fig. 7.60. The term %2

nc (∂µc

∂% )T,nc
is the leading term in the

correction to B [cf. Eq. (7.37)]. Therefore, we show how µc typically changes with density at

constant T and nc in Fig. 7.61. The other contribution to Bcorr is at least an order of magnitude

smaller. The nature of the leading term of the correction suggests that deletion of lattice sites

substantially weakens the response of the system to compression compared to a simple affine

transformation (which corresponds to the term Bvir). Going back to Fig. 7.60, we see that, as

expected, an increase in density leads to an increase in the bulk modulus. The denser the system,

the harder it is to compress. However, the temperature dependence is rather weak. Varying kBT/ε
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Figure 7.59: Snapshots from MC simulations of GEM-4 fcc crystals at kBT = 0.4 and at %σ3 = 3.5 (left
panel) and %σ3 = 7 (right panel). As we can see, the crystal structure becomes better defined at higher
densities.

kBT/ε %σ3 Bvirε/σ3 Bcorrε/σ3 c11εσ
3 c12εσ

3 c22εσ
3 ω

0.5 4.3 89.8 41.6 1.335 2.95 10.0 0.805
0.8 6.2 177 76.6 1.346 3.05 15.4 0.670
1.1 8.2 308 131 1.350 3.10 21.0 0.582

Table 7.7: Bulk modulus decomposition [cf. Eq.(7.37)] and sound mode coupling constants [cf. Eq.(7.40)]
for three different multiply-occupied crystal state points.

from 0.5 to 1.1, all the respective curves of the bulk modulus seem to coincide with a single master

curve, being only a function of %. This suggests that entropic effects have little impact in this

regime.

The coefficients c11, c12, and c22 of the sound modes [cf. Eq. (7.40)] can be obtained from

numerical evaluation of the corresponding derivatives given by Eqs. (7.42) to (7.48). The main

contributions in these formulae stem from the change of µ and µc with N at constant %c, there-

fore, we show the typical progression of these curves in Figs. 7.62 and 7.63. The results for the

coefficients c11, c12, and c22 and the coupling constant ω of the density fluctuations are presented

for three different state points in Tab. 7.7. Although these results are insufficient to draw the

full picture, a few comments are still in order. First, c11 corresponds to the hopping of particles

and the sound mode connected with this is expected to be heavily damped, while the sound wave

associated with c22 is longitudinal and will propagate for long wavelengths. Second, for the tem-

perature and density range studied, c11 and the cross term c12 increase only weakly with T and

%, while c22 grows by more than a factor of two. The increase in density as we proceed from one

state point to the other is most certainly responsible for the increasing resistance of the system to

this sort of density fluctuations. Higher temperatures, on the other hand, would rather facilitate

lattice spacing fluctuations. To the best of our knowledge, no theoretical predictions exist with

which to further compare these results.
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Figure 7.60: Results for the reduced dimensionless bulk modulus from direct differentiation of the free
energy for three different temperatures in the stable crystal structures [fcc (black) and bcc (grey) at
kBT/ε = 0.5 (solid line), kBT/ε = 0.8 (dashed line), and at kBT/ε = 1.1 (dot-dashed line)], along with
the values at three state points for Bvir (crosses) and B = Bvir − Bcorr (stars). The breakdown of the
contributions to B is given in Tab. 7.7.
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Figure 7.61: Typical progression of µc vs. % at constant %c. Data are shown for a GEM-4 bcc crystal at
constant N = 4155, Nc = 250 and kBT/ε = 1.1.
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Figure 7.62: Typical progression of µ vs. N at constant %c. Data are shown for a GEM-4 bcc crystal at
constant V = 506.70731, Nc = 250 and kBT/ε = 1.1.
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Figure 7.63: Typical progression of µc vs. N at constant %c. Data are shown for a GEM-4 bcc crystal at
constant V = 506.70731, Nc = 250 and kBT/ε = 1.1.



Chapter 8

Conclusion

In this work, we have studied the properties and the phase behaviour of systems where particles

interact via purely repulsive, bounded effective potentials, which serve as model interactions of

realistic soft-matter systems. We have shown that depending on whether the Fourier transform

of such a potential is non-negative or oscillates between positive and negative values, re-entrant

melting or clustering is expected as a phase behaviour. Re-entrant melting has already been

investigated thoroughly. The clustering phenomenon however is much more intriguing for a couple

of reasons. On the one hand, it is counterintuitive to find an effective attraction between purely

repulsive particles. On the other hand, this behaviour has never been observed experimentally.

Therefore, we have proposed guidelines for the synthesis of such substances. Here, we have designed

amphiphilic dendrimers and have shown in silico how their effective interaction can be tuned by

suitable modifications to their architecture.

Next, we have derived suitable statistical mechanical tools to describe the clustering phe-

nomenon, thereby allowing for a thorough investigation of this remarkable phase behaviour. On

the one hand, we have shown that the joint use of genetic algorithms, integral equation theories

and density functional theory provides the proper theoretical framework to do so. On the other

hand, we have developed new simulation techniques to determine the phase diagram of clustering

potentials. Starting from the theoretical apparatus developed by Swope and Anderson [163], we

have demonstrated how simulations and experiments of multiple-occupancy crystals critically de-

pend on the chemical potential associated with the creation of a lattice site. Incorporating this

into the simulation formalism allows for the precise determination of the thermodynamic phase

diagram, which is much more complex than for traditional single-occupancy crystals. Even though

the chemical potential connected to lattice site creation vanishes in equilibrium, derivatives of this

property are non-zero, so it has considerable impact on second derivatives of the constrained free

energy, as we have shown by example of the bulk modulus.

We have applied these techniques to a representative model potential for which clustering is

expected, namely, the generalised exponential model of index 4. In particular, we have shown
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that clustering occurs both in the dense fluid as well as in the ordered, solid phases. In the

fluid phase, overlapping particles form clusters that are characterised by a broad cluster-size

distribution. Upon increasing the density, first-order phase transitions occur where the clusters

arrange themselves at the lattice sites of bcc and, upon further compression, fcc hyper-crystals.

While the bcc structure is only stable in a narrow, wedge-like region of the (T, ρ)-plane, the fcc

cluster crystals are stable in the overwhelming part of parameter space. In both solid phases, the

respective lattice constant remains nearly unchanged upon compression of the system, so both

the cluster population number and the width of the distribution of particles inside a cluster grow

linearly with density. We demonstrated that the properties of the fluid phase can be reasonably

well described by the mean field approximation. The solid cluster phases, on the other hand,

can been treated within classical density functional theory using a mean-field simplification, as

justified by theoretical considerations [44]. These data were checked against lattice Monte Carlo

simulations results, showing both the strengths and deficiencies of the theoretical concepts.

Our guidelines on assembling amphiphilic dendrimers in the lab bear significance for soft-matter

science and materials design at various levels. At the one-particle level, we have established that

synthesising open dendrimers with a segregated core-shell structure requires neither stiff bonds

nor electrostatic repulsions as commonly believed—amphiphilicity is sufficient. At the many-body

level, solutions of such dendrimers will display pronounced correlations at a single length scale,

independently of the density [44]. This allows for for well-controlled spatial modulation of confined

liquids and thus their local index of refraction, whose intensity can be tuned by changing the

degree of confinement. Crystals formed by such systems will show lattice constants that are nearly

density-independent, featuring thus a novel form of microscopic self-assembly. Moreover, clustering

materials are quite unusual. They are diffusive on the single-particle level, which allows for mass

transport. On the collective level however they are arrested, and thus rigid as a conventional

solid [173].

Finally, on the fundamental level, we have demonstrated that within soft-matter physics,

bounded effective interactions can be manipulated with the same degree of flexibility as diverging

ones. This demonstrates that these systems have a lot of promising features in store that have

not yet been discovered experimentally.



Appendix A

The Polylogarithm

The polylogarithm of order n, Lin(z), also known as Jonquière’s function [174], is a complex valued

function of complex argument z, defined by

Lin(z) =
z

Γ(n)

∞∫

0

dt
tn−1

et − z
, (A.1)

where n is a positive, real parameter. If z ∈ R\(1,∞), then the polylogarithm is real-valued [175].

For |z| < 1 the polylogarithm can be evaluated as a power series

Lin(z) =

∞∑

k=1

zk

kn
. (A.2)

A relation that turned out to be useful for the present application is

d

dz
Lin(z) =

1

z
Lin−1(z). (A.3)

A detailed list of additional, helpful relations for this function can be found in [176].

The polylogarithm was introduced in the present context in [41] to calculate the thermodynamic

properties of the GCM within the MFA where, obviously, expression (A.2) was used throughout.

This was done even though there was no guarantee that for certain state points the modulus of the

respective arguments |z| does not exceed 1, violating thus the condition for the validity of Eq. (A.2).

Since this function plays a central role in the formalism of the MFA and the SCOZA (see Sec. 4.1),

a reliable evaluation of Lin(z) for arbitrary argument z is indispensable for a successful solution of

the SCOZA-ODE and PDE. We therefore provide in the following a more detailed presentation of

evaluation schemes and indicate how this function can be calculated in an accurate and efficient

way for arbitrary argument z.

In its evaluation of Lin(z), the MATHEMATICA software relies on Euler-MacLaurin summation,

expansions in terms of incomplete Gamma functions, and numerical quadrature [133]. Efficient

and accurate C- or Fortran-based implementations, on the other hand, are more difficult to find.
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First attempts to evaluate Eq. (A.1) directly by various numerical integration schemes turned out

to be either too time-consuming or did not provide results of sufficient accuracy. Finally, we found

that the following functional relation between the polylogarithm and the complete Fermi-Dirac

function, Fn(z),

Fn(z) =
1

Γ(n + 1)

∞∫

0

dt
tn

et−z + 1
= −Lin+1(−ez) (A.4)

along with the accurate and efficient implementation of Fn(z) via series and asymptotic expansions

in combination with Chebyshev fits, as implemented in the GNU Scientific Library [177], provided

the desired results, which finally brought the solution of the SCOZA differential equations within

reach.



Appendix B

Overlapping distribution method

in the NPT ensemble

Here, we derive the formalism of the overlapping distribution method in the NPT ensemble in

more detail (cf. Sec. 5.5.3). We perform two simulations: one using a system of (N + 1) particles

interacting via potential Φ and the other containing N interacting particles and one ideal gas

particle.

For the system of (N + 1) particles, the probability distribution of energy difference ∆Φ with

respect to the second system is given by

pN+1(∆Φ) =
1

zN+1,P,T

∫
dV e−βPV

∫
drN+1 e−βΦN+1δ (ΦN+1 − ΦN − ∆Φ) . (B.1)

where the configurational integral of an NPT system is given by

zN,P,T =

∫
dV e−βPV

∫
drNe−βΦN . (B.2)

The probability distribution, pN (∆Φ), for the system of N interacting particles and one ideal

gas particle is given by

pN (∆Φ) =

∫
dV e−βPV

∫
drN+1 e−βΦN δ (ΦN+1 − ΦN − ∆Φ)∫

dV e−βPV
∫

drN+1 e−βΦN
. (B.3)
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The normalisation factor of the term on the right hand side can be rewritten as follows

∫
dV e−βPV

∫
drN+1 e−βΦN =

∫
dV e−βPV

∫
drN+1

∫
drN e−βΦN

=

∫
dV e−βPV V

∫
drN e−βΦN

=

∫
dV e−βPV V

∫
drN e−βΦN

∫
dV e−βPV

∫
drN e−βΦN

∫
dV e−βPV

∫
drN e−βΦN

= 〈V 〉NPT zN,P,T (B.4)

Now, the probability distribution for the first system can be reformulated as

pN+1(∆Φ) =
1

zN+1,P,T

∫
dV e−βPV drN+1 e−βΦN+1 δ (ΦN+1 − ΦN − ∆Φ) =

=
e−β∆Φ

zN+1,P,T

∫
dV e−βPV drN+1 e−βPV e−βΦN δ (ΦN+1 − ΦN − ∆Φ) . (B.5)

Using Eq. (B.4), this reduces to

pN+1(∆Φ) =
zN,P,T

zN+1,P,T
〈V 〉NPT e−β∆ΦpN (∆Φ) =

=
QN,P,T

QN+1,P,T

Λ3NN !

Λ3(N+1)(N + 1)!
〈V 〉NPT e−β∆ΦpN (∆Φ) =

= eβµ 〈V 〉NPT

Λ3(N + 1)
e−β∆ΦpN(∆Φ). (B.6)

Taking the logarithm of the last equation, we arrive at

ln pN+1(∆Φ) = βµ + ln
〈V 〉NPT

Λ3(N + 1)
− β∆Φ + ln pN (∆Φ), (B.7)

which can be rewritten as

βµ = β∆Φ + ln [pN+1(∆Φ)] − ln

[
pN(∆Φ)

〈V 〉NPT

Λ3(N + 1)

]
=

= − ln

(
1

βPΛ3

)
+ β∆Φ + ln [pN+1(∆Φ)] − ln

[
pN (∆Φ)

〈V 〉NPT βP

(N + 1)

]
=

= βµid + β∆Φ + ln [pN+1(∆Φ)] − ln

[
pN (∆Φ)

〈V 〉NPT βP

(N + 1)

]
. (B.8)

The excess chemical potential is then given by

βµex = β∆Φ + ln [pN+1(∆Φ)] − ln

[
pN (∆Φ)

〈V 〉NPT βP

(N + 1)

]
(B.9)
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We define two functions, f0 and f1, given by

f0(∆Φ) = log

[
pN (∆Φ)

〈V 〉NPT βP

(N + 1)

]
− β∆Φ

2

f1(∆Φ) = log [pN+1(∆Φ)] +
β∆Φ

2
. (B.10)

Then, the excess part of the chemical potential can again be determined via Eq. (5.54).





Appendix C

Monte Carlo simulation data for

the GEM-4

For every (T , %) state point, simulations were carried out at different values of N , searching

for the equilibrium configuration, i.e., µc = 0. For this purpose, thermodyanmic integration

was carried out at 20 Gauss Lobatto integration points for each of these N%T combinations. In

additional simulations, we measured P and µ for the same parameters. In total, determination

of an equilibrium configuration at one specific (T , %) point required an average iof ∼ 1200 CPU

hours.
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kBT/ε structure %σ3 nc βF/N µ/ε Pσ3/ε

0.2 liq 1.2 8.023 3.86 2.71
1.3 8.958 4.20 3.14
1.4 9.877 4.52 3.57
1.45 10.330 4.67 3.79
1.5 10.776 4.81 4.00
1.55 11.217 4.95 4.21
1.6 11.650 5.08 4.41

bcc 1.6 3.241 11.650 4.90 4.11
1.7 3.444 12.443 5.14 4.52
1.8 3.657 13.215 5.39 4.95
1.9 3.850 13.975 5.66 5.45
2.0 4.037 14.728 5.94 5.99
2.1 4.220 15.476 6.22 6.57
2.2 4.428 16.217 6.48 7.11

fcc 1.6 3.278 11.677 4.88 4.08
1.7 3.494 12.463 5.12 4.46
1.8 3.710 13.226 5.36 4.89
1.9 3.908 13.975 5.63 5.38
2.0 4.086 14.722 5.91 5.94
2.2 4.504 16.197 6.40 6.99

Table C.1: MC results for the cluster size nc, free energy F , chemical potential µ and pressure P at fixed
temperature kBT = 0.2 for various densities and structures in equilibrium (i.e., µc = 0). Error estimates
in the various values are as follows: nc : ±0.005, βF/N : ±0.001, µ/ε : ±0.02, Pσ3/ε : ±0.01
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kBT/ε structure %σ3 nc βF/N µ/ε Pσ3/ε

0.5 liquid 0.5 -0.259 1.18 0.66
1.0 2.143 3.34 2.26
1.5 4.343 5.39 4.83
2.0 6.451 7.39 8.32
2.5 8.508 9.34 12.70
3.0 10.505 11.18 17.78
3.1 10.900 11.51 18.80
3.2 11.277 11.81 19.75

bcc 3.4 6.900 11.993 11.75 19.54
3.5 7.096 12.328 12.00 20.42
3.6 7.300 12.658 12.26 21.34
3.7 7.492 12.984 12.52 22.31
3.8 7.692 13.308 12.79 23.32
3.9 7.892 13.628 13.05 24.33
4.0 8.100 13.946 13.31 25.37
4.1 8.300 14.262 13.59 26.44
4.2 8.492 14.575 13.86 27.60
4.3 8.688 14.887 14.13 28.76
4.4 8.896 15.196 14.39 29.89
4.5 9.088 15.503 14.67 31.11
5.0 10.072 17.020 16.02 37.51

fcc 3.4 7.004 12.015 11.70 19.37
3.5 7.207 12.346 11.95 20.23
3.6 7.410 12.674 12.20 21.13
3.7 7.613 12.999 12.45 22.07
3.8 7.813 13.318 12.73 23.06
3.9 8.020 13.635 12.99 24.06
4.0 8.219 13.950 13.25 25.12
4.1 8.418 14.263 13.52 26.19
4.2 8.621 14.572 13.79 27.30
4.3 8.824 14.880 14.05 28.42
4.4 9.031 15.187 14.32 29.55
4.5 9.230 15.492 14.58 30.72

Table C.2: MC results for the cluster size nc, free energy F , chemical potential µ and pressure P at fixed
temperature kBT = 0.5 for various densities and structures in equilibrium (i.e., µc = 0). Error estimates
in the various values are as follows: nc : ±0.005, βF/N : ±0.001, µ/ε : ±0.02, Pσ3/ε : ±0.01
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kBT/ε structure %σ3 nc βF/N µ/ε Pσ3/ε

0.8 liquid 3.5 6.450 13.78 25.66
3.75 6.970 14.77 29.24
4.0 7.489 15.75 33.04
4.2 7.901 16.53 36.23
4.5 8.514 17.67 41.21
4.75 9.014 18.59 45.47

bcc 5.0 10.176 11.871 18.28 43.93
5.5 11.176 12.938 19.53 50.47
5.7 11.572 13.352 20.06 53.44
6.0 12.164 13.963 20.86 58.17
6.2 12.564 14.365 21.40 61.44
6.3 12.760 14.564 21.67 63.13
6.4 12.952 14.762 21.95 64.89
6.5 13.152 14.960 22.21 66.63
6.7 13.552 15.352 22.76 70.16

fcc 5.5 11.352 12.953 19.45 49.99
5.7 11.754 13.363 19.98 52.91
6.0 12.359 13.968 20.77 57.54
6.2 12.758 14.366 21.30 60.81
6.3 12.957 14.563 21.57 62.48
6.4 13.152 14.759 21.84 64.22
6.5 13.368 14.955 22.10 65.85
6.7 13.754 15.343 22.65 69.48

Table C.3: MC results for the cluster size nc, free energy F , chemical potential µ and pressure P at fixed
temperature kBT = 0.8 for various densities and structures in equilibrium (i.e., µc = 0). Error estimates
in the various values are as follows: nc : ±0.005, βF/N : ±0.001, µ/ε : ±0.02, Pσ3/ε : ±0.01
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kBT/ε structure %σ3 nc βF/N µ/ε Pσ3/ε

1.1 liquid 5.0 9.794 20.30 52.55
5.25 10.319 21.30 57.64
5.5 10.838 22.28 62.95
5.75 11.359 23.27 68.47
6.0 11.873 24.24 74.20
6.25 12.386 25.20 80.10
6.5 12.898 26.14 86.09

bcc 6.8 13.840 12.231 25.41 81.32
7.0 14.240 12.547 25.90 84.68
7.5 15.232 13.318 27.19 94.08
7.7 15.628 13.621 27.73 98.12
8.0 16.220 14.068 28.53 104.47
8.2 16.620 14.364 29.07 108.81
8.3 16.820 14.510 29.34 111.02
8.4 17.012 14.657 29.61 113.33
8.5 17.212 14.802 29.88 115.61
8.7 17.604 15.092 30.43 120.31

fcc 7.5 15.477 13.331 27.09 93.17
7.7 15.879 13.630 27.61 97.16
8.0 16.484 14.074 28.40 103.37
8.2 16.887 14.367 28.94 107.69
8.4 17.285 14.656 29.47 112.14
8.5 17.480 14.800 29.74 114.45
8.7 17.883 15.087 30.28 119.05

Table C.4: MC results for the cluster size nc, free energy F , chemical potential µ and pressure P at fixed
temperature kBT = 1.1 for various densities and structures in equilibrium (i.e., µc = 0). Error estimates
in the various values are as follows: nc : ±0.005, βF/N : ±0.001, µ/ε : ±0.02, Pσ3/ε : ±0.01





The hidden chapter

or

The future of air travel

(and the dangers of applying science)

To save costs...
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...airlines must increase the packing density of passengers.

They do this by decreasing the “lattice spacing”.

This is how most of us travel...

But if airlines ever find out about this work...
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...the future could be far worse:

Text and drawings by Daan Frenkel.
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[29] L. Acedo and A. Santos, Phys. Rev. A 323, 427 (2004).

[30] A. Santos, Mol. Phys. 104, 3411 (2006).
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lana Mihajlovic and Jürgen Köfinger for providing a great working atmosphere and for

always being ready to help. Especially MJ—you are a most valuable friend. And Julia—it

was a pleasure to get to know you better in Rome and Sicily.

�
My friends from Uni Wien: Claudia Zechmann, Christina Hirschl, Herbert

Richter and Harald Oberhofer for moral support and friendship. Especially Claudia—

for being a friend one can always count on.

� My friends from Heinrich-Heine-Universität Düsseldorf: Federica Lo Verso and

Rik Wensink for your very special friendship. Rik—for giving me the motivation to finish

this thesis.

� Rhoda Hawkins, Beatrice Marino, Marina Soares e Silva, Behnaz Bozorgui,

Chantal Valeriani, Fabiana Diotallevi, Live Rekvig, Erynn Sarno, Paolo Scalia,

Koos van Meel, Marco Morelli, Josep Pàmies, Domenico Paparo, Christian Tis-
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