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Kurzfassung

Mittelt man bei polymerischen Makromolekülen mit Hilfe geeigneter Methoden

der Statistischen Physik über die Freiheitsgrade der monomerischen Einheiten,

so erhält man sogenannte effektive Potentiale, die bei kleinen Molekülabständen

endliche Werte (in der Größenordnung thermischer Energien) annehmen. Dies

bedeutet, dass die Schwerpunkte dieser Teilchen mit einem relativ geringem En-

ergiepönale einander beliebig nahe kommen können, ohne dass es zu einem Überlapp

der Monomere kommt. In der Literatur werden derartige Systeme als ultraweich

bezeichnet. Unter gewissen Bedingungen können derartige Polymersysteme so-

genannte Cluster-Kristalle bilden: die Positionen eines periodischen Gitters sind

hier von Clustern besetzt, die aus einander überlappenden Makromolekülen beste-

hen. Die Stabilisierung dieser Aggregate von einander abstoßenden Teilchen erfolgt

dadurch, dass die benachbarten Cluster auf die Moleküle eine noch viel stärkere Re-

pulsion ausüben und somit diese Teilchen in ihren Cluster zurückdrängen. Bisherige

Untersuchungen haben gezeigt, dass diese Cluster-Kristalle sehr bemerkenswerte

Eigenschaften aufweisen, wie etwa einen Gitterabstand, der trotz einer Erhöhung

der Dichte konstant bleibt oder charakteristische “hopping”-Prozesse, über die sich

die Teilchen von einem Cluster zum Nächsten durch den Kristall bewegen.

Diese Arbeit ist Untersuchungen von dynamischen Eigenschaften dieser Cluster-

bildenden Systeme gewidmet. Auf dem Niveau effektiver Wechselwirkungen unter-

suchen wir den Einfluss hydrodynamischer Kräfte, die durch das (mikroskopische)

Lösungsmittel verursacht werden, auf die “hopping”-Prozesse in Cluster-Kristallen.

Weiters haben wir mit Hilfe von Computersimulationen die Teilchentrajektorien

berechnet, wenn man einen Cluster-Kristall einem externen Druck aussetzt: in-

dividuelle Teilchenbewegungen und Cluster-Bildung konnten damit eingehend un-

tersucht werden. Auf dem Niveau einer monomerischen Beschreibung der Makro-

moleküle haben wir in silico Modelle für amphiphile Polymerketten entwickelt, die

in der kondensierten Phase Cluster-Kristalle bilden können: diese Ketten beste-

hen aus einer solvophoben Hauptkette, die mit solvophilen Monomeren dekoriert

ist. Den Abschluss dieser Arbeit bildet die Implementierung einer numerischen

Methode, die die Berechnungen effektiver Wechselwirkungen polymerischer Makro-

moleküle ermöglicht: da es diese Methode erlaubt, die effektiven (Paar-)Potentiale

bei endlichen Dichten zu berechnen, können die Eigenschaften der Systeme über

diese Wechselwirkungen verlässlicher beschrieben werden.





Abstract

Ultrasoft polymeric macromolecules show bounded effective interactions, which

arise as the internal degrees of freedom of the molecule are averaged out. This

means that they can fully overlap their centres of mass without violation of the ex-

cluded volume at the monomer level. Under certain conditions, these systems form

cluster crystals : crystals whose lattice sites are occupied by clusters of partially or

fully overlapping particles. Even though the macromolecules within a cluster repel

each other, the cluster as a whole is stabilised by the repulsion of the neighbouring

clusters. This counter-intuitive, but meanwhile well understood, behaviour leads to

a novel class of materials which shows remarkable properties, as for example a den-

sity independent lattice constant or hopping mechanisms, where particles diffuse

hopping from one cluster to another.

In this thesis we study certain dynamic properties of these materials on the coarse-

grained level: firstly we examine the effect of hydrodynamic interactions (due to

the presence of a solvent) on the diffusion and hopping mechanism in pure and

binary cluster crystals. Secondly we study the response of a pure cluster crystal

to an external compression, paying special attention to the mechanisms through

which the crystal can accommodate a volume reduction while keeping the spacing

of the lattice unchanged. We also present an in silico design of a polymer am-

phiphilic chain, whose effective interaction shows the necessary properties for the

formation of stable cluster crystals. The amphiphilic chains are composed by a

solvophobic backbone decorated by solvophilic side groups. We perform monomer

resolved simulations of a bulk crystal of these chains and verify the stability of the

system. Finally we focus our attention on the computation of effective interactions

of polymeric macromolecules. We make use of a method, which allows for the

computation of the effective potentials at finite density leading to a more reliable

description of the behaviour of the system.
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1. Introduction

Soft Matter science is an interdisciplinary scientific field where physics, chemistry and biology

meet. Materials which are soft exhibit, in contrast to their hard counterparts, such as

atomic crystals, large responses to external mechanical forces. This effect can for instance

be quantified by the shear modulus G , which measures the resistance of an object to a

mechanical deformation. G is proportional to the ratio between the system’s characteristic

interaction energy, ε, and the cube of the characteristic length, σ3, i.e. G ∼ ε/σ3 [1]. In hard

materials, ε is of the order of 10−18J (corresponding to the bonding energy) [2] and σ is of the

order of 10−10m (corresponding to the typical bond length) [2]; therefore G is of the order

of 1012N/m2. In contrast, soft material are composed of mesoscopic particles (σ ∼ 10−9 to

10−6m) embedded in a microscopic solvent and the interactions governing the system are

usually van der Waals interactions or hydrogen bonds; consequently ε ∼ 10−20J [2, 3], and

G ∼ 107 to 10−2N/m2. Thus the difference between the value of G in soft and hard materials

is of 5 to 14 orders of magnitude. Soft materials are not only easily deformable, but their

characteristic interaction energy is of the same order of magnitude as kBT ' 4 × 10−21J,

thus even thermal fluctuations can induce structural changes in these systems. Soft materials

can be found in our daily life: blood, milk, ink, paint and protein solutions are only a few

examples.

In this thesis we focus on the study of a particular class of soft matter systems, the so-called

ultrasoft systems. The interactions between the ultrasoft particles are described by potentials

which are bounded at a particle separation of r = 0, meaning that ultrasoft particles can

overlap and the penalty for such a configuration is typically of the order of a few kBT . These

potentials arise naturally as effective interactions between the centres of mass of polymeric

macromolecules, which are composed of hundreds to thousands of monomers. The large

number of degrees of freedom of the monomers can be averaged out by suitable methods;

these macromolecules can then be described as coarse grained points particles placed in

their centres of mass, interacting via the effective particles. If these polymers can overlap

their centres of mass without violating the excluded volume in the monomer level, then the

effective interaction will be bounded, i.e. the system can be classified as ultrasoft. Polymer

chains [4], dendrimers [5], ring polymers [6] and polyelectrolytes [7] are a few examples whose

effective interactions are bounded.

The first ultrasoft systems to be studied theoretically were the Gaussian core model (GCM)

by Stillinger et al. [8] and the penetrable sphere model (PSM) [9, 10]. Stillinger et al. found

that the phase diagram of the CGM exhibits re-entrant melting [8]: below a certain freezing

temperature Tf , the system freezes on increasing the density at constant temperature into

a crystal; upon further compression it re-melts back to the fluid state. At temperatures

above Tf , the system remains fluid for all densities. On the contrary, the PSM shows a very
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1. Introduction

different behaviour [10]: it shows clustering. At low and intermediate densities we observe

a fluid phase of disordered clusters of overlapping particles; upon further compression, the

system freezes for all temperatures into a cluster crystal, where the lattice positions of a

regular bcc or fcc lattice are occupied by clusters of fully or partially overlapping particles.

Although the particles inside a cluster repel each other, the mutual repulsion of neighbouring

clusters stabilises the cluster crystal. The interest in the field of ultrasoft systems rapidly

grew as Likos et al. presented in reference [11] a criterion that determines whether an ultrasoft

system will show re-entrant melting or clustering: if the Fourier transform of the effective

potential has negative components, as in the PSM, the system will freeze into a cluster; if

the Fourier transform of the potential decays monotonically to zero, as in the GCM, the

system will show re-entrant melting.

Part of the work presented in this thesis is dedicated to the computation of reliable effective

interaction potentials of polymeric macromolecules which make it possible to predict if the

system will freeze into a cluster crystal or not. Methods used up to now [12, 13] compute

the effective pair interactions in the zero-density limit: by considering two isolated macro-

molecules. However, in states of high density many-body effects, which are not included in

the zero-density effective pair interactions, become relevant. An example of a system where

these effects play a crucial role are flexible polymer rings [14]: the zero-density effective

interaction has negative Fourier components, however due to many-body effects related to

the deformation of the rings, clustering is not observed at high densities.

In our work we apply a technique for the computation of effective interactions, the so-

called multi-scale coarse graining method (MSCG) [15], which to our knowledge has yet

not been used in the field of ultrasoft systems and allows for the calculation of effective

pair interactions at finite densities. We show that the obtained potentials offer a much

more reliable description of the high density states than the zero-density effective potentials.

The agreement between pair correlation functions obtained in monomer resolved (MR) and

coarse-grained (CG) simulations is significantly better when the CG simulations are carried

out with the effective potentials computed at finite densities instead of those computed at

zero-density. However, we find that finite density effective potentials are not able to properly

describe the system if it forms clusters of overlapping particles; this is due to the fact that

in such a case the local density is strongly inhomogeneous.

Re-entrant melting has been theoretically and experimentally observed: studies of re-entrant

melting have been carried out in simulations at the coarse grained description level of the

GCM [8], and at the monomer resolved description level of star polymers [16], microgels [7]

and diblock copolymers [17]; and a series of small angle X-ray scattering (SAXS) experiments

have been performed with copolymer micelles [18–20]. In contrast, cluster forming systems

have not been identified in experiments so far. Theoretical studies of these systems have been

carried out in coarse grained simulations of the generalised exponential model, GEM, [21–26]

and the PSM [9, 10] and only very recently in monomer resolved simulations of amphiphilic

dendrimers [27, 28].
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We therefore dedicate a second part of our work to the in silico design of a better polymeric

structure which freezes into a cluster crystal and aims to be easy to synthesise in a lab. We

were inspired by the work of Meijer et al. [29], who synthesised a series of polymer chains

built up with blocks of hydrophilic poly(ethilene glycol) and hydrophobic chiral benzene-

1,3,5-tricarboxamide substituents which carry separated spatially catalytic units. We build

on the computer a model of amphiphilic linear chains composed of solvophilic and solvophobic

monomers and come up with a combination of the parameters in the model which results

in negative components of the Fourier transform of the effective potential. We perform

monomer resolved simulations in the cluster crystal phase and verify the stability of the

system.

The rest of the work is dedicated to the study of certain properties of cluster crystals, carried

out in coarse grained simulations of GEM systems. Previous studies have shown that cluster

crystals have very novel and remarkable properties in comparison to atomic crystals:

• in 2006 Mladek et al. performed the first simulations of GEM cluster crystals at var-

ious densities. The authors found that the number of particles participating in a

cluster crystal scales linearly with density, therefore cluster crystals feature density-

independent lattice constants constants [21].

• In 2007 Likos et al. performed a series of density functional theory (DFT) calculations

in the mean field approximation (MFA) for cluster-forming systems. The authors de-

rived expressions for the location of the freezing line in the temperature and density

plane and the value of the density independent lattice constant in terms of posi-

tion and value of the minimum of the Fourier transform of the interaction

potential [23].

• In the same year Mladek et al. performed calculations of the free energy of a cluster-

forming GEM-4 system where the number of lattice sites (Nc) was treated as a con-

straining thermodynamic variable [22]. The authors computed the bulk modulus (B)

as a derivative of the free energy, which now has two contributions: the term which

accounts for the response that one intuitively expects: the affine shrinking of a when a

crystal is compressed and a term arising from the fact that Nc is now a thermodynamic

variable. The additional term accounts for the extra degree of freedom unique to clus-

ter crystals: upon compression some lattice positions can be deleted and the particles

which were populating the clusters in these lattice positions will re-arrange in other

clusters of the system. It was shown that the additional term results in a reduction

of about 40% of the term due to affine shrinking.

The phase diagrams obtained from the studies mentioned above in Monte Carlo simulations

[21], DFT calculations in the MFA [23] and free energy calculations [22] show a very good

agreement. Further studies showed that:

• another remarkable property of cluster crystals which was studied by Moreno et al. in

2007 [24] and Coslovich et al. in 2010 [25] is the presence hopping mechanisms in
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these systems: clusters in the crystal show an incessant exchange of particles, which

migrate from one cluster to another, realising often very long trajectories, and visiting

thereby many intermediate clusters.

• The study of hopping processes in cluster crystals was extended by Camargo et al. in

2010 [30] to binary mixtures of cluster-forming GEM particles and non-clustering Gaus-

sian particles.

• In 2010 Nikoubashman et al. [31] discovered a unique response mechanism of

cluster crystals to shear: the crystal forms under external shear an ordered pattern

of long strings oriented parallel to the flow and subsequently melts into a fluid at high

shear rates.

We have contributed to these investigations in two directions: we have studied the influence

of hydrodynamic interactions (HI), induced by the presence of a solvent, on the hopping

activity of a pure and on a binary cluster crystal. The microscopic solvent, in which soft

mesoscopic particles are embedded, is included in the coarse grained effective interaction

between the solute particles and is not simulated explicitly. This approach is valid for

studies of static quantities, such as static correlation functions. However, in investigations

of the dynamic properties the solvent often plays a significant role and should not (or even

must not) be neglected in a faithful description of the system. The relevance of the solvent

for the for the dynamics has been shown for charged colloidal suspensions [32] and for short

polymer chains [33]. To address the effect of HI we perform extensive simulations using

the multi-particle collision dynamics method [34, 35], which explicitly includes the solvent

and takes hydrodynamic interactions into account as faithfully as possible. We tuned the

coupling between the solute and the solvent covering the range from no coupling (neglect

of the solvent) up to strong coupling. We observe that the presence of the solvent hinders

the hopping activity, and that the amount of particles involved in jumps and the lengths of

their trajectories dramatically decrease with stronger coupling between the solute and the

solvent.

Secondly, we study the response of a pure cluster crystal to an external compression. To ad-

dress this question, we surround a system of cluster-forming GEM particles with an ensemble

of ideal gas particles which exert a strong repulsion on the former. By adjusting the number

of ideal gas particles and the distribution of their velocities we can tune the temperature

and pressure in the GEM system [36]. We first perform a series of compression experiments

at a target temperature: we observe that the cluster occupation increases linearly with the

density and the spacing of the lattice, a, is almost unaffected by the compression, however,

the value of a is below the equilibrium value, aeq. The necessary particle and cluster re-

arrangements to attain aeq entail a big energetic barrier between the current compressed

configuration and a configuration with a = aeq, which the system is not able to overcome

at constant temperature. We observe that a cluster crystal reacts to compression by a in-

creased hopping activity, which leads to a heterogeneous occupation of the clusters. Then,

smaller clusters, which feel a strong repulsion of their bigger neighbours, are pushed together

6



to merge; thanks to the volume released the lattice constant can remain unchanged. In a

second series of experiments we combine compression runs with annealing processes, where

the temperature of the GEM system is raised at constant pressure and then lowered again

to the original starting value. Via these experiments we are able to understand that there is

indeed an optimal equilibrium value for the spacing of the lattice, which the system is not

able to attain during a simple compression experiment. The introduction of the annealing

processes helps the cluster crystal overcome the energetic barrier separating the compressed

and the equilibrium state. With this set-up we are able to extract the equation of state of

the system. Finally, we combine compression and expansion experiments and we observe

that the first reaction of the cluster crystal is to contract or expand the lattice constant

within a range of 10% of aeq around aeq. Only once this lower or upper value of the lattice

constant is achieved will the cluster merging (in a compression run) or cluster splitting (in

an expansion run) take place.

This thesis is organised as follows: in chapter 2 we present the different model systems

studied throughout the thesis and in chapter 3 we present the used simulation techniques

and the MSCG method, used for the computation of effective interactions. In chapter 4

we present the results on the effect of hydrodynamic interactions on the hopping activity

in a pure and a binary cluster crystal. In chapter 5 we address the reaction of a pure

cluster crystal to compression. In chapter 6 we present our designed model of amphiphilic

cluster-forming polymer chains. In chapter 7 we present our results on the computation of

effective interactions of polymeric macromolecules at finite densities. Finally, in chapter 8

we present the conclusions and outlook of our work. In appendix A we present the reduced

units used throughout the thesis and in appendix B we give a detailed explanation of the

cluster analysis, a tool used in chapters 4 to 7.
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2. Model

2.1. Introduction

This thesis is focused on the cluster crystal phase [21]: for certain ultrasoft particles (like

very hollow polymeric colloids) the most stable phase at high densities is a crystal whose

lattice sites are occupied by clusters of fully or partially overlapping mesoscopic particles.

Even though these particles might repel each other, the repulsion of the neighbouring clusters

stabilises the aggregate of overlapping particles [37]. The hollow structure of these colloids

allows an overlap of the centres of mass of the polymers without violation of the excluded

volume at the monomeric level (see figure 2.1) [38].

This exotic kind of crystals have very interesting properties. The spacing of the lattice has a

density independent value [23]: when the density of the crystal increases, the occupation of

the clusters increases, leaving the spacing of the lattice unchanged. The multiple occupancy

of the crystal positions allows for activated hopping processes[24]: when the temperature

of the crystal is high enough, thermal fluctuations enable some particles to leave their host

cluster and diffuse from cluster to cluster without breaking the lattice structure.

Systems forming these kinds of crystals can be studied in computer simulations at two

different levels of description: within a monomer resolved (MR) or within a coarse grained

(CG) representation. In the MR representation each monomer is considered as an individual

microscopic particle. The monomers interact via excluded volume (e. g. Morse, Lennard-

Jones, etc ...) and bonding interactions (e.g. FENE, harmonic potential, etc ...). The MR

description can easily be related to the real macromolecule [39]: parameters of the excluded

volume interaction potential represent the size, softness and interaction of the monomers with

the solvent; parameters of the bonding potential represent the bond length and stiffness. A

MR representation gives a very detailed and precise description of the behaviour of polymers.

However, the number of particles to be simulated might grow too quickly. Polymers can be

composed of up to thousands of monomers (Nm ∼ 102 − 103, being Nm the number of

monomers per polymer). For a reliable study one might need to simulate an ensemble of

hundreds or even thousands of polymers. The computing time needed to simulate such a

system will then be unaffordable.

In such situations one might rather use a CG representation. The degrees of freedom of

the monomers are in general of little relevance for our study: for example bond vibrations

have a characteristic time scale which is orders of magnitude smaller than the relaxation

time of the system. Such degrees of freedom are averaged out and each polymer is then

represented by an effective particle positioned on its centre of mass (COM). The number of

9



2. Model

Figure 2.1.: Overlapping polymers. The centres of mass overlap without violating excluded
volume in the monomer level.

particles to be simulated is now Nm times smaller. Such a representation is of course very

advantageous: one can simulate bigger systems over longer time windows. However, it is

not trivial to compute the functional form of an effective potential which properly describes

the interaction between the effective particles (the so-called effective interaction). Both

representations should yield faithful results: the thermodynamics (or partition function) of

the system in the MR description level have to be reproduced by the CG representation.

The computation of these interactions involves a tedious procedure and often transferability

problems arise [40]: effective potentials computed at certain P , T and ρ conditions are not

valid at different conditions.

In this work we approach the study of cluster crystals in two manners: first we focus on

details about certain properties of the crystals in the coarse grained level. In chapter 4 we

study how the the presence of a solvent (and the consequent hydrodynamic interactions)

affect the hopping processes in a cluster crystal and in chapter 5 we examine the reaction

of a cluster nanocrystal to an external compression. Secondly we investigate in chapter 6

polymeric structures which would crystallise into a cluster crystal and finally in chapter 7 we

exhaustively examine the validity of coarse grained representations by studying the state-

dependence of effective interactions in different kinds of polymeric colloids. In this second

part we combine MR and CG representations and validate their consistency.

10



2.2. Ultrasoft potentials

2.2. Ultrasoft potentials

We define the energy scale ε and the length scale σ of a potential as the quantities which

allow us to express the potential as:

φ(r) = εv(r/σ) (2.1)

where v(r) is a dimensionless function of a dimensionless variable and r denotes the distance

between two particles. Ultrasoft potentials are potentials whose energy scale ε is of the order

of kBT (kB is the Boltzmann constant) and the value of φ(r) at a particle separation r = 0

is bounded and then decays to zero for r → ∞. The finite value of φ(r) at r = 0 is in

strong contrast to diverging atomic potentials (like Lennard-Jones). This property might

seem unphysical upon first sight, but such potentials have to be understood as effective

interactions between polymeric macromolecules and then one easily understands that the

value of the potential at r = 0 corresponds to the (finite) energy penalty of a full overlap as

shown in figure 2.1.

2.2.1. Q+ and Q± potentials

Imagine a fluid with a spatially modulated density profile ρ(r) which does not vary too

rapidly on the scale of σ set by the interaction (see equation (2.1)). At high densities,

ρσ3 > 1, the average interparticle separation becomes vanishingly small, and it holds that

the potential is extremely long ranged [11]. Particles interact with an enormous number

of neighbours and in the absence of short range excluded volume interactions a mean field

approximation (MFA) framework is justified [11]. The structure factor of the uniform fluid

takes then the form [41]:

S(k) =
1

1 + βρφ̃(k)
(2.2)

where β = 1/(kBT ) is the inverse temperature and φ̃(k) is the Fourier transform of the

interaction potential φ(r).

If the Fourier transform of the potential attains negative values for some finite k there will

be a line in the (ρ,T )-plane where the structure factor diverges, the so-called “spinodal line”.

This leads to a Kirkwood instability [42] of the uniform liquid, implying a crystallization

of the system. Crystallization will occur at all temperatures and the spacing of the lattice

will be dictated by the k value at which φ̃(k) attains its minimum value [23], independently

of the density. For the lattice constant to be independent of ρ there is only one solution:

particles have to form clusters on every lattice site, i.e. a cluster crystal has to be formed.

Based on this ideas Likos et al. [11] established a criterion, to classify ultrasoft potentials

into two classes (Q+, Q±), which determines the behaviour of the phase diagram, i.e. it
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2. Model

Figure 2.2.: Schematic representation of the phase diagram in the (ρ,T )-plane of systems
where particles interact via Q+ (left) and Q± (right) potentials. The lines de-
note the phase boundary of the solid (dashed red) and the fluid (solid black)
phase. Between these lines is the coexistence region. Tf denotes the freezing
temperature below which re-entrant meting takes place. Taken from [43].

determines whether the cluster crystal phase is the most stable phase for high densities or

not.

Q+ potentials

Potentials whose Fourier transform monotonically decays to zero belong to the Q+ class.

Upon compression at constant temperature these systems will crystallise into a single occu-

pancy crystal and upon further compression the crystal will melt into a fluid (see left panel

of figure 2.2). This is called re-entrant melting. Re-entrant melting was first observed by

Stillinger in the 1970s [8] in simulations of the Gaussian core model (GCM) and confirmed

by Lang et al. by means of integral theory. The potential of the GCM is given by:

φ(r) = εe−(r/σ)2 . (2.3)

Other examples of soft matter systems for which re-entrant melting has been observed in

simulations are star polymers [16], microgels [7] and diblock copolymers [17]. Re-entrant

melting was also observed in a series of small angle X-ray scattering (SAXS) experiments

performed with copolymer micelles [18–20]

Q± potentials

Potentials whose Fourier transform has an oscillatory behaviour in k-space, and therefore can

have some negative components, belong to the Q± class. Upon compression, these systems

always crystallise at sufficiently high densities and/or sufficiently low temperatures into a

crystal of multiple occupancy (see right panel of figure 2.2). So far clustering behaviour

has been observed in coarse grained simulations of systems where particles interact via the

12



2.2. Ultrasoft potentials

generalised exponential model (GEM-n) [21–23, 25, 26]:

φn(r) = ε exp [−(r/σ)n]. (2.4)

These potentials have a negative component in the Fourier transform (and therefore form

cluster crystals at sufficiently high densities or low temperatures) if n > 2. GEM-n systems

will be further discussed in section 2.4. Only very recently the formation of cluster crystals

has been observed in monomer resolved simulations of amphiphilic dendrimers [28]. An

experimental verification of the clustering behaviour is still missing.
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2.3. Cluster crystals

Stability of the cluster crystal phase

Mladek et al. computed in reference [37] the free energy of a system of ultrasoft particles in

the cluster crystal phase in the following way: the free energy of the system is expressed in

the MFA as the sum of ideal and the excess contribution:

F [ρ] = Fid [ρ] + Fex [ρ] = kBT

∫
d3rρ(r)

[
ln
[
ρ(r)Λ3

]
− 1
]

+
1

2

∫∫
d3rd3r′φ(|r− r′|)ρ(r)ρ(r′)

(2.5)

where Λ is the de Broglie wavelength. The one-particle density ρ(r) in the crystalline phase

can be expressed as a sum over Gaussians, centred at the Bravais lattice sites {R} of the

ordered phase. However, one has to take into account that now the number of lattice sites

Nc is not equal to the number of particles N due to the possible multiple occupancy; thus

ρ(r) has to be normalised by the cluster occupation nocc = N/Nc:

ρ(r) = nocc

(α
π

)3/2∑
{R}

e−α(r−R)2 =
∑
{R}

ρl(r−R) (2.6)

ρl(r) = nocc

(α
π

)3/2

eαr
2

, (2.7)

where α is the localization parameter. The free energy per particle F [ρ] /N = f(nocc, α) is

now a function of the cluster occupation and α. The free energy can be divided into the

ideal, the inter- and the intra-cluster contribution (for more details see [37]):

f(nocc, α) = fid(nocc, α) + finter(nocc, α) + fintra(nocc, α) (2.8)

fid(nocc, α) = kBT
[
log nocc + 3/2 log(ασ2/π)− 5/2 + 3 log(Λ/σ)

]
(2.9)

finter(nocc, α) = nocc

√
α

8π

∑
R6=0

∫ ∞
0

dr
r

R

[
e−α(r−R)2/2 − e−α(r+R)2/2

]
φ(r) (2.10)

fintra(nocc, α) = (nocc − 1)

√
α3

2π

∫ ∞
0

drr2e−αr
2/2φ(r) (2.11)

A detailed study of these three contributions provides an insight into why clustering can

occur. In figure 2.3 the authors of [37] plotted the different contributions and their sum

for a particular realisation of a system where particles interact via the GEM-4 potential

at kBT = 1.0 and ρσ3 = 9.0 in an fcc lattice as functions of nocc for a fixed α-value.

We see that the inter-cluster contribution (dashed line) decreases with nocc: if the cluster
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2.3. Cluster crystals

Figure 2.3.: Free energy per particle in a GEM-4 system at kBT = 1.0 and ρσ3 = 9.0 as
a function of the cluster occupation: the dashed line presents the inter-cluster
contribution, the dash-dotted line presents the intra-cluster contribution, the
dash-dot-dot line presents the ideal contribution and the solid line the sum over
all of them. Taken from [37]

occupation increases the number of clusters decreases; if the number of clusters in a fixed

volume decreases, these can then be further away separated and therefore the repulsion they

exert on each other decreases. On the other hand, the intra-cluster contribution (dash-dotted

line) increases with the cluster occupation: as clusters are more highly occupied the particles

feel a stronger repulsion from the other particles in the cluster. Finally the term log nocc in

the ideal contribution expresses the entropy loss due to particle aggregation. One can see

that in total three competing terms lead to a global minimum of the free energy at a finite

nocc, which represents the equilibrium cluster occupation for this particular state point.

Freezing properties

Likos et al. studied in [23] the freezing properties of cluster crystals. By transforming the

expression for ρ(r) in equation (2.6) into Fourier space we obtain:

ρK =
1

vc

∫
C
d3reiKrρ(r) =

1

vc

∫
R3

d3reiKrρl(r) =
nocc

vc
e−K

2/(4α) = ρe−K
2/(4α) (2.12)

where
∫
C means the integral over the elementary unit cell and vc = V/Nc and the second inte-

gral extends over the entire space. If now one introduces equation (2.12) into equation (2.5),
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2. Model

the free energy per particle can be expressed as a function of nocc, α, T and ρ:

Fid + Fex

N
= f̃(nocc, α

∗;T ∗, ρ∗) = (2.13)

= T ∗
[
lnnocc +

3

2
ln

(
α∗

π

)
− 5

2
+ 3 ln

(
Λ

σ

)]
+
ρ∗

2

∑
Y

φ̃(Y )e−Y
2/(2α∗)

where the asterisks denote reduced units, namely ρ∗ = ρσ3, T ∗ = kBT/ε, α
∗ = ασ2 and

Y = Kσ. The free energy of the crystal fsol(T
∗, ρ∗) is obtained by minimizing equation (2.14)

with respect to nocc and α∗

fsol(T
∗, ρ∗) = min[nocc,α∗]f̃(nocc, α

∗; T∗, ρ∗) (2.14)

As a first approximation one can ignore the sum over reciprocal lattice vectors (RLVs) in

equation (2.14) above all RLV beyond the first shell, whose length is Y1 = K1σ. This

is justified by the exponentially decaying factor e−Y
2/(2α∗) and the fact that φ̃(Y ) quickly

decays to zero. If we now express the density in terms of the lattice constant a

ρ =
znocc

a3
(2.15)

where z is lattice dependent integer coefficient of the order unity (z = 4 for a fcc lattice,

z = 2 for a bcc lattice, etc ...) and introduce the quantity αa2 = γ−1 we can perform

a change of variables which simplifies the mathematics. We also drop the constant term

3 ln
(

Λ
σ

)
which also appears in the free energy of the fluid and does not affect any phase

boundaries. Equation (2.14) then reads as:

f̃(nocc, α
∗;T ∗, ρ∗) = T ∗

[
ln ρ∗ − ln z − 3

2
[ln (πγ)− 1]− 1

]
+ (2.16)

+
ρ∗

2
φ̃(0) +

ρ∗ξ1

2
φ̃(Y1(nocc))e

Y1(nocc)2/(2α∗)

where ξ1 is the coordination number of the reciprocal lattice. Now the dependency on nocc is

hidden in the length of the first RLV: the length of the first shell of RLVs in a Bravais lattice

of a lattice constant a scales as K1 = ζ/a, where ζ is again a lattice-dependent integer.

Together with equation (2.15) this implies that

Y1(nocc) = ζ

(
ρ∗

znocc

)1/3

. (2.17)

We introduce the parameter γ in the exponent in equation (2.16) via the equality Y 2
1 /2α

∗ =

γζ2/2, and therefore the dependency on nocc remains only in φ̃(Y1(nocc))

The minimization of f̃ in equation (2.16) with respect to nocc determines the value for the
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2.3. Cluster crystals

lattice spacing:

∂f̃

∂nocc

= 0⇒ φ̃′(Y1)Y 4
1 = 0 (2.18)

One solution for the equation Y1 = 0 is discarded because it leads to the non-physical solution

of having nocc = ∞. The other solution is Y1 = y∗ being y∗ the value at which the Fourier

transform of the potential attains its negative minimum. This condition determines the

spacing of the lattice, because K1 = Y1/σ = ζ/a:

a = ζ/(y∗σ), (2.19)

which only depends on the shape of the potential via y∗ and not on the density ρ or tem-

perature T .

We can introduce φ(Y1) = φ(y∗) < 0 in equation (2.16). Furthermore we can see that the

term T ∗[ln ρ∗−1] and ρ∗φ̃(0)/2 correspond to the ideal and excess free energy ffl of a uniform

fluid of density ρ∗ [23], and introduce the difference ∆f ≡ f − ffl:

∆f(nocc(y
∗), γ, T ∗, ρ∗) = −3T ∗

2

[
ln(γπ) + 1 +

2 ln z

3

]
+
ξ1ρ
∗

2
φ̃(y∗)e−γζ

2/2. (2.20)

The value of γ is restricted to small values so that the Gaussians centred on the different

lattice sites do not overlap: a very generous upper limit would be γ ≤ 0.005. In the regime of

these values the first term in equation (2.20) is positive. This term accounts for the entropic

cost of localization that crystals pay. This cost has to be compensated by the second term,

which is only possible if φ(y∗) < 0. The most favourable crystal structure will be that one

which maximised ξ1, the coordination number of the reciprocal lattice. This is the BCC

lattice, whose reciprocal lattice is an fcc. This result is a consequence of the sum over the

RLV only being performed in the first shell. Inclusion of higher order shells, can under

suitable thermodynamic conditions, stabilise the fcc in favour of the BCC.

By minimizing equation (2.16) with respect to γ and imposing ∆f = 0 one obtains the

freezing line.

∂f̃

∂γ
⇒ 3T ∗

2γ
+
ξ1ζ

2ρ∗

4
φ̃(y∗)e−γζ

2/2 (2.21)

∆f = 0 ⇒ ξ1ρ
∗

2
φ̃(y∗) =

3T ∗

2

[
ln(γπ) + 1 +

2 ln z

3

]
(2.22)

Introducing z = 2 and ζ = 2
√

2π for the BCC lattice we obtain:

T ∗f
ρ∗f
∼= 1.393|φ̃(y∗)|. (2.23)

Equation (2.23) is a major result since it allows to estimate the freezing line (and therefore the
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phase diagram) of a system of ultrasoft particles just by computing the Fourier transform of

the interaction potential and finding its minimum. Results on the phase diagram of a GEM-

4 cluster-forming system shown in references [21, 23] show a very good agreement between

equation (2.23), results obtained by a full minimization of the density functional and results

obtained by Monte Carlo (MC) simulations.

2.3.1. Bulk modulus

The response to compression of a cluster crystal shows very interesting features due to the

multiple occupancy of the lattice. This response can be measured by the bulk modulus;

i.e. the second derivative of the free energy with respect to the volume at constant temper-

ature and number of particles:

B = V

(
∂2F

∂V 2

)
N,T

= −V
(
∂P

∂V

)
N,T

(2.24)

which account for the response of the system to a change in volume. A general variation of

the free energy of a crystal can be written as [22]:

dF = −SdT − PdV + µdN + µcdNcells (2.25)

where S is the entropy, P the pressure, µ the chemical potential and µc the cell chemical

potential conjugate to the number of unit cells Ncells in the system. At constant T and

N , Ncells takes the optimum value such that µc = 0. In single occupancy crystals Ncells

is considered to be Ncells = N/z, where z is the previously introduced lattice dependent

parameter of order unity. The corresponding term is then usually neglected because the

number of vacancies is so small that the effect of keeping the term is negligible. In multiple

occupancy crystals the scenario is completely different. If the Ncells term is kept the bulk

modulus has two contributions:

B = −V
(
∂P

∂V

)
N,T,Ncells

− V
(
∂P

∂Nc

)
N,T,V

(
∂Ncells

∂V

)
N,T

= Bvir −Bdel. (2.26)

The first term, Bvir, corresponds to the intuitive reaction of a crystal to compression: when

the volume is reduced the particles (or clusters of particles) move closer. The second term

corresponds to the deletion of certain lattice positions. Mladek et al. computed in [22]

the magnitude of these two contributions for a GEM-4 cluster crystal and found that the

correction introduced by Bdel results in a reduction of the original value (Bvir) of over 45 %.
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2.3. Cluster crystals

Figure 2.4.: Projection of the potential energy U of a GEM-8 model (measured in units of
ε) on a [001] lattice plane, for a configuration of the fcc crystal at ρ∗ = 5.0 and
T ∗ = 0.667. Darker colours represent lower energies (see legend) and are centred
around lattice sites. Taken from [44].

2.3.2. Dynamics in cluster crystals

The optimum (ideal) value of the cluster occupation of a cluster crystal is nocc = N/Nc,

which in general is a non-integer value. In a realistic system, whose clusters are of course

populated by an integer number of particles, a considerable polydispersity in the lattice

sites population can be expected. Thus the system is full of defects, in the sense that the

occupation of the clusters is not ideal. Mechanical stability must be maintained on average,

by means of dynamical events that guarantee the equality of the time-average nocc for all sites

[44]. Moreno et al. performed in reference [24] a thorough study of the dynamic features of a

cluster crystal of particles interacting via the GEM-8 potential. Figure 2.4 shows the energy

landscape that the authors calculated for the 2-dimensional crystal. Through an activated

mechanism particles which have a sufficiently high energy are able to escape from their host

cluster and migrate between lattice sites maintaining the lattice structure unaffected. This

activated hopping mechanism results in finite values for the diffusivity of the GEM particles

[24]. Moreno et al. reported that for a representative state point of a solid fcc GEM-8

crystal more than 80% of the particles in the system have moved to a different cluster after

a sufficiently long observation time.

In a later contribution [45] Strauss et al. calculated the distribution of the sizes of kicking

and catching clusters, i.e. the relative occupation of the clusters which lose a particle and

the clusters which receive it with respect to the average cluster occupation. It was observed

that in the majority, kicking clusters were over-occupied and catching cluster were under-

occupied. However, the overlap between these two distributions was considerable. Particle

hopping is therefore not just a mechanism to relax unbalanced cluster occupancy but there

are also a substantial occupancy fluctuations in which particles start hopping from their

cluster at random, without being induced by any external influence.
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2.4. Generalised exponential model

The generalised exponential model (equation (2.4)) has been so far the system most com-

monly used to study cluster crystals on the level of coarse grained particles [21–23, 25, 26].

The parameter n controls the steepness of the potential and takes values from n = 2 (the

Gaussian core model, GCM) to n =∞ (the penetrable sphere model, PSM). It can be shown

Figure 2.5.: Four members of the GEM-n family with n = 2 (GCM), 4, 8 and ∞ (PSM).

that GEM-n potentials show clustering when n > 2: we start from the inverse Fourier trans-

form of the potential:

φ(r) =
1

2π2

∫ ∞
0

sin(kr)

kr
φ̃(k)k2dk. (2.27)

The second derivative of the potential at r = 0 is given by:

d2φ(r = 0)

dr2
= − 1

6π2

∫ ∞
0

φ̃(k)k4dk. (2.28)

If the left hand side of equation (2.28) is larger than or equal to zero, then φ̃(k) must

necessarily have negatives parts and φ(r) is a Q± potential. The second derivative of a

GEM-n potential reads as follows:

d2φ(r)

dr2
=
εn

σ2
exp[−(r/σ)2]

[
n
( r
σ

)2(n−1)

− (n− 1)
( r
σ

)n−2
]

(2.29)

One can see that d2φ(r=0)
dr2

= 0 for n > 2.
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Clustering is a consequence of the steepness of the potential. When clusters are formed, if

the inter-cluster separation is large enough, particles sitting in the cluster only experience

overlaps with the particles in their own cluster. The steeper the potential, the smaller this

inter-cluster separation needs to be, and in turn, the smaller the occupation of the clusters

(because if the required separation between the clusters is smaller, more clusters can be

formed). Therefore clustering is advantageous when the potential is steep, the inter-cluster

separations is small, and the cost of sparing a lot of partial overlaps (which would occur in

a non-cluster configuration) is just a full overlap with a small number of cluster members.

If the potential is shallow (as in the n = 2) the inter-cluster separation has to be large (in

figure 2.5 at r = 1.5σ GEM-4, 8 and ∞ have vanished, while GEM-2 is still ∼ 0.1ε). The

cluster occupation nocc has to be higher, and the big amount of full overlaps in the cluster

configuration does not compensate the partial overlaps in the non-cluster configuration.
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2.5. Dendrimers

Dendrimers are polymeric macromolecules with a tree-like structure (see figure 2.6) which

are usually embedded in a microscopic solvent. Our interest in dendrimers lies in the fact

that they are under certain conditions polymeric macromolecules which have an effective

COM interaction with a negative Fourier component [46]. In 2011 Lenz et al. produced

stable cluster fluid [27] and crystal [28] dendrimer configurations. Dendrimers can therefore

be considered as a promising candidate macromolecule for an experimental realisation of a

cluster crystal.

Figure 2.6.: Structure of a fourth-generation dendrimer. From http://www.nanodic.com/

PicturePreview.php?ch=nanomaterial&term=Dendrimer&g=6&type=JPG (ac-
tive 29.07.2014).

2.5.1. History of dendrimers

Dendrimers were synthesised for the first time in 1978 by Vögtle and co-workers [47]. Interest

in these molecules grew rapidly due to the long lasting discussion on which conformation

dendrimers would take: a dense-shell conformation, where end-groups reside in the periphery

of the macromolecule leaving a hollow core, or a dense-core conformation where the end-

groups fold back into the core. After some progress in the theory and experiments which

made it possible to map chemical structures onto simulation data [48] it was finally shown

that both conformations could exist: dendrimers with flexible bonds would show a dense-

core conformation (theory and simulations [48–50] and experimental corroboration [51, 52])

and dendrimers with stiff bonds would show a dense-shell conformation (simulations [53] and

experiments [54]). Furthermore it was shown that changing the pH or the salt concentration

of the solvent could bring a conformation change from dense-core to dense-shell and vice

versa (simulations [39] and experiments [55, 56]) making dendrimers the perfect candidate

for the carriage of small molecular substances and boosting once again interest in them.
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2.5. Dendrimers

Figure 2.7.: Schematic representation of two dendrimers. Monomers are coloured according
to the generation they belong to (blue is 0, green is 1, red is 2). Left: an f=3,
p=1, g=2; right: f=4, p=0, g=2.

Dendrimers have nowadays many technological and medical applications: they are used for

gene transduction and drug delivery, as bio-sensors or magnetic resonance image contrast

agents or even for the prevention of infection with HIV and other sexually transmitted dis-

eases [57–64]. The synthesis of dendrimers is however rather time consuming and expensive

and therefore their commercial availability is up to now limited to only a few substances

[65].

2.5.2. Modelling dendrimers

The architecture of a dendrimer is characterised by three quantities: the functionality f ,

the generation g and the spacer length p. We start from two central monomers, onto which

(f − 1) branches of p monomers are grafted. The starting two monomers belong to the

0th generation, the (f − 1) attached branches belong to the first generation. Then (f − 1)

branches would be attached to each of the first generation monomers, forming the second

generation monomers, and so on until g generations have been grafted. In figure 2.7 examples

of a f=3, p=1, g=2 and a f=4, p=0, g=2 dendrimer are given.

The behaviour of the dendrimer is determined by the architecture and the chemical nature of

the monomers (interactions with the solvent, size, softness, etc... ). In computer simulations

the architecture of the polymer is taken into account by the bonding interactions and the

chemical nature of the monomers via the excluded volume interactions.

Athermal dendrimers were the first kind of dendrimers to be simulated by Götze et al. in

reference [66]. The bead-spring model was used, where excluded volume was modelled either

by a hard sphere (in Monte Carlo simulations) or a cut and shifted (purely repulsive) Lennard

Jones (LJ) potential (in Molecular Dynamics simulations). The athermal terminology stems

from the T -independent nature of the hard sphere potential. Although a cut and shifted LJ

potential is not strictly T -independent, the parameters chosen in reference [66] make it close

enough to a hard sphere potential, so that we can still say that the dendrimers are athermal.

Bonds were represented with threads or the finite extensible non-linear elastic (FENE) model
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(see below). Such a model leads to effective Gaussian interactions [67], which are not able

to show clustering.

In order to obtain effective interactions with an oscillatory Fourier transform a distinction be-

tween the monomers had to be introduced [46]: monomers in the outer shell (“S” monomers)

are assumed to be solvophilic, the fact that the monomers tend to maximise the contact with

the solvent (which is not simulated explicitly) results in an effective repulsion between each

other. The monomers in the core (“C” monomers) are assumed to be sholvophobic, their

repulsion with the solvent results in a net effective attraction between C monomers. These

kinds of dendrimers are called amphiphilic dendrimers. Instead of one potential for the ex-

cluded volume interaction between the monomers we have to consider three different ones:

φSS(r) and φSC(r) (purely repulsive) and φCC(r) (attractive).

The FENE potential is used for the bonded interaction [39, 48]:

βφFENE(r) = −κR2 ln

[
1−

(
r − l
R

)2
]
, (2.30)

l determines the equilibrium bond-length, R determines how much the bond is allowed is to

stretch from the equilibrium bond-length l, and κ determines the elasticity of the bond. In

the left panel of figure 2.8 we plot φFENE(r) for three different combinations of the parameters

(κ,l,R). The three curves correspond to bonds with an equilibrium length of l = 3. The red

curve corresponds to κ = 40 and R = 0.6, the green curve to κ = 60 and R = 0.6 and the

blue curve to κ = 40 and R = 0.3.

The Morse potential for the excluded volume is given by:

βφMorse
νµ (r) = ενµ

[(
e−ανµ(r−σνµ) − 1

)2 − 1
]
, (2.31)

with ν, µ = S,C. The parameter ε determines the strength of the interaction, σ determines

the radius of the monomer and α tunes the attraction, i.e. α accounts for the interaction

with solvent. In the right panel of figure 2.8 we plot φMorse(r) for four different combinations

of the parameters (ε, σ, α). The minimum value of the potential is placed at r = σ. The red

(ε = 0.7, α = 6.0, σ = 1.0) and the green (ε = 0.7, α = 6.0, σ = 1.5) curve have a strong

attractive well at r = σ: they represent a solvophobic interaction. By reducing the value of

ε (red to green curve) the attraction between the monomers is reduced (the depth of the well

is reduced) and the softness of the monomers is increased (the divergence of the potential

in the origin is weaker, therefore the monomers can come closer). Finally, by reducing the

value of ε and increasing the value of α (red to pink curve) the attractive well completely

disappears and therefore, we change the interaction from solvophobic to solvophilic.
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Figure 2.8.: Left: FENE potential for different sets of (κ,l,R) parameters as shown in the
legend. Right: Morse potential for different sets of (ε,α,σ) parameters as shown
in the legend.

2.5.3. Cluster forming amphiphilic dendrimers

Mladek et al. simulated [46] a set of 7 amphiphilic dendrimers, called D1 to D7. The

architecture of the D dendrimers is given by g = 2, p = 0, and f = 3. Monomers in the zero

and first generation were assumed to be solvophobic and monomers in the second generation

were assumed to be solvophilic. The parameters in the Morse and FENE potential were

varied for the seven models within the limits of what can be realised experimentally [39].

The monomer density profile is defined as:

ρ(r)C/S =

〈∑
i

δ(rCOM − rC/S
i )

〉
(2.32)

where rCOM is the position of the centre of mass of the dendrimer, ri is the position of the

i-th monomer and the angular brackets denote an average over equilibrium configurations.

A study of ρ(r)C/S showed that in contrast to athermal dendrimers, shell and core monomers

were more segregated, end groups did not fold back and therefore the core is less populated,

favouring clustering. Effective interactions were calculated for the seven models using the

Umbrella sampling method [68] and the Widom particle insertion method [46]. All the seven

dendrimer models did indeed show an oscillatory Fourier transforms.

Lenz et al. used [27] D2 dendrimers in monomer resolved simulations, the parameters of the

interaction potentials are specified in table 2.1. The simulations were performed at densities

where the fluid phase is expected. At low density the system formed an homogeneous fluid

and on increasing density it spontaneously transformed into a fluid of clusters of dendrimers.

In a later contribution [28] Lenz et al. used a modified dendrimer model, the so-called r-

family to go deep into the solid cluster crystal phase. The r dendrimer model makes a

distinction between the central bond (g = 0) and the rest of the core-core bonds. Lenz et
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2. Model

Morse ενµ ανµ σνµ FENE κ l R
CC 0.714 6.4 1 CC 40 1.875 0.375
CS 0.014 19.2 1.25 CS 20 3.75 0.75
SS 0.014 19.2 1.5

Table 2.1.: Morse and FENE parameters of the D2 model.

al. used the so-called r6 model (see table 2.2) which has larger shell monomers, a considerably

larger equilibrium central bond length and a longer range of attraction between the core

monomers. These features made the minimum of the Fourier transform of the effective

potential deeper. The transition to the cluster crystal phase occurs at lower densities (see

equation (2.23)), facilitating the computational effort to simulate this phase. As a first step

Lenz et al. simulated fluid systems at different densities. At sufficiently high densities small

clusters (with occupations below 3) disappeared and the system spontaneously developed

local crystalline order. This was confirmed by the radial distribution function of the COMs

of the dendrimers:

g(r) =
1

N

〈
N∑
i=1

N∑
j=1

δ(r− rj + ri)

〉
(2.33)

which measures the probability of finding two particles separated by a distance r. The

radial distribution function showed a peak centred at a value close to the predicted lattice

spacing a (see equation (2.19)) which was clearly separated from the second peak. Lenz et

al. prepared several starting configurations where the clusters of dendrimers were positioned

at the lattice positions of perfect fcc and bcc crystals with different cluster occupations

and lattice spacings (close to the predicted one). Unstable crystals melted quickly, while

mechanically stable systems remained in the crystalline clustered arrangement throughout

the whole simulation. Figure 2.9 shows a snapshot of a stable crystal. In panel (a) the

monomers are coloured according to the generation number: red for g = 2, blue for g = 1

and black g = 0. In panel (b) the positions of the COMs are shown in green for this

particular snapshot; a sphere surrounding them which contains the latter to a probability of

99% accounts for the oscillations of the COMs around the lattice site. These spheres do no

overlap, confirming the prediction that the clusters are well localised at their lattice sites.

Hopping events were observed for the low cluster occupation configurations (nc = 4). The

main discrepancy with the effective pair potential picture arose at high densities, where an

unlimited growth of the cluster occupancy with density is predicted in the CG picture. In-

stead, in the MR simulations, big clusters split into smaller clusters, the distance between

the clusters decreased and entered the length regime of the bonds between the dendrimer’s

monomers. Dendrimers stretched and were shared between different clusters forming a per-

colating network.

26



2.5. Dendrimers

Morse ενµ ανµ σνµ FENE κ l R
CC 0.714 1.8 1 CC (g = 0) 60 3.1875 0.6375
CS 0.01785 6.0 1.75 CC (g 6= 0) 60 1.875 0.375
SS 0.01785 6.0 2.5 CS 30 3.5625 0.7125

Table 2.2.: Morse and FENE parameters of the r6 model.

Figure 2.9.: Figure taken from [28] where a snapshot of a stable cluster crystal is taken.
Panel (a) shows the monomers coloured by red for g = 2, blue for g = 1 and
black for g = 0. Panel (b) shows the positions of the COMs (green) and an
outer sphere which contains the position of the COM to a probability of 99%.
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3. Methods

3.1. Simulation techniques

Ever since computers became widely spread in the past century, computer simulations have

become an indispensable tool in sciences. Bridging between experiments and theory they

complement both of them: on the one hand, in a simulation which tries to reproduce exper-

imentally observable properties of a system one has access to microscopic data: positions,

velocities and accelerations of individual particles. The interplay between different inter-

actions can be disentangled and the origin of certain behaviours can be understood. In a

computer simulation one can also perform “experiments” at extreme conditions, such as high

pressure or very low temperatures which are otherwise very difficult or even impossible to

access in a lab. On the other hand, with the help of computers one can numerically solve

theoretical problems which do not have an analytical solution. However, computer simula-

tions do suffer from limitations related to the system size and the length of simulations runs:

in simulations one can handle typically ensembles of up to 106 particles, highly parallelised

advanced techniques running on modern computer clusters can reach up to 109 particles;

however, even at that level one is far away from systems of macroscopic size (NA ∼ 1023); on

the other hand within a reasonable amount of time one can simulate a molecular system over

time scales in the order of milliseconds, so that events taking place on larger time scales will

only be accessible by sacrificing details of the system to build up a simpler model which can

explore a longer time window in the same computing time. Thus, in practical applications

a compromise has to be found between the level of accuracy of the microscopic details and

the available time span, this situation is not always satisfactory.

3.1.1. Molecular dynamics

Molecular dynamics (MD) is a computer simulation technique which numerically integrates

Newton’s second law of motion for an ensemble of particles interacting via a given potential

U(rN), where rN is an N -dimensional vector and every component is the position one of

the N particles in the system. In this thesis we will only consider classical systems. The

simulation begins with an initialization of the system, where positions (r) and velocities (v)

are assigned to all the particles and an equilibration phase. After the system is equilibrated

one can measure static and dynamic properties of the system. The term “equilibrated”

has a different meaning for different ensembles. In this work we use the canonical (NV T )

ensemble, where the number of particles N , the volume V and the temperature T are kept

constant. For such simulations the system is considered to be equilibrated once the internal
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3. Methods

potential energy U(rN) fluctuates around a constant (equilibrium) value and there is no

drift, i.e. U(rN) has reached a minimum. During an MD simulation Newton’s second law of

motion is integrated:

d2ri
dt2

=
fi
mi

= − 1

mi

∇iU(rN) i = 1, .., N, (3.1)

where ri denotes the position of particle i, fi is the force acting on it and mi is its mass.

Several different numerical integration algorithms have been proposed in literature [68]. In

this work we chose the velocity-Verlet algorithm [69], which even though it is fairly simple,

has a very satisfactory performance. The velocity-Verlet algorithm is time reversible, area

preserving in phase-space and has a good performance in the energy conservation. Positions

are written as Taylor-expansions of the time-step ∆t:

ri(t+ ∆t) = ri(t) + vi(t)∆t+
fi(t)

2mi

(∆t)2 + ... (3.2)

If we truncate this expression at (∆t)2 we obtain the Euler algorithm. This algorithm is

neither time reversible nor area preserving in phase space and suffers from a catastrophic

energy drift [68]. To overcome this problem, the velocity-Verlet algorithm computes the

velocities as functions of the forces at different time steps:

vi(t+ ∆t) ∼= vi(t) +
fi(t+ ∆t) + fi(t)

2mi

∆t. (3.3)

Thus integration with respect to time is performed in the following way:

(1) Update of the positions

ri(t+ ∆t) ∼= ri(t) + vi(t)∆t+
fi(t)

2m
(∆t)2. (3.4)

(2) First update of the velocity

vi(t+ ∆t/2) = vi(t) +
fi(t)

2mi

∆t. (3.5)

(3) Force calculation

fi(t+ ∆t) = fi (ri(t+ ∆t)) = −∇iU(rN(t+ ∆t)). (3.6)

(4) Second update of the velocity

vi(t+ ∆t) = vi(t+ ∆t/2) +
fi(t+ ∆t)

2mi

∆t. (3.7)
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3.1. Simulation techniques

This algorithm conserves the total energy, E, and therefore the temperature T is not con-

stant.

For simulations in the canonical (NV T ) ensemble, where the temperature T instead of the

energy is conserved, a thermostat is required which maintains a constant temperature. In

this work we use the Andersen [70] and the Nosé-Hoover thermostat [71–74]. The Andersen

thermostat mimics a temperature bath in the simulation by randomly giving particles a

velocity drawn from the appropriate Boltzmann distribution for the given temperature T ,

corresponding to stochastic collisions between the particles in the system and in the bath.

The implementation of this thermostat is very simple but the dynamics of the system become

artificial. When reliable measurements of dynamic quantities are required one has to use a

more elaborate thermostat. The Nosé-Hoover thermostat defines a deterministic integration

method which keeps the temperature around a desired value. This is achieved by using an

extended Lagrangian LNose and making thus the heat bath to an integral part of the system

by adding an artificial variable s associated with an artificial mass Q:

LNose =
N∑
i=1

mi

2
s2v2

i − U(rN) +
Q

2

(
ds

dt

)2

− L

β
ln s. (3.8)

The extended system generates a microcanonical ensemble of 6N+2 degrees of freedom and

it can be shown [68] that if the parameter L takes the value L = 3N+1, averages of quantities

in this extended ensemble reduce to the canonical average.

3.1.2. Multi particle collision dynamics

In simulations of systems of mesoscopic particles embedded in a microscopic solvent, one

encounters the difficulty of treating very different time- and length-scales. The solvent

particles are several orders of magnitude smaller than the solute ones and therefore their

motion is several orders of magnitude faster. The first idea that could come to our minds

is to simply include a set of solvent particles in the simulation with a proper potential

describing the interactions between the solute and the solvent particles, and between the

solvent particles among themselves. Since the motion of the solvent particles is much faster,

a time step that is orders of magnitude smaller than the one used in a simulation of only

solute particles would be needed. In addition the number of solvent particles will also be

orders of magnitude larger than the number of solute particles, so that the computational

time needed for the force calculation, which scales like O(N2) being N the total number

of particles, will dramatically increase. Being the time step smaller and the computational

time needed for the force calculation bigger, the time window that can be simulated within

a reasonable amount of computing time will be ridiculously small.

A conventional solution to this problem is to simulate the solvent as a continuum background

to the system: the properties of the solvent are included in the inter-particle interaction
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3. Methods

potential of the solute particles: for example solvophobic solute particles will feel a net

attraction to each other as a consequence of the fact that they are repelled by the solvent.

However, such an approach does not take into account hydrodynamic interactions (HI). To

visualise their effect we consider two solute particles separated by a large distance: one of

the particles is moving. This movement will push the solvent particles aside, inducing via

the solvent a force on the other solute particles, which otherwise would not have felt the

movement of the first particle. These hydrodynamic interactions are very important for a

proper description of the dynamic behaviour of colloidal systems.

Malevants and Kapral suggested in 1999 [34] a simulation method which reproduces the

dynamic behaviour of the system but can be simulated over long time- and length-scales

within a reasonable computing time: the so-called multi particle collision dynamics technique

(MPCD). The MPCD method includes Ns solvent particles of mass ms to the simulation

of the N solute particles of mass m. The technique combines conventional MD steps with

MPCD steps: after every τ MD steps a MPCD step is performed. τ controls the coupling

between the solvent and the solute. In the MD steps the solvent particles are ignored and

only positions, velocities and forces of the solute particles are updated, as described in

subsection 3.1.1. MPCD steps consist of two parts: the streaming step and the collision

step. In the streaming step the solvent particles propagate ballistic ally:

r′i(t+ ∆t) = r′i(t) + v′i(t)∆t, (3.9)

where r′i and v′i are the position and velocity of the ith solvent particle (the apostrophe

means that i is a solvent particle). In the collision step the volume is divided into NMPCD
cells

of length c and the solvent and solute particles are sorted into these cells. In each cell a

rotation of the relative velocities of the particles with respect to the velocity uj of the centre

of mass of the cell is performed (j is the index of the cell):

v′i(t+ ∆t) = uj(t) + Ω(α) [v′i(t)− uj(t)] . (3.10)

Here Ω(α) is a norm conserving matrix performing a rotation of the relative velocities around

a certain vector ζ̂ of angle α:

Ω(α) =

 cosα + ζ2
x(1− cosα) ζxζy(1− cosα)− ζz sinα ζxζz(1− cosα) + ζy sinα

ζyζx(1− cosα) + ζz sinα cosα + ζ2
y (1− cosα) ζyζz(1− cosα)− ζx sinα

ζzζx(1− cosα)− ζy sinα ζzζy(1− cosα) + ζx sinα cosα + ζ2
z (1− cosα)

 ;

(3.11)
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3.1. Simulation techniques

as a consequence the total energy and momentum of the solute particles are conserved:∑
i∈cellj

v′i =
∑
i∈cellj

(uj + Ω(α) [v′i − uj]) (3.12)

∑
i∈cellj

|v′i|2 =
∑
i∈cellj

|uj + Ω(α) [v′i − uj] |2. (3.13)

In addition, there is a momentum transfer between solute and solvent particles during the

collision step. Since the solvent particles are not included in the force calculation and the

MPCD step is only performed every τ steps (which is typically of the order of 50) the

computational effort for including the solvent in the simulation is very low.

The components of the vector ζ̂ are chosen randomly for every cell in each time step by

picking two numbers x1 and x2 from a random distribution between 0 and 1 and expressing

the components of ζ̂ as:

ζx = 2x1

√
1− x2

1 − x2
2

ζy = 2x2

√
1− x2

1 − x2
2 (3.14)

ζz = 1− 2(x2
1 + x2

2).

The angle α is kept constant during the whole simulation. It can be chosen from an analytic

expression (see [34]) which expresses the kinetic and collisional viscosity νkin and νcol as a

function of α to reproduce the desired value of these two quantities:

νkin =
kBT∆tρ

ρa3

(
5ρ

(4− 2 cosα− 2 cos(2α))(ρ− 1)
− 1

2

)
(3.15)

νcol =
1− cosα

18ρa∆t
(ρ− 1), (3.16)

where ρ = N/V is the density.

The mean free path of the solvent particles is given by λ = ∆t
√
kBT . It has been shown [75]

that Galilean invariance is violated if λ < c/2. To avoid this non-physical behaviour all the

cells are shifted by a random vector whose components take values from [-c/2,c/2] before

every collision step (see figure 3.1). In this way, even if the particles do not move far enough

to abandon the cell they are in they will not always collide with the same set of particles.

To keep the temperature of the system constant velocity rescaling shows to be good enough.

During the equilibration steps the velocities of the solute and the solvent particles are rescaled

by a factor λ dependent on the current (curr.) kinetic energy so that the system has the
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3. Methods

Figure 3.1.: Division of the simulation box into NMPCD
cells of size c. To preserve Galilean invari-

ance the cells are shifted (from blue to green, for example) by a random vector
whose components take values from the interval [-c/2,c/2] before every collision
step

desired (des.) T value:

Kcurr. =
1

2

∑
i

mivi (3.17)

Kdes. =
d

2
kBT (3.18)

λ ≡ Kcurr.

d/2kBT
(3.19)

vscaled
i =

vi
λ

(3.20)

After the equilibration steps no thermostat is needed and the temperature will fluctuate

around the desired value T .
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3.2. Computation of effective interactions: Multi-scale coarse graining method

3.2. Computation of effective interactions:

Multi-scale coarse graining method

In this work we have used the multi-scale coarse graining method (MSCG) proposed by

Izvekov and Voth [76] to compute the effective interactions of polymeric macromolecules

via a suitable coarse graining approach: in the end, the macromolecules are reduced to

effective particles placed in their centre of mass (COM). This method is based on a force

matching algorithm. When applying this method one has to run a simulation of an ensemble

of monomer resolved molecules. The positions of individual monomers rn and the forces

acting on them fn(rn) are stored during the simulation. Each set of data {rn, fn(rn)} will

be referred to as a configuration. These configurations are then mapped to the positions

and acceleration of the COMs of the macromolecules. Finally a variational principle which

minimises a functional (defined later on in the text) is used to compute the functional form

of the effective force field. The main advantage of this method compared to other existing

methods (see [12, 13]) is that the effective interactions between two macromolecules can be

extracted from configurations taken from systems at a finite density. The other methods

compute effective pair interactions based on simulations of two isolated molecules (i.e. in

the zero-density limit) and therefore do not include many-body effects. Their neglect can for

example lead to an underestimation of the repulsion that two effective particles exert on each

other when they approach, a repulsion which stems from the excluded volume interaction

of the monomers; this effect will of course be much weaker in the zero-density limit than at

finite density.

3.2.1. General formulation of the MSCG method

Low and high resolution model

We will refer to the high resolution model as the atomic model, where every basic monomer

unit of a macromolecule will be referred to as an atom and the low resolution model as

coarse grained model where every basic unit will be referred to as a coarse grained (CG) site.

Capital letters will be used for quantities related to the coarse grained model and lower case

letters will stand for quantities related to the atomic model.

We consider a system ofN macromolecules. Each macromolecule is composed of nm monomers,

n = Nnm is the total number of monomers. The interactions between the monomers are

described by excluded volume and bonding potentials. We aim to coarse grain each macro-

molecule to an effective particle placed in its COM and compute the effective interaction

between these coarse grained sites.

We start from an atomic model for the system consisting of n atoms, where Cartesian

coordinates rn = {r1, ..., rn} and pn = {p1, ...,pn} are used to specify positions and momenta
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of all atoms of masses mi, i = 1, ..., n. The atomistic Hamiltonian is given by

h (rn,pn) =
n∑
i=1

1

2mi

p2
i + u (rn) . (3.21)

The equilibrium probability density of the system in the canonical ensemble is given by

prp (rn,pn) = pr (rn) pp (pn)

pr (rn) ∝ exp

(
−u (rn)

kBT

)
(3.22)

pr (pn) ∝ exp

(
− 1

kBT

n∑
i=1

1

2mi

p2
i

)

In order to define our low resolution (CG) model we need to define the linear mapping oper-

ators MN
R (rn) and MN

P (pn) which take the atomistic coordinates rn and pn as input parame-

ters and produce the Cartesian coordinates {MR1 (rn) , ...,MRN
(rn)} and {MP1 (pn) , ...,MPN (pn)}

of the N coarse grained sites, which is a point of the phase space of the CG coordinates

RN = {R1, ...,RN} and PN = {P1, ...,PN}:

MN
R (rn) = {MR1 (rn) , ...,MRN

(rn)},
MN

P (pn) = {MP1 (pn) , ...,MPN (pn)},
(3.23)

MRI
(rn) =

n∑
i=1

cIiri,

MPI (pn) = MI

n∑
i=1

cIi
pi
mi

,

(3.24)

for I=1,...,N . MI is the mass of the effective particle.

There are several conditions that the mapping between both models must fulfil, which will

be derived in what follows. The mapping operator should be translationally symmetric in

the sense that if all atoms are translated by a vector T all the CG sites should be translated

by the same vector T. In order to impose translational symmetry to the mapping operator,

the coefficients cIi for I = 1, .., N and i = 1, .., n must satisfy the condition

n∑
i=1

cIi = 1 (3.25)

It is convenient at this point to define for every CG site I, the set of involved atoms II =

{i|cIi 6= 0} and specific atoms SI = {i|cIi 6= 0 and cJi = 0 for all J 6= I}, which will be used

in what follows.
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3.2. Computation of effective interactions: Multi-scale coarse graining method

The Hamiltonian of the coarse grained system is given by

H
(
RN ,PN

)
=

N∑
I=1

1

2MI

P2
I + U

(
RN
)

(3.26)

where U
(
RN
)

is yet unknown and has to be computed. The equilibrium probability density

in the canonical ensemble for the CG model is given by

PRP
(
RN ,PN

)
= PR

(
RN
)
PP
(
PN
)

PR
(
RN
)
∝ exp

(
−
U
(
RN
)

kBT

)

PR
(
PN
)
∝ exp

(
− 1

kBT

N∑
I=1

1

2MI

P2
I

)
.

(3.27)

Consistency Condition

The coarse grained model has to be consistent with the underlying atomistic model in phase

space in the sense that if two simulations are performed in the same thermodynamic condi-

tions in the CG and the MR representation, the distribution of the positions and velocities of

the CG sites in the CG representation and the COMs of the macromolecules in the MR rep-

resentation have to be equal. To this end it must be satisfied that the equilibrium probability

density of the CG model in terms of coordinates and momenta given by equation (3.27) is

equal to that implied by the equilibrium probability density of the atomistic model in terms

of the respective coordinates and momenta given in equation (3.22) in combination with the

mapping operator, equation (3.24).

This implies

PR
(
RN
)

= pR
(
RN
)
≡
∫
drnpr (rn) δ

(
MN

R (rn)−RN
)

PP
(
PN
)

= pP
(
PN
)
≡
∫
dpnpp (pn) δ

(
MN

P (pn)−PN
) (3.28)

where

δ
(
MN

R (rn)−RN
)
≡

N∏
I=1

δ (MRI
(rn)−RI)

δ
(
MN

P (pn)−PN
)
≡

N∏
I=1

δ (MPI (pn)−PI) .

(3.29)

This implies that:

exp

(
− 1

kBT
U
(
RN
))
∝
∫
drn exp

(
− 1

kBT
u (rn)

)
δ
(
MN

R (rn)−RN
)

(3.30)
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exp

(
− 1

kBT

N∑
I=1

1

2MI

P2
I

)
∝
∫
drn exp

(
− 1

kBT

n∑
i=1

1

2mi

p2
i

)
δ
(
MN

P (pn)−PN
)

(3.31)

Equation (3.30) fixes the consistency condition in configuration space and determines thus

the coarse grained potential U(RN)

U
(
RN
)

= −kBT ln z
(
RN
)

+ (const.) (3.32)

where

z
(
RN
)
≡
∫
drn exp (−u (rn) /kBT ) δ

(
MN

R(rn)−RN
)
. (3.33)

The gradient of this potential with respect to RI determines the CG force field acting on

the CG site with index I:

FI

(
RN
)

=

= −
∂U
(
RN
)

∂RI

=
kBT

z
(
RN
) ∂z (RN

)
∂RI

= (3.34)

= − kBT

z
(
RN
) ∫ drn exp (−u (rn) /kBT )

[∏
J 6=I

δ (MRJ
(rn)−RJ)

]
∂

∂RI

δ

(∑
iεII

cIiri −RI

)

where the sum over runs over atoms i belonging to the set of involved atoms of CG I II and

the relation δ(MN
R − RN) =

N∏
K=1

δ(MRK
− RK) and δ′[f ] = −δ[f ′] have been used. If the

partial derivatives with respect to RI in equation (3.34) are expressed as a linear combination

of partial derivatives with respect to atomistic coordinates, ∂/∂ri, an integration by parts

can be performed. Thus equation (3.34) can be expressed in terms of the atomistic forces

∂u(rn)/∂ri. The identity

∂

∂RI

δ

(∑
iεII

cIiri −RI

)
= − 1

cIk

∂

∂rk
δ

(∑
iεII

cIiri −RI

)
(3.35)

holds for every k ε II . Although this identity may be used in equation (3.34), if the atom k

is involved in other CG sites J 6= I, i.e. cJk 6= 0, the integration by parts will be complicated

by the dependence of the remaining (N − 1) mapping operators MRJ
(rn) on rk. This is not

a problem when the mapping operators are computing the position of the COM, but the

solution to such a situation will be derived for completeness. To avoid this, one can define

a set of coefficients dIi such that dIj 6= 0 only if i ε SI and such that
∑

jεSI dIi = 1 for all I.

One can then reformulate equation (3.35) as

∂

∂RI

δ

(∑
iεII

cIiri −RI

)
= −

∑
jεSI

dIj
cIj

∂

∂rj
δ

(∑
iεII

cIiri −RI

)
(3.36)
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One must assume that for every CG site there is at least one atom which is specific to the

site in order to obtain such an equation for every I. Now the integration by parts can be

performed:

FI (rn) ≡
∑
jεSI

dIj
cIj

fj (rn) (3.37)

FI

(
RN
)

= 〈FI (rn)〉RN =

∫
drn exp (−u (rn) /kBT ) δ

(
MN

R (rn)−RN
)
FI (rn)∫

drn exp (−u (rn) /kBT ) δ
(
MN

R (rn)−RN
) . (3.38)

Equation (3.38) provides an expression for the force on the coarse grained site I for a given

CG configuration RN in terms of a equilibrium average of FI
(
rN
)
, taken over atomic con-

figurations rn which are mapped onto the given CG configuration. FI
(
rN
)

itself is a linear

combination of the atomic forces acting on the atoms which are specific to site I. Equa-

tion (3.38) provides the basis for a variational principle and an applicable algorithm for

calculating the many-body potential of mean force (PMF) from simulations of the atomic

system.

In order to guarantee consistency not only in configuration space but also in phase space

additional conditions are required. Equation (3.31) represents the consistency condition in

momentum space. In order to be able to express the right hand side of the equation as a

product of separate factors (as the left hand side), we must require that no atom i is involved

in more than one CG site. Therefore, we define the mass of CG site as:

MI =

(∑
IεII

c2
Ii

mi

)−1

(3.39)

Variational Principle

We consider the vector space of CG force fields: every element of the vector space is a set

of real continuous functions, G
(
RN
)

= {G1

(
RN
)
, ...,GN

(
RN
)
}, of the CG configurations

RN . We shall refer to these sets of functions as a single function. This vector space contains

the atomistically consistent CG force field F
(
RN
)

determined by equation (3.38). The

functional

χ2[G] =
1

3N

〈
N∑
I=1

|FI (rn)−GI

(
MN

R (rn)
)
|2
〉

(3.40)

is defined, where the angular brackets denote an canonical ensemble average within the

atomistic model and FI(rn) is the atomistic force associated with site I (see equation (3.37)).

The global minimum of such functional is achieved when GI

(
RN
)

= FI

(
RN
)

for I =
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1, ..., N . We define the norm in this vector space as:

‖G‖ =

〈
N∑
I=1

|GI

(
MN

R (rn)
)
|2
〉1/2

=

(∫
dRN

N∑
I=1

|GI

(
RN
)
|2pR

(
RN
))1/2

(3.41)

With equation (3.41) we can define a distance between two elements G and G′ of the vector

space as ‖G−G′‖.

The dimension of the vector space is infinite, we may therefore define a set of ND linearly

independent vectors GD
(
RN
)

= {G1:D

(
RN
)
, ...,GN :D

(
RN
)
} for D=1,...,ND of the vector

space (of CG force fields), which form a finite but incomplete basis and consider the subspace

spanned by these. Each component of a vector in the given subspace is represented as

GI

(
RN : φ

)
=

ND∑
D=1

φDGI:D
(
RN
)
. (3.42)

It can be shown that a minimum of χ2[G] in this subspace exists and that it is unique [77].

This minimum is the member of the subspace which minimises the distance (as defined in

equation (3.41)) to the CG force field F(rn)

In the limit that the set of ND basis functions is sufficiently complete and provided that

the simulation data are sufficiently accurate to evaluate ensemble averages with sufficiently

small statistical error an accurate numerical approximation of the many-body force field F

can be obtained using this variational principle.

In practice (i) the basis set will not be complete and (ii) the data will be affected by some

statistical error. The accuracy of the obtained CG force field will therefore rely on the choice

of the basis set and the appropriateness of the simulated data.

Once we have the ND basis functions and a set nt configurations, we can express equa-

tion (3.40) as:

χ2[G] =
1

3Nnt

nt∑
t=1

N∑
I=1

|FI (fnt (rnt ))−
ND∑
D=1

φdGI:D
(
MN

R (rnt )
)
|2 (3.43)

It is convenient at this point to adopt a more compact matrix notation: f denotes a column

vector of dimension 3ntN where the three components of every FI(rnt ) =
∑
iεII

fi (r
n
t ) vector

are ordered one after another for every CG site (one after another as well) in every sampled

configuration rnt . φ is a vector of dimension ND. GD is a column vector of dimension 3ntN

where the three components of every GI:D
(
MN

R (rnt )
)

vector are ordered one after another for

every CG site (one after another as well) in every sampled configuration rnt . G is a matrix

of ND columns and 3ntN rows, where every columns is a GD vector for D=1,...,ND . With
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3.2. Computation of effective interactions: Multi-scale coarse graining method

such a notation equation (3.43) transforms in:

χ2[G] = |f− φG| (3.44)

and the problem of finding the minimum to χ2[G] turns into finding the φ vector which

satisfies:

Gφ = f (3.45)

Solving equation (3.44) will not be trivial, as in general G will be big (3ntNxND) and sparse.

In this work we use the LSQR algorithm [78, 79] of Paige and Saunders.

3.2.2. Effective pair interactions

Zero-density limit

In this thesis we are interested in computing the effective interactions of macromolecular

polymeric colloids (polymers) when coarse-grained to effective particles placed in its centre

of mass. As a first approach, one assumes that the system can be described via pairwise

additive forces. Defining a cut-off Rmax for the radial component of the interaction and

dividing the distance from 0 to Rmax into ND intervals, one can use a set of ND basis

functions fD(R) and express the force acting on a particular CG site with index I as:

FI(R
N) =

∑
J 6=I

ND∑
D=1

φDfD(RIJ)R̂IJ (3.46)

with RIJ = |RJ −RI | and R̂IJ the unitary vector pointing in the direction RJ −RI , so that

GI:D(RN) =
∑
J 6=I

fD(RIJ)R̂IJ . (3.47)

In this work we use for fD(R) linear splines, which are defined as:

AD (R) ≡ RD+1 −R
RD+1 −RD

(3.48)

BD (R) ≡ R−RD

RD+1 −RD

(3.49)
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fD (R) ≡


BD−1 (R) if RD−1 < R 6 RD

AD (R) if RD < R 6 RD+1

0 otherwise.

(3.50)

With the set of nt saved configurations ({rn, fn(rn)}) one can then:

(i) compute the positions of the centres of mass MN
R (rn) as a function of the atomic

positions via the mapping operator in equation (3.23),

(ii) compute the vector f by mapping the atomic forces to the force exerted on the COM

of the molecule making use of equation (3.37),

(iii) use the computed vector MN
R (rn) and equation (3.46) to compute G

(iv) solve equation (3.45) and obtain a solution for φ.

For the set of nt saved configurations, a solution will be found for all the coefficients φD.

This means, that the set of configurations must big enough so that all distances in the ND

intervals can be sampled.

In a conventional MD simulation at zero-density the two polymers will keep during most of

the simulation the equilibrium distance; thus other distances will not be sampled sufficiently

often. In such cases, we need to apply some tricks to the MD simulation. We propose the

utilization of two springs between the COM of the polymers (MR1(r
n),MR2(r

n)) and the

geometric centre of these two points, Rgeo = (MR1(r
n) + MR2(r

n))/2. The springs exert an

extra force on each atom:

F1−2

spring(rn) = α
(
|Rgeo −MR1−2(r

n)| − rl
) Rgeo −MR1−2(r

n)

|Rgeo −MR1−2(r
n)|
, (3.51)

where α is the strength of the spring, and rl is the equilibrium length of the spring which

shall be varied during the simulation in order to sample all the relevant configurations .

F1
spring(rn) acts on the monomers in I1 and F2

spring(rn) acts on the monomers in I2. Along

a simulation rl has been varied from rl = Rmax/2 down to rl = 0. The force exerted by

the spring can easily be subtracted from the atomic forces, having therefore no effect on the

final effective force.

Finite densities

To compute the effective pair interaction at finite densities we have performed NV T simula-

tions for a sufficiently large number of polymers N . Again we need to have enough samples

of all the distances between the COMs, therefore we have to simulate our system at densities

at which the radial distribution function does not vanish in the R-range of interest. This,

unfortunately, rules out the possibility of computing effective potentials in the solid phase.

42



4. Diffusion in cluster crystals in the

explicit presence of a solvent

4.1. Introduction

In this part of the thesis we focus on the dynamical behaviour of particles in a GEM cluster

crystals. Several features of this hopping processes were investigated in detail by means of

molecular dynamics (MD), Monte Carlo (MC) and Brownian dynamics (BD) simulations

[24, 25, 30]: it was found that particles propagate in a cluster crystal between lattice sites

through an activated hopping mechanism [24, 30] and the question was raised and discussed

whether the diffusive motion of the particles corresponds to anomalous diffusion [25], a

feature that is typical for Lévy flights [80–83].

However, all the preceding studies did not accurately incorporate the effects of the solvent

and the ensuing hydrodynamic interactions (HI). Of course the influence of the HI can be

considered to be of less relevance in investigations dedicated to the static properties, such

as the phase diagram. However, as we proceed to dynamic properties, such as diffusion, the

solvent often plays a significant role, and therefore should not (or even must not) be neglected

in a faithful description of the system. The relevance of the solvent for the dynamics has

been shown, for instanced, for charged colloidal suspension [32] by means of Schmoluchowski

dynamics and for short polymer chains [33] by means of multi-particle collision dynamics

simulations (MPCD). We will demonstrate in this contribution that this is also the case for

our system at hand.

We explicitly take into account the solvent by performing MPCD simulations (see subsec-

tion 3.1.2). We investigate the influence of the solvent by varying the number of MD steps

performed between every MPCD step. We have considered two set-ups: (i) In section 4.2 we

have investigated, similar as in [25], the hopping processes of a pure system of cluster-forming

GEM-4 particles. (ii) In section 4.3 we have added non-cluster-forming colloidal (Gaussian)

particles to a cluster crystal, similar as in [30], where the clustering particles interact via a

GEM-8 potential.

4.2. Hopping processes in a pure system

We simulate a system of N = 3367 GEM-4 particles. ε and σ in equation (2.4) will be

used as the corresponding energy and length units. We will take ms, the mass of the solvent
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4. Diffusion in cluster crystals in the explicit presence of a solvent

Figure 4.1.: Schematic phase diagram of a system of GEM-4 particles in the (T, ρ)-plane,
indicating the range of stability of the fluid phase and of the bcc and fcc clus-
ter phases respectively. Filled circles specify the systems investigated in this
contribution. Taken from [84].

particles as the mass unit and the rest of the quantities will be expressed in reduced units, as

specified in appendix A.appendix A. The particles are arranged in a fcc lattice with a cubic

lattice constant a = 2.018, calculated with equation (2.19).The temperature of the systems

is varied between T = 0.4, 0.6 and 0.8 in units of kB/ε. In figure 4.1 the phase diagram

of a GEM-4 system is shown. For convenience we have marked those state points where

simulations have been carried out; they all correspond to states where the system forms a

cluster crystal. It is clear that they all correspond to cluster crystals.

In what follows we specify the values of the parameters used in the MPCD simulation,

defined in subsection 3.1.2: the mass of the solvent particles, ms, is used as the mass unit,

therefore ms = 1. The mass of the GEM particles was then set t used as the mass unit,

therefore ms = 1. The angle of the rotation in the collision step is α = 130◦, the cell size

is c = σ and every cell is initially filled with 30 solvent particles. The time step for the

MD algorithm is ∆tMD = 0.002. An MPCD step was performed every τ MD steps so that

∆tMPCD = τ∆tMD; for τ we assumed the following values: τ = 50, 100, 250, 500 and ∞ (the

latter one corresponds to a pure MD simulation) to study the influence of the solvent. Each

simulation was extended over a total time of ttotal = 10000t∗, positions and velocities of the

colloidal particles were recorded along the simulation.
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4.2. Hopping processes in a pure system

4.2.1. Mean-squared displacement

We first analysed the mean-squared displacement (MSD):

δr2
i (t) = 〈|ri(t)− ri(0)|〉 for i = 1, ...,N. (4.1)

From its time dependence, one can draw conclusions whether the particles of the system

propagate (predominantly) ballistically, i.e. δr2(t) ∼ t2, or if they show diffusive behaviour

(be it either sub-diffusive, i.e. δr2(t) ∼ t<1, or normal, i.e. δr2(t) ∼ t1,).

Figure 4.2 shows δr2(t), i.e. the average of δr2
i (t) taken over all solute particles as a function

of time t, for the three different temperatures investigated T = 0.4, 0.6and0.8. For each

temperature different τ values have been considered. According to the evolution of δt2(t),

four different time regimes can be identified:

(i) the (trivial) ballistic regime at small t-values;

(ii) a region where δr2(t) shows oscillations;

(iii) a plateau-like region;

(iv) and finally the long-time regime, corresponding to normal diffusion, i.e. δt2(t) ∼ 6Dt,

where D is the diffusion coefficient.

Depending on the combination of the T - and τ -values, some of the regimes are covered by

or merged with other regimes.

At high temperatures, we observe for vanishing and weak HI (i.e. for τ & 250) characteristic

high-frequency oscillations due to single particle vibrational modes of the particles within

their clusters. With increasing influence of the solvent, these oscillations are gradually

suppressed, leading to a plateau that extends approximately over one decade in time. This

behaviour is due to the fact that for small τ -values the particles collide more frequently with

the surrounding solvent particles and thus quickly lose their memory about their original

flight direction, i.e. effects of inertia become completely negligible.

For larger t-values, the thermal energy (which is now of the order of magnitude of the energy

barrier between two clusters) allows solute particles to spontaneously jump from their original

cluster to a neighbouring lattice site, leading to a normal diffusion at large time-scales. The

onset of this regime varies by one order of magnitude over the τ -range considered in this

contribution. However, the presence of the solvent does not have an effect on the diffusion

constant.

As the temperature is decreased, the high-frequency modes show the same τ -dependence as

those observed for T = 0.8; they are slightly more pronounced and extend over a significantly

larger time-regime. The decreasing temperature has a distinct influence on the long-time

behaviour of the mean-squared displacement: with decreasing temperature the plateau region

continuously extends over a larger time span. At the lowest temperature considered (T = 0.4)
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4. Diffusion in cluster crystals in the explicit presence of a solvent

Figure 4.2.: Mean-squared displacement, δr2(t), as a function of time t for three different
temperatures as labeled for a system of cluster-forming GEM-4 particles in the
presence of a solvent. Results were obtained via MD (black) and MPCD simu-
lations with τ = 50 (red), 100 (green), 250 (blue) and 500 (purple). Taken from
[84]
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Figure 4.3.: Net jump length distribution Pnet(r/dnn) as a function of r/dnn for T = 0.6 and
0.8 for different τ values for a system of cluster-forming GEM-4 particles in the
presence of a solvent on a semi-logarithmic scale. Results were obtained MD
(black) and MPCD simulations with τ = 50 (red), 100 (green), 250 (blue) and
500 (purple). Taken from [84]

the curves of the mean-squared displacement remain flat (i.e. the diffusion constant vanishes)

over the observed time range. This is a consequence of the fact that the very small thermal

agitations essentially suppress any particle exchange between lattice site.

4.2.2. Jump length distribution

In order to obtain a better understanding of the diffusive behaviour of the solute particles we

have analysed the individual hopping processes of particles between clusters in more detail.

We have used the same algorithm to identify clusters in the system as the one outlined in

the appendix of [25]. We have recorded the trajectories of all particles along the simulations

runs in terms of the cluster that they belong to. We consider that a hopping event starts

when a particle abandons its host cluster, i.e. jumps to a different one. A hopping events

finishes when a particle stays in a cluster for a time longer than t?. We have chosen t? = 2,

which is of the order of a few vibrational modes, as can be seen in figure 4.2. We have

verified that taking t? = 3 or 4 has no quantitative influence on the results. Three different

types of hopping events have been identified:

(a) particles hops directly from the original cluster to the final clusters;

(b) the particle visits some intermediate clusters before it reaches the final cluster;

(c) or the particle visits some intermediate clusters and returns to the original one.

The net jump length of a hopping event is defined as rnet = |rfinal − rinitial|, where rfinal/initial

is the position of the centre of mass of the final/initial cluster.
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In figure 4.3 we have plotted the net jump length distribution Pnet(r/dnn) as a function of

r/dnn where dnn is the distance to the nearest neighbour for the different τ values at T = 0.6

and 0.8. At T = 0.4 no jump events were identified. This correlates nicely to the results

in figure 4.2 where the curves of the MSD are flat for T = 0.4, i.e. no diffusion takes place

at all. In contrast, at high temperatures (T = 0.6 and 0.8) the peaks in figure 4.3 and the

linear increase of the MSD in figure 4.2 provide a consistent picture that particle hopping

is the dominant mass transport mechanism in cluster crystals. From the data in figure 4.3

it can be seen that (i) at higher temperatures the jump length increases and (ii) that the

surrounding solvent plays a crucial role in the jump events of the GEM particles: for small

τ values Pnet(r/dnn) shows distinct peaks at short distances and rapidly goes to zero with

growing distance. In contrast, pure MD simulations display sizeable peaks even for large

distances.

These conclusions become more evident from the data compiled in table 4.1, where the length

of the largest observed jump for every run is displayed. The net jump length of the hopping

τ rmax/dnn, T = 0.6 rmax/dnn, T = 0.8
50 1 1.4
100 1.3 2.2
250 1.9 3.6
500 2.6 5
∞ 6 28

Table 4.1.: Largest net jump length for the various simulations at T = 0.6 and 0.8.

events can be up to a factor of 20 larger if the solvent is ignored.

The peaks of Pnet(r/dnn) at r = 0 correspond to jump of class (c), i.e. jumps where the

particle visits an intermediate cluster and returns to the original one. Integration over the

corresponding peaks in figure 4.3 leads to the data visualised in figure 4.4, where the total

number of jumps are divided into jumps terminated in the initial clusters, in the nearest

neighbour cluster or in any of the remaining clusters. At T = 0.8 and for strong solute-

solvent coupling (τ = 50) nearly all jumps are restricted to the cluster of origin (43%) and

the nearest neighbour cluster (56%). In contrast, in the complete absence of the solvent

(τ = ∞) only very few jumps (7%) terminate in the clusters of origin, while a sizeable

number of jumps extend beyond the nearest neighbour distance (36%). At T = 0.6 we

observe the same behaviour. Thus a strong coupling between the solute and the solvent

particles seems to introduce an additional energetic barrier which hinders long net jump

lengths.

Finally from the data presented in figure 4.3 we can definitely exclude the occurrence of

Lévy flights in cluster crystals in the presence of an explicit solvent: as the data displayed in

figure 5 of [25] Pnet(r) shows in the absence of a solvent (i.e. in MD simulations) a power law

decay, i.e. ∼ 1/r1+α, with α ∼ 2.2 [25], which represents an α-value which is slightly larger

than the upper limit required for Lévy flights [80–83]. Increasing the influence of the solvent
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Figure 4.4.: Integrated values of the net jump length distribution, Pnet(r/dnn) in figure 4.3,
integrated over distances corresponding to the initial clusters (“back”), the near-
est neighbour clusters (“1nn’) and the remaining clusters (“rest”) in per cent for
different τ values. Taken from [84].

by decreasing τ we observe that the long-distance behaviour of Pnet(r) is characterised by

increasingly larger α-values.

4.2.3. Distribution of the angle enclosed by successive jumps

To further characterise the nature of the long range jumps in the cluster crystal we have

extracted from our simulation data the correlation between the net jump length rnet and the

angle θ enclosed by two successive segments of the trajectory of a jump event (schematic

representation in the right panel of figure 4.5). The left panel of figure 4.5 shows the possible

consecutive jumps in the fcc unit cell. We consider all jumps of type (b) and (c), as classified

earlier in the text, and consider all the angles enclosed by the different segments of the jump.

In figures 4.6 and 4.7 we have depicted the the encountered angles θ as functions of the net

jump length (empty grey circles), the distribution of the net jump length Pnet(r/dnn) as in

figure 4.3 (solid line) and the average over all the encountered angles θ at a given rnet value,

〈θ〉 as a function of the net jump length rnet (filled coloured circle). Figure 4.6 shows the

results for T = 0.8 and figure 4.7 for T = 0.6 for all the different τ values considered. The

τ -dependence of the results is the same for both temperatures: in the explicit presence of a

solvent, the majority of jumps are rather short ranged. The preferred θ values are θ = 60◦ and

90◦, as the particles only jump back and forth to their second nearest neighbours, but do not

move along straight trajectories through the crystal. This picture completely changes when

the HI are neglected: especially for longer jump lengths, θ values of 120◦ and 180◦ dominate,

corresponding to slightly deflected or perfectly straight pathways trough the crystal. Thus,

the incorporation of HI significantly modifies the diffusion behaviour both on a quantitative

but also qualitative level: while in the MD simulations the diffusion is dominated by long

ranged and strongly correlated ballistic flights, the explicit presence of a solvent reduces the
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Figure 4.5.: Left panel: figure 5 of [25], showing the possible consecutive jumps of a particle
to nearest neighbours in the fcc unit cell. The full black circles indicate the fcc
lattice sites. Blue arrow: 60◦, r = dnn. Red arrow: 90◦ r =

√
2dnn. Green arrow:

120◦, r =
√

3dnn. Orange arrow: 180◦, r = 2dnn. Right panel: Schematic sketch
of a jump event, visualizing the net jump length, rnet and the related angles θ1

and θ2. Taken from [84]

responsible mechanism for mass transport to random jumps to nearby lattice sites.

Figure 4.8 shows the entire trajectory of two selected jump s at T = 0.8, the left panel

corresponds to a simulation with τ =∞ and right one to τ = 50. The entire trajectory can

be seen in the following videos:

• τ =∞ → https://www.youtube.com/watch?v=zix85_6ropM

• τ = 50 → https://www.youtube.com/watch?v=EG30bVmfYd8.

The videos show a short clip of the simulation. The GEM-4 particles are showed as semi-

transparent green spheres. A particle which will perform a hopping event within this time

window is selected and drawn as a solid blue sphere. For a better visualization of the

trajectory the particle leaves a blue wake behind it as it moves.

The reader can see a nice wrap-up of the results: in the video for τ = ∞ it can be ob-

served how the particles oscillate around the centre of mass of the cluster they belong to,

corresponding to the oscillations observed in figure 4.2 for small time values, whereas in

the video for τ = 50 these oscillations are lost due to the collisions with the solvent which

are appreciable from the bumpy trajectories of the particles. The particle in the video for

τ = ∞ performs a long jump following a straight trajectory which is interrupted when the

particle passes close by the centre of mass of a cluster by which it is attracted. The first

times that this happens the particle enters an orbit around the cluster and continues its

trajectory through the crystal. As the particle slowly loses its kinetic energy (that enables

it to abandon its host cluster) it temporarily oscillates around one cluster performing now

smaller orbits for a time shorter than t? (and therefore the jump does not terminate here).

The particle is still able to escape this cluster. Finally the particle has lost too much kinetic

energy and is eventually trapped in the terminal cluster. The particle in the video for τ = 50

performs a completely different trajectory: once the particle leaves its cluster, it is not able

50
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Figure 4.6.: Correlation between the angle θ and the net jump length rnet(seefigure 4.3) of
a jump event as a function of r/dnn at T = 0.8 for different τ values for a system
of cluster-forming GEM-4 particles in the presence of a solvent. The solid lines
correspond to the net jump length distribution Pnet(r/dnn. Open grey circles
represent θ values identified in the trajectory of a jump event that extends over
a net jump length of r/dnn and filled circles correspond to the average of all
θ-values at a fixed jump length, denoted by 〈θ〉. Taken from [84]
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Figure 4.7.: Same as figure 4.6 but for T = 0.6.
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4.2. Hopping processes in a pure system

Figure 4.8.: Selected jump trajectories for T = 0.8 observed over the time window in which
the jump takes place. The panels correspond to a simulation with τ = ∞
(left panel) and τ = 50 (right panel). The GEM-4 particles are showed as semi-
transparent green spheres. A particle which will perform a hopping event during
the time window of observation is selected and marked as a solid blue sphere.
For a better tracking of its trajectory the particle leaves a blue wake behind it
as it moves.

to move as fast as its counterpart in the video for τ = ∞ due to its collisions with the

solvent. It quickly loses the kinetic energy and is trapped in a nearest neighbour cluster.

4.2.4. Self-part of the van Hove correlation function

Finally, we have studied the influence of the properties of the solvent on time-dependent

correlation functions through the self-part of the van Hove correlation function, defined as:

Gs(r, t) =

〈
1

N

N∑
i=1

δ [r − |ri(t)− ri(0)|]

〉
. (4.2)

This function correlates the position of a tagged particle (with index i) at a time t = 0 with

its position at some time t > 0. It thus provides information about the spatio-temporal

correlations of a particle [85, 86].

The results for Gs(r, t = 6000), evaluated at T = 0.8, are depicted in figure 4.9. For all

τ -values considered in this contribution we observe cascades of peaks (with two pronounced

peaks at r = 0 and dnn). In contrast, the exponential decay at large distances depends in

a highly sensitive way on τ : smaller τ -values (and therefore smaller mean free paths) lead

to a faster decay, meaning that the hopping processes are limited to shorter jump lengths.

For completeness we mention that for none of the τ -values and time ranges investigated in

this contribution a Gaussian shape of the self-part of the van Hove correlation function has

been observed [85, 86]: however, we expect to observe this behaviour at considerably larger

t-values.
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Figure 4.9.: Main panel: self-part of the van Hove correlation function, Gs(r, t), at t = 6000
as a function of r/dnn at T = 0.8 for a system of cluster-forming GEM-4 particles.
Results were obtained via MD (black) and MPCD simulations with τ = 50 (red),
100 (green), 250 (blue) and 500 (purple). The inset shows the same data on a
semi-logarithmic scale. Taken from [84]

4.3. Hopping processes in a binary system

Now that the migration of cluster-forming particles through cluster crystals in the explicit

presence of a solvent is better understood, we consider a more complex scenario in what fol-

lows: we add ultrasoft, non-cluster-forming particles to the set-up considered in section 4.2.

In the following, we will denote these particles as type-A particles, while the cluster-forming

particles will be specified by the label B (introducing their concentration, cB). We have

chosen the index n = 8 for the GEM potential describing the interaction between the type-B

particles. The choice for this n-value is motivated by the investigations presented in [30]

and is justified by the fact that the change from n = 4 (section 4.2) to n = 8 (section 4.3)

will affect the properties of the cluster crystal only on a quantitative but not on a qualita-

tive level. The additional mesoscopic particles interact via a GEM-2 (Gaussian) potential,

guaranteeing that these particles definitely will not form stable clusters [11]. For the cross

interaction between the two types of ultrasoft particles we have assumed – similar as in [30]

– a GEM-4 potential, i.e. an interaction that also supports cluster formation. For the type

dependent σ-parameter entering in equation (2.4) we chose σAA = 0.3σ, σAB = 0.6σ, and

σBB = σ = 1. We investigate the system both in an MD simulation (τ =∞) and an MPCD

simulation (τ = 50).

We consider again three different temperatures, T = 0.8, 0.6 and 0.4, and four different
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4.3. Hopping processes in a binary system

values for the concentrations of the type-B particles, cB = 0.65, 0.8, 0.95 and 1.0. For every

concentration we choose a suitable box size such that a fcc lattice with four unit cells in

each spatial direction can fit in it. The spacing of the lattice is obtained via the theoretical

derivations in [87]. As argued in this contribution on the basis of a simple mean field

approximation [87, 88], the corresponding states are selected to be located on the so-called

λ-line, i.e. where the system is prone to crystallise. The total number of particles is adjusted

such that we achieve a total density ρ = 6.4, as in section 4.2. The parameters of the system

are specified in table 4.2

cB a L 〈Nc〉
0.65 1.930 7.718 7.57
0.80 1.896 7.584 8.73
0.95 1.864 7.456 9.76
1.00 1.857 7.428 10.25

Table 4.2.: System parameters of all investigated binary systems: concentration of the
cluster-forming type-B particles, cB, lattice constant of the cluster crystal, a
(in units of σ), simulation box size L (in units of σ), and average cluster size
〈Nc〉.

4.3.1. Mean-squared displacement

We start again our discussion with the mean-squared displacement presented in figure 4.10.

We present our results for type-A particles, δr2
A(t), in the left column and for type-B particles,

δr2
B(t) in the right column. data for the three different temperatures are shown in rows, as

labelled, for all the different values of the concentrations cB considered. MPCD results are

shown with solid lines and MD with dot-dashed ones. The results for all three temperatures

are on a qualitative level comparable. With decreasing temperature (and the ensuing reduced

thermal agitations) the hopping processes become less frequent. Reading from figure 4.10

we can see that we will not find any hopping events at T = 0.4 (both for MD and MPCD at

all concentrations) and at T = 0.6 these will only occur for cB = 0.65 in the MD simulation.

We therefore only concentrate in what follows on the results at T = 0.8.

A first, qualitative analysis of the mean-squared displacement of the type-A (GEM-2) par-

ticles, δr2
A(t) shown in the left panels of figure 4.10, reveals the expected and rather rapid

cross-over from the short-time ballistic motion to the long-time diffusive behaviour; the fact

that – irrespective of the concentration cB and the simulation scheme – all δr2
A(t)-curves

are characterised in their long-time limit by the same slope provides evidence that the dif-

fusion constant has in all cases the same value. Thus the cluster-crystal has essentially no

impact on the diffusion constant of the mobile particles. Further, in none of the curves an

intermediate oscillatory region is observed, indicating that the A-particles behave as a fluid

confined in a crystalline matrix of clustered B-particles. Throughout, a higher concentration
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in B-particles delays the onset of the diffusive behaviour: obviously due to the increase in

the number of type-B particles, the interstitial, non-cluster-forming type-A particles expe-

rience through the GEM-4 cross interaction stronger bonds to the clusters which delay the

diffusion and thus slow down the dynamics. Considering now the results of each type of

the simulation schemes separately, we observe distinctive differences: in the MD simulations

we see a rather direct and slightly concentration-dependent transition from the ballistic to

the diffusive regime. In the MPCD simulations on the other hand, the ballistic behaviour

terminates at t ∼ 10−1, followed by an intermediate regime that extends roughly over three

time-decades and is characterised by an exponent of t of approximately 1.25 to 1.3; even-

tually at t ∼ 102 the diffusive behaviour sets in [see also the discussion of GA
s (r, t) below].

The fact that in the explicit presence of the solvent the onset of the diffusive behaviour is

delayed by two orders of magnitude with respect to the MD simulation data emphasises the

eminent role of the solvent.

For the type-B (GEM-8) particles we observe a similar time dependence of δr2
B(t) as the one

observed for the pure GEM-4 case (see section 4.2 and figure 4.2): the MD-data for δr2
B(t)

show – after the ballistic regime – pronounced oscillations for all concentrations investigated,

reflecting single particle vibrational modes of the particles in the clusters; eventually – and

strongly dependent on cB – the linear diffusive behaviour sets in. The fact that the onset of

the diffusive regime shifts with increasing concentration of type-B particles to larger times

is related to the fact that cluster-crystals with higher cB-values are characterised by larger

occupancy numbers (see table 4.2); these larger clusters exert stronger binding forces on

the mobile cluster-forming type-B particles and thus delay their diffusive behaviour. In the

MPCD simulations, these oscillations are essentially suppressed due to the presence of the

solvent. Instead we find a broad time-regime where δr2
B(t) is essentially constant. Only

towards the end of the investigated time range (i.e. t ∼ 104), a cB-dependent onset of the

linear behaviour can be observed: the smaller cB, the earlier the diffusive behaviour sets in

(see also the related discussion in the previous paragraph).

4.3.2. Self-part of the van Hove correlation function

We conclude this section by evaluating the self-part of the van Hove correlation functions,

GA
s (r, t) and GB

s (r, t), for different values of concentration cB and different values of time t;

throughout, T was set to 0.8. The respective results are plotted in figure 4.11. By comparing

the data presented in panels a and b, we can trace how GA
s (r, t) develops at relatively short

times: for very small t-values (i.e., t = 80), a strong correlation between the non-clustering

type-A particles and the solvent particles can be observed, reflected in the MPCD data in

well-defined peaks for r ∼ dnn, which emerge for all concentrations; at t = 800, these peaks

are smeared out over larger distances, but are still sizeable. In contrast, the MD simulation

results for GA
s (r, t = 80) show no particular structure, indicating the rapid loss of spatio-

temporal correlations of the type-A particles and at t = 800 this function has essentially

vanished. This distinct difference emphasises the eminent role of the solvent in supporting
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Figure 4.10.: Mean-squared displacement, δr2(t), as a function of time t, left panel for the
type-A particles and right one for type-B particles, for three different temper-
atures as labeled for a system of cluster-forming GEM-8 particles in the pres-
ence of non-cluster-forming GEM-2 particles and a solvent. Dot-dashed lines
correspond to MD simulations results, while solid lines display MPCD data.
Different colours correspond to different values of cB (as-labelled). Taken from
[84]
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4. Diffusion in cluster crystals in the explicit presence of a solvent

Figure 4.11.: Self-parts of the van Hove correlation functions, GA
s (r, t) and GB

s (r, t), as func-
tions of distance. The upper panels show the results for the type-A particles
at T = 0.8 at t = 80 (left) and t = 800 (right) for concentrations of the
type-B particles cB = 0.65, 0.8 and 0.95 as labelled. The lower panels show
the results for the type-B particles at T = 0.8 at t = 6000 observed via MD
(left) and MPCD (right) simulations for concentrations of the type-B particles
cB = 0.65, 0.8, 0.95 and 1.0 as labelled. Taken from [84]

spatio-temporal correlations between the mobile, non-cluster-forming type-A particles over

relatively large time-spans. This phenomenon is also reflected by the intermediate region

observed in δr2
A(t) for 10−1 . t . 102 discussed above. Concluding we note that the loss

of spatio-temporal correlations is fully confirmed by the Gaussian shape of GA
s (r, t) [85, 86];

the diffusion constants, that we obtain from the respective fits are in satisfactory agreement

with the respective values extracted from the mean-squared displacements.

Finally, GB
s (r, t), is displayed in panels c and d of figure 4.11 for t = 6000. Within the MPCD

simulation scheme, this function shows for all values of cB pronounced peaks at r ∼ 0 and

r ∼ dnn and then vanishes rapidly for larger distances, providing evidence that the solvent

significantly slows down the mobility of the cluster-forming particles. In contrast, in the

absence of the solvent well-defined peaks up to r ∼ 3dnn are visible in the corresponding

data of the MD simulations. In both cases, a strong cB-dependence in the heights of the

peaks is visible.
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dimensional GEM-4 system

5.1. Introduction

So far, the static properties of ultrasoft cluster-forming systems have been studied exten-

sively, providing evidence that they show quite a few unexpected and intriguing features as

compared to their hard matter counterparts [21, 22]. In contrast, only very little is known

about the response of these systems to external fields such as pressure or mechanical shear

[31]. This chapter is dedicated to the study of the response of an ultrasoft nanocrystal of

particles interacting via the GEM-4 potential to an external hydrostatic pressure. Our inves-

tigations are motivated by the fact that previous studies on the equilibrium properties have

provided evidence that cluster crystals exhibit a highly unusual response to compression, due

to the inherent softness of the constituent particles: increasing the density in cluster crystals

does not induce a decrease in the lattice constant (as one would intuitively expect), but leads

instead to a linear increase in the average occupation number per lattice site [21, 23, 37]. As

mentioned in section 2.3, DFT calculations within the mean field approximation predict for

cluster crystals a density independent lattice constant. This conjecture was confirmed by

Mladek et al. [21] via independent NV T simulations performed at different density values.

In these simulations the authors found a linear dependence of the cluster occupation as a

function of density (see figure 4 of [21]).

The volume of the cluster crystal is given by

V = Ncellsa
3, (5.1)

where a is the spacing of the lattice, as defined in section 2.3 and Ncells is the number of unit

cells in the crystal. At the same time, Ncells can be expressed as

Ncells =
N

z〈nocc〉
, (5.2)

where z is the lattice dependent constant value, defined in section 2.3 and 〈nocc〉 is the average

cluster occupation in the crystal. If we insert equations (5.1) and (5.2) in the definition of

the density ρ we end up with

ρ =
N

V
=
znocc

a3
. (5.3)
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5. Compression experiments on a two dimensional GEM-4 system

Therefore, a linear dependence of nocc on ρ confirms that the lattice spacing a is ρ-independent.

Thus, it is clear that after a compression, and once equilibrium has been recovered, some

lattice positions must have disappeared and particles which were populating the clusters in

those lattice positions must have migrated to other surviving clusters. This redistribution

of particles is realised via two key processes, namely particle hopping and cluster merging.

Particle hopping is a characteristic transport mechanism in cluster-forming systems [24,

25, 84] where particle jumps extending over multiple lattice site are commonplace (both

in- and out-of-equilibrium). In contrast, merging of clusters essentially never occurs under

equilibrium conditions due to the high energy barriers that separate adjacent clusters in the

crystal. Under these conditions merging of two clusters would be an energetically highly

unfavourable process. This novel response to compression is unique for ultrasoft clustering

systems, setting them apart from conventional hard matter crystals, which react to pressure

exclusively via a reduction of the lattice constant.

We have exposed an ultrasoft nanocrystal of a limited number of particles interacting via

a GEM-4 potential (equation (2.4)) to compression. For computational reasons and in an

effort to enhance the transparency of the processes we have restricted ourselves to a two-

dimensional nanodrop where the clusters form a regular, hexagonal lattice. The motivation

to study a finite system instead of a bulk crystal lies on our initial hypothesis that merging

events will occur close to the surface that establishes the contact of the nanocrystal with the

pressure bath. In an effort to study these effects we have realised NPT conditions by bringing

the system into contact with an external combined pressure- and temperature-bath, formed

by ideal gas particles [36, 89, 90]. The target pressure (Pt) and target temperature (Tt) of the

combined baros- and thermostat are controlled via the number of ideal gas particles and their

velocities, respectively. Pressure and temperature are transferred from this reservoir to the

nanocrystal through a repulsive cross-interactions. The trajectories of all particles involved

are calculated in standard molecular dynamics simulations. The pressure or temperature is

increased repeatedly in steps of ∆P or ∆T at fixed Tt or Pt, thereby temporarily inducing

non-equilibrium conditions under which both hopping and merging processes can occur.

In section 5.2 we give a detailed description method used to simulate the pressure and tem-

perature bath. In subsection 5.2.1 we elaborate on the protocol used to compress and expand

or heat and cool the nanocrystal. Section 5.3 presents the results of this chapter grouped

in three subsections: subsection 5.3.1 elaborates on the effect of using different compression

rates in a compression experiment. We evaluate how different ∆P values affect the final

structural conformation of the nanocrystal and we examine under which circumstances the

nanodrop is able to recover equilibrium. In subsection 5.3.2 we analyse the results of sev-

eral compression experiments performed at various temperatures with different compression

rates. We study the path followed by the system to recover equilibrium:

• which clusters will disappear?

• What will happen with the particles belonging to those clusters?
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• Does the distribution of the kinetic energy in the system play a role in the response of

the nanocrystal to compression? Do over-heated clusters react in a different way than

the under-heated ones?

• Is the response of the system affected by the temperature and the compression rate at

which the experiment is performed?

• What role do hopping mechanisms play?

• Where do the merging events occur preferentially? In the core of the nanocrystal or

in the surface in contact with the pressure bath?

Finally in subsection 5.3.3 we will discuss how we can extract the equation of state of the

system from a combination of these compression experiments with subsequent annealing

runs.
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5. Compression experiments on a two dimensional GEM-4 system

5.2. Method

We follow the method for applying hydrostatic pressure in a simulation of a nanocrystal

presented by Grünwald et al. in [36, 89, 90], using an ideal gas as the pressure medium and

thermostat. We surround a system of particles interacting via the GEM-4 potential by an

ensemble of ideal –non-interacting– gas particles. The cross interaction between the ideal

gas and the GEM-4 particles is given by:

Φ(r) = εb

(σb

r

)12

, (5.4)

where σb is the interaction range and εb the interaction strength. We set εb = 1 and cut

and shift the potential so that it vanishes at rc = 2σb. The choice of σb is guided by

two considerations: on the one hand a large σb will produce a large number of interaction

partners, which will worsen the efficiency of the algorithm due to longer force calculations.

On the other hand, if σb is too small the gas particles will be able to penetrate in the GEM-4

system, and this unphysical effect has to be avoided. The size of σb is therefore determined

by the crystal structure. In our simulations we found σb = 1 to be an optimum value.

As there is no interaction between the ideal gas particles, the ideal gas is described by the

statistics of the particles enclosed in finite volume around the GEM-4 system. The surface

of this volume is given by the overlapping spheres of radius rc centred in the particles of the

nanocrystal surface. For computational reasons this minimum interaction volume is replaced

by a more generous volume, built up by cubic cells (of length rc) and delimited by orthogonal

surfaces. All the cells which could contain ideal gas particles separated by a distance equal

or smaller than rc from at least one particle of the GEM-4 system are filled with ideal gas

particles. Figure 5.1 shows a snapshot of the two-dimensional adaptation of this scheme.

The GEM-4 particles are shown in red and the ideal gas particles in grey. Thin grey lines

delimit the cells.

The pressure and the temperature of an atmosphere of ideal gas particles surrounding a

nanocrystal are determined by the velocity distribution and the density distribution of the

ideal particles. The main idea of this method for applying hydrostatic pressure is that

pressure and temperature in the ideal gas, and consequently in the nanocrystal, are controlled

by producing the right flow of particles into the volume and removing all particles that leave

the volume occupied by the ideal gas. Grünwald et al. performed a detailed derivation of

the statistics of an ideal gas in reference [89] which determines that the number of ideal gas

particles Nb that flow through a rectangular surface of area A(in 3D) or a line of length A

(in 2D) in a time interval ∆tflow is given again by a Poisson distribution PPoisson(Nb):

PPoisson(Nb) =
〈Nb〉Nb

Nb!
e−〈Nb〉, (5.5)
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Figure 5.1.: The minimal volume of cells around a GEM-4 crystal (red); the ideal gas particles
(grey) are injected or removed at the outer surface of the ideal gas. Taken from
[91].

where the mean is given by:

〈Nb〉 = ∆tflowAP

(
1

2πmbkBT

)1/2

(5.6)

where mb is the mass of the ideal gas particles. The components of the velocities of the en-

tering particles follow different distributions in the parallel and the perpendicular directions

to the surface (in 3D) or line (in 2D) A under consideration. The parallel components of the

velocity follow a Maxwell-Boltzmann distribution given by:

PM−B(v‖) =

√[
m

2πkBT

]d
exp

(
−
mv2
‖

2kBT

)
, (5.7)

where d is the number of dimensions in which the simulation is being carried out. The

probability distribution of the perpendicular components p(v⊥) is given by:

P (v⊥) =
mb

kBT
v⊥ exp

(
−mbv

2
⊥

2kBT

)
, (5.8)

since only those particles outside the minimal volume with a sufficiently high velocity will

reach the surface.

The equations of motion of the GEM-4 and ideal gas particles are integrated in a standard

MD simulation, using the velocity-Verlet integration scheme with a time-increment of δt =
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5. Compression experiments on a two dimensional GEM-4 system

0.002 (see subsection 3.1.1). As the ideal gas bath acts as a thermostat for the GEM-4

system, no additional thermostat is used in the simulation. The standard MD algorithm is

adapted to include the peculiarities of the ideal gas bath.

The main steps of the simulation algorithm are the following:

1. propagate the positions of the GEM-4 particles for one time step (first step of the

velocity-Verlet algorithm).

2. Check if the minimal volume has changed due to the propagation of positions of the

particles in the crystal. Remove cells and gas particles which are no longer needed.

3. Propagate the positions of the gas particles for one time step (first step of the velocity-

Verlet algorithm). Remove all gas particles that have left the minimal volume.

4. Place Nin particles on the surface of the minimal volume with positions drawn from a

uniform distribution. Nin is a number drawn from a Poisson distribution PPoisson(Nin)

(equation (5.5)) with an average given by equation (5.6). Assign to these particles

the appropriate parallel and perpendicular velocities with respect to the entering sur-

face. We introduce in equations (5.6) and (5.8) Tt and Pt, the target pressure and

temperature that we impose to the GEM-4 system.

5. If necessary add new cells and fill them with Napp gas particles. Napp is a number

drawn from a Poisson distribution with an average given by 〈Napp〉 = P
kBT

vcell, where

vcell is the volume of the cells, namely rdc . The positions of the particles are uniformly

distributed over the cell volume and their velocity distribution is Maxwell-Boltzmann

(equation (5.7)).

6. Compute forces and propagate all velocities of the GEM-4 and gas particles (second

step of the velocity-Verlet algorithm).

Configurations are saved every 1000 time steps. At this point, relevant quantities of the

system as the temperature Tm in the GEM-4 system, the pressure Pm or the density ρ are

measured. We define the measured temperature in the GEM-4 system Tm via the kinetic

energy of the GEM-4 particles:

TmkB =
2

d
m

N∑
i=1

v2
i

2
(5.9)

where N is the number of GEM-4 particles and m is their mass. The measured pressure Pm

is defined via the virial:

Pm = ρtkBTt +
1

3V

〈
(N+Nb)−1∑

i=1

(N+Nb)∑
j=i+1

f(rij)rij

〉
, (5.10)

where f(rij) is the force that particle j, separated by rij from particle i, exerts on the latter
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and ρt is the total density defined as:

ρt =
N +Nb

ncellvc

, (5.11)

being ncell the number of active cells (see figure 5.1). The density of the system of GEM-4

particles ρ is defined as:

ρ =
N

ncellvc − NbkBTb
Pm

, (5.12)

where Tb is the temperature measured from the kinetic energy of the ideal gas bath particles.

We define the quantities δT and δP as:

δT =
|Tm − Tt|

Tt

, (5.13)

δP =
|Pm − Pt|

Pt

, (5.14)

which measure the deviations of the temperature and pressure measured in the GEM-4

particles (Tm and Pm) are from the target temperature and pressure (Tt and Pt).

5.2.1. Compression/expansion or heating/cooling protocol

By appropriately varying Tt or Pt in step number 4 of the simulation algorithm we can

heat, cool, compress or expand the GEM-4 system. These procedures are characterised by

three quantities: ∆P or ∆T , twait and the tolerance range: after a pressure or temperature

change (∆P or ∆T ) has been applied, the GEM-4 system is perturbed and we have to let

the system relax to equilibrium. We consider that the system is back in equilibrium when the

quantities δT and δP are within a defined tolerance range. In our simulations we defined our

tolerance range to be 0.02 (2%), i.e. the system is in equilibrium if δT 6 0.02 and δP 6 0.02.

Once the system is in equilibrium and before we apply the next change ∆P or ∆T , we wait

during a time twait during which we measure relevant quantities of the system. In the results

presented in this thesis we use twait = 500. We define the time between two pressure or

temperature steps are applied as tP or tT , where the sub-index indicates that the target

pressure or temperature is kept constant during this time. tP or tT are the sum of the time

needed to recover equilibrium and twait. For a given ∆P or ∆T the value of tP or tT varies

along the simulation. Additional and independent runs under the same conditions provide

evidence that the values of tP or tT can differ for a specific pressure or temperature value;

nevertheless, these variations in the equilibration protocol do not affect the relevant data

about the structure of the GEM-4 system that we have extracted from these runs and that

we present in the following sections. This is demonstrated for the density ρ and the pressure

Pm in figure 5.2 where we compare Pm(t) and ρ(Pm) for two independent runs: although the
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5. Compression experiments on a two dimensional GEM-4 system

Figure 5.2.: The measured pressure Pm as a function of time (left) and the density as a
function of Pm (right) for two independent runs at Tt = 0.4 and ∆P = 10.

Figure 5.3.: Typical behaviour of the measured pressure Pm (red) and temperature Tm (blue)
during a heating (left) and a compressing (right) process. The target tempera-
ture Tt and pressure Pt are marked in cyan and green, respectively.

values of tP are very different, indicated by the difference in the length of the plateaus in

the left panel of figure 5.2, data for the density as a function of the pressure show a perfect

agreement between the two runs.

In figure 5.3 we show the typical behaviour of the GEM-4 system during a heating (left

panel) and a compression run (right panel). We can observe that after every increment in

temperature by ∆T (left panel) the measured pressure increases and respectively in the right

panel, after every increment in pressure by ∆P the measured temperature also increases.

There is however a fundamental difference between the behaviour of Pm and Tm: Pm instantly

adapts to Pt both during a compression (when a ∆P is applied) and in a heating (after the

initial perturbation induced by ∆T ). In contrast, Tm approaches Tt in an much slower way

both during a heating (once ∆T has been applied) and during a compression (after the initial

perturbation induced by ∆P ).
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5.3. Results

In the following we present the results obtained in a simulation of a two dimensional GEM-4

system surrounded by an ideal gas. Reduced units, as specified in appendix A, will be used.

If not stated otherwise, the ensemble of GEM-4 particles is of the size N = 6144.

In subsection 5.3.2 we compress the GEM-4 system at constant temperature. We explore the

temperatures Tt = 0.3, 0.4, 0.5, 0.6 and 0.7, and investigate how the GEM-4 system reacts to

compression. In subsection 5.3.3 we concentrate on T = 0.4 and we use the ideal gas bath

to extract the equation of state ρequ(Pm, Tt = 0.4). To this end we combine compressions

at constant temperature with alternating annealing processes at constant pressure, where

the temperature is raised until the system melts completely and then cooled down again to

Tt = 0.4.

5.3.1. About the compression rate

Before we focus on the analysis of the reaction of a GEM-4 system to compression we explore

the influence of ∆P on our results. We start our discussion by analysing its effect on the

measured temperature. In figure 5.4 we show how the Tm evolves as a pressure increment is

applied to a GEM-4 system at Tt = 0.4, Pt = 55. We compare the effect of four different

pressure increments: ∆P = 1, 2, 10 and 25. The curves are shown until a waiting time

twait = 500 has been completed. The inset shows the average value of tP , 〈tP 〉. We see how

with increasing ∆P the subsequent jump in Tt increases. Consequently, tP increases.

In figure 5.5 we elaborate more on 〈tP 〉 by plotting the values of 〈tP 〉 as a function of

temperature for different ∆P values. We see that although 〈tP 〉 increases with ∆P , the

proportionality constant is less than one. Therefore, ∆P must be adjusted to the purpose

of the simulation: if we are interested in measuring equilibrium quantities, as for example

the equation of state, we should rather take a small ∆P value so that Tm deviates as little

as possible form the Tt; if we are interested in reaching high pressure values we should use

a big ∆P value in order to reduce the simulation runtime; once the desired pressure value

has been attained, we wait for equilibrium to be recovered.

As for the influence of Tt on 〈tP 〉, for a fixed ∆P value, 〈tP 〉 decreases with increasing Tt.

We attribute this behaviour to the role of thermal fluctuations: with increasing Tt, they

become more pronounced and enable rearrangements of the particles in the system, which

are necessary to achieve the equilibrium configuration.

Naturally, the question arises whether the structural response of the GEM-4 system to

a compression is affected by the choice ∆P i.e. whether the configuration of the GEM-4

particles at a certain Pt value is affected by the chosen ∆P ,twait and tolerance parameter to

achieve this pressure.
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Figure 5.4.: Evolution of the Tt in a GEM-4 at Tt = 0.4, Pt = 55 after a pressure increment of
∆P = 1, 5, 10 and 25 is applied (colours as labeled). The waiting is twait = 500.
The curves are shown during the respective time tP . The inset shows the value
of 〈tP 〉 for the different values of ∆P .

Figure 5.5.: 〈tP 〉 for different compression simulations with different Tt and ∆P values (as
labeled).
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Figure 5.6.: Measurements of the density ρ as a function of the pressure Pm during a com-
pression run in a GEM-4 system of cluster-forming particles at Tt = 0.3 for
∆P = 1, 5, 10 and 25 as specified in the legend. The data points are coloured
according to the instantaneous temperature Tt of the GEM-4 system. Panels
(a), (b) and (c) show those points where δT = |Tm − Tt|/Tt is smaller than 0.02
(2%), 0.002 (0.2%) and 0.0002 (0.02%) respectively. 69
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Figure 5.7.: Same as figure 5.6 but for Tt = 0.4 (left) and Tt = 0.5 (right).
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Figure 5.8.: Same as figure 5.6 but for Tt = 0.6 (left) and Tt = 0.7 (right).
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To examine this question we present in figures 5.6 to 5.8 a superposition of the measured

ρ(Pm) curves during a compression run for Tt = 0.3, 0.4, 0.5, 0.6 and 0.7, respectively, with

different values for ∆P , as specified in the legend.

In panels (a) of the three figures we show the data for ρ(Pm) where δT 6 0.02 (2%); the

symbols are coded according to Tm. For each Tt we observe that although all the ρ(Pm)

data essentially follow the same curve, there is a considerable scattering of the results. We

observe that the scattering is in general stronger for larger δT -values. We test the effect

of the tolerance parameter by imposing a more restrictive criterion on the data shown in

the next two panels for each Tt: panels (b) show only the ρ(Pm) data where δT 6 0.002

(0.2%) and panels (c) present those results where δT 6 0.0002 (0.02%). The sets of data

belong, however, to the same simulation, which was run with a tolerance parameter of 0.02

(2%) (and not to new simulations with a smaller one). In panels (b) and (c) of figures 5.6

to 5.8 we see how data that are located further away from the average curve are eliminated

as the tolerance is decreased. It is specially clear in figure 5.8 where we see that for Tt = 0.6

in the pressure regime 50 . Pt . 70 the ρ(Pm) curve for ∆P = 5 shows ρ-values clearly

larger than those in the ∆P = 1 curve. As the tolerance is reduced, data belonging to the

(∆P = 5)-curve are eliminated, meaning that the states in the (∆P = 1)-curve are closer

to equilibrium results. We notice that with increasing temperature there is less scattering

of the data. Again, as Tt increases,it is easier for the system to stay closer to equilibrium

thanks to enhanced thermal fluctuations.

Tt ∆P δT < 0.002 δT < 0.0002
0.3 1 19.4% 1.96%

5 6.1% 0.61%
10 2.5% 0.25%
25 1.7% 0.16%

0.4 1 9.9% 0.98%
5 7.6% 0.71%
10 6.7% 0.67%
25 9.1% 0.91%

0.5 1 32.5% 3.22%
5 11.4% 1.18%

0.6 1 35.0% 3.48%
5 10.6% 1.06%

0.7 1 37.3% 3.67%
5 12.3% 1.18%
10 7.8% 0.81%
25 3.3% 0.29%

Table 5.1.: Percentage of ρ(Pm) measurements at different Tt values with δT 6 0.002 and
δT 6 0.0002 with respect to the number of measurements where δT 6 0.02 for
different ∆P values.

We quantify our findings by summarizing in table 5.1 the percentages of data which “survive”
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the more restrictive criteria in panels (b) and (c) with respect to the number of data shown

in panel (a). We observe that indeed at higher Tt values these percentages are bigger. We

also observe that at a certain temperature Tt, the system stays closer to equilibrium for

smaller ∆P values. The percentage of “surviving points” for ∆P = 25 is in all of the cases

very low, meaning that this compression rate is too fast for our waiting time (twait).

5.3.2. Compression experiments

We start our compression experiments for the GEM-4 system with a random configuration

of the particles in a square box with periodic boundary conditions. After an equilibration

phase we remove the periodic boundary conditions and surround the system with the ideal

gas particles at an initial pressure of Pt = 5 and the corresponding desired target temper-

ature Tt (0.3 to 0.7). The system is at this point in a liquid state. Then we start the

compression protocol described in subsection 5.2.1. Along the simulation we save the posi-

tions and velocities of the GEM-4 particles for the subsequent cluster analysis (described in

appendix B). By visual inspection we select a moment in the simulation where we consider

the system to be in the ordered phase; then we can start to identify via the cluster analysis

hopping and merging events. We keep track of the number of hopping particles (Nh) and the

number of particles involved in a merging event (Nm). We perform the simulation during

three days on a supercomputer using 12 parallel cores. Only in the case of ∆P = 1 we extend

the simulation over six days so that we are able to achieve at the end of the experiments

pressure values that are comparable to those obtained for other ∆P values.

Merging and hopping activity along a compression run

In figure 5.9 we present in a multi-panel figure the measured temperature, Tm, pressure,

Pm, and the number of particles involved in a hopping event, Nh, and in a merging event,

Nm, along the entire simulation for different Tt and ∆P values: rows are ordered by Tt and

columns by ∆P , as labeled. The grey vertical lines delimit the time intervals during which

Pt is kept constant. At the beginning the system is in the fluid phase and no information

about Nh and Nm is available.

We start by analysing the behaviour of Tm during the corresponding runs and its conse-

quences on the progress of the compression. For all temperatures and all ∆P -values we

observe that: (i) variations in the measured temperature Tm correlate with variations in the

hopping and merging activities, (ii) after every increase in pressure by ∆P a sudden jump

in Tm is observed and (iii) as anticipated in subsection 5.2.1 the time-intervals during which

the target pressure is kept constant differ in their length.

We next turn our attention to the merging and hopping activity. Once the system is in the

ordered phase, as we start our analysis: we observe an initial phase where hopping processes

dominate over merging events (Nh > Nm); we anticipate that this intermediate time-regime
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Figure 5.9.: Tm/Tt, Pm, Nh and Nm (as labeled) as functions of (simulation) time during a
compression a run at Tt = 0.7 (first row), 0.6 (second row), 0.5 (third row), 0.4
(fourth row) and 0.3 (last row) using ∆P = 1 (first column), 5 (second column),
10 (third column) and 25 (fourth column).
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corresponds to a low order phase measured by the order parameter Ψ6 (equation (5.17))

which will be discussed later on. Then, as the system attains a higher order configuration,

Nh stabilises around a constant value. On the contrary, for Nm we do not distinguish a

different behaviour along the compression experiment, with the exception of the data for

Tt = 0.6 with ∆P = 5 where we do see an initially higher value or Nm.

We observe that at low target temperatures the pressure increment ∆P has a strong influ-

ence on when the hopping and merging activities occur. For small ∆P values these events

are observed over the entire run, while for large ∆P values hopping and merging occur im-

mediately after the pressure step has been increased. As the target temperature increases,

this distinction in the behaviour at low and high ∆P values disappears and the hopping and

merging activity extends all over the run.

As for the impact of the target temperature on the merging and hopping activities, we

observe that while this quantity has little impact on Nm, the target temperature Tt has

a very strong influence on Nh: at low Tt, the value of Nm is considerably larger than Nh

while at high Tt both quantities are of comparable size. As we measure the cluster merging

activity we are purely recording the reaction of the GEM-4 system to a compression stem

is driven out of equilibrium): merging of clusters essentially never occurs under equilibrium

conditions due to the high energy barriers that separate adjacent clusters. On the other

hand, particle hopping is a characteristic transport mechanism in cluster-forming systems,

which also takes place in equilibrium. in chapter 4 that the hopping activity increases with

temperature. Since we do not have data to decouple the amount of hopping activity which

would be present if the system was in equilibrium from the hopping activity which is a

response to the compression, we cannot draw a conclusion whether this increase in Nh with

Tt means that the reaction of a cluster-forming system to a compression (in terms of the

ratio between Nh and Nm) is different at high Tt values.

Analysis of the clusters involved in a merging event

To better elucidate the nature of merging events we try to identify which clusters are prone to

merge by comparing the probability distributions of the occupation number, kinetic energy,

spatial distribution and number of nearest neighbours of the clusters involved in a merging

event compared to the rest of the clusters in the system:

• Cluster occupation:

In figure 5.10 we provide a more detailed study of the complex interplay between

hopping and merging processes of a cluster-forming system. In the left panel of fig-

ure 5.10 we plot the probability distribution of the size of the clusters involved in a

merging event normalised by the average cluster size measured in the system at the

moment where the merging event occurs. For each Tt we merge the data obtained from

different ∆P values. In the right panel of figure 5.10 we show the same data but now

we separate it by ∆P values, and for each ∆P value we merge the data obtained from
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Figure 5.10.: Probability distribution of the size of the clusters involved in a merging event
normalised by the instantaneous global average cluster occupation. (Left) Re-
sults are shown for simulations at different Tt (Data for different ∆P values
are merged in the same plot). Taken from [91]. (Right) Results are shown
for simulations at different ∆P (Data for different Tt values are merged in the
same plot).

different Tt. We find that, essentially irrespective of Tt and ∆P , the distributions have

their maxima at nocc/〈nocc〉 ∼ 0.7, i.e. clusters that are involved in merging processes

are smaller in size as compared to other clusters in the system.

We can thus make the following conclusion: ultrasoft, cluster-forming systems respond

to a compression by:

1) activated hopping processes which lead to

2) a spatially heterogeneous cluster size distribution;

3) under-occupied clusters feel a strong repulsion from larger neighbouring clusters;

4) and they are forced to approach each other and eventually merge.

Figure 5.10 demonstrates the important role of hopping mechanisms in the response

of a cluster crystal to compression: merging events mainly occur when small clusters

are pushed together by their larger neighbours. This can only occur if there is an

heterogeneous cluster size distribution in the system, which is achieved through the

hopping activity.

• Kinetic energy:

We also address the question whether the distribution of the kinetic energy among

the particles in the system has an effect on which clusters are merging. In figure 5.11

we plot for every Tt- and ∆P -value combination, the probability distribution of the

normalised temperature of the clusters, Tcluster/Tm, of all the clusters in the system

(Psystem(Tcluster/Tm)) and compare it to the distribution of the normalised temperature

of the clusters involved in merging events (Pmerging(Tcluster/Tm)). The temperature of a
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cluster is defined as:

Tcluster =
1

2
mv2

COM. (5.15)

For all Tt- and ∆P -values we observe that the maxima of both distributions (whole

system and only merging clusters) roughly coincide. For small Tt- and/or ∆P -values

both distributions coincide over the whole range of Tcluster/Tm. As Tt or ∆P increase,

Psystem(Tcluster/Tm) attains for small (Tcluster/Tm < 0.5) and large (Tcluster/Tm > 1.5)

values of the normalised temperature larger values than Pmerging(Tcluster/Tm): the nor-

malised temperatures of the clusters involved in a merging event concentrate around

Tcluster/Tm = 1.

• Spatial distribution of the merging events:

We next analyse the spatial distribution of the merging clusters in the system by

calculating the probability distribution of their relative radial coordinate drel. The

relative radial coordinate measures the distance between the COM of a cluster and

the COM of the whole system. It can take values between 0 and 1, so that drel = 0

means that the cluster is positioned in the centre of mass of the whole GEM-4 system

and drel = 1 means that the cluster is positioned on the surface in contact with the

pressure bath.

In figure 5.12 we plot the normalised probability distribution of drel, i.e. P (drel)/drel,

of the clusters involved in a merging event for different Tt values. Again, for each Tt

we merge the data from different ∆P values. We do not observe any trend in the data,

meaning that the merging events are homogeneously distributed in space. Therefore,

our original hypothesis that the frequency of merging events is higher close to the

surface cannot be confirmed.

• Number of nearest neighbours:

Finally, in figure 5.13 we plot the number of neighbouring clusters within a radius of

rc = 1.5, of the clusters involved in a merging event before (left panel) and after (right

panel) the event. The choice of rc is justified by the data presented in figure 5.16

(see below) in view of the fact that we find that the average distance to the nearest

neighbour cluster lies in the range [1.25,1.45]. We see from figure 5.13 that the clusters

which are merging are in general a defect of the hexagonal lattice with 5 nearest

neighbours.

In figure 5.14 we present for a time window between t = 4000 and t = 13000 the

superposition of the xy-positions at which merging events occur during a compression

run at Tt = 0.7 and ∆P = 10. The points are coloured according to the time at which

the events occur. We observe cascades of consecutive merging events which occur

preferably close to each other in space. The system is using merging events to delete

disclinations in the crystal.
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Figure 5.11.: Probability distribution of the normalised temperature of the clusters
(Tcluster/Tm) measured in the states where δT and δP < 0.002 (equilibrium
states) during the compression with different ∆P - and Tt-values, as labeled
and probability distribution of the normalised temperature of the clusters in-
volved in merging events.
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Figure 5.12.: Probability distribution of drel of the clusters involved in a merging event di-
vided by drel. Results are shown for simulations at different target temperatures
Tt (Data from different ∆P values are merged in the same plot).

Figure 5.13.: Probability distribution of the number of nearest neighbours within a radius
rc = 1.5 of the clusters before (left) and after (right) a merging event for
different target temperatures as labeled. Data for different ∆P are merged in
the same plot.
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x

y t

Figure 5.14.: Positions where merging events occur coloured according to the time within
the simulation at which they occur. The data is taken from a clip between
t = 4000 and t = 13000 of a compression run at Tt = 0.7 with ∆P = 10.

Cluster occupation and distance to the nearest neighbour along a compression

run

We next analyse in figure 5.16 for the different values of Tt and ∆P how the density ρ,

the distance to the nearest neighbour cluster dnn, and the average cluster occupation 〈nocc〉
evolve during a compression run. The distance to the nearest neighbour cluster is defined

as the position of the highest peak of the radial distribution function g(r) of the positions

of the centres of mass of the clusters:

g(r) =
1

Nc

Nc∑
i=1

Nc∑
j=i+1

δ(r− rcm
j + rcm

i ) (5.16)

where Nc is the number of clusters, and rcmi is the position of the centre of mass of the i-th

cluster. To help the reader to visualise how dnn is defined, we plot in figure 5.15 the radial

distribution function for a configuration in the fluid phase, when crystallization is starting

and in the crystallised state. The vertical arrows indicate for each configuration where dnn

is located in each case.

In figure 5.16 we observe that dnn assumes in the initial fluid phase values of dnn ' 0.5 (like

the blue curve in figure 5.15). As compression proceeds, an additional peak in g(r) appears

at r ' 1.4. There is a narrow transition region observed, where the value of dnn changes

between these two values (0.5 and 1.4). As the density increases, the peak at r ' 1.4 prevails

(like in the green curve in figure 5.15) and finally, one indicator that the system forms an
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Figure 5.15.: Radial distribution function of the centres of mass of the clusters in a fluid
(blue), a crystallizing (green) and a crystallised (red) configuration. The ver-
tical arrows mark with the corresponding colour the positions of the highest
peaks, i.e. the value of dnn for each case.

ordered phase is the disappearance of the first peak at r ' 0.5 (like in the red curve in

figure 5.15).

As the density in a cluster crystal increases as a reaction to the increase in pressure, the

system can react via two mechanisms:

• either a shrinkage of the lattice spacing, reflected in a decrease of dnn;

• or the deletion of some clusters, reflected in the increase of nocc.

Figure 5.16 provides evidence about the rate of the two mechanisms. We observe two distinct

behaviours for ρ: at low a compression rates (∆P = 1) ρ increases in a monotonous way,

while for large compression rates (∆P = 10 and 25) ρ increases in two steps: a sudden initial

increase immediately after the pressure step is applied and a second smoother one spanning

over a longer time window. For ∆P = 5 the behaviour of ρ lies between these two cases:

for Tt = 0.3 the two steps are observed at the beginning of the compression while for the

higher values of Tt the increase of ρ is rather monotonous. In the cases where ρ increases in

two steeps we observe that the initial decrease in volume correlates with a sudden decrease

in dnn accompanied by a sudden increase in nocc. In the second step where ρ increases, dnn

slowly increases and the volume reduction is achieved by the steady increase of nocc. In the

case where ρ increases monotonically, it does it in the same way as in this second step.

Therefore, we can conclude that the value of ∆P has a strong influence on how ρ increases:

for small ∆P -values there is no sudden shrinkage of the lattice constant immediately after

the pressure is increased. As ∆P increases this sudden shrinkage of dnn becomes more and

more pronounced.
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Figure 5.16.: Density ρ (pink), average cluster occupation 〈nocc〉 (cyan) and distance to
the nearest neighbour (orange) as a function of time. The dark-orange curve
presents a running average over 100 configurations (light-orange) correspond-
ing to 105 time steps. The panels are organised by Tt in rows and by ∆P in
columns, as labeled.
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For all the Tt- and ∆P -values we observe, as a general trend and omitting the sudden de-

creases in dnn sometimes present, that the spacing of the lattice shows an initial monotonous

decay with time and levels off to a value of dnn ∼ 1.28. Density functional theory calculations

based in a mean field approximation (section 2.3) predict a lattice spacing of a = 1.42, i.e. a

value considerably larger than our result of dnn = 1.28. The results obtained via annealing

processes to be presented in subsection 5.3.3 will help to enlighten the discrepancy between

the theoretically calculated value of the lattice spacing and the measured one.

Cluster occupation as a function of density

We plot in figure 5.17 the average cluster occupation at equilibrium (i.e. when the values of

δT and δP lie within the range of tolerance) as functions of the density ρ. We see that even

though we observed a small decrease in dnn with increasing pressure we can still observe the

linear dependence of 〈nocc〉equ with the density, as predicted in section 2.3.

Order parameter along a compression run

Finally, we pose the question whether the sudden increase of the density, which we observe

at high ∆P -values, will favour the formation of defects in the crystal, i.e. whether the

number of defects in the cluster crystal compressed at a rate of ∆P = 25 is bigger as in a

crystal compressed by ∆P = 1. To answer this question, we plot in figure 5.18 the (cluster)

order parameter Ψ6, which quantifies the hexagonal order of the clusters in the system, as

a function of density for the different target temperatures and different compression rates.

Following reference [92], we used:

Ψ6 =
1

N

N∑
j=1

1

nj

nj∑
k=1

exp (i6Θjk) , (5.17)

where nj denotes the number of nearest neighbours of cluster j, and Θjk the angle between

between the selected cluster and its nearest neighbours. By definition, Ψ6 attains a value of 1

for a perfectly hexagonal arrangement, while we found values Ψ6 ranging between 0.3 and 0.4

in the disordered liquid state. For compression rates where we have sudden decreases of dnn,

as in ∆P = 25, we see that every time that a pressure increase is applied the order parameter

decreases to later recover the original value. In the contrary, for ∆P = 1, where dnn changes

rather smoothly upon pressure increase, we see that also Ψ6 has a continuous evolution. We

observe that for all the compression rates, except for ∆P = 25, the order parameter attains

at equilibrium a value of Ψ6 ' 0.95. With these results at hand and the results presented

in subsection 5.3.1 (where we saw that for ∆P = 25 the GEM-4 system spent the great

majority of the run time out-of-equilibrium) we can conclude that a compression at a rate

of ∆P = 25 in combination with the chosen tolerance parameter and twait is too fast for

the system at hand, since it does not have enough time after the pressure is increased to
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Figure 5.17.: Average cluster occupation number 〈nocc〉 in equilibrium (when δT and δP are
less than the tolerance parameter) as a function of density ρ. The black dashed
line is a linear fit to the data. The panels are organised by Tt and ∆P , as
labeled.
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Figure 5.18.: Order parameter Ψ6 as a function of density during a compression run at dif-
ferent Tt (in different panels) and ∆P , as labeled. Symbols in faded colour rep-
resent measurements out-of-equilibrium sates while symbols with solid colour
represent data when δT and δP lie within the range of tolerance. The dash-
dotted black line marks the value Ψ6 = 0.95.

realise the necessary cluster rearrangements in order to correct the defects in the crystal and

is therefore not able to recover equilibrium before the next pressure increment is applied.

We have also checked if the fact that the order parameter does not increase above Ψ6 ' 0.95

is due to the size of the ensemble. In figure 5.19 we show the order parameter as a function

of density measured during the compression of a system with N = 6144 and N = 20736

particles. We see that in both cases Ψ6 saturates at the same value: Ψ6 ' 0.95, ruling out

the origin of this behaviour in size effects. We anticipate that the formation of defects in

the crystal is inherent to the method and that an annealing process, where temperature is

raised at constant pressure and then decreased to the original value, helps to attain a higher

order in the system. We will deepen in this issue in subsection 5.3.3.

Miscellaneous

To conclude this section we provide links to some videos of a compression experiment per-

formed at Tt = 0.7 using ∆P = 10. In the first video we show the full compression run at a

high speed; in the second and third ones we select a particular time window of the simulation

and play the movie in slow motion so that details can be better appreciated. The third video

corresponds to the time window presented in figure 5.14.

• First video → https://www.youtube.com/watch?v=bjN-Al08E8A
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5. Compression experiments on a two dimensional GEM-4 system

Figure 5.19.: Order parameter Ψ6 as a function of density during a compression run at Tt =
0.3 using ∆P = 1 in a system of N = 6144 particles (red) and N = 20736
(green).

• Second video → https://www.youtube.com/watch?v=CinfhJjMbvg

• Third video → https://www.youtube.com/watch?v=TaPnsfHzuVo

The videos show four panels organised as follows: in the top left panel we show in the title

running labels indicating the time (t), the measured pressure (here labeled as P instead

of Pm), the measured pressure (here labeled as T instead of Tm), the density (ρ) and the

average cluster occupation (here labeled as nocc instead of 〈nocc〉). In the plot we show

the density ρ (green) and the measured temperature T (red) as a function of the measured

pressure P during the whole run. The grey horizontal bar represents the tolerance interval

of temperature where δT < 0.002. Two big black crosses indicate the position in the ρ-

and P -curve where we are. In the top right panel we plot the positions of the particles in

grey and the centre of mass of the clusters with open circles, coloured according to the Ψ6

order parameter value for each cluster. The coloured bar in the right hand side shows the

legend and the black arrow head points in the legend the average Ψ6 value in the system at

that moment. In the bottom left panel we do a similar plot as in the top right one, but the

centres of mass of the clusters are now coloured according to the cluster occupation. Again,

the black arrow head points to the average nocc value in the system at that moment. Finally,

in the bottom right panel we plot the particles as filled circles coloured according to their

kinetic energy and the centres of mass of the clusters as opened circles coloured according

to Tcluster, as defined in equation (5.15).

In the bottom left panel merging events are easy to spot because there is a sudden increase

in the cluster occupation and therefore a strong change in the colour of the cluster. Since

clusters which have merged remain for a while over-occupied, the cascades of subsequent

merging events introduced previously on the text are easy to identify.

In the top right panel merging events are also easy to spot because right before the event

occurs , the clusters which are going to merge have a low Ψ6 value. One can see how as
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merging events occur, the order in the whole system increases.

Finally, in the bottom right panel we see how the kinetic energy is homogeneously distributed

in the system and it does not play a significant role in merging events. One could expect

the surface of the crystal in contact with the ideal gas to be slightly hotter and the centre

of the system to be slightly cooler, but this is not the case.

5.3.3. Equation of state

In what follows we concentrate on the results obtained at Tt = 0.4 using a compression rate

of ∆P = 1 and analyse whether the obtained ρ(Pm) curve corresponds to the equation of

state ρequ(P, T = 0.4). We choose the smallest value of ∆P , namely ∆P = 1, firstly because

in this way we obtain a more detailed ρ(Pm) curve, since we are sampling more (equilibrium)

ρ(Pm) points in the Pm-axis, and secondly because we have seen in subsection 5.3.1 that the

smaller the ∆P -value the closer δT will stay to zero, i.e. the closer the system will remain

to equilibrium. We test if the ρ(Pm) = ρequ(P, T = 0.4) by selecting particle configurations

of different state points along the ρ(Pm) curve and start simulations where the pressure is

decreased, i.e. ∆P = −1; this corresponds to an expansion run. If the system reproduces

the same ρ(Pm) curve, i.e. if ρcomp(P ) = ρexp(P ), we can argue that the GEM-4 system is in

thermodynamic equilibrium during the whole run and thus ρ(Pm) corresponds, at the given

T -value to the equation of state.

However, this is not the case, as it can be observed in figure 5.20. In the main panel we plot

ρ(Pm) during a compression run in red and during three expansion runs in blue. The big

black circles mark the initial state points of the expansion runs. We identify at Pm ∼ 15 the

transition between the fluid and the ordered state. In the fluid state ρcomp(P ) = ρexp(P ),

while in the ordered phase the expansion curves first follow parallel trajectories in the ρ, P

plane (at high Pm), which do not coincide with the compression trajectory. Then a second

regime is observed in the blue curves at low Pm-values, where ρ as a function of Pm becomes

steeper.

In order to test if the fact that ρcomp(P ) 6= ρexp(P ) is a hysteresis effect, we take two particle

configurations along two of the expansion runs and compress them. Results on ρ(Pm) during

these new compression runs are shown in dark red the inset of figure 5.20, where data of

the initial compression and expansion runs is shown in light red or blue. The initial state

points of the new compression runs are marked with a circle. The inset corresponds to the

(ρ, Pm) regime specified by a grey rectangle in the main panel. From a hysteresis effect we

would expect the data of the new compression runs to follow trajectories which are parallel

to the initial compression run. In the contrary, the dark red curve follows the trajectory of

the light blue curve and when the point where the light blue and light red curve meet is

reached, i.e. the ρ(Pm)-value at which the expansion run was launched, the slope of the dark

red curve changes and it follows the light red one.
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Figure 5.20.: Density ρ as a function of the pressure Pm during compression (red) and ex-
pansion (blue) runs in a GEM-4 system of cluster-forming particles at Tt = 0.4,
where ∆P = ±1. The inset shows the (ρ, P )-regime marked with a grey rect-
angle in the main panel. The initial compression run is shown in light-red and
the expansions runs are shown in light-blue. New compression runs are shown
in red. The big black circles mark the starting state points of the expansion
runs (main panel) and the new compression runs (inset).
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Cluster occupation vs lattice constant

To better elucidate what is happening in the GEM-4 system along the different branches

in the (ρ, Pm)-plane we take a closer look at the two different mechanisms through which a

cluster crystal can accommodate a change in volume: (i) the shrinkage/growth of the lattice

constant, reflected in a shrinkage/growth of the position of the main peak of the radial

distribution function dnn and (ii) the deletion/creation of new lattice positions, reflected in

a increase/decrease of the average cluster occupation 〈nocc〉 (obtained via a cluster analysis

as described in appendix B).

We first analyse the evolution of 〈nocc〉. In figure 5.21 we show in panel (a) the different

branches of ρ(Pm) in the (ρ, Pm)-plane obtained in the compression and expansion runs

coloured by the respective value of the pressure. In panel (b) we show 〈nocc〉 as a function of

ρ along the compression and expansion runs, and the points are again coloured according to

Pm. In both panels we have marked with a circle the ρ- and the 〈nocc〉-values at the moment

when the expansion runs were launched. We can classify the different branches into three

categories according to the behaviour of 〈nocc〉:

1. along the initial compression branch, marked by a dashed line, 〈nocc〉 increases linearly

with the density. We shall refer to this branch as the compression branch, as the data

corresponds only to data from compression runs.

2. Along the final part of the expansion runs, marked by a dash-dotted line, 〈nocc〉 is

again a linear function of the density. We shall refer to this branch as the expansion

branch, since the data corresponds only to data of expansion runs.

3. Along the initial parts of the expansion runs, indicated with solid lines, 〈nocc〉 is con-

stant (there are no cluster merging or splitting events). We shall refer to these branches

as the intermediate branches (lower, middle and upper), since the data correspond ei-

ther to compression or to expansion runs (inset of figure 5.20) and they connect the

compression and expansion branches.

We can conclude that the two different slopes observed in the ρ(Pm) curves during expansion

runs correspond to an initial volume expansion at constant average cluster occupation and

a second volume expansion via a reduction of 〈nocc〉, i.e. via a production of new lattice

positions.

We present the information about the lattice spacing by showing in figure 5.22 the same plot

as in panel (b) of figure 5.21 but now the data is coloured according to the dnn-value. In

the low density range (ρ . 3) the distance to the nearest neighbour is very short because

the system is in a fluid configuration. The abrupt change in dnn at ρ ∼ 3 is an artefact of

the cluster analysis: at this point we are in the ordered phase and we add additional steps

to the analysis (appendix B, step 4 is responsible for the jump in dnn). We observe different

values of dnn in the different branches:

1. In the compression branch, for 3 . ρ . 5, dnn decreases until it reaches a value,
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3

3

32

1

Figure 5.21.: Panel (a): density as a function of pressure in a GEM-4 system at Tt = 0.4
during compression and expansion runs where ∆P = ±1. Panel (b): average
cluster occupation as a function of the density for the same runs. The data are
coloured in both panels according to the respective Pm-value. The dotted line
indicates the compression branch (1). The solid lines indicates the intermedi-
ate branches (lower, middle and upper) (3). The dash-dot line indicates the
expansion branch (2).

Figure 5.22.: Average cluster occupation as a function of the density in a GEM-4 system at
Tt = 0.4 during compression and expansion runs where ∆P = ±1. The data
are coloured according to the respective dnn value. The dotted line demarcates
the compression branch. The solid lines demarcate the intermediate branches
(lower, middle and upper). The dash-dot line demarcates the expansion branch.
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dnn ∼ 1.28, which remains essentially constant for the rest of the branch. This value

corresponds to the minimum saturated value that we observed in figure 5.16 during

the compression experiments in subsection 5.3.2.

2. In the expansion branch we also observe a constant dnn value, dnn ∼ 1.48, at high

densities and a small variation again in the same ρ-regime (3 . ρ . 5).

These two values are the maximum and minimum dnn values observed.

3. In the intermediate branches dnn varies between dmax
nn and dmin

nn .

We conclude that if an ordered system of GEM-4 particles is compressed or expanded,

variations in dnn and 〈nocc〉 are completely decoupled: its immediate reaction is to reduce

or enhance the spacing of its lattice, a, within a range [dmax
nn , dmin

nn ] while keeping 〈nocc〉,
i.e. the system will move along the intermediate branches. If the system which has reached

a state where a = dmin
nn is further compressed, the inter-cluster interaction energy will be

high enough to activate the cluster merging processes: the system will achieve the volume

reduction maintaining a = dmin
nn by deleting lattice positions, i.e. 〈nocc〉 increases. On the

other hand, if the system which has reached a state where a = dmax
nn is further expanded,

the inter-cluster repulsion will not be strong enough to stabilize the clusters of overlapping

particles: thus these aggregates will start to split, maintaining a = dmax
nn the volume will

increase by creating new lattice positions, i.e. 〈nocc〉 decreases.

Annealing processes

The question which density value corresponds to an equilibrium state at a given pressure,

i.e. what is the equation-of-state ρequ(Pm), remains still unanswered. Based on the DFT

calculations within the MFA [23], we can assure that for each Pm there is one unique value

for ρ, a and 〈nocc〉 which corresponds to the equilibrium state. We assume that in our

experiments we are observing different values ρ, a and 〈nocc〉 along the different branches

because the system is trapped in metastable states separated from the equilibrium state by

a large energetic barrier. We thus launch several annealing processes for selected Pm-values

starting from particle configurations at that pressure selected from different state points in

the compression, expansion and intermediate branches.

During the annealing processes we maintain the target pressure constant and increase the

target temperature until the GEM-4 system loses the ordered structure. Then we cool the

system down to the initial temperature Tt = 0.4. We hope that the energy introduced into

the system by the heating processes allows the GEM-4 particles to overcome the energetic

barrier between the initial and the equilibrium state and expect all the annealing runs

starting from different ρ-values (in the different branches) at the same Pm-value, to end up

at the same density, i.e. ρequ(Pm).

In figure 5.23 we show the trajectory followed in the (ρ, Tm)-plane by three annealing pro-

cesses launched from different densities at Pt = 70. The values of ρ in the initial configura-
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Figure 5.23.: Left: ρ vs T along annealing processes of a system of GEM-4 cluster-forming
particles launched at Pt = 70 from the compression (red), middle- (green)
and upper-intermediate (blue) branches. The starting points of a process are
marked with a rectangle. As the run arrives at Tm = 1.2, ∆T is changed from
∆T = 0.1 to ∆T = −0.05. The final points are marked with a violet circle.
Right: A snapshot of the system at the moment where ∆T is switched.

tions are marked with a grey rectangle, the corresponding particle configurations were taken

from the compression branch (red), the middle intermediate branch (green) and the upper

intermediate branch (blue). During the heating process, the green and the red trajectories

merge at Tm = 0.6 and follow for the rest of the annealing run the same ρ(Tm) curve. The

blue trajectory meets the red and the green at Tm = 1.1, we observe, looking at the particle

configurations, that this is the point where the system starts to melt. As the annealing

processes reach a temperature of Tm = 1.2, the temperature increment ∆T is changed from

∆T = 0.1 to ∆T = −0.05. A snapshot of the particle configuration taken at that moment

is shown in the right hand side: it can be seen that the GEM-4 system has lost the ordered

structure. In the subsequent process the three cooling runs follow essentially the same tra-

jectory; eventually they reach a final common point ρequ(Pm = 70), marked with a violet

circle. Figure 5.23 demonstrates that the annealing processes lead indeed to an equilibrium

state.

The annealing process was repeated for Pm = 30, 40, 53, 60 and 80. The reader can imagine

that the corresponding curves in the (ρ, Tm)-plane are similar to those shown in figure 5.23, of

course the starting densities are different, leading, however, for each Pm-value to a common

ρequ(Pm). Those results obtained for different Pm-values are summarized in figure 5.24,

where the original ρ(Pm) curves from the compression (light-red) and the expansion (light-

blue) are shown (see figure 5.20). Additionally, the results from the annealing processes are

shown: the respective starting ρ(Pm)-values (marked in figure 5.23 by the grey rectangles)

are plotted in light-grey and the final ρequ(Pm)-values for all the annealing runs (highlighted
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5.3. Results

Figure 5.24.: ρ(Pm) curves for the compression (light-red) and expansion (light-blue) pro-
cesses of a system of GEM-4 cluster-forming particles at Tt = 0.4. The grey
circles denote the starting points of the annealing processes; along those runs
the pressure of the system is kept constant, while the temperature is first raised
until the system has melted and is afterwards decreased to the original target
value Tt = 0.4 The violet points denote the final density measured after an-
nealing in the different runs.

in figure 5.23 by a violet circle) are shown in violet. We see how through the respective

annealing processes we have succeeded in finding, for every Pm-value a final ρ-value common

to all the runs starting from different state points. We assume the curve followed by the

purple data to be the equation-of-state ρequ(Pm).

Finally, we have a look at the details of the structure that the system forms along the

ρequ(Pm) curve. We characterise the arrangement of the clusters via the average distance to

the nearest neighbour cluster, dnn, and via the hexagonal order parameters, Ψ6 defined in

equation (5.17) (both refer to the COM of the clusters). In figure 5.25 we show the correlation

between dnn and Ψ6 for all the state points investigated; data from the compression (red)

and from the expansion (blue) runs. These results are compared with the correlation values

obtained after the annealing processes (violet) and the value of the lattice spacing predicted

by DFT calculations in the MFA. On the one hand we observe that the order parameter

has slightly increased after the annealing processes, where it attains its maximum value:

obviously annealing is able to heal out lattice defects in the cluster crystal. On the other

hand we see that the obtained value for dnn ∼ 1.37 is slightly below the one predicted by DFT

(dnn = 1.42). We attribute this difference to the fact that we are investigating a nanodrop

and not a bulk system.
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5. Compression experiments on a two dimensional GEM-4 system

Figure 5.25.: Correlation plot of dnn and Ψ6 (see text) for the compression (red) and the
expansion (blue) processes of a system of GEM-4 cluster-forming particles at
Tt = 0.4. The violet points denote the data obtained at the end of the different
annealing runs. The DFT predicted value within the mean field approximation
for a 2D hexagonal lattice of GEM-4 particles is shown with a solid line.
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6. Amphiphilic, cluster-forming

polymer chains

6.1. Introduction

In this chapter of the thesis we study the behaviour of different polymeric structures with the

intention of designing an alternative macromolecule to dendrimers which can form a cluster

crystal at certain ρ, T conditions and aims to be easy to synthesise in a lab. Motivated

by the results presented by Meijer and co-workers [29], we explore the possibility of assem-

bling a cluster crystal with polymeric linear chains decorated by amphiphilic side groups.

In reference [29], Meijer et al. synthesised a series of water soluble random copolymers

Figure 6.1.: (a) Helical self-assembly of chiral BTAs. (b) PEGMA/BTAMA copolymers
(P1-7) with l=average number of glycol units, m=average number of PEGMA
units, n=average number of BTAMA units and o=average number of dodecyl
methacrylate units. (c) Ru-PEGMA/BTAMA/SDP segmented terpolymer. (d)
Supramolecular single-chain folding of polymers in water affording a compart-
mentalised catalyst. Taken from [29].
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(PEGMA/BTAMA copolymers P1-7) built up with blocks of hydrophilic poly(ethilene gly-

col) (PEG) and hydrophobic chiral benzene-1,3,5-tricarboxamide (BTA) substituents, where

the different P1-7 copolymers contained different PEG and BTA concentrations (see panel

(b) of figure 6.1). Their motivation to synthesise these polymers was to arrive at a poly-

meric chain carrying spatially separated catalytic units. The structural characterization of

PEGMA/BTAMA copolymers by various scattering techniques strongly supported the view

that intramolecular folding of the pendant BTAs results in collapsed single-chain nanopar-

ticles [29].

The amphiphility of the PEGMA/BTAMA chains and their ability to fold into a hollow

structure are very promising for the formation of cluster crystals. Therefore we made an in

silico design of an amphiphilic polymer chain; we varied several parameters in the model,

as the length of the chain, the nature of monomers (solvophobic, neutral or solvophilic),

the bond lengths and the monomer size and softness, which appear as parameters in the

monomeric potentials; and we calculated the zero-density effective interaction to test via the

criterion presented in subsection 2.2.1 if these chains will freeze into a cluster crystal. Once

we find a model whose Fourier transform of the effective interaction has negative components

, we estimate the spacing of the lattice (following the guidelines in section 2.3) and simulate

a cluster crystal. We start our simulation by positioning the polymers in a ordered crystal

structure and check if the crystal remains stable or if on the contrary the crystal melts.

The rest of the chapter is organised as follows: in section 6.2 we present the model system,

in section 6.3 we show the effective interactions of the different variations of the model

calculated at zero-density and the estimated freezing line and finally in section 6.4 we present

the results of monomer resolved and coarse grained simulations of a selected model in the

fluid and crystal phase.
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6.2. Model

We design two kinds of amphiphilic chains (AC): in the first one (left panel of figure 6.2) we

construct the backbone of the polymer with neutral monomers (C) and we attach solvophobic

(A) and solvophilic (B) side groups. We denote these chains as “ABC chains”. In the second

kind of AC (right panel of figure 6.2) we dispense with the neutral monomers and construct

the backbone with solvophobic (A) monomers and attach solvophilic (B) side groups to it.

We denote these chains as “AB chains”.

Figure 6.2.: Left: Sketch of an ABC chain. The backbone is formed by neutral (C)
monomers, attached to it are solvophobic (A) and solvophilic (B) side groups.
Right: Sketch of an AB chain. The backbone is formed by solvophobic (A)
monomers and attached to it are solvophilic (B) side groups.

We will use εunit = εAA and σunit = 0.5σBB of the Morse interaction in our first model AC-1

as the energy and length units, respectively (see table 6.1). All the monomers in the chain

have the same mass, m, which we will use as the mass unit. The rest of the quantities in

the text are expressed in reduced units as described in appendix A.

The number of A, B or C monomers in the chain are designated by NA, NB and NC,

respectively. The total length of the chain L is defined as L = NA +NB +NC, and is varied

from L = 100 to L = 20. In the case of the ABC chains, the ratio between NA and NB is

varied for a given L and NC is always NC = NA + NB. In the case of AB chains NA = NB

always. All the monomers in the chains interact with each other via the Morse potential

(equation (2.31)) and bonded monomers interact via the FENE potential (equation (2.30)).

In tables 6.1 and 6.2 we list the parameters of the Morse and FENE interaction of AC-1 to

AC-14, where AC-1 to AC-7 are ABC chains and AC-8 to AC-14 are AB chains.
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Morse AC-1 AC-2 AC-3 AC-4 AC-5 AC-6 AC-7
εAA 1.0 1.15 0.7 1.0
εBB 0.05
εCC 0.05
εAB 0.05
εBC 0.05
εCA 0.05
σAA 0.8 0.9 1.0 0.8
σBB 2.0
σCC 1.7
σAB 2.0
σBC 1.7
σCA 1.7
αAA 2.5 2.2 1.75 2.5
αBB 2.5
αCC 2.5
αAB 2.5
αBC 2.5
αCA 2.5

FENE AC-1 AC-2 AC-3 AC-4 AC-5 AC-6 AC-7
kAC 40
kAB 40
kCC 40
lAC 4.0 4.5 3.0
lAB 4.0 4.5 3.0
lCC 1.5 1.6 1.5
RAC 0.75
RAB 0.75
RCC 0.75

Table 6.1.: Parameters of the Morse and FENE interactions between the monomers in the
ABC chains (see text). Blank positions in the table mean that the parameter
takes the same value as in the in the column to the left. We mark in blue those
parameters which differ from the parameters of AC-1.
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Morse AC-8 AC-9 AC-10 AC-11 AC-12 AC-13 AC-14
εAA 0.714 0.5 0.714 0.6 0.7 0.714
εBB 0.01785 0.015 0.01785
εAB 0.01785 0.015 0.01785
σAA 1.0
σBB 2.5 2.0 2.5
σAB 1.75 1.5 1.75
αAA 1.8 2.5 2.0 1.9
αBB 6.0
αAB 6.0

FENE AC-8 AC-9 AC-10 AC-11 AC-12 AC-13 AC-14
kAA 60
kAB 30
lAA 3.1875
lAB 3.5625
RAA 0.6375
RAB 0.7125

Table 6.2.: Parameters of the Morse and FENE interactions between the monomers in the
AB chains (see text). Blank positions in the table mean that the parameter
takes the same value as in the in the column to the left. We mark in blue those
parameters which differ from the parameters of AC-8.
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6.3. Effective interactions

6.3.1. ABC chains

Chain length L = 100

We start our investigations with the ABC chain AC-1 of length L = 100 with NA/NB = 1, for

which which we measure a radius of gyration Rg = 3.64. We present the effective interaction

calculated in the zero-density limit together with its Fourier transform and some snapshots

of two interplaying ABC chains in figure 6.3.

We immediately see that the chosen model is very unrealistic: the solvophobic monomers

attract each other very strongly, making the attraction of the effective interaction at a

separation r = 0 of the centres of mass stronger than −5kBT . Furthermore, based on

the Fourier transform of the effective interaction we can predict via equation (2.23) that the

system will freeze at T = 1.0 into a cluster crystal at the extremely low density of ρfr = 0.007,

where ρfr is defined in units of the radius of gyration.

Figure 6.3.: Effective interaction Φeff(r) (red, bottom x-axis) of an ABC chain AC-1 of length
L = 100 with NA/NB = 1. The Fourier transform of the effective interaction
is shown in green, (top x-axis). Some snapshots of two interacting AC-1 chains
separated by different distances are shown.

We thus try to create more realistic models by changing the attractiveness between the

monomers (controlled by ενµ, ν, µ =A,B,C), the bond lengths (lνµ), the size of the monomers
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NA/NB Rg

AC-2 1/2 4.76
AC-2 1/3 6.22
AC-3 1 5.08
AC-4 1/2 4.73
AC-5 1/2 4.04

Table 6.3.: Radius of gyration, Rg, of different ABC chain models of length L = 100.

(σνµ) and their softness (ανµ): compared to AC-1 (i) in model AC-2 the attraction between

the solvophobic monomers is 15% stronger and the backbone bonds are slightly longer (we

use NA/NB = 1/2 and 1/3), (ii) in model AC-3 the attraction between the solvophobic

monomers is 30% weaker (we maintain NA/NB = 1), (iii) in model AC-4 the solvophobic

monomers are 12.5% bigger and 12% softer (we use NA/NB = 1/2) and (iv) in model AC-5

the solvophobic monomers are 20% bigger and 30% softer (we use NA/NB = 1/2). The

effective interactions are shown in figure 6.4 and the corresponding radii of gyration are

shown in table 6.3.

Figure 6.4.: Effective interaction Φeff(r) of ABC chains of length L = 100 AC-2 with
NA/NB = 1/2 (red), AC-2 with NA/NB = 1/3 (green), AC-3 with NA/NB = 1
(blue), AC-4 NA/NB = 1/2 (pink) and AC-5 with NA/NB = 1/2 (cyan). The
parameters of the models are listed in table 6.1.

We see that except for case where NA/NB = 1/3 (AC-2) the effective interactions are even

more unrealistic than in our initial model. Even though the effective interaction of the AC-2

chain with NA/NB = 1/3 has become, compared to AC-1 with NA/NB = 1, less attractive at

r = 0 (φeff(r = 0) ' −2kBT ), this value is still too large and the freezing density ρfr = 0.04

at T = 1.0 is still very low for the model to be realistic.
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From the results presented in figure 6.4 we see that the only change in the model which

leads to a better effective interaction, in comparison to AC-1 (not so strong attraction at

Φeff(r = 0) and higher freezing density), is the reduction of NA/NB. However, if we look at

the left-most snapshot presented in figure 6.5, where the folding process of two AC-2 chains

as the approach each other is shown, we see that the volume occupied by the non-attractive

monomers (B and C) of the molecules is in this case very big. A further reduction of NA/NB

will strongly hinder the formation of clusters, as the first two molecules forming a cluster

will easily overlap but then it will become more and more difficult for other molecules to join

the cluster as the shell is occupied by repulsive monomers. Therefore, we decide to instead

reduce the length L of the ABC chains. Like this, we could have a similar configuration

as the one in the left-most panel of figure 6.5, with the same number of monomers, but a

cluster of higher occupation.

Figure 6.5.: Three snapshots of the folding process of two ABC chains AC-2 of length L = 100
and NA/NB = 1/3 as they approach each other.

Chain length L = 60, 40 and 30

We reduce L to 60, 40 and 30 and consider AC-1 and AC-6 models for different NA/NB

values. In comparison to AC-1, AC-6 has smaller solvophobic (A) monomers and longer

bonds. In the top panel of figure 6.6 we present the effective interactions of ABC chains

with NA/NB = 1 of length 60 and 40. We see that the effective interactions are still too

attractive at short distances (Φeff(r = 0) > −2kBT ). In the middle panel of figure 6.6 we

reduce NA/NB to 1/2 and we see that the situation improves, especially for L = 30 where

we start to get GEM-like (purely repulsive) effective interactions. The radius of gyration

and estimated freezing density of each model are summarised in table 6.4 (for the case of

NA/NB = 1 we do not compute the freezing density as we can already discard the model by

looking at Φeff(r = 0)). For the chains of length L = 60 we obtain at T = 1.0 a freezing

density of ρfr = 0.2 for AC-1 and ρfr = 1.3 for AC-6. For L = 30 we obtain ρfr = 0.91 for

AC-1 and ρfr = 0.89 for AC-6. Finally, in the lower panel of figure 6.6 we reduce NA/NB to

1/3 and we get for L = 30 effective interactions which give a good fit to a GEM potential

with an exponent slightly below 3.
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Figure 6.6.: Effective interaction Φeff(r) of ABC chains AC-1 (red) and AC-6 (blue) of length
L = 60 (solid line), 40 (dashed line) and 30 (dot-dashed line). The top panel
shows results for NA/NB = 1, the middle panel for NA/NB = 1/2 and the lower
panel for NA/NB = 1/3, where also a fit to a GEM-like curve is shown (dotted
line). The parameters of the models are listed in table 6.1.
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L NA/NB Rg ρfr at T = 1.0
AC-1 60 1 4.29 -
AC-6 60 1 4.43 -
AC-1 40 1 3.82 -
AC-6 40 1 4.06 -
AC-1 60 1/2 4.64 0.2
AC-6 60 1/2 4.85 1.3
AC-1 30 1/2 3.76 0.91
AC-6 30 1/2 3.98 0.89
AC-1 40 1/3 4.15 1.21
AC-6 40 1/3 4.32 0.99

Table 6.4.: Radius of gyration, Rg and estimated freezing density, ρfr, at T = 1.0 (expressed
in units of Rg) of different ABC chain models.

Rg ρfr at T = 1.0
AC-1 3.38 0.94
AC-3 3.39 0.99
AC-6 3.98 1.31
AC-7 2.90 1.19

Table 6.5.: Radius of gyration, Rg, and estimated freezing density, ρfr, at T = 1.0 (expressed
in units of Rg) of different ABC chain models of length L = 20 and NA/NB = 1.

We are moving in the right direction towards a realistic design of cluster-forming chains; by

decreasing the length of the chains and the ratio between A and B monomers, the effective

interactions have become positive for all r values, assuming GEM-like shapes and obtaining

freezing densities around ' 1. We decide to pursue in this direction and to further reduce L

to 20 and target for similar results (GEM-like potentials) but maintaining NA/NB = 1.

Chain length L = 20 and NA/NB = 1

We present in figure 6.7 the effective interactions of ABC chains AC-1, AC-3,AC-6 and AC-7

of length L = 20 and NA/NB = 1. All the effective potentials are positive for all r-values

and have a local minimum at small r-values which will favour clustering. All the potentials

show Fourier transforms with negative components. The radius of gyration and estimated

freezing density for each model are given in table 6.5. Although all these systems are very

promising towards the design of a realistic model, we would still prefer to have a the freezing

density of ' 0.3− 0.4 so that the simulation of a bulk cluster crystal is computationally less

expensive.

For this reason we decide to simulate AB chains, hoping that by getting rid of the neutral

backbone the freezing densities will be considerably lower.
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Figure 6.7.: Effective interaction Φeff(r) of ABC chains AC-1 (red), AC-3 (blue), AC-6
(green) and AC-7 (pink) of length L = 20 and NA/NB = 1. The parameters of
the models are listed in table 6.1.

6.3.2. AB chains

We calculate the effective interactions of AB chains (right panel of figure 6.2) of length

L = 20. In the AB NA/NB = 1. We define chains AC-8 to AC-14, specified in table 6.2. The

effective interactions are shown in figure 6.8 and the radii of gyration and freezing densities

at T = 1.0 are given in table 6.6.

It is surprising to see how in AC-10 a decrease of just a 20% of the size of monomers A

with respect to AC-8, brings about such a dramatic change in the effective interaction.

This demonstrates how sensitive effective interactions are to small details of the monomer

interactions. Discarding AC-10, due to the strong (< −5kBT ) attraction at short distances,

the most promising effective interaction is that of AC-8. The freezing density is rather low

(ρfr = 0.33) and the attraction at the origin is smaller than kBT .

Rg ρfr at T = 1.0
AC-8 4.73 0.33
AC-9 4.98 1.56
AC-10 4.40 -
AC-11 4.88 0.73
AC-12 5.03 2.05
AC-13 4.87 0.74
AC-14 4.79 0.45

Table 6.6.: Radius of gyration, Rg, and estimated freezing density, ρfr, at T = 1.0 (expressed
in units of Rg) of different AB chain models of length L = 20 and NA/NB = 1.
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Figure 6.8.: Effective interaction Φeff(r) of AB chains AC-6 (red), AC-9(cyan), AC-10
(black), AC-11 (pink), AC-12 (orange), AC-13 (blue) and AC-14 (green) of
length L = 20. The parameters of the models are listed in table 6.2.
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6.4. Monomer resolved and coarse grained simulations

of AB chains

From all the designed models of amphiphilic polymer chains we choose our most promising

one: the AB chains AC-8 of length L = 20. We estimate the freezing line by using equa-

tion (2.23) and select four state points in the fluid phase, and three in the crystal phase.

The phase diagram with the selected state points is shown in figure 6.9.

Figure 6.9.: Phase diagram T, ρ of a system of AB chains AC-8 of length L = 20. The density
is expressed in units of Rg. The freezing line is estimated by DFT calculations
within the MFA (section 2.3). The filled circles correspond to the state points
where simulations have been carried out.

6.4.1. Simulations in the fluid state

We perform monomer resolved and coarse grained simulations of a system of AC-8 AB chains

in a fluid configuration over a time t = 1500 using a time step of δt = 0.002 in both cases

(MR and CG). In the coarse grained representation we use the effective potential calculated

at zero-density, presented in figure 6.8. The number of particles and volume of the simulation

box are given in table 6.7.

In the coarse grained simulation we initialise our system by giving the particles random

positions in the box and random velocities drawn from a Maxwell-Boltzmann distribution.

In the monomer resolved simulation we have to take care because the Morse potential diverges

at a monomer separation r = 0, therefore we have to avoid generating initial configurations

where the monomers are initialised too close to each other. This would produce very large

initial accelerations on the monomers, which would then move very far in the first time step

of the MD integration algorithm and the bonds would break. Therefore, we first initialise

each chain one by one isolated from the rest of the system: we place the monomers following

a random walk of steps of the length of the corresponding equilibrium bond length. Every
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6. Amphiphilic, cluster-forming polymer chains

Figure 6.10.: Radial distribution function of AB chains AC-8 of length L = 20 in the coarse
grained (solid line) and in the monomer resolved (dashed line) representation
at a density ρ = 0.07 (up left), ρ = 0.15 (up right), ρ = 0.22 (down left) and
ρ = 0.29 (down right), where the density is expressed in units of the radius of
gyration of an isolated chain.

time a new position is drawn for the random walk, we first check if it is overlapping with

any of the already existing monomers of the chain. We consider that two monomers are

overlapping if the Morse force acting on them is grater than 10.0εunit/σunit. If this is the case

we discard this position and draw a new one. Once an isolated chain has been created in

this way, a random point in the box is chosen for its centre of mass. We check if by placing

the chain at this point an overlap with any monomer in the other already existing chains

occurs. If this is not the case we accept this position and proceed with the next chain. If on

the contrary there is an overlap, we first randomly rotate the chain, and re-check. If after

5000 random rotations we still didn’t find a valid orientation of the chain, we choose a new

position for the COM and repeat the process. If after 2000 new positions for the COM in the

box we still have an overlap, we delete all the existing chains in the box and start from zero

again. The velocities of the monomers are also randomly drawn from a Maxwell-Boltzmann

distribution.

In figure 6.10 we present the measured radial distribution functions obtained in simulations

of fluid states at different density values. At low densities (ρ < 0.2) we obtain a very good

agreement between the MR and CG g(r). As the density increases many-body interactions

become more relevant and since the effective potential that we are using in the CG repre-
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sentation does not take these effects into account we start to observe disagreements between

the CG and the MR g(r). We see cluster formation both for MR and CG simulations at all

densities, indicated by the peak of g(r) at r = 0. In table 6.7 we show the average cluster

occupation and the maximum cluster size found in the system, both of them in the MR sim-

ulation, which were identified by performing the first step in the cluster analysis presented

in appendix B with rC = 3.0σunit = 0.65Rg. We see that even at the lowest density some

quite large clusters are forming.

ρ V N 〈nocc〉 (MR) nmax
occ (MR)

0.07 543 108 1.25 5
0.15 543 216 2.25 6
0.22 543 324 3.48 7
0.29 543 432 3.63 8

Table 6.7.: Density (in units of Rg of an isolated chain, see table 6.6), volume and number
of chains used in the MR and CG simulations of the fluid phase. We also show
the average and maximum cluster size found in the MR simulations.

6.4.2. Simulations in the crystal state

We now turn to the simulation of fcc cluster crystals of AC-8 AB chains. Based on the DFT

calculations within the MFA, once the system has crossed the freezing line, it will freeze in

a bcc crystal. Then, upon increasing density, there will be a phase transition to a fcc lattice

[23]. We can predict, based on the behaviour of systems with a similar interaction potentials

[21, 28], that the range of stability of the bcc phase will be very narrow in the phase diagram,

and therefore we simulate for all densities an fcc lattice. Applying equation (2.19) to our

system in hand, we obtain a = 18.0σunit = 3.8Rg. We construct an fcc lattice with three

cubic unit cells in each direction, i.e. with 108 lattice sites. We vary the occupation number

of the clusters in order to obtain different densities, as specified in table 6.8. The system is

simulated for a time t = 1500 using δt = 0.002 both in MR and CG representations.

For the coarse grained simulation we initialise the CG particle on the points of the lattice

and assign them random velocity from a Maxwell-Boltzmann distribution. In the monomer

ρ V N 〈nocc〉
0.36 543 540 5
0.44 543 648 6
0.51 543 756 7

Table 6.8.: Density (in units of Rg of an isolated chain, see table 6.6), volume and number
of chains used in the MR and CG the simulations in the cluster crystal phase.
We also show the average cluster occupation.

109



6. Amphiphilic, cluster-forming polymer chains

Figure 6.11.: Three snapshots of the cluster-forming process. (Left) Initialisation of the
process: nocc dendrimers are initialised equally spaced in a circumference of
radius long enough so that there are no overlaps. nocc spring are attached to
the COM of each dendrimer and the COM of the whole system. (Centre) The
rest length of the springs is slowly decreases in order to bring the dendrimers
closer to a cluster configuration. (Right) Final cluster configuration.

resolved simulation we first create nocc isolated chains, as described earlier in the text (sub-

section 6.4.1). We then position the AB chains equally separated on a circumference of radius

large enough so that no overlap between the monomers occurs (see right panel of figure 6.11).

We attach nocc springs to each of the COMs of the AB chains (RI
COM for I = 1,...,nocc) and

to the centre of the circumference (r0). These springs exert a force on the COMs, i.e. on all

the monomers of the AB chains, given by

FI
spring(RI

COM) = α
(
|RI

COM − r0| − rl

) RI
COM − r0

|RI
COM − r0|

, (6.1)

where α is the strength of the spring and rl its rest length. We use α = 1.0εunit/σ
2
unit

and slowly decrease rl from the radius of this circumference to rl = 0. A video of how

this process is realised is shown in https://www.youtube.com/watch?v=miWwT7erbv0, and

three snapshots of taken from the video are shown in figure 6.11.

Repeating this process, we generate 24 clusters. We define the size of the cluster as the

distance from the centre of mass of the whole cluster to the furthest monomer. We pick the

four smallest clusters, position them in an fcc cubic unit cell of size a and discard the rest of

the clusters. We check for overlaps, if these occur we perform a random rotation of each of

the four clusters and re-check again. If after 1500 rotations we still have overlaps, we re-start

the process by generating 24 new clusters. If on the contrary, we don’t get an overlap, we

repeat this unit cell three times in each direction and generate the fcc crystal.

In figure 6.12 we present the radial distribution functions obtained in all the simulations

of the cluster crystals. We observe that in the coarse grained simulation for ρ = 0.36 and

ρ = 0.44 the crystal is melting while for ρ = 0.51 it remains stable. We attribute this

behaviour to the fact that a bcc lattice might be more stable for ρ = 0.36 and ρ = 0.44.
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6.4. Monomer resolved and coarse grained simulations of AB chains

Figure 6.12.: Radial distribution function of AB chains AC-8 of length L = 20 in the CG
(solid line) and MR (dashed line) representation at densities ρ = 0.36 (up),
ρ = 0.44 (middle) and ρ = 0.51 (bottom) in units of Rg of an isolated chain
(see table 6.6). The systems are initialised in an fcc lattice with a = 18.0σunit.
The vertical dashed lines in the lowest panel show the positions of the nearest
neighbours of an fcc lattice with the corresponding a-value.

111



6. Amphiphilic, cluster-forming polymer chains

Figure 6.13.: Snapshot of the video presented in https://www.youtube.com/watch?v=

xGoynyf0gBU. See the text for a description.

In the monomer resolved simulations, although for ρ = 0.36 and 0.44 the peaks of g(r) are

slightly smeared, for all ρ-values, the positions of the maxima coincide with the positions of

the maxima in a fcc lattice, i.e. the peaks are not moving from the initial configuration: the

fcc lattice is stable in the MR level.

In https://www.youtube.com/watch?v=xGoynyf0gBU we present a video with the data from

the MR and CG simulation at ρ = 0.51, figure 6.13 shows a snapshot of this video. The

frame is divided into three panels: the left one shows the monomer resolved simulation with

the solvophobic monomers (A) in green and the solvophilic (B) ones in white. The right

panel shows the data from the CG simulation, where the CG particles are shown in solid red.

In the middle panel MR and CG data are merged: CG particles are shown in transparent

red and the COMs of the AB chains in the MR simulation are shown in transparent yellow.

The first and most important conclusion that one can draw from this video is that we have

successfully designed a polymeric structure which forms stable cluster crystals. Secondly,

we can observe how the behaviour of the CG particles and that of the MR chains, represented

by their COMs, differs: CG particles are more mobile, the clusters are more spread and some

particles follow orbits around the cluster very big in comparison to what the MR COMs do.

This is again due to the fact that in the CG simulation we are using the effective potential

calculated in the zero-density, which does not account for many-body effects.

With these results we terminate our investigations on amphiphilic chains. The model which

we have designed is stable in an fcc cluster crystal configuration at a density sufficiently

low so that a MR simulation if affordable. We have observed spontaneous cluster formation

in the fluid phase, where starting from a random configuration clusters of up to 8 chains

are formed, and we have seen that a system initialised in an fcc lattice with a = 18.0σunit

remains stable during a long simulation time. A study of spontaneous crystallization is still

missing as well as free energy calculations of the optimum lattice spacing.
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7. Effective interactions of polymeric

macromolecules computed at finite

densities

7.1. Introduction

In this chapter of the thesis we focus on the computation of effective interactions of polymeric

macromolecules. Effective interactions are commonly computed for two reasons: (i) To

build a coarse grained model of a system of polymers whose simulations will spare a lot of

computing time in comparison to a monomer resolved simulation and (ii) to gain insight into

the interaction between the macromolecules and predict the phases that a bulk system will

form. To date the most commonly used methods calculate the effective pair interactions by

averaging out the internal degrees of freedom of two isolated and interacting macromolecules

[12, 13], i.e. in the zero-density limit. However, it is to expect that many-body effects, which

are not contained in the zero-density effective pair interaction, will make the behaviour of

the macromolecule in a bulk system be different as in the super-dilute regime. Consequently,

correlation functions from CG simulations using the effective potential calculated at ρ = 0

will not reproduce the correlation functions of the MR simulation and the predictions based

on this approximation, as for example the prediction of clustering behaviour based on the

Fourier transform of the effective potential, might turn out to be erroneous as they are not

fulfilled in the MR simulations. An example of a system where many-body effects play a

crucial role is flexible polymer rings [14]: effective interactions calculated at ρ = 0 have

negative Fourier components, i.e. predict clustering at high densities which, however, does

not occur. Due to many-body effects, related to the deformation of the rings, the behaviour

of the MR system deviates from the behaviour of the CG system.

To circumvent the problems of zero-density effective pair potentials, one can go one step

further in the computation of the effective interaction, and try to calculate it at finite densities

[93, 94]. Such an approach implies of course going one (or several) steps further in the

complexity of the procedure: to start with, one needs to perform a MR simulation of the

system at the given finite density. An ensemble of at least N ∼ 102 will be needed to

produce the proper statistics, therefore the computational effort is orders of magnitude higher

compared to a zero-density simulation where only N = 2 macromolecules are simulated.

Bolhuis et al. proposed in [93] a method to calculate the effective interaction potentials at

finite densities. The authors performed monomer resolved simulations of linear polymer

chains and computed the radial distribution function, g(r), of the centre of mass of the
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polymers. They computed the effective interaction by inverting the g(r) using integral

equation techniques from the theory of simple fluids. This method is designed to reproduce

the pair correlation functions; however it involves integral equation techniques which are

approximate methods, due to the use of a closure relation.

Here we suggest to use an alternative method, the so-called multi-scale coarse grained method

developed by Voth et al. [15, 94] explained in section 3.2. This method is based on a force

matching algorithm, which matches the parameters of a functional form of the coarse-grained

force to reproduce the COM acceleration generated by the monomeric forces. It allows for

the computation of effective interactions at finite densities, and offers an absolute flexibility

in the functional form of the potential: the interaction can be expressed as a sum of two-

body and higher order terms, which can be functions of the inter-particle distance (r), the

angle enclosed by three particles, dihedrals, etc ...

In our calculations we build the functional form as an r-dependent two-body term, and

explore its density dependence by calculating the effective interaction with data obtained

from MD simulations at various ρ-values. The only requirement of this set-up is that we

need a MR simulation where the range of distances between two polymers spanning from

r = 0 to r = Rmax is visited, Rmax being the distance beyond which one can assume that two

polymers do not interact, i.e. we need a state which produces a g(r) which does not vanish

in the range 0 ≤ r ≤ Rmax. Therefore, the effective interaction can only be computed in

fluid states.

This chapter is organised as follows: in section 7.2 we present the effective interactions

computed at finite densities of non-clustering polymers in subsection 7.2.1 and of clustering

amphiphilic dendrimers in subsection 7.2.2. In section 7.3 we present the effective inter-

actions of an isolated dendrimer with a cluster of dendrimers to gain insight into why CG

simulations with finite density effective pair potentials do not always reproduce pair corre-

lations functions of MR simulations if the system forms clusters.
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7.2. Effective interactions at finite densities

In order to compute the effective interactions at finite density in the different systems listed in

the following subsections, we first perform MD simulations of an ensemble of N ∼ 102 to 103

polymers using the LAMMPS simulation package [95]. We perform NV T simulations with

the Nose-Hoover thermostat (subsection 3.1.1). We will specify in each system the values

of the parameters in the MD simulations, such as the time step ∆t (see equation (3.2)) and

the artificial mass of the thermostat Q (see equation (3.8)). We will use for Q the notation

of LAMMPS which works with the parameter Tdamp, defined as: Q = LβT 2
damp, where L is

the parameter appearing in equation (3.8), which takes the value L = 3N + 1.

To create the initial configuration we used the same procedure as described in subsec-

tion 6.4.1, where isolated polymers are generated and then fitted one by one into the sim-

ulation box, by trying different orientations and positions in the box, until no overlap with

the other polymers is found. In some of the cases we directly fitted the polymers into a box

of the desired size, while in other cases we first put them in a very large box, generating

thereby a very dilute configuration without problems due to overlaps of the monomers. We

then used the fix deform LAMMPS command, which starts with an initial box size and

rescales at every time step the positions of all the particles to arrive finally to the target box

size. We will specify in each system which method me used.

We first equilibrate the system, i.e. we wait until the total energy is constant, and then we

start to produce the necessary data for the coarse graining procedure: we save a sufficient

amount of configurations, where the positions and the forces acting on the centres of mass

(COMs) of the polymers are recorded, each of them taken every 500 to 5000 time steps.

We consider that we have saved a sufficient amount of configurations when, by adding more

configurations in the coarse graining procedure, the resulting effective potential remains

unchanged. To compute the two-body effective interactions we use the Multi-Scale Coarse

Graining procedure described in section 3.2. The parameters of the MSCG such as Rmax, ND

(see equation (3.42)) and the number of configurations nt will be specified in each system.

7.2.1. Non-clustering systems

We start our study with non-clustering system, i.e. linear polymer chains and athermal

dendrimers.

Linear polymer chains

Linear polymer chains are made up of Nm connected monomers of equal mass. We model the

excluded volume interaction between the monomers with a truncated and shifted Lennard
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T ρ N Lbox Rg ρ? ∆t Tdamp ND Rmax

0.2 0.005 1000 58.48 2.84 0.115 0.0001 0.45 10 20
0.2 0.075 1000 51.09 2.79 0.163 0.0001 0.45 15 20
0.2 0.01 1000 46.41 2.74 0.206 0.00005 0.09 10 20
0.2 0.05 1000 27.14 1.96 0.377 0.001 0.1 10 20
0.1 0.08 1000 23.20 1.68 0.380 0.001 0.09 10 23

Table 7.1.: System parameters (temperature T , density ρ, number of polymers N , box size
Lbox, radius of gyration Rg and density ρ? in units of Rg), parameters of the MD
simulation (time step ∆t and damping factor Tdamp) and parameters of the MSCG
(dimension of the basis ND, basis choice and cut-off of the effective interaction
Rmax) of the different simulations performed with linear chains of length Nm = 20.

Jones potential:

ΦLJ(r) = ε

[(σ
r

)12

−
(σ
r

)6
]

ΦLJcut+shift(r) =

{
ΦLJ(r)− ΦLJ(rc) if r < rc = 1.2σ

0 otherwise,
(7.1)

which is a purely repulsive potential and the bonding interaction with a FENE potential (see

equation (2.30)). We use ε and σ in equation (7.1) as the energy and length units and the

mass of the monomers as the mass unit. Other quantities are expressed in terms of those

units, except ρ?, the density expressed in units of the radius of gyration Rg.

In our simulations we used chains of a length of Nm = 20. The parameters of the FENE

potential are given by l = 0, R = 4.0 and κ = 2.5.

The different state points that we study are listed in table 7.1, where the temperature,

density, number of polymers, box size, the measured radius of gyration and the density

expressed in units of the radius of gyration are shown. We also show the parameters of the

MD simulation, ∆t and Tdamp, and the parameters of the MSCG: ND, basis choice and Rmax.

To produce the initial configuration for the lowest densities (ρ = 0.005, 0.0075 and 0.01)

we directly fitted the isolated polymer chains into a box of the corresponding size for that

density. For the highest densities (ρ = 0.05 and ρ = 0.08) we took a configuration with

ρ = 0.01 and we reduced the box size to the desired length within 5× 103 time steps.

The initial configurations generated by the procedure described in subsection 6.4.1 were very

far from equilibrium and therefore we were forced to use a very small time step for the MD

simulation (see table 7.1). Those configurations generated using the fix deform command

were much closer to equilibrium, allowing us to use larger time steps. We saved the positions

and forces acting on the COMs of the polymers every 500 time steps and used nt = 10000

configurations for the coarse-graining procedure.
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Figure 7.1.: Effective interactions Φeff(r) as functions of r of linear chains of length Nm = 20
calculated at different densities as labelled. The dashed lines show fits to a
GEM-2 function and the dotted lines show fits to a GEM-n function, where the
index n is allowed to vary. In the lower right panel we show the dependence of
n on ρ.
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Figure 7.2.: Comparison of the radial distribution function g(r) as a function of r of the
COMs of linear chains in a MR simulation and of the CG particles in a simulation
using the effective potentials presented in figure 7.1. T and ρ as labelled.

The resulting effective potentials, Φeff(r), are shown in figure 7.1 for the different state points.

Additionally, two fits of βΦeff(r) are shown: the first one to a GEM-2 potential, motivated by

the fact that the effective potential calculated at zero-density can be very well approximated

by a Gaussian function [93], and the second one to a GEM-n potential, where the index

n is allowed to vary. We show this index n as a function of ρ in the lower right panel of

figure 7.1. For densities up to ρ = 0.01 we obtain effective potentials that are essentially a

GEM-2 curve (n = 2 is the threshold beyond which cluster formation is predicted). As the

density increases, n decreases and the potential becomes steeper at the origin. This tendency

is in good agreement with the results presented by Bolhuis et al. [93].

We compare the radial distribution function, g(r), computed during the MD simulation (g(r)

of the COMs of the polymers) and in the CG simulation (with the corresponding effective

potential), both of them performed at the same ρ- and T -values. Results are shown in

figure 7.2.

We observe that, apart from the noise due to the lack of good statistics, the agreement

between the CG and MR curves is perfect.
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Figure 7.3.: Snapshot of a simulation of 500 athermal dendrimers at a density ρ = 2ρoverlap.
In the left panel we plot the monomers of size σ = 1, in blue the shell monomers
and in green the core ones. In the right panel we plot spheres of size Rg = 3.41
positioned on the COMs of the dendrimers. In the middle panel we combine
both plots.

Athermal dendrimers

The second system that we consider in our study are athermal dendrimers. We use G = 4

dendrimers from reference [96], modelled with a truncated and shifted LJ potential (equa-

tion (7.1)) for the excluded volume interaction and a FENE potential (equation (2.30)) for

the bonds (with l = 0, R = 10, κ = 0.5). In reference [96] Göetze et al. calculated the

effective interactions at zero-density of athermal dendrimers of variable flexibility (tuned by

κ) and generation number G. The authors found a generic Gaussian shape of the effective

potential of athermal dendrimers, irrespective of the flexibility and generation number. In a

later contribution [97] the same authors compared the pair correlation functions calculated

in a MR simulation and in a CG simulation using the zero-density effective potential for

G = 4 athermal dendrimers and found that there was a very good agreement up to the

overlap density ρoverlap, defined as:

4π

3
ρoverlap(1.5Rg)3 = 1. (7.2)

In our work we calculate the effective interaction at ρ = 2ρoverlap and temperature T = 1.0,

using a box size of Lbox = 51.8 and N = 500 (we measure Rg = 3.41). We generate the

initial configuration in a box of Lbox = 300; using LAMMPS we reduce the box size until

the desired value. We show a snapshot of the system in figure 7.3, where the reader can see

that the system is very dense. Within a LAMMPS MD simulation we generate equilibrium

trajectories using a time step ∆t = 0.0005 and a damping factor Tdamp = 0.09. We save the

positions and forces acting on the COMs every 1000 time steps. In the left panel of figure 7.4

we show the obtained effective interaction Φeff(r), computed with nt = 12000 configurations,

ND = 8 and Rmax = 20, and a fit to a GEM-n function. At this density we find a value
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Figure 7.4.: Left: Effective interaction Φeff(r) of athermal dendrimers of G = 4 calculated
at ρ = 2ρoverlap and T = 1.0. Right: Comparison of g(r) measured in the MR
simulation and in a CG simulation using the effective potential in the left panel,
at the same ρ and T conditions.

for the exponent of n = 0.97, and therefore, since at zero density n = 2 [96], we observe

the same tendency as in the linear chains: as the density increases the potential becomes

steeper at the origin and n attains values substantially smaller than n = 2. In the right panel

of figure 7.4 we compare the g(r) measured in the MR simulation and in a CG simulation

using the computed effective potential. The agreement is very good; thus we can conclude

that, at least for this system, the range of densities for which a CG description produces

reliable results can extend beyond the overlap density if effective potentials calculated at

finite densities are used.

7.2.2. Clustering systems

Proven the success of effective interactions calculated at finite density in systems which

do not show clustering, we next consider clustering systems, namely D2 [38] and r6 [28]

amphiphilic dendrimers (see subsection 2.5.3).

D2 dendrimers

D2 amphiphilic dendrimers were first introduced by Mladek et al. [38] in 2008 as an improve-

ment over athermal dendrimers towards clustering: by introducing the solvophilic shell and

solvophobic core monomers the effective interaction between the COMs of the dendrimers

attains a local minimum at r = 0 which leads to oscillations in the Fourier transform of the ef-

fective potential. In 2010 Lenz et al. [27] performed extensive monomer resolved simulations

of an ensemble of second generation D2 dendrimers in the fluid state. In their investigations

the authors found a qualitative agreement between the pair correlation functions in the MR
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N Lbox ρ Rg ρ?

500 36 0.011 3.295 0.38
2000 51.5 0.015 3.303 0.52
2000 48.2 0.018 3.316 0.65
2000 44.9 0.022 3.334 0.82
2000 41.6 0.028 3.359 1.05

Table 7.2.: Number of dendrimers N , box size Lbox, density ρ, radius of gyration Rg and
the density ρ? in units of Rg of the considered systems of second generation D2
dendrimers.

and CG simulations (using the zero-density effective potential) at low and intermediate den-

sities: the zero-density effective potential predicted the formation of stable, finite aggregates

of dendrimers in the fluid phase which were indeed found in their MR simulations. However,

the discrepancies between the MR and the CG simulations became bigger and bigger, as the

predicted freezing density ρ0
freeze was approached. At higher ρ-values the CG system froze

into a cluster crystal while the MR system remained in a fluid configuration.

In our work we consider a D2 system at five different densities and T = 1.0, where the

units of energy and length are given by 1.4εCC and σCC, i.e. the parameters in the Morse

interaction of two core monomers (table 2.1). The mass of the monomers is used as mass unit

and the rest of the quantities are expressed in reduced units. The number of dendrimers N ,

the box size Lbox, the density ρ, the measured radius of gyration Rg and the density in units

of Rg are shown in table 7.2. We explore a density range comparable to the one presented in

reference [27]. We perform MR simulations with LAMMPS using a time step ∆t = 0.0005

and a damping factor Tdamp = 0.09. The initial configurations are produced by compressing

with the fix deform command a very dilute configuration (ρ = 2.5 × 10−4), which in turn

was produced by the procedure described in subsection 6.4.1. We save positions and forces

acting on the COMs of the polymers every 1000 steps and produce nt = 25000 configurations

for the coarse graining procedure. We compute the effective pair interaction by using the

MSCG with a basis of dimension ND = 13 and Rmax = 20.0.

The resulting effective interactions are shown in figure 7.5. We observe that there is a strong

dependency of Φeff(r) on the density: with increasing ρ the potential becomes longer ranged

and the local attraction at short distances (characterised by the local minimum at r = 0)

disappears.

In table 7.3 we present for each different density the freezing density ρfreeze at T = 1.0

(estimated via equation (2.23)) computed with the effective potentials presented in figure 7.5.

We observe that for the lowest densities (ρ? = 0.38 and 0.52), ρfreeze decreases with respect

to ρ0
freeze. As ρ? increases above 0.6, ρfreeze takes values close to ρ?. In figure 7.6 we show the

cluster size distribution obtained in the MR simulations computed by following only step

one of the cluster analysis algorithm detailed in appendix B using rc = 3.0, correspondingly

∼ 0.9Rg. This cluster analysis is very simplified in comparison to the one presented in
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Figure 7.5.: Effective interactions βΦeff(r) of a D2 second generation dendrimer system cal-
culated at different densities, as labeled.

ρ? ρfreeze

0 0.78
0.38 0.57
0.52 0.60
0.65 0.67
0.82 0.81
1.05 1.07

Table 7.3.: Predicted freezing density ρfreeze at T = 1.0 of a system of D2 second generation
dendrimers using the effective interactions computed at the corresponding ρ? in
a system of second generation D2 dendrimers
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Figure 7.6.: Cluster size distribution P (nocc) as a function of the occupation number nocc in
the different MR simulations of a fluid sate at different ρ? values of a G = 2 D2
dendrimer system.

reference [27], since we do not check if the dendrimers in small clusters (nocc ≤ 2) are located

within almost a linear chain of dendrimers between different clusters (and should then be

considered as isolated dendrimers). Our simplified analysis might therefore underestimate

the number of isolated dendrimers; however the ensuing results can give us some preliminary

insight into the system. We observe that for ρ? = 0.38 approximately∼47% of the dendrimers

are isolated and that P (nocc) monotonically decreases with nocc. For ρ? = 0.52 the number

of isolated dendrimers decreases down to 30% and we find a local maximum of P (nocc) at

nocc = 6. As ρ? further increases the number of isolated dendrimers goes down while the

local maximum in P (nocc) continues to grow and shifts towards higher values of nocc. These

results in combination with the data compiled in table 7.3 let us conclude that the system

might be trapped in a metastable equilibrium when ρ? & 0.65 and that a crystal might have

a lower free energy than the fluid.

In figure 7.7 we compare g(r) computed both in the MR simulation (RDF-MR) and in CG

simulations, either using the zero-density potential (RDF-CG0) or with the corresponding

effective interaction calculated at the same density (RDF-CGρ?). In all cases we compare g(r)

obtained in simulations carried out at the same ρ and T values. On the one hand, we observe

that RDF-CG0, as already anticipated by Lenz et al. [27], shows a poor qualitative agreement

with RDF-MR at low densities (ρ < 0.7) and resoundingly fails as ρ0
freeze is approached. On

the other hand, there is only a good agreement between RDF-CGρ? and RDF-MR at very

low densities (ρ < 0.6). For higher densities even though RDF-CGρ? is closer to RDF-MR

than RDF-CG0, this agreement is very far away from what we found in the non-clustering

systems.
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Figure 7.7.: Comparison of g(r) computed in a MR simulation (solid line) and a CG simu-
lation (dashed line) of G = 2 D2 dendrimers. The density at which the effective
potential was computed is marked in brackets. All the panels correspond to
simulations of a fluid sate at different ρ?, as labeled.
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r6 dendrimers

The next system which we study are second generation r6 amphiphilic dendrimers. This

dendrimer model was introduced by Lenz et al. in reference [28], where they proved the

existence and stability of cluster crystals in a MR level. The model was designed to make a

MR simulation of a cluster crystal computationally less expensive: while for a D2 dendrimer

system the predicted freezing density at T = 1.0 is ρ0
freeze = 0.78, for a r6 system ρ0

freeze =

0.141.

N Lbox ρ Rg ρ?

2000 138.27 0.7× 10−3 3.49 0.033
1500 100.00 1.5× 10−3 3.47 0.065
1280 87.36 1.9× 10−3 3.46 0.084
1520 87.36 2.3× 10−3 3.45 0.099
1760 87.36 2.6× 10−3 3.50 0.115

Table 7.4.: Number of dendrimers N , box size Lbox, density ρ, radius of gyration Rg and
the density ρ? in units of Rg of the considered systems of second generation r6
dendrimers.

We consider six different systems, whose densities cover the range from 0 ≤ ρ? . ρ0
freeze

at T = 1.0, where the units of energy and length are given by 1.4εCC and σCC, i.e. the

parameters in the Morse interaction of two core monomers (table 2.2). The mass of the

monomers is used as mass unit and the rest of the quantities are expressed in reduced units.

Characteristic quantities of the systems are shown in table 7.4. The initial configurations

for the simulations carried out at ρ? = 0.033 and 0.065 were generated by the procedure

described in subsection 6.4.1. For the other densities, the initial configuration was produced

from a cluster-fluid configuration at ρ? = 0.131 provided by D. A. Lenz [28]: for lower

ρ? values a sufficient amount of randomly chosen dendrimers were deleted. This “brutal”

procedure to generate the starting configurations did not provide very good results, since in

some cases up to 108 time steps were needed to recover equilibrium. We therefore recommend

for future simulations to rather use the fix deform command and to compress a very dilute

configuration.

MD trajectories were produced using LAMMPS with a time step of δt = 0.0005, positions

and forces acting on the COMs of the dendrimers were recorded every 5000 time steps. The

effective potentials for the different ρ? values are shown in figure 7.8. We used Rmax = 20

and ND = 20. In strong contrast to what we found for D2 dendrimers, we now observe a

very mild dependency of Φeff(r) on ρ?.

In table 7.5 we present ρfreeze computed from the Fourier transform of Φeff(r) at different ρ?

values. We find again, as for the D2 case, that ρfreeze values obtained at finite densities are

lower than ρ0
freeze. For ρ? = 0.099, ρfreeze is very close to ρ? and for ρ? = 0.115 it is even lower

than ρ?. In these two cases we might again have metastable equilibria; the crystal might
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Figure 7.8.: Effective interactions βΦ(r) of a r6 second generation dendrimers calculated at
different densities, as labeled.

ρ? ρfreeze

0 0.141
0.033 0.113
0.065 0.111
0.084 0.104
0.099 0.097
0.115 0.098

Table 7.5.: Predicted freezing density ρfreeze at T = 1.0 using the effective interaction
computed at the corresponding ρ?-value in a system of second generation r6
dendrimers.
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Figure 7.9.: Cluster size distribution P (nocc) as a function of the occupation number nocc in
the different MR simulations of a fluid sate at different ρ? values of a G = 2 r6
dendrimer system.

have a lower free energy as the fluid state.

We plot in figure 7.9 the cluster size distribution in the MR resolved simulations at different

ρ?-values, using step 1 of the cluster analysis described in appendix B with rC = 3.0, which

is of the order of ∼ 0.85Rg. For this systems we do not find such big clusters as for the D2

systems (see figure 7.6), the largest nocc-value observed is 6. We find again that except for

the lowest density, there is a local maxima at nocc > 1, which becomes more pronounced and

shifts towards larger nocc values as ρ? increases.

Finally, in figure 7.10 we compare the RDF computed in the MR simulation (RDF-MR) and

in CG simulations, either using the zero-density potential (RDF-CG0) or the corresponding

effective interaction calculated at the same density (RDF-CGρ?). This time we find that not

even at very low densities RDF-CGρ? is able to reproduce RDF-MR. Again, as observed for

high ρ?-values of D2 dendrimers, RDF-CGρ? is closer to RDF-MR than RDF-CG0, but there

is no quantitative agreement between RDF-CGρ? and RDF-MR.
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Figure 7.10.: Comparison of g(r) computed in a MR simulation (solid line) and a CG simu-
lation (dashed line) of G = 2 r6 dendrimers. The density at which the effective
potential was computed is marked in brackets. All the panels correspond to
simulations of a fluid sate at different ρ?, as labeled.
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7.3. Effective interaction of a single dendrimer with a

cluster

Analysing the results at hand, we can definitely conclude that for non-clustering systems

effective interactions computed at finite densities represent a significant improvement com-

pared to effective potentials computed in the zero-density limit. However, this is not the

case for clustering systems, where we have only observed a good agreement between pair

correlation functions in MR and CGρ? simulations in a very narrow range of low densities for

D2 systems and no agreement at all for r6 ones. We speculate that the fundamental prob-

lem behind these disagreements is that a cluster fluid has a strongly varying heterogeneous

density distribution. By applying the MSCG method, as we have done in section 7.2, we are

averaging the internal degrees of freedom (DOF) of an isolated dendrimer with those of a

dendrimer inside a clusters of considerably big size (figures 7.6 and 7.9). The fact that the

average of the DOF of a dendrimer strongly depends on the local density, i.e. the size of the

cluster which it is populating, rather than on the global density of the system would serve

as an explanation of the encountered failure of finite density effective potentials.

To test this hypothesis, we compute in this section the interaction between a single den-

drimer and a cluster of dendrimers with nocc = 2 to 6. We perform the calculations for

G = 2 r6 dendrimers, as in subsection 7.2.2. We compute the effective potentials at zero-

density, i.e. by considering an isolated pair (formed by the single dendrimer and the cluster

of dendrimers). To properly sample the range of distances between the dendrimer and the

cluster of dendrimers, we use two springs each of them attached to the centre of mass of one

of the entities (Risolated or Rcluster) and the geometrical centre of the whole system, Rgeo,

defined as:

Rgeo =
Risolated + Rcluster

2
. (7.3)

The COM of the cluster is defined as:

Rcluster =
1

nocc

I=nocc∑
I=1

RI , (7.4)

where RI is the COM of the I-th dendrimer in the cluster. The spring exerts a force on the

COM of the dendrimer/cluster of dendrimers given by:

Fisolated/cluster(Risolated/cluster) = αt

(
|Rgeo −Risolated/cluster| − rt

L

) Rgeo −Risolated/cluster

|Rgeo −Risolated/cluster|
,

(7.5)

where αt is the strength of the spring and rt
L is the rest length. The force that the springs ex-

erts on the COM of the dendrimer/cluster of dendrimers is subtracted from the accelerations

of the monomers, so that the springs do not have any effect on the coarse grained effective
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Rgeo
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L
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Figure 7.11.: Set up for the computation of the effective interaction between a dendrimer and
a cluster of dendrimers of nocc = 2. Two springs (dark-grey) are attached to
the COM of the cluster and the isolated dendrimer, their rest length is being
reduced from Rmax/2 to 0 along the simulation to sample all the distances
between Risolated and Rcluster. Additionally two springs (light-grey) are attached
to dendrimers in the cluster to keep the cluster together. The rest length of
these springs are adjusted to reproduce the value of a cluster of dendrimers of
nocc = 2 observed in the bulk system.

potential. The rest lengths of these two springs, rt
L, are reduced from Rmax/2 to zero, where

Rmax is the distance cut-off of the effective potential, beyond which it is considered that

the isolated dendrimer and the cluster do not interact any more. We use Rmax = 20. The

strength of this spring is set to αt = 5.0, the influence of this parameter will be discussed

later. Additionally, there are nocc springs acting on the cluster between Rcluster and RI to

keep the cluster together (see figure 7.11 for a schematic representation of this set up for

nocc=2), which exert a force on the COMs of the dendrimers in the cluster given by:

FI(RI) = αc (|Rcluster −RI | − rc
L)

Rcluster −RI

|Rcluster −RI |
. (7.6)

The forces of these springs are also subtracted form the monomeric accelerations. The rest

lengths of these springs, rc
L, are kept constant during the whole simulation, and this values

are chosen to reproduce the observed size of the clusters in bulk systems. In figure 7.12

we show the radius of gyration of the clusters Rcluster
g as a function of the cluster size nocc

measured in the bulk simulations at different density values in subsection 7.2.2; here the
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Figure 7.12.: Rcluster
g as a function of the cluster occupation nocc measured in the MR sim-

ulations of r6 second generation dendrimers carried out at different density ρ?

values, as labeled, presented in subsection 7.2.2. We mark with black crosses
the rest length value that we choose for each cluster size.

radius of gyration of a cluster is defined as:

Rcluster
g =

1

nocc

I=nocc∑
I=1

(Rcluster −RI)
2. (7.7)

We also show the chosen values for rc
L. We observe that for a given cluster size, the value

of Rcluster
g varies very much with the density. We choose for rL an intermediate value within

the observed range of Rcluster
g . To test the effect of rc

L on the effective potential, we show in

figure 7.13 the effective interaction obtained by using different choices rc
L, and consequently

having different Rcluster
g . It can be seen that the value of Rcluster

g has a very little impact on

the effective potential. Therefore, the arbitrariness in the choice of rt
L does not present a

problem.

For the strength of the springs in the cluster we chose αc = 2.0. The following considerations

took us to the choice of the values of αt and αc:

• although the value of αc/t does not have a direct influence on the effective potential,

since the force exerted by the spring on the COMs of the dendrimers is subtracted from

the monomer accelerations, we want to keep these values small to avoid a possible loss

of precision when the spring force is subtracted.

• We need a value of αt which is large enough so that Risolated and Rcluster stay at the

desired distance of Rgeo, dictated by rt
L (see figure 7.11).
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Figure 7.13.: Effective interaction Φeff(r) between an isolated dendrimer and a cluster of
dendrimers of size of nocc = 2 using different values of rc

L, αc = 2.0 and αt = 5.0.
The measured values of Rcluster

g are also shown in the legend.

• We need a value of αc large enough so that Rcluster
g reproduces the value dictated by

rc
L. In figure 7.14 we plot Rcluster

g as a function of the distance between an isolated

dendrimer and cluster of dendrimers of size nocc = 2. We see that the fluctuations of

Rcluster
g around rc

L increase as αc is decreased.

• Finally, we observe in figure 7.14 that Rcluster
g decreases for small r-values. This could

be due to the fact that αt > αc, since for small r-values rt
L tends to zero. To check

if this is the case, we perform a new calculation with αt < αc, namely αt = 1.0 and

αc = 2.0. The effective interactions for both (αt, αc) combinations and and the values

of Rcluster
g as a function of |Risolated−Rcluster| are shown in figure 7.15. We observe that

(i) Rcluster
g decreases at small r-values less if αc/αt > 1 than if αc/αt < 1, but it still

decreases, i.e. this effect is not not only a consequence of the choice of the a-values, but

also due to the attraction of the dendrimers at short distances, and (ii) the reduction

of Rcluster
g does not have a strong influence on the effective potential.

Once we are sure about effect of the used the parameters (αt = 5.0, αc = 2.0 and rc
L as can

be read from figure 7.12) on the final results, we proceed to the discussion of the obtained

effective potentials. We perform these calculations at two levels of description, the MR level,

where every monomer of the dendrimers is explicitly simulated, and the CG level, where

the dendrimers are approximated by CG particles interacting via the zero-density effective

potential. The resulting potentials are shown in figure 7.16 for nocc = 2 to 6. In figure 7.17

we plot the effective potentials, normalised by the nocc in the MR picture (up) and in the

CG one (below). The effective interactions were calculated in all the cases with Rmax = 20
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Figure 7.14.: Rcluster
g as a function of the distance between an isolated dendrimer and cluster

of dendrimers of size nocc = 2. In both the simulations rc
L was 0.925 while αc

was varied, as labeled.

Figure 7.15.: Effective interaction Φeff(r) between an isolated dendrimer and a cluster of
nocc = 2, where rc

L = 0.925 and αc = 2.0 in both cases. The red curve was
calculated with αt = 5.0 and the green one with αt = 1.0. In the inset Rcluster

g

as a function of |Risolated −Rcluster| is shown.
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Figure 7.16.: Effective interactions between an isolated dendrimer and a cluster of nocc = 2
to 6 calculated at the MR (solid line) and CG (dotted line), as labeled.

and ND = 15. As expected, we observe significant differences in the CG and MR effective

potentials. When the CG effective potentials are normalised by nocc, all the curves collapse

to a common curve: the zero-density effective potential used in the CG simulation. On the

contrary, the normalised MR effective potentials differ very much. The maximum of the MR

effective interaction shifts to larger values of r as nocc increases. This is probably due to the

fact that the total radius of gyration of the cluster, calculated with the monomer positions

(and not just with the COMs of the dendrimers) increases with nocc. Unfortunately we do

not have measurements of the total radius of gyration (because we only saved the positions

of the COMs of the dendrimers), but we speculate that if the x-axis was normalised by

these value, the maxima of the effective potentials would coincide in the same point. It is

remarkable how for a given nocc value the MR effective potential has a smaller maximum,

meaning that cluster formation will be more favoured in the MR picture as in the CG one.

This observations help us understand why in subsection 7.2.2 we observed that pair corre-

lation functions in the MR simulations are not always reproduced in CG simulations using

effective potentials calculated at finite densities. The behaviour of a dendrimer depends very

much on the size of the cluster it belongs to, and in clustering systems in a fluid configuration

we always have a large polydispersity in the size of the clusters.
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Figure 7.17.: Effective interactions between an isolated dendrimer and a cluster of nocc = 2
to 6 normalised by nocc in the MR (left panel) and CG (right panel) level.
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In this work, we have studied several properties of cluster-forming ultrasoft systems of poly-

meric macromolecules at different description levels: on the monomer resolved (MR) level,

where each monomer of the polymers is considered explicitly, and on the coarse-grained

(CG) level, where the internal degrees of freedom of the molecules are averaged out and each

polymer is represented by an effective CG particle placed in its centre of mass.

Via CG simulations of the generalised exponential model (GEM) we have studied the in-

fluence of hydrodynamic interactions due to the presence of the solvent in diffusion and

hopping processes in a pure cluster crystal of GEM-4 particles and in a binary mixture of

cluster-forming GEM-8 particles and non-cluster-forming Gaussian GEM-2 particles. We

have used the multi-particle collision dynamics method [34, 35], which explicitly includes

the solvent and takes hydrodynamic interactions into account as faithfully as possible. By

tuning a suitable parameter of the simulation, the coupling between the solute and the sol-

vent can be controlled. We have found that the presence of the solvent has a dramatic effect

on the dynamics of a cluster crystal: upon increasing the coupling parameter the number

of particles involved in a hopping event as well as the length of the their trajectory during

a jump dramatically decrease and the inner cluster vibrations are suppressed: the solvent

acts as a damping buffer. By studying the angles enclosed by successive jumps in a hopping

event, we have seen that the nature of the trajectories is strongly influenced by the presence

of the solvent: at vanishing or low coupling between the solvent and the solute hopping

particles tend to perform straight or slightly deflected trajectories, while at high coupling we

have mainly observed small angles (30◦ to 90◦). We also were able to answer the yet open

question of whether Lévy flights [80, 83] take place in cluster crystals: through our analysis

we excluded their occurrence.

We have also studied at the CG level the response of a cluster crystal to external compression.

We have exposed a system of cluster-forming purely repulsive GEM-4 particles to a pressure

bath composed of ideal gas particles. By controlling the number of ideal gas particles and

the distribution of their velocities we were able to tune the pressure and temperature inside

the GEM-4 system. We have observed that in a simple compression experiment at con-

stant temperature the spacing of the lattice remains, irrespective of the temperature and the

compression rate, almost constant, though at a value lower than the equilibrium value, and

the cluster occupancy increases linearly with density. The GEM-4 system achieves this be-

haviour by first increasing the hopping activity and producing an heterogeneous cluster size

distribution and then merging smaller clusters (of the size of ∼ 70% of the average cluster oc-

cupancy in the system) which are pushed together by their neighbouring bigger clusters. We

have learnt that in order to recover the equilibrium configuration of a GEM-4 cluster crystal

one has to combine compression runs at constant temperature with annealing processes at
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constant pressure, where the temperature in the GEM-4 system is increased until the system

begins to melt and then lowered to the original value. In this way, the system receives an

energy kick which allows it to make the necessary cluster rearrangements to recover equi-

librium, which at constant temperature represent a (too high) energetic barrier separating

the metastable from the real equilibrium. Finally, we have learnt via a combination of com-

pression, annealing and expansion experiments that a cluster crystal remains (meta)stable

within a range of lattice spacing of 10% around the equilibrium value. When the system

is compressed or expanded it will first shrink or expand within this range, and only once a

extreme value is adopted will cluster merging or cluster splitting events take place. In the

future, it would be interesting to study the response to compression of a cluster crystal in

the explicit presence of a solvent. Our study has shown that the hopping activity is largely

suppressed when hydrodynamic interactions are taken into account, but we also have seen

that the increase in the hopping activity is necessary to generate the heterogeneous cluster

size distribution in the system which leads to merging of the smaller clusters. Will merging

events still take place if the solvent is present? Will the lattice constant remain unchanged

and the cluster occupation linearly increase with density?

At the MR level of description we have worked on the in silico design of an amphiphilic

linear chain composed by a solvophobic backbone decorated by solvophilic side groups. We

have come up with a combination of the parameters in the model which leads to a effective

interaction potential whose Fourier transform takes negative values, and therefore predicts

the formation of cluster crystals at high densities. We have performed MR simulations of

the amphiphilic chains in their cluster crystal configuration and we have proven the stability

of the system.

Finally, we have studied the appropriateness of effective interactions computed at finite

density for the description of bulk phases of ultrasoft polymeric macromolecules. We have

used the so-called multi-scale coarse graining method [15] developed by Izvekov and Voth,

which allows for the computation of effective interactions at finite densities via a force

matching method, and to our knowledge, has not been used up to date in the field of ultrasoft

matter. We have seen that in non-clustering systems effective potentials computed at finite

densities represent a significant improvement with respect to effective potentials computed

at zero density: if the former are used in CG simulations (instead of the latter) the range of

densities in which pair correlation functions from MR simulations can be perfectly reproduced

is widely increased. However, we have learnt that the cluster fluid phase cannot be properly

described by finite density effective potentials, because such a system is a mixture of very

different local densities. To understand this issue, we have computed the effective interaction

of an isolated dendrimer and a cluster of dendrimers of sizes ranging from 2 to 6. We have

performed this calculations at two description levels: on the MR level, where each monomer

is considered explicitly; and on the CG level, where each dendrimer is represented as a CG

particle interacting via the zero-density effective potential. We have observed that while

the effective potential between a dendrimer and a cluster computed in CG simulations is

additive (by rescaling the potential by the cluster occupation we obtain in each case the
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zero-density potential), this is not the case for the effective potentials obtained in the MR

simulations. This proves that the average over the internal degrees of freedom of a dendrimer

differs very much depending on the size of the cluster it belongs to, and therefore averaging

in the same way the internal degrees of freedom of dendrimers within very different local

densities is a very weak approximation for the description of the system. We suggest to

study if an effective interaction including a two-body and a three-body term would lead to a

more reliable description clustering systems. The multi-scale coarse graining method offers

an outstanding flexibility for the functional form of the effective interaction and allows for

the calculation of effective three-body interactions. These calculations were in our plan, but

unfortunately due to lack of time, we could not carry them out.
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A. Reduced units

The parameters ε and σ, as defined in in equation (2.1) are used as the respective energy and

length units. The mass of the particle (in each system we specify which particle), m, will

be used as the mass unit. The rest of the quantities are expressed as reduced dimensionless

quantites:

• the number-density: ρ∗ = ρσ2,

• the temperature: T ∗ = kBT/ε,

• the pressure: P ∗ = Pε/(kBσ
2),

• the time unit: t∗ = σ
√
m/ε

• and the spring strength: α∗ = ε/σ2.

For simplicity the stars will be dropped.
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B. Cluster Analysis

The cluster analysis is carried out in a five-step procedure: in step one of our cluster

analysis of a given particle configuration we have used the scheme detailed in the Appendix

of reference [25]. Then we calculated the individual (nocc) and the average (〈nocc〉) occupancy

of each cluster as well as its spatial extent, quantified by its radius of gyration, rg.

The first class of clusters that requires special treatment in step two are oversized clusters,

i.e. all clusters with an occupation number larger than Nmax
occ = 1.6〈nocc〉. Such clusters

can appear either because (a) two under-occupied clusters have merged or (b) because a

hopping particle is located at this very instant between two clusters and the cluster analysis

could not identify them as separate aggregates (“fused clusters”). A suitable quantity for

distinguishing these two cases is the radius of gyration rg, and we set rmax
g = 1.4σ to identify

fused clusters. This test is carried out via the following iterative algorithm: we identify for

each particle of such a cluster its average number of neighbours; all particles that have less

neighbours than this average value are put aside for the moment and the cluster analysis is

repeated with the remaining particles, whereby the original cluster meanwhile might have

split up into two (or more) (sub-)clusters. If the radii of gyration of the resulting clusters

are still larger than 1.4σ, the value of rc is reduced by 10% and steps 1 and 2 are repeated

until the rg-values of the emerging clusters are smaller than 1.4σ. The isolated particles that

have been previously put aside during the algorithm are then reintegrated and assigned to

the respective nearest cluster.

In step three we focus on small clusters (nocc < 3) which are most probably migrating

particles. They are assigned to the respective nearest cluster, but are not included in the

evaluation of its centre-of-mass.

Finally, we focus in step four on clusters that are separated by a distance that is smaller

than 0.65σ, which we consider as merged clusters. This particular value for the threshold

distance represents a reasonable choice in view of the fact that the lattice constant of our

cluster crystal assumes values close to 1.37σ.

Finally we identify and analyse in step five merging and cluster separation events. If in

a compression step two clusters have merged from one configuration I to the subsequent

one (I + 1), one of the cluster identities is maintained for the further analysis while the

other one is put idle. If, in contrast, in an expansion step, a cluster has separated into two

(sub-)clusters from one configuration to the following one, the subcluster that is closer to

the original aggregate keeps the identity of the latter, while for the other subcluster a new

identity is created. All other aggregates of configuration (I + 1) will carry on the cluster

identity of those aggregates that are closest in configuration I to their actual position. If

the association of a particle to a cluster changes from one configuration to the subsequent
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B. Cluster Analysis

one, this particle is identified as a hoping particle; relevant information about the particle

and the cluster it belonged to is stored. Through this criterion also particles involved in

merging processes are identified as hopping particles; using now the information obtained in

the preceding cluster-tracking analysis we can finally separate hopping particles from those

that are involved in merging processes in a final step.
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F. Vögtle, J. Chem. Phys. 117, 1869 (2002).

[68] D. Frenkel and B. Smit, Understanding Molecular Simulations (Academic Press, 2002).

[69] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, J. Chem. Phys. 76, 637

(1982).

[70] H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).
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sin quien todo esto no hubiera sido posible.

• Gracias a Alberto, porque tampoco ibas a faltar en esta y porque sé que eres el único que
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y videos han amenizado las largas jornadas de trabajo. Finalmente, una especial mención a

mi t́ıo Agust́ın Falcón, muchas gracias por tu ineterés y tu cŕıtica siempre constructiva.
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