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Kurzfassung

Kolloidale Dispersionen zeigen, abhängig von den Wechselwirkungspotentialen der Sys-
temteilchen (Kolloide), reichhaltiges Phasenverhalten. Eine wichtige Klasse kolloidaler Sys-
teme sind solche, deren Paarpotentiale sich aus einer Abstoßung durch einen harten Kern
und verschiedenen, additiven Potentialen außerhalb des Kerns zusammensetzen. Diese
Gruppe von Modellsystemen wird in der vorliegenden Dissertation untersucht, wobei zwei
Schwerpunkte gelegt werden.

Der erste liegt auf dem kritischen Verhalten von Systemen mit langreichweitigen Po-
tentialen außerhalb des Kerns. Eine zuverlässige Flüssigkeitstheorie in der Region des
kritischen Punktes ist die selbst–konsistente Ornstein–Zernike Näherung, die allerdings
nicht direkt auf ionische Systeme anwendbar ist. Daher ändern wir diese Theorie auf eine
Weise ab, welche sie für Modelle verwendbar macht deren Paarpotentiale aus Coulomb-
und anderen, additiven Wechselwirkungen bestehen. Dadurch, und mittels weiterer nu-
merischer Verbesserungen, sind wir in der Lage effektive kritische Exponenten mit einer
bisher noch nie erreichten Genauigkeit zu bestimmen. Es zeigt sich ein Übergang zwischen
dem kritischen Verhalten wie in der Molekularfeldnäherung und der üblichen Kritikalität
im Rahmen der selbst–konsistenten Ornstein–Zernike Näherung bei geladenen Yukawa-,
geladenen Kac- und Kac–Yukawasystemen. Des weiteren kann eine neue Beziehung zur
Bestimmung des kritischen Exponenten γ, die auf einer Störung des Wechselwirkungspo-
tentials eines Referenzsystems durch ein Kac–Potential beruht, bestätigt werden.

Den zweiten Schwerpunkt stellt die Suche nach Gleichgewichtsstrukturen in der fes-
ten Phase verschiedener Modelle dar. Dafür setzen wir eine Suchstrategie ein, die auf
einem genetischen Algorithmus basiert. Um eine zuverlässige Konvergenz des Algorith-
mus für harte Teilchen zu garantieren, führen wir die sogenannte Parametrisierung mit
kürzesten Abständen für Kristallgitter ein. Außerdem entwickeln wir eine effiziente Meth-
ode zur Bestimmung aller Gleichgewichtsstrukturen des sogenannten Square–Shoulder–
Modells (SSM) am absoluten Nullpunkt der Temperaturskala. Die erstaunlich große Vielfalt
an Gleichgewichtsstrukturen im SSM kann in vier Gruppen unterteilt werden, in Cluster-,
Säulen-, Lamellen- und kompakte Phasen, die sich mit steigendem Druck in dieser Rei-
henfolge einstellen. Die Abfolge, genauso wie die thermodynamischen Eigenschaften der
jeweiligen Phasen, werden auch von der so genannten Kontinuumstheorie vorhergesagt.
Diese Theorie beruht auf einer Mittelung von Teilchendichten und -energien und wird auf
alle vier Strukturklassen im dreidimensionalen SSM angewandt. In der Folge erweitern
wir, zumindest teilweise, unsere Methoden zur Aufspürung aller Gleichgewichtsstrukturen
für das SSM mittels metrischer Skalierung auf bestimmte, stetige Potentiale außerhalb des
Kerns. Dadurch wird z.B. eine neue, zentriert tetragonale Phase im Yukawa–Modell mit
hartem Kern entdeckt.
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Abstract

Depending on the pair interactions of the constitutive system particles, colloidal dispersions
display a rich phase behaviour. An important class of colloidal systems is characterised by
pair potentials that contain a hard core in addition to versatile potential tails. This class
of systems are investigated in the present thesis, focussing on two different aspects.

The first one is represented by the critical behaviour of long–range interaction systems,
to which we apply the self–consistent Ornstein–Zernike approximation, a liquid state theory
known to remain reliable in the critical region. We modify this theory in order to make it
applicable to systems exhibiting Coulomb interactions in addition to other potential tails,
and are able to calculate effective critical exponents with unprecedented accuracy. With
the help of this technique we find a cross–over between mean–field and SCOZA critical
behaviour of charged Yukawa, charged Kac, and Kac–Yukawa systems. Furthermore we
verify a new relation for the ascertainment of the critical exponent γ, a relation which
relies on the perturbation on the interaction of a reference system with a Kac–potential.

The second focus is laid on the search for solid equilibrium structures of hard core
systems, for which we employ a search strategy based on a genetic algorithm. To ensure
the convergence of the algorithm for hard core particles we introduce the Minimum Distance
Parametrisation of crystal lattices. Additionally, we develop an efficient search strategy to
detect all equilibrium structures of the square–shoulder model (SSM) at zero temperature,
which can be extended to systems with certain continuous potential tails via metric scaling.
In this way, we are able to distinguish, e.g., a new centred tetragonal phase for the hard
core Yukawa model. The astonishingly large variety of the identified equilibrium structures
for the SSM consist of cluster, columnar, lamellar, and compact phases, appearing in this
sequence when increasing the pressure. The succession, as well as the thermodynamic
properties of the respective structures, are predicted by the so called continuum theory.
This theory relies on averaging the particle densities and energies and is applied to all four
structural archetypes in the SSM.
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Chapter 1

Introduction

Soft matter has become a field of growing interest in the past twenty years, not only in
physics, which will be the focus of this thesis, but also in chemistry and biology, thus
representing an interdisciplinary topic [1,2]. One reason for this is the omnipresence of soft
matter in our everyday life (blood, clay, plastics, DNA, proteins, toothpaste, mayonnaise,
etc.). Another one is the fruitful interplay between theoreticians and experimentalists,
arising because of the possibility to tailor the interaction between the building parts of
soft matter systems nearly at will, as will be elucidated later. And, last but not least, soft
matter has by now reached even technological relevance: For example in biotechnological
or pharmaceutical applications, where specially designed soft matter particles can be used
as drug delivery vehicles, in diagnostics, or represent a promising step towards the pre-
vention of HIV and sexually transmitted infections [3, 4]. In addition, for the assembly of
photonic crystals, optical nano–structures that affect the motion of electromagnetic waves
in the same way an electric semiconductor influences electrons, the growth of such crystals
via self–assembling soft matter particles has become an attractive alternative [5].

Among the systems comprised in soft matter (liquids, gels, foams, polymers, granular
materials, etc.), colloidal dispersions represent a large and prominent field. In colloidal
dispersions a dispersed phase (the colloids or colloidal particles) is homogeneously mixed
with a continuous phase, also called dispersion medium or solvent. Typical examples of
colloidal dispersions appear e.g. in liquid and solid aerosols (clouds, smoke), sols (paint),
emulsions (milk), or foams (whipped cream) [6].

Colloids are characterised by a variety of interesting features. The size of the particles
(colloids), which can reach up to ≃ 1µm, simplifies their observation and handling in
experiments, they can be virtually looked at via confocal microscopy [7] and manipulated
by optical tweezers [8]. In addition, colloids can be assembled in various ways, giving rise
to versatile effective interaction potentials: Via suitable coarse graining procedures [9], the
influences of the particles constituting the dispersion medium on the colloids as well as
the usually complicated architecture of the colloids themselves are integrated out. One
obtains interaction potentials solely depending on the positions of the centres of mass
of the comparatively large colloidal particles and, if necessary, a few other degrees of
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2 CHAPTER 1. INTRODUCTION

freedom, describing e.g. the orientation of asymmetrical colloids like diblock copolymers
[10]. The interactions of these effective particles exhibit energy scales of the order of room
temperature thermal energies (i.e., of the order of kBT , T being the temperature and
kB ≃ 1.38 · 10−23J/K being the Boltzmann constant), which makes it possible to neglect
quantum effects.

Through assembling appropriate colloids and varying the properties of the solvent into
which the colloids are dispersed, one can therefore actually tailor the interaction potential
between the system particles. Using this feature, it has been possible to experimentally
design systems of hard spheres [11–13], which for a long time were only viewed as an aca-
demical model. Subsequently these systems of hard spheres could be altered to additionally
exhibit other interactions, e.g. through attaching electric charges to the particles [14, 15],
or covering them with grafted polymer chains [16,17].

The goal of this thesis is to study such hard core systems theoretically. We intend to
investigate the phase behaviour of typical model systems, where we focus on two different
regions of phase space: First we investigate the vicinity and location of the gas–liquid crit-
ical point, and second we explore the region of solid phases, looking for yet unrecognised
equilibrium crystal structures.

For the first task we scrutinise the long–range critical behaviour of three different model
systems, one exhibiting a Coulomb and a Kac interaction, and two systems having either
of the two in addition to a Yukawa interaction. After locating the critical point of the
respective system, we investigate its critical behaviour through calculating three critical
exponents: β, describing the shape of the gas–liquid coexistence curve in the critical region;
α, specifying how the specific heat at constant volume diverges at the critical point; and in
particular γ, which gives information about the divergence of the isothermal compressibil-
ity, also at the critical point. The accuracies of the results for the location of the critical
point and especially the critical exponents strongly depend on the level of sophistication
of the applied liquid state theory. The self–consistent Ornstein–Zernike approximation
(SCOZA) [18–20] is an integral equation theory that has proven to be reliable even in the
critical region, which is why the application of SCOZA also to our model systems is a
promising challenge to undertake. Since SCOZA has not been applicable to long–range
interactions so far, we have to modify this concept to meet our requirements, approaching
the limit of state–of–the–art numerical accuracy.

The other, main emphasis is put on the search for solid equilibrium structures at zero
temperature in the hard core square–shoulder and hard core Yukawa models. Since the
conventional approach to finding the equilibrium structures strongly depends on a prese-
lection of candidate structures (relying on experience, intuition, or plausible arguments), a
highly unsatisfactory approach that is likely to overlook possible candidates [21], we apply
a search strategy based on a genetic algorithm (GA) [22]. In soft matter theory the usage
of GAs, that incorporate key ideas of evolutionary processes such as survival of the fittest,
recombination, or mutation, is still in its infancy. Nevertheless, it has been successfully
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applied to soft systems (without hard core) [23–25] and monolayers of binary dipolar mix-
tures [26] recently. The central issue in the application of this highly stochastic algorithm
to three–dimensional hard core systems is to find a parameter space which describes all
possible crystal structures, excluding those structures exhibiting hard core overlaps a pri-
ori. We take care of this problem through the development of the so–called minimum
distance parametrisation of crystal lattices.

To provide some more fundamental understanding of the emerging self–assembly strate-
gies, we also extend the approach of averaging the particle densities and energies by Glaser
et al. in two dimensions [27] to a three–dimensional, mean–field type “continuum theory”.
We compare its predictions for the square–shoulder model with detailed investigations us-
ing the GA based search strategy.

This thesis is organised as follows.
The first part provides the prerequisites for our work. In chapter 2 the model systems

of interest are introduced and the concepts of interaction range and reduced units are
explained. Chapter 3 provides the basic background, both for the phenomenon of criti-
cality, as well as for the theoretical tools suitable for the investigation of the fluids under
consideration.

Part II elucidates the methods we developed for this thesis. In chapter 4 we explain
how one can apply SCOZA to charged Yukawa systems, while chapter 5 is dedicated to
the tasks one has to accomplish when looking for equilibrium crystal structures. These
comprise in particular the development of the minimum distance parametrisation, a short
discussion of possible close–packed structures, and the usage of these and other concepts
(GA, metric crystal scaling, etc.) to establish a suitable search strategy for stable crystals.
The last section of chapter 5 illustrates the mean–field type continuum theory.

Our results on criticality are presented in part III for the three chosen examples of the
charged Yukawa (chapter 6), the charged Kac (chapter 7), and the Kac–Yukawa model
(chapter 8). Part IV contains our findings concerning the equilibrium structures in the
solid phase of the square–shoulder (chapter 9) and the hard core Yukawa model (chapter
10).

Finally, we give some concluding remarks in chapter 11.
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Part I

Fundamentals
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Chapter 2

Models

The basic assumption needed for the description of a system of particles via pair poten-
tials is the superposition principle, i.e., that the interaction between two particles does
not depend on the degrees of freedom (position, orientation, ...) of any other particle.
Especially in colloidal dispersions we usually deal with so called effective interactions (see
introduction), where we obtain interactions depending only on the positions of the centres
of mass of the comparatively large colloidal particles, which are also radially symmetric
if no dipole–moments or extreme asymmetrical shapes of the colloids are involved. These
simplified, effective interactions are in general also composed of 3–body and/or higher or-
der interactions; however, (luckily) these multi–body interactions usually play a minor role
and can be neglected, except at very high concentrations [9].

It is the aim of statistical mechanics, as will be outlined in chapter 3, to derive thermo-
dynamic properties of a large ensemble of particles, like pressure in dependence on density
and temperature (a so–called equation of state), starting from this pair potential.

In this chapter we introduce and justify the selection of pair interactions considered in
this thesis, which will have one common feature: a hard core, reflecting the size of the rigid
colloidal particles.

2.1 Coulomb and Screened Coulomb Interactions

The restricted primitive model (RPM) of electrolytes is a very popular model in statistical
mechanics [28–30]. It is a binary mixture of size–symmetric hard particles having opposite
electric charges, immersed in a dielectric background. Since this background carries no
net charge, the electro–neutrality condition demands that the particle densities of the two
constituting particle species have to be equal, ρ+ = ρ−. Using

i, j = +,− . . . . . . . . . . . indices for different particle species,
ρ = ρ+ + ρ− = 2ρi . . . overall particle density,
σi ≡ σ . . . . . . . . . . . . . . . particle (hard core) diameter(s), and
q+ = −q− ≡ q . . . . . . . . electric charge(s),

7



8 CHAPTER 2. MODELS

the pair interaction in this system is given by

φRPM
ij (r) =

{
∞ r < σ
φC
ij(r) r ≥ σ

, (2.1)

where φC
ij(r) =

qiqj
εr

is the Coulomb interaction with r = |ri−rj| being the distance between
two particles positioned at ri and rj, and ε being the dielectric constant of the surrounding
medium.

In colloidal dispersions one usually has to deal with a solution of the colloids in a
salty solvent, which is necessary to prevent the colloidal particles from flocculating or
sedimentation. If the colloids are charged, the salt ions in the solvent lead, according
to the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory [31, 32], to a screening of the
Coulomb interaction yielding an effective interaction of

φDLVO
ij (r) =

{
∞ r < σ

φC
ij(r)

e−α(r−σ)

(1+ασ/2)2
r ≥ σ

, (2.2)

usually called DLVO pair potential, with the screening parameter α. 1/α has the dimension
of a length and hence is usually called screening length. Sometimes the DLVO pair potential
is also denoted as Yukawa restricted primitive model (YRPM), since the r–dependence has
the typical form of a Yukawa interaction, exp(−κr)/r.

2.2 Single Yukawa Interaction

In salty, charged colloidal dispersions it is even possible for all the colloids to carry the
same charge (all negative or positive, respectively), since the electro–neutrality condition
is then satisfied through the salt counter–ions. In such a single component colloidal system
the effective pair interaction between the colloids, with the solvent degrees of freedom
integrated out, is then given by a single Yukawa interaction term in addition to the hard
core interaction:

φY(r) =

{
∞ r < σ
ǫYσ
r
e−α(r−σ) r ≥ σ

, (2.3)

with 1/α being again the screening length and ǫY the interaction energy at contact.

2.3 The Kac Limit

The Yukawa interaction, equation (2.3), contains two relevant parameters, ǫY and α (σ
is just a unit for the length scale, see section 2.8). If α tends to zero, the exponential
term becomes 1 and we end up with the RPM. If ǫY vanishes (at constant α) the complete
Yukawa term vanishes and the problem is reduced to plain hard spheres.
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There is also a possibility for both parameters to tend to zero in a well–defined way,
leading to a further, non–trivial interaction tail. This can be achieved by defining two
quantities, ǫK and n(> 0), in a way to satisfy

ǫYeασ = ǫKα
n . (2.4)

Clearly, ǫY → 0 if α → 0. Thus we obtain for the Yukawa interaction

φ(r;α, n) = ǫKα
n e−αr

r/σ
, (2.5)

where the parametrical dependencies on α and n are given explicitly. Now we calculate the
field content of this interaction, which is usually the integral over the whole space of the
interaction potential. For hard sphere particles this is just the integral over space except
the volume of the central particle itself (which is a sphere of radius σ and centre at the
origin, indicated by 0), i.e., the field content of the tail:

∫

R3 − Bσ(0)

d3r φ(r;α, n) = 4πǫKσα
n

∞∫

σ

dr r2 e−αr

r
= 4πǫKσα

n−2
(
1 + O

[
(ασ)2] ) . (2.6)

If we now take the limit of α → 0 there are three relevant possibilities:

• n > 2: Not only the contact value but also the field content vanishes. We suspect
that this interaction will not have any influence at all on the system, which is therefore
again reduced to hard spheres.

• n = 2: The field content attains the finite value of 4πǫKσ.

• n < 2: The field content diverges while the contact value of the potential still goes
to zero.

Taking n = 2 yields what is generally known as the Kac potential [33]:

φKac(r) = ǫK lim
α→0

α2 e−αr

r/σ
, (2.7)

which will be part of further considerations in this thesis.

2.4 Charged Yukawa and Kac–Yukawa Model

We will also consider a more general model, called charged Yukawa model [34], which is a
linear combination of the hard core, the Coulomb, and the single Yukawa interactions, i.e.,

φCY
ij (r) = φY + φC

ij . (2.8)
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This pair interaction contains the RPM, equation (2.1), and the single Yukawa model,
equation (2.3), as limiting cases, if either ǫY or q vanishes, respectively. Our considerations
will also include the Yukawa part exhibiting the Kac limit.

Of course one can also combine just two Yukawa interactions with the hard core, one
of which then gradually becomes a Kac potential. This kind of interaction will be termed
Kac–Yukawa model :

φKY(r) = φY(r) + φKac(r) . (2.9)

2.5 Square–Shoulder Model

The square–shoulder model (SSM), also called hard core – soft shoulder interaction, is
given by

φSSM(r) =





∞ r < σ
ǫ σ ≤ r < λ
0 r ≥ λ

. (2.10)

Due to its simple shape, it is easy to understand the arrangement of solid phases on geo-
metric grounds (see the results presented in chapter 9) and hence this model is considered a
“quintessential” [35] test system for solid–solid transitions. The SSM can also be a reason-
able approximation for interactions between polymer–grafted colloidal particles [17] and
has been extensively studied with Monte Carlo simulations and theoretical approaches in
three and two dimensions in [27,36,37] and references therein, and using genetic algorithms
in two dimensions [26,38].

2.6 Penetrable Sphere Model

The pair potential for the penetrable sphere model (PSM) is given by

φPSM(r) =

{
ǫ r < λ
0 r ≥ λ

. (2.11)

We will only use it for some approximate considerations of the SSM system in the contin-
uum theory (see sections 5.8 and 9.3).

2.7 Interaction and Correlation Function Range

In discussing interactions it is useful to introduce a measure for the range of the interactions,
that represents not just a criterion whether the interaction becomes exactly zero beyond
some finite distance and above (SSM), or attains zero only asymptotically as r → ∞
(Yukawa, DLVO, Coulomb). Clearly it is important to distinguish between the differ-
ent behaviour at long distances of the Yukawa and DLVO interactions compared to the
Coulomb one. It is common to use the terms short and long range interactions, quantified
as follows [39]:
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An interaction potential φ(r) is said to be long ranged if its field content outside the
near–field region is infinite, i.e.,

4π

∞∫

R

φ(r)r2 dr = ∞ ∀R <∞ ⇒ φ(r) is long ranged. (2.12)

In this sense the SSM, Yukawa and DLVO interactions are short ranged, while the Coulomb
interaction has long range. We have to give some remarks here.

• The Kac interaction, which has a 1/r–dependence like a Coulomb interaction but
finite field content, is an exception to this rule; it is put into the set of long ranged
interactions.

• If one replaces φ(r) in equation (2.12) by a correlation function, which will be intro-
duced in sections 3.2 and 3.3, we also obtain the common criterion for the (short or
long) range of the corresponding correlation function.

2.8 Reduced Units

Comparing results of different theories, simulations, and experiments is an important task
in scientific work. Historically various different systems of measurement have been estab-
lished, including the appropriate conversion rules between them, and of course there is
an ongoing debate about which system should be preferably used for the various physical
phenomena.

There exists however a way to avoid this problem especially in theoretical considera-
tions, that in addition can even clarify the underlying physical background. This way is to
use for each problem its “natural” units, which correspond to characteristic scales of the
model under consideration, as will be described in the following. In this thesis there will
be only need of a few units of measurement, namely:

• Length scale
Since we are always dealing with equally sized hard spheres, the natural choice of
length scale is the hard core diameter σ. It may happen that another characteristic
length like the cutoff distance (the distance at which the interaction between two
particles becomes negligible, i.e. λ for the square–shoulder potential) is describing
the size of regions where interesting physical events appear more adequately. These
cases will be pointed out explicitly in the appropriate sections.

• Energy scale
We use the previously defined length scale as an indication which energy is charac-
teristic for the problem: The interaction energy at contact of two hard core particles,
i.e., at a separation equal to the length scale, is the unit of choice.
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To distinguish the reduced quantities from the original physical ones, we mark the quan-
tities with stars, i.e., for the reduced length of the particle distance r we write

r⋆ =
r

[length scale]
=
r

σ
, (2.13a)

and analogously any other length.
Similarly the inverse screening length α is reduced through

α⋆ = ασ , (2.13b)

and since the particle density ρ has dimension [volume]−1 we get

ρ⋆ = ρσ3 . (2.13c)

Thermodynamic potentials [(free) energies/enthalpies (per particle)] are simply reduced
by the potential at contact. What will be used later are the energy per particle e and the
enthalpy per particle h in the SSM system,

e⋆ =
e

ǫ
=
E/N

ǫ
, (2.13d)

h⋆ =
h

ǫ
=
H/N

ǫ
. (2.13e)

Capital letters E and H denote the total energy/enthalpy of the system under considera-
tion, respectively, while N is the number of considered particles.

Quantities having dimension [energy]×[volume]−1 are of course reduced by a factor of
[length scale]3×[energy scale]−1. Among these we will use the internal energy per volume
u = U/V reduced with the Yukawa energy at contact

u⋆ =
uσ3

ǫY
, (2.13f)

and the pressure P , both for Yukawa and SSM systems

P ⋆ =
Pσ3

ǫ(Y)

. (2.13g)

Occurring temperatures T always correspond to thermal energies of kBT , where kB is the
famous Boltzmann constant (kB = 1.3806504(24) ·10−23J/K in SI units). Thermal energies
are more appropriate to describe the microscopic behaviour of a system than the arbitrary
temperature scale of Kelvin, because kBT is the order of magnitude of the energy of one
single particle in an ensemble of particles at temperature T . This follows from the general
equipartition theorem 〈

xm
∂H
∂xn

〉
= δmnkBT , (2.13h)
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which states that the thermodynamic average of xm
∂H
∂xn

, with H being the Hamiltonian
of the system and xm, xn being any variables the Hamiltonian depends on [see equation
(3.7)], is equal to kBT if m = n (hence the Kronecker delta δmn)

1. E.g., 3
2
kBT is the

average (translational) kinetic energy of one single particle in three dimensions. Therefore
we define the reduced temperature as

T ⋆ =
kBT

[energy at contact]
,

giving rise to the following quantities for the different models where temperature will be
used:

T ⋆Y =
kBT

ǫY
, (2.13i)

T ⋆RPM =
kBT

q2/εσ
, (2.13j)

T ⋆CY =
kBT

q2/εσ + ǫY
. (2.13k)

Sometimes it is also convenient to use the inverse thermal energy β = 1/ (kBT ) in reduced
units, i.e.,

β⋆ =
1

T ⋆
. (2.13l)

In discussing the charged Yukawa model it is useful to introduce a parameter describing
the relative importance of the two competing interactions:

q⋆ =
q2/εσ

ǫY
=

T ⋆Y
T ⋆RPM

(2.13m)

is the ratio of the two interaction contributions at contact and is called reduced charge [34].

1This theorem can easily be understood through an integration by parts of the complete phase–space
integral of the canonical probability density equation (3.11), see [40,41].
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Chapter 3

Concepts for Fluids

When investigating the behaviour of a particular system, the phase diagram is of main
interest. It depicts, in dependence on the appropriate thermodynamic variables (see section
3.2), the regions of the corresponding stable phases. A simple example for such a phase
diagram of a one–component system is given in figure 3.1. In the P–T–diagram [figure

so
lid

gas

liquid

fluidC

T

TTc

P

Pc

(a)
ρ

T

ρc

Tc

so
li
d

ga
s

liquid

fluid

C

Tg
Tl

Ts

(b)

Figure 3.1: Sketch of a simple phase diagram in the P–T and T–ρ planes
of a one–component system. The triple- and critical points are labelled
T and C, respectively. In (b) the dash–dotted line is the spinodal line,
delimiting the mechanically unstable region of the phase diagram, and
the triple–“point” splits into three points, corresponding to the different
densities of the coexisting phases.

3.1(a)] there appear, apart from the coexistence lines, two interesting phenomena. First
there is the triple point, where all three phases, solid, liquid, and gaseous, coexist. Second,
the gas–liquid coexistence line exhibits another endpoint, without intersecting any other
coexistence lines. This means, that above a certain temperature Tc or pressure Pc the
difference between the gas and the liquid phase disappears, and only one phase, usually

15
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called fluid phase, exists. This state point is called the critical point of a substance, and
will be a subject of our investigations in this thesis.

In the first section of this chapter we will explain how one can quantify the various
critical phenomena. The sections 3.2 and 3.3 are then dedicated to the theoretical concepts
that can be used to understand and predict the observed behaviour. In particular, we will
describe how the self–consistent Ornstein–Zernike approximation (SCOZA, section 3.3.2)
works, which we were able to apply to the charged Yukawa model, the topic of the next
chapter. To facilitate comprehension we only deal with a one–component fluid throughout
this chapter, the generalisation to two components will be given later on wherever needed.

For more background information see e.g. [40–43].

3.1 Critical Point Properties

Not only the location (Tc, Pc, and ρc) of the critical point is of interest, it is also char-
acterised by the fact that certain thermodynamic quantities diverge or vanish there. In
particular the difference in the densities of the liquid and gas phases, the so called order–
parameter, vanishes at the critical point and is zero above it. On the other hand the
correlation length, indicating the range of the influence of a disturbance at one position
diverges, no matter whether the critical point is approached from the gas, liquid or fluid
phase region.

For a more quantitative analysis one usually introduces the dimensionless temperature
variable

τ =
T − Tc
Tc

, (3.1)

which measures the relative difference in temperature from the critical temperature. With
the help of τ we can quantify the behaviour of the thermodynamic quantities close to the
critical point. For large groups of systems there appears a concordance in this quantitative
behaviour, giving rise to the so called universality classes of systems, which exhibit the
same critical behaviour. We quantify now this behaviour by the definition of the so called
critical exponent eQ, which is related to a thermodynamic property Q and characterises
how Q behaves in the vicinity of the critical point via the generalised power series around
τ = 0

Q(τ) = τ±eQ
(
q1 + q2τ + q3τ

2 + . . .
)

(3.2)

with the series coefficients qi, or, in short notation,

Q(τ) ∼ τ±eQ . (3.3)

By convention the eQ are assumed to be positive. Some of the critical exponents that are
relevant for our work are presented together with their definitions in table 3.1. While
the expanison coefficients qi in equation (3.2) usually depend on all occurring system
parameters, the critical exponents are more universal, i.e., belong to a so called universality
class, characterised only by a few settings (class of model, applied theory; see table 3.2).
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Exponent Definition

valid
range
of τ Quantity

α CV ∼ τ−α > 0 specific heat at constant volume;
along V = Vc

α′ CV ∼ (−τ)−α′

< 0 specific heat at constant volume;
along the coexistence curve

β ρl − ρg ∼ (−τ)β < 0 difference in the densities of the
liquid and the gas phase, order
parameter for fluids (shape of co-
existence curve)

γ χ
T
∼ τ−γ > 0 isothermal compressibility; along

critical isochore (V = Vc)

γ′ χ
T
∼ (−τ)−γ′ < 0 isothermal compressibility; along

coexistence curve

δ P − Pc ∼ |ρ− ρc|δ sgn(ρ− ρc) = 0 variation of P − Pc with ρ − ρc
along the critical isotherm

Table 3.1: Definitions of a selected set of critical exponents for fluid
systems (from [42] p. 44).

Note that there are separate definitions for critical exponents when approaching the
critical point from above (τ > 0) or below (τ < 0); however, static scaling theory predicts
that these values should coincide [42, 44, 45]. The static scaling hypothesis follows from
the argument of self–similarity in renormalisation group theory (see e.g. [46]) and can
be formulated most easily for the Gibbs free energy G of a magnetic system. Instead of
G(T,H) we use G̃(τ,H), where, in addition to the variable transformation from T to τ , we
also subtract all non–singular terms. The basic assumption, or static scaling law, is that
there exist two parameters aτ and aH , such that

G̃ (λaτ τ, λaHH) = λG̃(τ,H) (3.4)

for any value of λ. The parameters aτ and aH are not specified, but all critical exponents
can be derived to be simple expressions only involving these two parameters [42]. One
major result from these derivations is, that primed and unprimed critical exponents are
equal.

In the literature often the effective critical exponents are introduced via logarithmic
derivatives, e.g.,

γeff(τ) =
∂
(
logχ−1

T

)

∂ (log τ)
(3.5)

for the isothermal compressibility [see equation (3.25)], which of course must satisfy

lim
τ→0+

γeff(τ) = γ . (3.6)



18 CHAPTER 3. CONCEPTS FOR FLUIDS

Theory/Model α α′ β γ γ′ δ

mean field 0disc 0disc
1
2

1 1 3

D=3 spherical model −1 — 1
2

2 — 5

D=2 Ising model 0log 0log
1
8

≃ 7
4

≃ 7
4

≃ 15

D=3 Ising model ≃ 1
8

≃ 1
8

5
16

≃ 5
4

≃ 5
4

≃ 5

D=3 SCOZA [47] 0 − 1
10

7
20

2 7
5

5

Table 3.2: Values for critical exponents explained in table 3.1; if not
mentioned otherwise taken from [42]. 0disc means there is no divergence
but a discontinuity in the quantity associated with the critical exponent,
0log accounts for a logarithmic divergence. The order parameter of the
Ising model is the magnetisation.

Plotting the effective exponent versus τ we can visualise how the limiting value is attained
and therefore identify the temperature region in the vicinity of the critical point, where
the critical exponent dominates the thermodynamic behaviour, i.e., γeff ≃ γ.

To predict this macroscopic critical behaviour from the microscopic (pair) interactions,
we need some theoretical background.

3.2 Routes to Thermodynamics

Most of the following can be found in detail in [40,41,43].
Statistical mechanics provides the means to understand and predict the macroscopic

behaviour of a fluid on the basis of the behaviour of the particles on a microscopic scale.
Let us consider a system of N particles which, through their positions ri and momenta
pi (i = 1, 2, . . . N), constitute the 6N–dimensional phase space. The Hamiltonian of the
system is

H
(
rN ,pN

)
=

1

2m

N∑

i=1

p2
i +

1

2

N∑

i6=j
φ (|ri − rj|) , (3.7)

where m is the mass of the particles and φ(r) is the pair potential between them.
Gibbs’ formulation of statistical mechanics uses the phase space probability density

f (N)
(
rN ,pN

)
, which is time independent for equilibrium systems and normalised through

∫
f (N)

(
rN ,pN

)
d3Nr d3Np = 1 . (3.8)

We assume that our equilibrium systems are ergodic, i.e., the time average of an observable
quantity A(rN ,pN) is assumed to be equal to its ensemble average, given by

〈A〉 =

∫
A(rN ,pN)f (N)

(
rN ,pN

)
d3Nr d3Np . (3.9)
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The explicit form of the probability density depends on the ensemble one uses, i.e., the
ambient conditions that are kept fixed. There are four important kinds of ensembles
[40,41,43].

• Microcanonical ensemble
The number of particles in the system N is constant, as well as the total volume V
and the total energy E. The last condition directly enters the probability density,
f

(N)
M
(
rN ,pN

)
= (Wh3N)−1δ

(
H
(
rN ,pN

)
− E

)
. The normalisation constant W is

usually called microcanonical partition function and given by

W =
1

h3N

∫
δ
(
H
(
rN ,pN

)
− E

)
d3Nr d3Np , (3.10)

where h is Planck’s constant.

• Canonical ensemble
Instead of the energy the temperature is kept constant through establishing contact
with a heat bath of fixed temperature T , which is why this ensemble is also called
NV T–ensemble. In this case the probability density is

f
(N)
C
(
rN ,pN

)
=

e−βH(rN ,pN)

N !h3NQN(V, T )
, (3.11)

where β = 1/kBT , N ! takes care of the indistinguishability of the particles, and

QN(V, T ) =
1

N !h3N

∫
e−βH(rN ,pN) d3Nr d3Np (3.12)

is the canonical partition function.

• Isothermal–isobaric ensemble
The NPT–ensemble is kept under constant pressure P and in contact with a heat
bath. The corresponding probability density

f
(N)
I
(
rN ,pN

)
=

βP

N !h3N

e−β(H(rN ,pN)+PV )

∆N(P, T )
(3.13)

contains the isothermal–isobaric partition function [48]

∆N(P, T ) =
βP

N !h3N

∫
e−β(H(rN ,pN)+PV ) d3Nr d3Np dV . (3.14)

Note that, in addition to the integration over the 6N–dimensional phase space, there
appears now an integral over all possible volumes.
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• Grand canonical ensemble
In this ensemble the exchange of particles and energy with a reservoir (characterised
by constant temperature T and chemical potential µ) is considered while V is con-
stant. The probability density is given by

fG
(
rN ,pN ;N

)
=

e−β(H(rN ,pN)−µN)

N !h3NΞ(µ, V, T )
(3.15)

with the grand partition function

Ξ(µ, V, T ) =
∞∑

N=0

eβµN

N !h3N

∫
e−βH(rN ,pN) d3Nr d3Np . (3.16)

Note that there appears a sum over all possible particle numbers in the system.

The link between statistical mechanics (in terms of the partition functions) and thermo-
dynamic potentials is given by the following expressions [40,41,43]:

S = kB lnW , 1 (3.17a)

F = −kBT lnQN(V, T ) , (3.17b)

G = −kBT ln ∆N(P, T ) , and (3.17c)

Ω = −kBT ln Ξ(µ, V, T ) , (3.17d)

where S is the entropy, F is the (Helmholtz) free energy, G is the Gibbs free energy, and Ω is
the grand potential. Together with the internal energy U =

〈
H
(
rN ,pN

)〉
and the enthalpy

H (accessible through a Legendre transformation, see the literature [40, 41, 43]) U , H, F ,
G, and Ω are termed thermodynamic potentials (TDPs), while S, V , P , T , N , and µ are
called thermodynamic variables (TDVs). Each TDP depends on exactly three TDVs, the
dependencies are U(S, V,N), H(S, P,N), F (T, V,N), G(T, P,N), and Ω(T, V, µ). Each
TDP is said to be dependent on its natural variables, since the dependency is directly
linked to the corresponding ensemble, e.g., the appropriate TDP for the isothermal–isobaric
ensemble (NPT–ensemble) is the Gibbs free energy [see the link in equation (3.17c)]. For
further details, e.g. about equations of state, Maxwell relations, the Gibbs–Duhem relation,
etc., we refer to the literature [40,41,43].

We consider now the canonical ensemble. If we integrate the probability density over
all momenta and all but n positions, which is equal to calculating the canonical ensemble
average of a product of Dirac–δ functions

∫
f

(N)
C (rN ,pN) d3(N−n)r d3Np =

∫ n∏

i=1

δ(ri−r′i)f
(N)
C (r′N ,pN) d3Nr′ d3Np =

〈
n∏

i=1

δ(ri − r′i)

〉

C

,

(3.18)

1See Boltzmann’s grave, Zentralfriedhof Vienna, Group 14C, Number 1.
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we obtain, upon multiplication with N !/(N − n)!, the n–particle density

ρ
(n)
N (rn) =

N !

(N − n)!

∫
f

(N)
C (rN ,pN) d3(N−n)r d3Np . (3.19)

Because of the normalisation [equation (3.8)] we have
∫
ρ

(n)
N (rn) d3nr = N !/(N − n)!, in

particular
∫
ρ

(1)
N (r) d3r = N . For homogeneous systems this implies ρ

(1)
N (r) = N/V = ρ,

independent of position r.
With the use of the n–particle density we can define the n–particle distribution function

g
(n)
N (rn) =

ρ
(n)
N (rn)

n∏
i=1

ρ
(1)
N (ri)

, (3.20)

a measure for the deviation of the fluid from complete randomness. A special case is the
two–particle or pair distribution function g

(2)
N (r1, r2). For homogeneous, isotropic systems

the pair distribution function only depends on the separation r = |r1 − r2| between the
two particles, it is then called the radial distribution function and simply written as g(r).
If the distance between the particles becomes large, g(r) approaches its ideal gas limit, i.e.,

g(r)
r→∞−→ 1 − 1

N
. (3.21)

There are two main reasons for the usefulness of the radial distribution function. Firstly,
via a Fourier transformation, g(r) (in the grand canonical ensemble) is related to the static
structure factor

S(k) = 1 + ρ

∫
e−ik·r [g(r) − 1] d3r , (3.22)

a quantity that is directly accessible in scattering experiments [49].
Secondly, if the particles interact via pair potentials, the thermodynamic properties of

the fluid can be expressed through integrals over g(r). Of course, these properties are also
linked by thermodynamic relations [40, 41, 43], giving rise to multiple possibilities for the
calculation of any property.

To keep track of this situation it is customary to define the way of calculation of any
thermodynamic quantity by its so called “route”. The routes are identified by the quantity
obtained directly from the distribution function, i.e., quantities derived from the internal
energy obtained through

U

N
=

3

2
kBT
︸ ︷︷ ︸
U id/N

+ 2πρ

∞∫

0

φ(r)g(r)r2 dr

︸ ︷︷ ︸
Uex/N

, (3.23)

are said to be calculated through the energy route. In equation (3.23) U id is the so called
“ideal” contribution, because it is the only term present for an ideal gas (φ(r) ≡ 0). The
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“excess” (over ideal) part, designated by U ex, is due to the influence of the interaction
potential and can be understood intuitively: The mean number of particles at a distance
r from a reference particle P is n(r)dr = 4πr2ρg(r)dr. The interaction energy of these
particles with P is of course φ(r)n(r)dr, which has to be divided by 2 in order not to count
pairs of particles twice. Integrating this over the whole space yields U ex/N as given in
equation (3.23).

This thermodynamic potential can now be used to derive any other thermodynamic
quantity, e.g. the pressure through ∂U/∂V |S = −P . Instead, one can also calculate the
pressure directly from the radial distribution function via

βP

ρ
= 1 − 2

3
πβρ

∞∫

0

φ′(r)g(r)r3 dr , (3.24)

which describes the pressure P as an integral of the derivative of the interaction potential
and defines the virial route.

The isothermal compressibility, defined as

χ
T

= − 1

V

(
∂V

∂P

)

T

= 1

/
ρ

(
∂P

∂ρ

)

T

, (3.25)

obeys (in the grand canonical ensemble)

ρkBTχT
= 1 + ρ

∫
(g(r) − 1)︸ ︷︷ ︸

=:h(r)

d3r . (3.26)

h(r) is the total correlation function of an isotropic homogeneous fluid, its Fourier trans-
formation (FT) being

h̃(k) =

∫
e−ik·rh(r) d3r . (3.27)

Therefore we can write the formula for the compressibility route as

χ⋆ :=
χ

T

χid
T

= ρkBTχT
= 1 + ρh̃(0) , (3.28)

where χid
T

is the isothermal compressibility of the ideal gas, for which g(r) ≡ 1 holds.

3.3 Integral Equation Theories

As mentioned previously, a possibility to obtain thermodynamic quantities is to know the
radial (or equivalently the total) distribution function. Integral equation theories calculate
the distribution function through the famous Ornstein–Zernike relation (OZ) [50], which
we only need for the isotropic, homogeneous case

h(r) = c(r) + ρ

∫
c(r′)h (|r − r′|) d3r′ . (3.29)
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This equation can be understood as a defining equation for c(r), the direct correlation
function. So far we just introduced one integral equation and one unknown function.
However, it is possible to generate an additional relation between the two correlation
functions occurring in equation (3.29) and φ(r) leading to the so called closure relations.
But before going into more details about these closure relations, we provide a deeper
understanding and justification for equation (3.29).

A hint to comprehension is already hidden in the names for h(r) and c(r). Equation
(3.29) can be read as follows:

The total correlation function between particles of a fluid separated by a dis-
tance r is given by the direct correlation function between these particles plus
the indirect correlation conveyed through the direct correlation with all other
particles which, on their part, are totally correlated to the second particle.

Note that via the transformation of the integration variable given by r′ → r′′ = r′ − r, the
indirect correlation can also be interpreted as being conveyed through the total correlation
with all other particles which, on their part, are directly correlated to the second particle.
This symmetry in the OZ relation is best viewed if one iterates equation (3.29),

h1(r) = c(r) ,

h2(r) = c(r) + ρ[c⊗ c](r) ,

h3(r) = c(r) + ρ[c⊗ c](r) + ρ[c⊗ c⊗ c](r) ,

...

hm(r) =
m∑

n=1

[
n⊗

i=1

c

]
(r) , (3.30)

...

where the symbol ⊗ is used as an abbreviation for the convolution integral. The total
correlation function is obviously h(r) = h∞(r).

A reason for the usefulness of c(r) is its property of being short ranged in the sense
of equation (2.12) even at the critical point, in contrast to the total correlation function,
which behaves like

h(r) ∼ e−r/ξ

rd−2+η
, ξ ∼ |τ |−ν , (3.31)

with the thus defined critical exponents η and ν (mean field values η = 0 and ν = 1/2,
see [42]), and the dimension d. The integral over all space of h(r) is hence proportional to

∫

R3

h(r) d3r ∝ ξ5−d−η ∼ |τ |−ν(5−d−η) (3.32)

in the critical region and therefore diverges at the critical point — h(r) becomes infinitely
long ranged. The fact that c(r) always exhibits short range behaviour can be seen by the
following considerations.
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The FT of the OZ relation (3.29) leads to

h̃(k) = c̃(k) + ρc̃(k)h̃(k) . (3.33)

Solving for h̃(k) gives

h̃(k) =
c̃(k)

1 − ρc̃(k)
, (3.34)

which, setting k = 0, we insert into equation (3.28) and then solve for c̃(0):

ρc̃(0) = 1 − χid
T

χ
T

. (3.35)

The compressibility χ
T

is a positive, finite quantity except at the critical point, where it
diverges with the critical exponent γ (see table 3.1 in section 3.1). As a consequence, c̃(0)
is always finite, even at the critical point2. But

c̃(0) =

∫

R3

c(r) d3r <∞ (3.36)

is just the condition for c(r) to be of short range [see equation (2.12)]. �

At the critical point we obtain

χ
T
→ ∞ ⇒ ρc̃(0) → 1 ⇒ h̃(0) → ∞ , (3.37)

in consistency with equation (3.32). Additionally, equation (3.35) represents a formula for
the calculation of the reduced compressibility via the direct correlation function instead of
the total one as in equation (3.28),

1

χ⋆
= 1 − ρc̃(0) . (3.38)

3.3.1 Closure Relations

The above mentioned closure relations rely on the following exact expression [51]:

c(r) = −βφ(r) + h(r) − ln g(r) +B(r) , (3.39)

introducing the so called bridge3 function B(r), yet another unknown function. Specific
closure relations are based on approximate expressions assumed for B(r). For detailed
explanations and derivations of the various relations we refer to the literature and restrict
ourselves to those relations relevant for this thesis.

2In the case where ρ → 0 we get the ideal gas properties, i.e., χ
T

= χid
T

and h̃(k) = c̃(k) = 0.
3The term “bridge” stems from the shape of the related graphs, see [43] chapter 4.
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c(r) always has to satisfy [43]4

c(r)
r→∞−→ −βφ(r) . (3.40)

To ensure this limiting condition for large r one can simply set

c(r) = −βφ(r) , (3.41)

known as the linearised Debeye–Hückel approximation. If the potential is strongly repulsive
at short range, this approximation is very poor, which is especially true for interactions
exhibiting a hard core. However, one can apply the exact long range condition of equation
(3.41) only to the region outside the hard core and combine it with the exact condition
inside:

c(r) = −βφ(r) for r ≥ σ and (3.42a)

g(r) = 0 for r < σ, (3.42b)

where σ is the hard sphere diameter. Equation (3.42) is known as the mean spherical
approximation (MSA). It is also the starting point for the closure relation of main interest
in this thesis, the topic of the following section.

3.3.2 Self–Consistent Ornstein–Zernike Approximation (SCOZA)

If any approximations are made during the calculation of the radial distribution function,
like the usage of an approximate closure relation, the result for any thermodynamic quantity
will depend on the route (see section 3.2) one chooses to calculate a specific quantity —
the theory becomes inconsistent. It is a major task to minimise or even remove this error,
achievable e.g. through SCOZA, as will be outlined now.

To overcome the inconsistency between the various routes, i.e., to make the theory
self–consistent, several modifications to the known closure relations have been made. The
general principle is to introduce additional parameters or unknown functions that can
be adjusted to fit experimental or simulation data, or, the path also we will follow, to
analytically impose thermodynamical consistency between the different routes.

An important example of such a modification is the generalised mean spherical approx-
imation introduced by Waisman [53] to improve the MSA results for hard core particles.
He changed the ansatz c(r) = 0 outside the core to

cHS = KHS(ρ)
e−αHS(r−σ)

r
, (3.43)

i.e., to a Yukawa tail. After analytically solving the OZ relation with the exact core
condition of equation (3.42b) and the closure equation (3.43) he chose the parameters

4To be exact, this limiting case equation concerns only long range parts of the interaction φ(r), which
enter the Stillinger–Lovett sum–rules of ion correlation functions [52].
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KHS(ρ) and αHS in a way to fit the Carnahan Starling equation of state [54]. Waisman’s
analytic solution was extended by Høye and Stell together with Waisman [55] to a linear
combination of two Yukawa tails for c(r).

Stell et al. [18, 56, 57] probably were the first to introduce the term self–consistent
Ornstein–Zernike approximation (SCOZA). They used a similar scheme for ionic and dipo-
lar fluids and fitted the available parameters to external data to obtain thermodynamical
consistency. This first approach has been replaced later by a different approach, originally
proposed by Høye and Stell [19,58]. All versions of SCOZA are based on the MSA closure
equation (3.42), where additional, state dependent functions are introduced and deter-
mined via demanding thermodynamic consistency, leading to partial differential equations
(PDEs) for these unknown functions.

The version of SCOZA we will consider in this thesis is the one proposed in [20]. The
closure relation is given by

c(r) = cHS(r) +K(β, ρ)φ(r) for r ≥ σ and (3.44a)

g(r) = 0 for r < σ, (3.44b)

where cHS(r) is the hard sphere correction of Waisman given above in equation (3.43) and
K(β, ρ) is the only state dependent function introduced here.

Since we have introduced only one function, thermodynamic consistency can only be
imposed between two of the three routes, in this case between the energy and compress-
ibility routes. To obtain a PDE for K(β, ρ) first consider the relations U = F + TS and

S = − ∂F
∂T

∣∣
V,N

[40, 41,43]. Switching from T, V,N to β, ρ,N we get U = F + β ∂F
∂β

∣∣∣
ρ,N

and

hence u = ∂
∂β

∣∣∣
ρ,N

(βf) for the quantities per volume, indicated by the lower case letters.

On the other hand, from P = − ∂F
∂V

∣∣
T,N

, we obtain βP = −βf + ρ ∂
∂ρ

∣∣∣
β,N

(βf), resulting in

∂
∂ρ

∣∣∣
β,N

(βP ) = ρ ∂2

∂ρ2

∣∣∣
β,N

(βf). Under the (common) assumption that the differentiations

w.r.t. β and ρ commute (and dropping the N subscript since it will be always constant
here), we arrive at

ρ
∂2

∂ρ2

∣∣∣∣
β

u =
∂

∂β

∣∣∣∣
ρ

(
1

χ⋆

)
, (3.45)

where we used equation (3.25) and equation (3.28) to introduce the reduced compressibility.
Note, that since the second derivative of the ideal part of u w.r.t. the density vanishes [see
equation (3.23)], we can write uex instead of u on the l.h.s. of equation (3.45). uex and
χ⋆ can be replaced by expressions including only the correlation functions and eventually
the known pair potential using equation (3.23) and equation (3.28). This finally results in
three equations, (3.29), (3.44), and (3.45), for the three unknown functions g(r) [or h(r)],
c(r), and K(β, ρ).

It seems to be a difficult task to analytically reduce this set of equations to a single
PDE for K(β, ρ), and indeed this set of equations is usually solved directly with numerical
methods. If however the pair potential happens to be a sum of Yukawa interactions, also
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the ansatz for c(r), equation (3.44a) consists only of Yukawa tails. In this case an analytical
solution to the MSA closure (K(β, ρ) ≡ −β) exists [59] and can be used, as derived by
Schöll-Paschinger [60], to obtain a single SCOZA PDE for u(β, ρ).

The reason why we are interested in extending the SCOZA to other than multi–Yukawa
systems is, that the SCOZA has proven to give reliable results for thermodynamics even in
the critical region. Also the critical exponents, especially below the critical temperature,
show remarkable agreement with the exact ones [47]. In chapter 4 we will show how one
can apply the SCOZA to the charged Yukawa system, while results from this theory are
presented in part III.
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Chapter 4

Application of SCOZA to Charged
Yukawa Systems

The pair potential of the charged Yukawa model comprises a Yukawa and a Coulomb
interaction [see equation (2.8)], the latter preventing a direct application of the SCOZA
closure equation (3.44), because this would contradict equation (3.40) and hence violate the
Stillinger–Lovett sum–rules [52,61]. Therefore we treated the two contributions separately,
using a separation method introduced by Kristóf et al. [34], and developed a modified
SCOZA (mSCOZA), where the SCOZA closure equation (3.44a) is only applied to the
Yukawa part and thermodynamic consistency is still guaranteed for the entire system. This
concept, together with its results and a detailed comparison to Monte Carlo simulations,
was published in [62].

4.1 Separation of Coulomb and Yukawa Interactions

4.1.1 Ornstein–Zernike Relation and MSA Closure

To describe the separation of Coulomb and Yukawa contributions to the charged Yukawa
model we generalise the Ornstein–Zernike relation (3.29) to binary mixtures. We indicate
the two particle species by indices + and − (like in section 2.1 for the RPM) and use the
notation for the convolution integral already introduced in equation (3.30),

h++(r) = c++(r) + ρ+ [h++ ⊗ c++] (r) + ρ− [h+− ⊗ c−+] (r) , (4.1a)

h+−(r) = c+−(r) + ρ+ [h++ ⊗ c+−] (r) + ρ− [h+− ⊗ c−−] (r) . (4.1b)

Due to symmetry c−−(r) = c++(r) and c−+(r) = c+−(r) [and likewise for h−−(r) and
h−+(r)]. The charge–neutrality condition demands ρ+ = ρ− ≡ ρ/2 for the system, and
introducing Yukawa and Coulomb total and direct correlation functions (indicated by the

31
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respective superscripts) through

hY(r) =
1

2
(h++(r) + h+−(r)) , (4.2a)

hC(r) =
1

2
(h++(r) − h+−(r)) , (4.2b)

cY(r) =
1

2
(c++(r) + c+−(r)) , and (4.2c)

cC(r) =
1

2
(c++(r) − c+−(r)) (4.2d)

the Ornstein–Zernike relations decouple:

hY(r) = cY(r) + ρ
[
hY ⊗ cY

]
(r) and (4.3a)

hC(r) = cC(r) + ρ
[
hC ⊗ cC

]
(r) . (4.3b)

Next we define the radial Yukawa–distribution function through

gY(r) = hY(r) + 1 . (4.4a)

In order to maintain the relation g++(r) = gY(r) + gC(r) (analogous to h++(r) = hY(r) +
hC(r)), the Coulomb–radial distribution function is given by

gC(r) = hC(r) . (4.4b)

The complete decoupling of the OZ equations requires also a decoupling of the clo-
sure relations, not only w.r.t. the correlation functions but also the interaction potential
contributions. Keeping in mind that we want to end up with the SCOZA closure similar
to equation (3.44), we use, as a first step, a modified MSA closure where the Waisman
hard sphere correction of equation (3.43) is included. Thus generalising equation (3.42) to
binary symmetric mixtures the closure reads

cij(r) = cHS(r) − βφCY
ij (r) for r ≥ σ and (4.5a)

gij(r) = 0 for r < σ. (4.5b)

Using equation (4.2), gij(r) = hij(r) + 1, and equation (4.4) we finally obtain [34]

gY(r) = 0, r < σ (4.6a)

cY(r) = cHS(r) − βφY(r), r > σ (4.6b)

gC(r) = 0, r < σ (4.6c)

cC(r) = −βq
2

εr
, r > σ (4.6d)

as closure relations. With equations (4.3a), (4.4a), (4.6a), and (4.6b) (and (3.43)) on the
one hand and (4.3b), (4.4b), (4.6c), and (4.6d) on the other hand we have therefore two
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completely separated sets of equations to solve for the Yukawa and Coulomb correlation
functions, respectively.

Comparing equation (4.6b) with equation (3.44a) we recognise, that we can now impose
a SCOZA closure on the Yukawa part alone by replacing equation (4.6b) with

cY(r) = cHS(r) +K(β, ρ)φY(r), r > σ , (4.6e)

still satisfying equation (3.40) for the entire system. Equation (4.6a,c–e) represent the com-
plete closure relation for our mSCOZA. While the Coulomb part is therefore completely
solvable within MSA, the Yukawa part takes over the responsibility to satisfy thermody-
namic consistency for the entire system. Consistency between the energy and compressibil-
ity routes is guaranteed through satisfying the PDE (3.45), for which we need the (excess)
internal energy per volume and the reduced compressibility in dependence of the newly
defined Yukawa and Coulomb correlation functions.

4.1.2 Internal Energy and Compressibility

To obtain the excess internal energy per volume we use the fact that we are dealing with a
charge–neutral, symmetric binary mixture (ρ+ = ρ− ≡ ρ/2) and insert gij(r) = hij(r) + 1
and equation (4.2) into an expression analogous to equation (3.23) (for energy per volume
instead of per particle) for a binary mixture

uex = 2π

∫ ∞

0

∑

i,j=+,−
ρiρjgij(r)φ

CY
ij (r)r2 dr . (4.7)

This quantity can be split into two contributions,

uex = 2πρ2

∞∫

0

gY(r)φY(r)r2 dr

︸ ︷︷ ︸
uY

+ 2πρ2

∞∫

0

gC(r)
q2

ǫr
r2 dr

︸ ︷︷ ︸
uC

, (4.8)

a Yukawa and a Coulomb part, as indicated by the under–braces.
The generalisation of the compressibility equation (3.38) to binary mixtures reads

1

χ⋆
= 1 − 1

ρ

∑

i,j=+,−
ρiρj c̃ij(0) . (4.9)

If we insert equation (4.2) and ρ+ = ρ− ≡ ρ/2, this results in

1

χ⋆
= 1 − ρc̃ Y(0) ≡ 1

χY
. (4.10)

Obviously, only the hard–core Yukawa part of the interaction contributes to the compress-
ibility, while the Coulomb interactions seem to have no influence! But this would only be
true within an MSA framework, where equation (4.6a–d) is used as closure relation. Within
SCOZA the Coulomb interaction also influences the Yukawa correlation function via the
SCOZA PDE imposing thermodynamic consistency, leading to an indirect contribution to
the compressibility.
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4.2 Self–Consistency on the Entire System

It is not advisable to seek a PDE for K(β, ρ) by inserting the expressions for u(ex) and
χ⋆ into equation (3.45). It is more convenient [60] to convert this equation rather into a
PDE for the excess internal energy per volume via expressing χ⋆ as a function of uex. The
modifications necessary for the present case of the mSCOZA are described in the following.

Starting from equation (3.45) we obtain

ρ
∂2uex(ρ, β)

∂ρ2
=
∂uex(ρ, β)

∂β

d

duex

(
1

χ⋆

)
, (4.11)

in short notation written as

C
∂2uex(ρ, β)

∂ρ2
= B

∂uex(ρ, β)

∂β
, (4.12a)

with

C = ρ and (4.12b)

B =
d

duex

(
1

χ⋆

)
. (4.12c)

Now we use uex = uY + uC and χ⋆ ≡ χY from equation (4.10), and obtain

ρ
∂2uY(ρ, β)

∂ρ2
+ ρ

∂2uC(ρ, β)

∂ρ2
=
∂uY(ρ, β)

∂β

d

duY

(
1

χY

)
, (4.13)

since 1/χY only depends on uY. Equation (4.13) can be written as

C
∂2uY(ρ, β)

∂ρ2
= B

∂uY(ρ, β)

∂β
+ f , (4.14a)

with

C = ρ , (4.14b)

B =
d

duY

(
1

χY

)
, and (4.14c)

f = −ρ∂
2uC(ρ, β)

∂ρ2
. (4.14d)

Equation (4.14) has nearly the same form as equation (4.12), the only modification be-
ing the additional inhomogeneity f . Therefore the procedure to solve equation (4.12),
explained for multi–Yukawa systems in [60], can be used to solve equation (4.14) after
adding the proper expression for f . The only quantity we obviously require for f is the
internal energy per volume of the Coulomb part, uC, in dependence on ρ and β within the
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MSA framework. This expression for uC can be found in the literature [63, 64] and is also
calculated in appendix A:

uC =
κ

4πβσ2

(
−1 − σκ+

√
1 + 2σκ

)
, (4.15a)

with

κ =

√
4πβρ

q2

ε
. (4.15b)

After some elementary calculation we obtain the second derivative of uC w.r.t. ρ, resulting
finally in

f =
q2/εσ

4κσ

(
1 + 3κσ + 3κ2σ2

(1 + 2κσ)
3
2

− 1

)
. (4.16)

4.3 Solving the PDE for SCOZA

To numerically solve the partial differential equation (4.14) we use the algorithm described
in [60]: We just have to replace u with uY and add the inhomogeneity of equation (4.16)1.
Then the predictor–corrector algorithm (see section 4.3.3), is applicable for the numerical
calculation of uY. After having calculated uY, uC has to be added to get the total internal
energy.

The numerical calculations have been performed in reduced quantities. We used the
hard core diameter as length scale and the Yukawa energy at contact ǫY as energy scale
(see section 2.8 for more information on units and reduced quantities) which are marked
with star–superscripts. The PDE in reduced quantities reads

C⋆∂
2u⋆Y(ρ⋆, β⋆Y)

∂ρ⋆2
= B⋆∂u

⋆Y(ρ⋆, β⋆Y)

∂β⋆Y
+ f ⋆ , (4.17a)

with

C⋆ = ρ⋆ , (4.17b)

B⋆ =
d

du⋆Y

(
1

χ⋆

)
, and (4.17c)

f ⋆ = ρ⋆
∂2u⋆C(ρ⋆, β⋆Y)

∂ρ⋆2
. (4.17d)

The reduced Coulomb quantities are

u⋆C =
κ⋆

4πβ⋆

(
−1 − κ⋆ +

√
1 + 2κ⋆

)
, (4.17e)

1Compared to [60], our F1(ρ, uY, G2) is the same as equation (4.44)– [60] with u exchanged by uY, and
F2, which follows from the OZ relation (4.3a), is exactly the same. Our Gi are defined as in equation
(4.22)– [60], just replace g with gY.
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and

f ⋆ =
q⋆

4κ⋆

(
1 + 3κ⋆ + 3κ⋆2

(1 + 2κ⋆)
3
2

− 1

)
, (4.17f)

where

κ⋆ =
√

4πβ⋆ρ⋆q⋆ . (4.17g)

For notational convenience we will drop the star–superscripts from now on in this
section (and its subsections). The only exception being q⋆, to prevent confusion with the
charge variable q.

To solve the equation (4.17), which is a diffusion equation where β plays the role of
the time variable and f represents a “source”, we work on an β–ρ–grid, starting at β = 0
and proceeding to lower temperatures via increasing β. Of course, we also need initial and
boundary conditions.

4.3.1 Initial and Boundary Conditions

At ρ = 0 the internal energy per volume is of course zero,

u(ρ = 0, β) = 0 ∀β . (4.18)

For high densities the so–called high temperature approximation (HTA [60]) is used to
determine the second derivative of u w.r.t. ρ. We chose ρmax = 1 as a reasonable upper
boundary (see [60]), resulting in the condition

∂2u

∂ρ2
(ρ = ρmax, β) =

∂2u

∂ρ2
(ρ = ρmax, β = 0) ∀β . (4.19)

The value at the boundary, u(ρ = ρmax, β = 0) and its derivatives at this state–point,
along with the complete initial condition u(ρ, β = 0), can be determined using the fact,
that for β = 0 the direct correlation function c(r) coincides with that of the HS gas, since
at infinite temperature all finite contributions of the interaction become negligible. Hence,
c(r) reduces to cHS(r) [equation (3.43)], reproducing the Carnahan Starling equation of
state [54] for hard spheres.

There exists a so called “forbidden” region in the gas–liquid phase diagram, where
the fluid becomes mechanically unstable. It is delimited by the so called spinodal line,
which lies completely inside the gas–liquid coexistence curve (also called binodal line) and
also culminates in the critical point (see figure 3.1). This forbidden region, where the PDE
would become analytically instable, can be excluded by finding the limiting densities where
1/χ vanishes. At these loci we calculate the internal energy per volume (see [20, 60]) to
obtain the bounding values for u. Thus we can restrict ourselves in the solution of the
PDE to density values outside the spinodal.
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4.3.2 The Inhomogeneity Term

We have to be cautious when calculating the inhomogeneity term of equation (4.17f) (which
is now termed f) of the PDE: if density and/or inverse temperature and/or reduced charge
are small, then κ [see equation (4.17g)] can become small, too, introducing the risk of
compensation error. This also applies to the evaluation of the Coulomb contribution to
internal energy in equation (4.17e), although in this case numerical accuracy is not as
critical, since it does not affect the PDE.

To overcome this problem we expand the equations (4.17f) and (4.17e) in power series.
In order to guarantee numerical accuracy in at least 20 significant digits we use the following
truncated power series:

C

q⋆
=

3κ

8
− κ2 +

75κ3

32
− 21κ4

4
+

735κ5

64
− 99κ6

4
+

27027κ7

512
− 3575κ8

32
+

240669κ9

1024
, (4.20)

valid for

κ ≤ 2.7 · 10−3 , (4.21)

and

4πβuC

κ
= −κ

2

2
+
κ3

2
− 5κ4

8
+

7κ5

8
− 21κ6

16
+

33κ7

16
− 429κ8

128
+

715κ9

128
, (4.22)

valid for

κ ≤ 2.2 · 10−3 . (4.23)

4.3.3 Predictor–Corrector Algorithm

The predictor–corrector algorithm is an unconditionally stable, implicit finite–difference
algorithm [65], the application to our purpose is discussed in detail in [66]. Essentially,
the algorithm introduces an intermediate temperature step, and the values of the unknown
function are calculated in a way, that we always only have to solve a set of linear equations
of tridiagonal type.

For the predictor–corrector algorithm we have to discretise. The increment of the ρ–
grid is called ∆ρ and will be kept fixed throughout the evolution of the algorithm. The
increment in inverse temperature β is ∆β, which will decrease continually as we approach
the critical point. In this way we guarantee a highly accurate determination of the critical
point.

We use the index j = 0, 1, 2, . . . , J to label the density values of the ρ–grid and n =
0, 1, 2, . . . is the index for the β values, with ρ0 = 0, ρJ = ρmax, and β0 = 0. To simplify
the notation we use the following abbreviation for a quantity that depends on both density
and (inverse) temperature,

Q(ρj, βn) −→ Qn
j , (4.24)

which we apply to the PDE coefficients as well as to the unknown function u.
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As indicated above, the predictor–corrector algorithm introduces an intermediate (in-
verse) temperature step, indicated by half–integer n–indices. The so called predictor equa-
tion reads

Cj
u
n+1/2
j+1 − 2u

n+1/2
j + u

n+1/2
j−1

(∆ρ)2
= Bn

j

u
n+1/2
j − unj

∆β/2
+ fnj , (4.25)

while the corrector equation is

1

2
Cj

(
un+1
j+1 − 2un+1

j + un+1
j−1

(∆ρ)2 +
unj+1 − 2unj + unj−1

(∆ρ)2

)
= B

n+1/2
j

un+1
j − unj

∆β
+ f

n+1/2
j . (4.26)

We multiply equation (4.25) by (∆ρ)2, define α = (∆ρ)2 /∆β and rearrange the terms,
leading to

Cju
n+1/2
j+1 +

(
−2Cj − 2αBn

j

)
u
n+1/2
j + Cju

n+1/2
j−1 = −2αBn

j u
n
j + (∆ρ)2 fnj . (4.27)

For zero density the internal energy per volume is always zero, i.e., un0 = 0 ∀n. For high
densities the HTA approximation of equation (4.19) is used, therefore the upper boundary
condition for this system of linear equations reads

−2αBn
Ju

n+1/2
J = −2αBn

Ju
n
J + (∆ρ)2 fnJ − CJ (∆ρ)2 ∂

2uHTA

∂ρ2
(ρJ) , (4.28)

where we explicitly indicate that the second derivative is evaluated at ρJ ≡ ρmax after

taking the derivative. We obtain a tridiagonal system of linear equations for the u
n+1/2
j ,
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that can be solved for the values u
n+1/2
j at the intermediate grid points.
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Next we multiply equation (4.26) by 2 (∆ρ)2 and rearrange the terms,

Cju
n+1
j+1 +

(
−2Cj − 2αB

n+1/2
j

)
un+1
j + Cju

n+1
j−1 =

= −Cj
(
unj+1 − 2unj + unj−1

)
− 2αB

n+1/2
j unj + 2 (∆ρ)2 f

n+1/2
j . (4.30)

Again, at zero density the internal energy is always zero. For high density (ρJ) the HTA
internal energy is used for both, the old (n) and the new (n+ 1) grid points (the terms in
parenthesis in equation (4.26), transformed back to differential expressions, just give two
times the HTA result). Therefore the upper bound for the linear equation system is

−2αB
n+1/2
J un+1

J = −2αB
n+1/2
J unJ + 2 (∆ρ)2 f

n+1/2
J − 2CJ (∆ρ)2 ∂

2uHTA

∂ρ2
(ρJ) . (4.31)

The tridiagonal linear equation system for the un+1
j in matrix form is thus
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4.3.4 Critical Point Location and Coexistence Line

Due to the discretisation described in the previous section, the location of the critical
point is only possible with an uncertainty of ∆ρ in density, the fixed width of the density
grid. This density–uncertainty then also influences the precise knowledge of the critical
temperature: Even if the temperature grid becomes arbitrarily fine approaching the critical
point, the temperature uncertainty remains much larger than the minimum temperature
step–size, because the result for the critical point will be a point on the ρ–grid — the one
of largest temperature that lies on the spinodal line.

As a consequence we devise the following method for a more accurate location of the
critical point, approaching this point from higher temperatures, i.e., lower β. First, we
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locate the minimum value of 1/χ on the ρ–grid for given temperature and call it 1/χk, k
being the corresponding index of the ρ–grid. Then, take the values of the two neighbour-
ing density grid–points on either side and interpolate a fourth order polynomial function
through these five points. This function has an easily computable minimum in the consid-
ered density region which we call (1/χ)min, attained at ρmin. As soon as we reach the point
where (1/χ)min = 0, we have located the critical point.

In this way, the accuracy for the location of the critical point is only limited by the
minimum temperature step–size, by numerical precision, and of course by the numerical
issue discussed in section 4.3.2.

Once u(β, ρ) has been determined, the pressure P and the chemical potential µ are
obtained via integration of ∂(βP )/∂β and ∂(βµ)/∂β from

∂(βP )

∂β
= −u+ ρ

∂u

∂ρ
(4.33a)

and
∂(βµ)

∂β
=
∂u

∂ρ
. (4.33b)

The coexisting state points with the corresponding densities ρl and ρg of the liquid and
gaseous phases at given temperature (below the critical temperature) are then obtained
from the conditions that P and µ are equal for the coexisting phases. For a better location
of these state points, i.e., for not being restricted to the used ρ–grid, we use a linear
interpolation scheme between grid–points. Finally, the coexistence lines are obtained by
connecting the state points of the respective phases, which of course have to coincide at
the critical point.



Chapter 5

Equilibrium Structures in the Solid
State

The ordered equilibrium structures of the solid state are known to be in general crystals,
which can be described via lattices and sets of basis particles [67]. Usually a crystal is not
built in a perfect way, i.e., there occur lattice defects, grain boundaries, phase boundaries
between different solid phases and also fluid phases, surface effects, lattice vibrations, etc.
All these deviations from the perfect crystal are either linked to surface effects due to the
finite size of real substances, to long–lived metastable phases, or to a finite temperature.
However, under certain circumstances, considering infinitely extended perfect crystals is a
valid approach to finding the equilibrium solid structures: Surface effects can be neglected
by focussing on bulk properties, a common strategy which we will hence also adopt to, and
metastable phases can simply be dropped when one is just looking for the real equilibrium
structures. To rule out the influence of a finite temperature we restrict ourselves to the
case of zero temperature, T = 0, where the entropic contribution to the thermodynamic
potentials vanishes, thus

E = F and H = G . (5.1)

E reduces to the lattice sum, determined only by the pair potential and the static arrange-
ment of the particles.

Although it is practically impossible to establish these requirements in real experimen-
tal setups, it is nevertheless interesting which crystals are the most stable ones at zero
temperature, because these structures will most probably also appear when looking for
stable crystal structures at finite temperatures.

In this thesis we will therefore consider infinitely extended perfect crystals at T = 0
as the solid equilibrium structures. Before we can explain how to calculate E and H via
lattice sums, we have to introduce the parametrisation of a general three–dimensional (3D)
crystal.

41
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5.1 Parametrisation of Three–Dimensional Crystals

A perfect crystal consists of a periodic arrangement of the so called unit cell. The periodic
arrangement is called the lattice, while the so called basis of the crystal is the set of at
least one basis particle, positioned inside the unit cell in a well–defined way [67]. We will
try to make the basis as small as possible, i.e., to have the smallest possible number of
basis particles inside the unit cell, and hence put as much information about the crystal
as possible into the description of the lattice. In such a case of minimal basis the lattice is
called primitive lattice.

To be more specific, every lattice can be described through three pairwise linearly
independent vectors, the primitive vectors, which we call a, b, and c. The primitive
vectors are used to construct the lattice vectors

Lijk = ia + jb + kc , (5.2)

with i, j, and k being arbitrary integers. Taken as position vectors, these vectors corre-
spond to positions which are called lattice points, each of them being the origin of one of
the periodically arranged unit cells. This situation is visualised in figure 5.1 for a two–
dimensional (2D) crystal where the smallest possible basis consists of two equal particles.
Given the lattice points, the primitive vectors and the shape of the unit cell (along with
the basis particle arrangement inside the cell) are not uniquely defined. In the figures
5.1(b,d–f) four different possible unit cells are drawn. Figures 5.1(b,d) depict unit cells
that are parallelograms, defined by possible choices of the two primitive vectors (there is
a countable, infinite number of possible parallelograms). Figure 5.1(e) shows, that the
border of the unit cell can be nearly arbitrarily shaped, as long as the 2D space can be
completely tiled with identical unit cells placed at each lattice point. The above arguments
are directly transferable to 3D, parallelograms in 2D convert to parallelepipeds in 3D.1

Another, important example of a unit cell is the Wigner–Seitz unit cell [WSC, in the
example of figure 5.1 depicted in panel (f)], which is constructed the following way: Take all
lattice vectors Lijk (with their shafts at the origin) and construct a plane perpendicular to
each vector that contains the point half–way from the origin, 1

2
Lijk. Then, the intersection

of all half–spaces created by these planes that contain the origin represents the WSC. We
will use this concept in section 5.3.

For a general parametrisation of all crystals we want to get rid of as many of the
ambiguities in the choice of the primitive vectors and the shape of the unit cell as possible.
W.l.o.g. we therefore demand (see also [68,69]):

• The three primitive vectors shall be ordered according to their length, so that, using
|a| = a, |b| = b, and |c| = c,

c ≤ b ≤ a . (5.3)

• a is always assumed to be parallel to the x–axis of the Cartesian coordinate system.

1It can be proven [67], that all primitive unit cells have the same volume.
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Figure 5.1: Decomposition of a 2D honeycomb crystal (c) into its lattice
(a) and basis (b). In (a) each lattice point is marked with a cross; the
two (example) primitive vectors are also drawn, as well as their periodic
recurrence as dashed lines.
In (d–f) alternative unit cells with their corresponding basis particle ar-
rangements are drawn, (f) is the so called Wigner–Seitz unit cell (see
text).

• If a · b < 0, transform b → −b (the angle between a and b is assumed to be at
maximum π/2).

• The y–axis is chosen in such a way, so that b lies in the first quadrant of the xy–plane.

• If the y–component of c is negative, transform c → −c.

• c has a positive z–component.

• The unit cell is chosen to be the parallelepiped spanned by the three primitive vectors.

Demanding the z–component of c to be positive is in fact a constraint which cannot be
made w.l.o.g. Obeying this constraint means, that out of each pair of crystals, defined
by the condition that one crystal is obtained by mirroring the other, we only consider
one crystal. However, since the considered pair potentials (see chapter 2) depend only on
distances (i.e., are isotropic), all physical quantities (e.g., lattice sums) are the same for a
crystal and its mirrored counterpart and we need not consider both of them.
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The above conditions lead to the following parametrisation of a, b, and c [68, 69]:

a = a




1
0
0


 , b = a




x cosϕ
x sinϕ

0


 , c = a




xy cosψ cosϑ
xy sinψ cosϑ
xy sinϑ


 , (5.4)

where

a > 0 , (5.5a)

0 < x ≤ 1 , (5.5b)

0 < y ≤ 1 , (5.5c)

0 < ϕ ≤ π

2
, (5.5d)

0 ≤ ψ < π , and (5.5e)

0 < ϑ ≤ π

2
. (5.5f)

Thus, we have a parametrisation for all possible primitive lattices in terms of their primitive
vectors.

Taking basis particles into account we note, that w.l.o.g. we can always put the first
basis particle at the origin of the unit cell. Since all other basis particles must also be
located inside or at the edges of the unit cell, we can write for the positions of the basis
particles

vi = viaa + vibb + vicc , i ∈ N ∧ i ≤ nb(∈ N) , via, vib, vic ∈ [0, 1) ∀i , (5.6)

where nb is the total number of basis particles, and

v1a = v1b = v1c = 0 . (5.7)

We also impose an ordering scheme for the basis particles which reads

v(i−1)a ≤ via ∀i > 1 , (5.8a)

v(j−1)b ≤ vjb ∀j > 1 : v(j−1)a = vja , (5.8b)

v(k−1)c ≤ vkc ∀k > 1 : v(k−1)a = vka ∧ v(k−1)b = vkb . (5.8c)

Equation (5.5) together with equation (5.6) parametrises all possible crystal structures.
Of course, there remain ambiguities in the parametrisation, i.e., different sets of parame-

ter–values can correspond to the same crystal structure. To return to our 2D example of
figure 5.1, both subfigures (b) and (d) can represent valid [i.e., in accordance with equation
(5.5) and equation (5.6)], different parametrisations of obviously the same crystal structure.
Ambiguities in the parametrisation of the crystal structures can be a severe problem for any
optimisation algorithm that searches for (periodic) particle arrangements that minimise a
thermodynamic potential. Also, assuming our algorithm experiences no problems, being
confronted with different solutions at the same conditions, we of course would like to
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know whether we are just facing the same crystal with different parameter values or really
different structures that happen to exhibit the same, minimum value of the thermodynamic
potential under consideration — giving rise to distinct, coexisting phases.

One way to deal with this problem is to introduce a unification strategy that identifies
equivalent parametrisations. It has become clear [68], that the only difficulty in this task
is to unify the different primitive unit cells, the basis becomes unique by applying equation
(5.6). A unification strategy presented by Gottwald et al. [68, 69] identifies the primitive
unit cell with the smallest surface via an iterative algorithm, that works as follows:

1. Calculate the surface Σ∗ of the primitive unit cell given by a, b, and c.

2. Calculate the surfaces of the 12 primitive unit cells defined through

(a,b ± a, c) , (a,b, c ± a) ,

(a ± b,b, c) , (a,b, c ± b) , (5.9)

(a ± c,b, c) , and (a,b ± c, c) ,

and denote the smallest among them by Σ̃.

3. If Σ̃ < Σ∗, take the primitive vectors corresponding to Σ̃ as the new values for a, b,
and c and start over again, else stop.

Each triplet of primitive vectors that is not changed by this algorithm is called a fixpoint.
There are, however, two disadvantages of this method:

• There exists no proof for the exact convergence of the algorithm to the triplet of
primitive vectors that describe the unit cell with the smallest surface, and

• it only provides a recipe how to iteratively find the minimum surface unit cell for
an arbitrary, given set of three primitive vectors (why this can pose a problem will
become clear soon).

Nevertheless, this method proved to be sufficient to deal with the ambiguity–problem for
soft core systems, i.e. systems that do not have a hard core but a finite interaction potential
for all particle separations. The reason is, that — in principle — all parametrisations (i.e.,
all crystals) are allowed for such interaction potentials.

The situation is completely different when considering hard core particles. We have to
argue a little more verbosely to clarify our point.

If one takes an arbitrary crystal structure parametrised via equations (5.5) and (5.6), it
is very likely that there will be a hard core overlap, leading to an infinite potential energy
— an unphysical situation. More figuratively speaking: The hard core condition cuts out
regions of the (6+3(nb−1))–dimensional parameter space, leaving a highly porous regime
of allowed structures. For the case of a simple 2D crystal we could prove, that the surface
of the remaining regime even has a fractal form (see appendix B.2).
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It is quite intuitive, that optimisation algorithms get in trouble when the parameter
space is highly porous. For very many equilibrium structures, especially of the SSM [equa-
tion (2.10)], there occur touching hard cores (see chapter 9), i.e., the structure becomes
stabilised by the hard core repulsion. If these touching particles would approach each other
only a little bit, the hard cores would overlap, a situation that is excluded from parame-
ter space — which means the parameters for the equilibrium structure lie, mathematically
speaking, at the rim of parameter space, in a porous region! The only way to deal with this
porosity problem is, to exclude the “forbidden” region from parameter space beforehand.
To know whether a given parametrisation represents a forbidden crystal, we have to know
the shortest distance between any particles in this crystal; this distance is of course shorter
than the hard core diameter for forbidden structures, and larger (or equal) otherwise.

Now we return to the argument why the parametrisation of equations (5.5) and (5.6)
together with the above unification strategy cannot deal with the requirement of an exclu-
sion of all porous regions from parameter space: Even if a reduction of parameter space
to those structures that represent fixpoints of the unification algorithm resulted in the
exclusion of most of the porous parameter space (which could not be shown so far), it is
not possible to parametrise only these fixpoint–structures, since the unification algorithm
works only iteratively2.

As a consequence we were forced to find a new kind of parametrisation of 3D crystals,
that excludes hard core overlaps a priori.

5.2 The Minimum Distance Parametrisation

In an effort to avoid hard core overlap it would obviously be most convenient to find a
parametrisation of all crystals where one always exactly knows, which distance between
particles is the absolutely smallest one occurring in the whole crystal. This distance has
to be restricted to be larger than the hard core diameter to guarantee that no overlap will
occur. The major task in finding this parametrisation was to solve this problem just for
the lattice, i.e., to obtain a parametrisation where c is always the shortest vector between
any pairs of lattice points — the shortest lattice vector.

For a given lattice one can easily find such a smallest distance: Consider a sphere of
radius δ around a lattice point that is small enough to include no other lattice point. Then
one gradually increases the radius until it just reaches another lattice point, its radius s
being then the smallest distance between lattice points and the vector connecting these two
points is the shortest lattice vector s. While s is uniquely defined, there might be several
vectors si that satisfy |si| = s. However, these ambiguities turned out to be no problem,
as will be discussed later.

How can we find a parametrisation that always contains a vector of length s as a
primitive vector?

2Note that both these arguments are not true in 2D, where the fixpoint–structures can be parametrised
and do not incorporate any porous regime in parameter space, see the next section.
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In 2D the above described unification algorithm of the unit cells minimises the cir-
cumference of the unit cells. This automatically leads to b, the shorter one of the two
unit cell vectors, being the shortest distance in the whole 2D lattice (b = s), as is shown
in appendix B.1. In addition, we only need one extra condition, cosϕ ≤ x/2 (see again
appendix B.1 and section 5.2.1), to include only these fixpoints of the unification algorithm
in parameter space, and this reduced parameter space has indeed no porous regions any
more (see appendix B.2). We have to stress the fact, that this reduced parameter space of
course still contains all possible lattices.

For 3D, relying on the above unification algorithm for primitive unit cells to find a
suitable, reduced parameter space has two problems, also indicated in the previous section:

• It is not clear, whether in the primitive unit cell with the smallest surface, generated
by the unification algorithm, c is really the shortest lattice vector. In other words,
there could still remain some porous region in the reduced parameter space.

• Up to now it was not possible to construct a priori a reduced parameter space, that
contains only the fixpoints of the unification algorithm.

Therefore we decided to search for a new unification strategy for 3D lattices.
Let us go back to the picture of the sphere with growing diameter, centred at a lattice

point. It provided us with the shortest distance in the lattice, s, and a finite number3 of
lattice vectors si having length s. We choose one of the si arbitrarily and call it c (There
are at least always two possibilities, since if c is a lattice vector so is −c.) If there exists
another vector in the set of si that is linearly independent of c we call it b. Else, we further
increase the diameter of the sphere, until at least one other lattice point happens to lie on
the spherical surface and the following condition is met: The lattice vector from the lattice
point at the centre of the sphere to a lattice point at the surface is linearly independent of
c. Again, it is possible that several vectors of the same magnitude fulfil this requirement;
one of them we call b. In the same manner we can construct a third lattice vector a, which
of course must not lie in plane with b and c.

We conclude, that for all crystal lattices there exists a primitive unit cell
where the primitive vectors c, b, and a are the three shortest possible, pair-
wise linearly independent lattice vectors, satisfying c ≤ b ≤ a. As a conse-
quence it is sufficient for a general parametrisation of all lattices to find a
parametrisation for all possible triplets of vectors that satisfy this condition.

We will describe now how one can construct this parametrisation, containing the short-
est distance of the lattice as the length of c, which we therefore call minimum distance
parametrisation (MDP).

3At maximum 12, see below.
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As a starting point we choose, w.l.o.g., the following representation for the three vectors
in a Cartesian basis:

a = a




1
0
0


 , b = ax




cosϕ
sinϕ

0


 , and c = a




ξ
η
ζ


 , (5.10)

where we decided not to use the representation for c as in equation (5.4). Of course we can
still impose the analogous conditions to equation (5.5) for the present set of parameters,
leading to

a > 0 , (5.11a)

0 < x ≤ 1 , (5.11b)

0 < ϕ ≤ π

2
, (5.11c)

η

{
≥ 0 ξ ≥ 0
> 0 ξ < 0

, (5.11d)

ζ > 0 , and (5.11e)

x ≥
√
ξ2 + η2 + ζ2 . (5.11f)

From equation (5.10) we recognise, that a is a prefactor for all three primitive vectors,
and hence represents just a scaling factor for the whole lattice. Therefore our aim is
now to identify a subspace of the five parameters x, ϕ, ξ, η, and ζ in R

5, so that c, b,
and a represent the three shortest possible (i.e., c ≤ b ≤ a), linearly independent lattice
vectors, monotonously ordered by magnitude. We will perform this task in two steps: first
considering the plane spanned by a and b; second, taking also the shortest vector, c, into
consideration.

5.2.1 The a–b–Lattice Plane

The two primitive vectors a and b define a 2D lattice, a so called lattice plane of the 3D
lattice. We have to find all values of x and ϕ for which the two vectors a and b are the
shortest, linearly independent 2D lattice vectors of this lattice plane.

Consider a lattice line parallel to b and passing through a lattice point P (see figure
5.2). The condition, that b is the shortest distance between lattice points in the 2D
lattice demands, that there exists no lattice point having a distance shorter than b from
P. The second condition, that out of all lattice vectors in the 2D lattice that are linearly
independent of b, a is the shortest one, results in the even stronger restriction, that there
must not be any lattice points having distance shorter than a from P, with the possible
exception of those at P + nb, n ∈ Z, lying on the same lattice line as P (b is allowed to
be shorter than a). This has especially to hold for all points of the adjacent lattice line,
which can be constructed by adding a to each point of the lattice line that includes P (see
figure 5.2)4.

4If all distances to particles of the adjacent lattice line are greater than or equal to a, then the ones
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P b

a

Figure 5.2: Two adjacent lattice lines in the b direction.

We calculate now the distances between P and the lattice points of this adjacent b–line,
giving

√
a2 − 2anb cosϕ+ n2b2, n ∈ Z. From ϕ ≤ π/2 it follows that cosϕ ≥ 0, therefore

only non–negative values of n have to be checked to guarantee that this distance is larger
than or equal to a. For convenience we define a function f(n), which is the square of the
above expression, i.e., the square of the calculated distances,

f(n) = a2 − 2anb cosϕ+ n2b2 , (5.12)

which has to be larger than or equal to a2 for all values of n. f(n) is obviously a convex
parabola with apex at nmin = a

b
cosϕ ≥ 0, and of course f(0) = a2. The condition f(1) ≥ a2

leads to

cosϕ ≤ b

2a
=
x

2
, (5.13)

which results in nmin ≤ 1
2
. Since the minimum of the parabola therefore lies between 0 and

1 (the two points where f(n) ≥ a2 already holds), it immediately follows that f(n) > a2,
∀n > 1.

Therefore, equation (5.13) is the only necessary condition5 to guarantee, that a and b
are the shortest, linearly independent 2D lattice vectors with b ≤ a (compare appendix
B.1).

5.2.2 Constructing c as Shortest Lattice Vector

Now the third vector, c, has to be added to describe the whole 3D lattice. This has to
be done in a way, that it is not only the shortest lattice vector, but also there must not
appear any other lattice vector that is

• shorter than b and not linearly dependent of c, or

• shorter than a and cannot be described as ib + jc (i, j ∈ Z);

to particles in lattice lines that are farther away are always greater than a: Assume the distance between
the b–lines is d, then the largest possible value for the shortest distance between points of adjacent
lines is

√
d2 + b2/4, equal to a. The shortest possible distance to a lattice point at the next line is

2d = a
√

4 − b2/a2 ≥
√

3a > a.
5Note, that

√
f(1) is the length of the shorter diagonal of the parallelogram spanned by a and b, which

is restricted to be greater than or equal to a by this condition.
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x–axis
0

z–axis

Figure 5.3: The “mogul slope”, above which all vectors from the origin 0
to kc have to point. The y–axis, obtained via ŷ = ẑ × x̂, cannot be seen
(hats indicate unit vectors in the corresponding directions).

if this was the case, then this vector would substitute either b or a in the triple of the three
shortest, linearly independent lattice vectors. Since the whole lattice can be described as a
stacking of parallel a–b–lattice planes, generated by shifting one plane by the vectors kc,
k ∈ Z, these two conditions can be visualised graphically: The vectors kc, k ∈ N (only
positive values due to symmetry have to be considered), have to point above the “mogul
slope” drawn in figure 5.3, constructed in the following way.

1. Take the lattice plane spanned by the given primitive vectors a and b (starting from
the origin) in the positive Cartesian y–direction (the lattice points ia+jb with i ∈ Z

and j ∈ N0),

2. draw half–spheres of radius b around the points jb, j > 0 and

3. draw half–spheres of radius a around all other points, except the origin.

Half–spheres extending to negative (Cartesian) y–values are truncated by the x–z–plane,
since η ≥ 0.

Conditions for c

Let us first consider the case k = 1, i.e. the vector c itself and not a multiple of it.
The condition c ≤ b can be visualised as follows: draw a quarter–sphere centred at the

origin of radius b, in the region where z, y ≥ 0, the vector c has to point this region, having
its shaft at the origin (including the surface for c = b). Combined with the mogul slope
this gives a region looking like a kind of pendentive for the allowed c–vectors (see figure
5.4).
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Figure 5.4: The mogul slope, similar to figure 5.3, is drawn, but with the
four relevant moguls for the vector c coloured yellow, blue, green, and
red in (a). The allowed regime for c is the transparent, pendentive like
region, enlarged in (b).

We now formulate these conditions analytically. To describe the pendentive of figure
5.4(b) we need the intersections of the sphere centred at the origin (upper bound) with
the other relevant spheres (lower bound). It turns out, that only the four spheres centred
at ±a, b, and −a + b have to be considered6. A detailed proof follows at the end of this
section.

The intersection of two of these spheres is a circle which has its centre somewhere on
the straight line passing through the centres of the two spheres. Therefore, the intersection
circle of two spheres having their centres in a plane, is always a straight line if projected onto
this common plane. Since this is the case for our problem, and to simplify the visualisation,
we rather consider the projection of our objects of interest onto the x–y–plane from now
on.

Including the restriction to non–negative y–values, we obtain the following straight lines

6This is similar to the question how many points have to be considered for the WSC of a 2D lattice;
the answer is 4 (6 if negative y–values are included), see also [67], Chapter 4, Problem 4 (p. 82).
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as the rim for the projection of the pendentive onto the x–y–plane, our region of interest:

g0 : 0 = η , (5.14a)

g1 : ξ =
x2

2
, (5.14b)

g2 : η sinϕ+ ξ cosϕ =
x

2
, (5.14c)

g3 : η sinϕ+ ξ

(
cosϕ− 1

x

)
= x− cosϕ , (5.14d)

g4 : −x
2

2
= ξ . (5.14e)

If all equality signs are replaced with less–equal–signs (≤), the resulting five inequalities
define the projection of the pendentive onto the x–y–plane. The equalities (5.14) result in
five intersection points at the rim of the region (they are given with their z–coordinates
included for completeness, which can simply be calculated through ζ =

√
x2 − ξ2 − η2):

g0 ∩ g1 : P1 = ax
2

(
x, 0,

√
4 − x2

)
, (5.15a)

g1 ∩ g2 : P2 = ax
2

(
x, 1−x cosϕ

sinϕ
,

√
3−4 cos2 ϕ+2x cosϕ−x2

sinϕ

)
, (5.15b)

g2 ∩ g3 : P3 = ax
2

(
2 cosϕ− x, 1−2 cos2 ϕ+x cosϕ

sinϕ
,

√
3−4 cos2 ϕ+2x cosϕ−x2

sinϕ

)
, (5.15c)

g3 ∩ g4 : P4 = ax
2

(
−x, 1− 2

x
cosϕ+x cosϕ

sinϕ
,

q

3−x2− 4
x2 cos2 ϕ+ 4

x
cosϕ−2x cosϕ

sinϕ

)
, (5.15d)

g4 ∩ g0 : P5 = ax
2

(
−x, 0,

√
4 − x2

)
. (5.15e)

Figure 5.5 shows the projection of the pendentive and hence of the allowed region for c
onto the x–y–plane, which is the resulting allowed region for the x– and y–coordinates
of c (aξ and aη). The lower bound for the z–coordinate for given ξ and η is determined
by the surface of one of the four coloured moguls in figure 5.4, the corresponding regimes
in the projection are coloured as the corresponding spheres in figure 5.4 and are labelled
with uppercase letters. The intersections between these four moguls are again lines in the
x–y–projection given by

g5 : ηx sinϕ = ξ (1 − x cosϕ) (A|B), (5.16a)

g6 : ξ = x cosϕ− x2

2
(B|C) , (5.16b)

g7 : ξ(1 + x cosϕ) + ηx sinϕ = 0 (B|D), (5.16c)

g8 : ξ cosϕ+ η sinϕ =
x

2
− cosϕ (C|D). (5.16d)

Note that C vanishes completely if a and b are perpendicular, i.e., if cosϕ = 0. The only
additional intersection points in the region of interest, due to these additional lines, are
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A

BC

D

P0
P1

P2

P3

P4

P5

P6

g0

g1

g2

g3

g4

g0

g5

g6

g7

g8

Figure 5.5: Projection of the pendentive [the allowed region for c, see
figure 5.4(b)] onto the x–y–plane. Regions with different lower bound of
ζ for given ξ and η are coloured corresponding to the delimiting spheres
in figure 5.4 and are labelled in bold, uppercase letters (A, B, C, and
D). The limiting straight lines are labelled gi, their intersection points,
indicating the corners of the four 2D regions, are the Pi.

the origin (P0) and the intersection of g6, g7, and g8:

g0 ∩ g5 ∩ g7 : P0 = (0, 0, 0) , (5.17a)

g6 ∩ g7 ∩ g8 : P6 = ax
2

(
2 cosϕ− x,

1+x cosϕ−2 cos2 ϕ− 2
x

cosϕ

sinϕ
,

q

3−x2− 4
x2 cos2 ϕ− 4

x
cosϕ+2x cosϕ

sinϕ

)
.

(5.17b)

With help of the boundary lines and corner points for the four different regions, it is
straightforward to calculate the corresponding four sets of describing inequalities,

A : 0 ≤ ξ ≤ x2

2
∧ 0 ≤ η ≤ ξ

x sinϕ
(1 − x cosϕ) , (5.18a)

B : 0 ≤ ξ ≤ x2

2
∧ ξ

x sinϕ
(1 − x cosϕ) < η ≤ x− 2ξ cosϕ

2 sinϕ
∨

∨ −x
2

2
+ x cosϕ < ξ < 0 ∧ − ξ

x sinϕ
(1 + x cosϕ) ≤ η ≤ x− 2ξ cosϕ

2 sinϕ
, (5.18b)

C : − x2

2
≤ ξ ≤ −x

2

2
+ x cosϕ ∧ x− 2(1 + ξ) cosϕ

2 sinϕ
≤ η ≤ x− cosϕ− ξ cosϕ− ξ/x

sinϕ
,

(5.18c)

D : − x2

2
+ x cosϕ ≤ ξ < 0 ∧ 0 ≤ η < − ξ

x sinϕ
(1 + x cosϕ) ∨

∨ −x
2

2
≤ ξ < −x

2

2
+ x cosϕ ∧ 0 ≤ η <

x− 2(1 + ξ) cosϕ

2 sinϕ
. (5.18d)
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Note, that C is reduced to a single point if cosϕ = 0.

Finally, we calculate the possible ζ–values for given ξ and η. Obviously, the maximum
value is given by ζmax =

√
x2 − ξ2 − η2, through the delimiting (quarter–)sphere around

the origin. The minimum value ζmin depends on the relevant spherical mogul. To obtain
the corresponding ζmin,i we have to solve the equation


a




ξ
η

ζmin,i


− Mi




2

= r2
i (5.19)

for ζmin,i, with the four pairs of centres and radii,

M1 = −a , r1 = a , (5.20a)

M2 = −a + b , r2 = a , (5.20b)

M3 = b , r3 = xa , (5.20c)

M4 = a , r4 = a , (5.20d)

inserted. The result is given in the following summary for the region of the six dimensional
parameter space for x, ϕ, ξ, η, ζ, and a, describing all possible pendentives:

a ∈ R
+ , (5.21a)

x ∈ (0, 1] , (5.21b)

ϕ ∈
[
arccos

(x
2

)
,
π

2

]
, (5.21c)

ξ ∈
[
−x

2

2
,
x2

2

]
, (5.21d)

η ∈





(
0, x

2+ξ−(ξ+1)x cosϕ
x sinϕ

]
ξ < x cosϕ− x2

2(
0, x−2ξ cosϕ

2 sinϕ

]
x cosϕ− x2

2
≤ ξ < 0

[
0, x−2ξ cosϕ

2 sinϕ

]
0 ≤ ξ

, and (5.21e)

ζ ∈





[√
2ξ − ξ2 − η2,

√
x2 − ξ2 − η2

]
(ξ, η) ∈ A

[√
2x (ξ cosϕ+ η sinϕ) − ξ2 − η2,

√
x2 − ξ2 − η2

]
(ξ, η) ∈ B

[√
2x (cosϕ+ ξ cosϕ+ η sinϕ) − 2ξ − x2 − ξ2 − η2,

√
x2 − ξ2 − η2

]
(ξ, η) ∈ C

[√
−2ξ − ξ2 − η2,

√
x2 − ξ2 − η2

]
(ξ, η) ∈ D

,

(5.21f)

where the regions A, B, C, and D are defined through 5.18, visualised in figure 5.5.
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5.2.3 Proof of the Completeness of the Description

Now we proof that the conditions described in the previous section are already sufficient
to guarantee that c, b, and a are the three shortest, linearly independent lattice vectors
of the corresponding lattice for all 5–tuples x, ϕ, ξ, η, and ζ, defined by equation (5.21).

What remains to be shown is, that kc indeed never lies inside the mogul slope for
k > 1. To facilitate our analytical arguments, we consider the simpler problem, that the
line generated by the equation x = tc, t ∈ R and t > 1, never touches or intersects any
mogul, as long as c itself lies inside the pendentive. Of course this includes the proof of
the original problem.

The proof is performed in 3 steps:

Theorem I: Only points at the rim of the pendentive, which is defined as the intersection of the
sphere of radius b centred at the origin with the mogul slope, have to be considered.
Proof: Let us temporarily change the parametrisation for c to the one in [68,69]:

c = axy




cosψ cosϑ
sinψ cosϑ

sinϑ


 , (5.22)

where y is the fraction between c and b, ψ is the angle of the projection of c onto
the x–y–plane with the x–axis, and ϑ is the angle between the vector c and the x–y–
plane. Obviously, for given value of ψ, we only have to consider the vector with the
smallest possible ϑ, ϑmin, because if tcϑ=ϑmin

does not intersect the mogul slope for
t > 1, neither will any other line with ϑ > ϑmin. Let us consider the lines starting at
the origin, given by tc with t ∈ R

+, to find out for which c the angle ϑ is minimal,
provided that ψ is fixed. To visualise the situation for fixed ψ we make a cut through
the pendentive along the plane defined by the z–axis and c (it is clear, that c parallel
to the z–axis needs not to be considered).

For the four important moguls, that define the lower bound (of ζ) for the penden-
tive, there appear two qualitatively different situations when performing this cut,
visualised in figure 5.6.

• As depicted in figure 5.6(a), three of the four pendentive–defining moguls touch
the origin, those representing the lower bound for c in the regions A, B, and
D. For given ψ only one of these moguls is relevant (see figure 5.5), therefore
every line tc will intersect the corresponding mogul exactly twice, at the origin
and at one other point. As can be seen in figure 5.6(a) the ϑ–value of c is
minimal in the above sense, for given ψ and length c, if this intersection point
lies exactly at the intersection point of two circles, one representing the mogul
and the other being defined as the set of points having distance c from the origin
(visualised e.g. by the dotted circle centred at the origin). It is also obvious,
that ϑ decreases with increasing length c, being minimal at c = b = ax, the
maximum value for c [see the dashed line and circle in figure 5.6(a)].
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z–axis

0
x–y–plane

(a)

0

z–axis

(b)

Figure 5.6: Cuts by a plane defined by ẑ and ĉ, i.e., ψ =const. In (a)
the solid circle represents one of the three moguls that touch the origin
(denoted by 0), in (b) it corresponds to the fourth defining mogul for the
pendentive, being the lower bound in the region C (see figure 5.5). The
dashed circle indicates the maximum range for c, ax; the dashed line is
the corresponding line tc of minimum ϑ.

Hence, in the regions A, B, and D, minimum ϑ for fixed ψ is obtained at the
rim, where

√
ξ2 + η2 becomes maximal.

• If the c–z–plane cuts through the mogul representing the lower bound in region
C, the situation is slightly different, as depicted in figure 5.6(b). Although, for
given c (and ψ), ϑ is still minimal for c pointing at the surface of the mogul,
the minimum with varying c is not obtained at the maximum value of c = b,
visualised by the dashed circle (and line) in figure 5.6(b). The C–mogul does
not touch the origin, therefore there exists an angle ϑtan (for given ψ), where the
line tc only touches the C–mogul, with the touching point having distance ctan
from the origin. Drawing the line that corresponds to the minimum ϑ–value for
the maximum value of c (dashed line), we recognise that there exists another,
shorter vector c pointing at the surface of the mogul, that generates the same
line. Its length is indicated by the dotted line in figure 5.6(b). If we take even
smaller values of c into account, ϑ seems to be able to become arbitrarily small!

Luckily, as we will show now, the region C only contains c–vectors with c ≥ ctan,
i.e., also in region C we obtain the minimum ϑ–value at the rim.

To prove this last assertion we have to show that the touching points of all tangents
starting at the origin to the sphere of radius a with centre at the point −a + b
(the C–mogul) lie below the pendentive or even outside its x–y–extent, i.e, their
projections must not lie in C. Consider the set of tangents from the origin that touch



5.2. THE MINIMUM DISTANCE PARAMETRISATION 57

h

(a)

C

g8

g6

P6

h

(b)

Figure 5.7: (a): Projection of a sphere (solid circle), a touching cone
(dashed lines), and the intersection–circle (dotted line) onto a plane
through the apex of the cone and the centre of the sphere.
(b): Region C and the projection of the intersection circle (dashed line,
labelled h) of the mogul at −a + b and its tangential cone with apex in
the origin, onto the x–y–plane.

this sphere. They form a cone that touches the sphere in a circle, which transforms
into a straight line (called h) when projected onto the x–y–plane [see figure 5.7(a)].
The straight line representing this projection is perpendicular to the line from the
origin to −a + b. Define the vector from the centre of the considered sphere to P6 as
u = P6 − (−a + b). Since u · P6 = 0, P6 is one of the points where the cone touches
the sphere, and h contains the projection of P6 onto the x–y–plane.

Now

• g8 has always a negative slope of − cotϕ [see equation (5.16d)],

• the slope of g6 is infinite [see equation (5.16b)],

• and h [as well as g3, see equation (5.14d)] has a slope of (1 − x cosϕ)/x sinϕ,
satisfying

1 − x cosϕ

x sinϕ
≥ 2 − x2

x
√

4 − x2
≥ 1√

3
and (5.23a)

1 − x cosϕ

x sinϕ
≤ 1

x
<∞ , (5.23b)

since 0 ≤ cosϕ ≤ x
2

and 0 < x ≤ 1.

Therefore the tangential projection line never lies inside C, see figure 5.7(b).
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We conclude: The larger c the smaller ϑ can be, implying that the points at the rim
of the pendentive are the ones having smallest ϑ for each value of ψ.
�

Theorem II: The 3 lines from the origin through the 3 points P2, P3, and P4 never touch any
mogul (and only intersect any of the 4 “important” moguls).
Proof:7 Let i, j ∈ Z.

• Line through P2

The moguls centred at jb, j > 1, can never be touched, since the distance of
the line tP2 (t ∈ R

+) from these points is
√

3
2
axj, which is always larger than

b = ax (the radius of these moguls) for j ≥ 2.

From the points a + jb the line of interest has distance

d(j) = a

√
1 + 2jx cosϕ− x2

4
(1 + 2j − 3j2) . (5.24)

d(0) = a
√

1 − x2/4 < a because the half sphere centred at a is of course inter-
sected. For j = 1 we get d(1) = a

√
1 + 2x cosϕ > a, and with the general rule

d(j) < d(j + 1), true because 0 < 2x cosϕ + x2(1 + 6j)/4, we obtain through
complete induction that d(j) > a for all j ≥ 1.

Now we take the distance from the tP2–line to all points of ia+ jb, which gives

d(i, j) =
a

2

√
3j2x2 + i2 (4 − x2) + 2ijx (−x+ 4 cosϕ) . (5.25)

Only non–negative values of i, j have to be considered, since, when projected
onto the x–y–plane, the line tb always has a steeper slope than tP2. Demanding
d(i, j) to be larger than a leads to

i2
(
3 − x2

)
− 4 + 8ijx cosϕ+ 2j2x2 + (i− jx)2 > 0 , (5.26)

where we just have to consider the first two terms (all other ones are at least non–
negative): In the worst case (the smallest possible value for given i, obtained for
x = 1) they give 2i2 − 4, which is always positive for i > 1. i = 0, 1 have been
already considered above, therefore the line through the origin and P2 never
touches the mogul slope outside the pendentive. �

• Line through P3

Analogous to above we check that the moguls centred at jb (j > 1) are never
touched by the line tP3, t ∈ R

+. Also similarly, we get for the distances from
−a + jb

d(j) =
a

2

√
4 − x2 + 3j2x2 + 4x cosϕ− 4 cos2 ϕ− 2jx (x+ 2 cosϕ) . (5.27)

7Elaborate calculations were done using Mathematica [70].
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j = 0 and j = 1 are already included in the set of pendentive–defining moguls,
therefore the starting value for the complete induction is

d(2) = a

√
1 − cos2 ϕ− x cosϕ+

7

4
x2 ≥ a

√
1 + x2 > a , (5.28)

where we have used that the expression becomes minimal for maximal cosϕ.
d(j) < d(j + 1) is again easily shown.

Now we take the distances to all the points ia + jb (with i < −1), giving

d(i, j) =
a

2

√
3j2x2 + 2ijx (x+ 2 cosϕ) − i2 (−4 + x2 − 4x cosϕ+ 4 cos2 ϕ) .

(5.29)
To show that this is always larger than a, we just have to consider the smallest
possible values for d(i, j). Because of the negative prefactor of the cos2 ϕ–term,
the expression under the square root (radicand) is a concave parabola in cosϕ,
which has its minimum w.r.t. cosϕ at one of the two cosϕ–boundaries, 0 or x/2
[see equation (5.21c)]. We consider both cases:

⋆ cos ϕ = 0

d(i, j)|cosϕ=0 =
a

2

√
j2x2 + 2ijx2 + i2 + 2j2x2 + i2 (3 − x2) , (5.30)

where

j2x2 + 2ijx2

︸ ︷︷ ︸
≥2ijx

+i2

︸ ︷︷ ︸
≥(jx+i)2

+2j2x2 + i2
(
3 − x2

)
> 2i2

(i<−1)

> 4 . (5.31)

⋆ cos ϕ = x

2

d(i, j)|cosϕ=x
2

=
a

2

√
4i2 + 4ijx2 + 3j2x2 , (5.32)

where the radicand is larger or equal to (again through ix2 ≥ ix, since
i < −1 and x ≤ 1)

2i2 + (jx)2 +
(√

2i+
√

2jx
)2

> 2i2
(i<−1)

> 4 . (5.33)

Therefore also the line through the origin and P3 never touches the mogul slope
outside the pendentive. �

• Line through P4

Similar considerations like above lead to a distance of tP4 (t ∈ R
+) from the

points ia + jb of

d(i, j) =
a

2

√
2ijx2 + 3j2x2 − i2 (−4 + x2) + (4ijx+ 4j2x) cosϕ− 4j2 cos2 ϕ .

(5.34)
Again the cos2 ϕ–term has a negative prefactor and we check the cosϕ–boundaries:
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⋆ cos ϕ = 0 leads for the radicand to be

2ijx2 + 3j2x2 + i2(4 − x2) , (5.35)

which is larger or equal to 2j2x2 + (jx + i)2 + i2(3 − x2), due to ix2 > ix.
This expression is for sure larger than 4, if i < −1.
The case i = −1 leads for the radicand to be equal to x2 (3j2 − 2j − 1) + 4,
which is larger than 4, if the term in brackets is larger than 0. This is the
case for j > 1.

⋆ For cos ϕ = x

2
the radicand is

4ijx2 + 4j2x2 + i2(4 − x2) , (5.36)

which is larger or equal to (i + 2jx)2 + i2 (3 − x2), being larger than 4 for
i < −1.
Again we check the case i = −1 separately, leading to 4j2 − 4j − 1 > 0,
fulfilled for j > 1.

Therefore equation (5.34) is always bigger than a and the line from the origin
through P4 never touches the mogul slope outside the pendentive, too. �

�

Theorem III: If the lines through the “valleys” (P2, P3, P4) do not intersect the mogul slope, neither
do lines through other points at the rim.
Proof: Assume there exists an intersected mogul M besides the four “important”,
pendentive–defining ones. As a consequence, there has to exist a line L from the
origin through one of the four rims at the point P (which cannot be one of the valley
points, P2, P3, and P4, see theorem II) that intersects M. This rim of interest is of
course a circular arc, a part of a circle with centre in the x–y–plane, as described
above.

Let us construct the following cones with apex in the origin and axis in the x–y–plane:
Cr, containing the complete rim where P is part of, and Ci, which also contains L
and has its axis through the centre of M. All straight lines lying in the surface of
Ci (and in the positive–z–half–space) intersect M. As a next step we consider the
overlap between these two cones.

When considering the possible ways for two cones with common apex to overlap, it
becomes clear, that there are only four possibilities:

(i) The two cones only have one point, the apex, in common.

(ii) The two cones touch each other, they have exactly one straight line in common
which lies in plane with the two cone axes.

(iii) One cone completely contains the other one.
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P0

Ci

Cr

(a)

x–y–plane

z–direction

(b)

Figure 5.8: (a): Cut along the x–y–plane through the cones Cr (solid
lines) and Ci (dashed); since the infinitely extended cones have no base
area, we assume some arbitrary cone heights (dotted lines), for a better
visualisation. The projection of the considered rim–circle onto the x–y–
plane is drawn as a thick, solid line.
(b): Section through the same cones along the plane of the rim–circle in
the positive–z–half–plane.

(iv) The cones only partially overlap, their surfaces intersect in two straight lines,
that start at the common apex and are symmetrically arranged w.r.t. the plane
defined by the two cone axes.

Ci and Cr obviously overlap like in case (iv), since they intersect exactly along Li,
a line which does not lie in the x–y–plane — the plane containing on the other
hand the axes of both cones. It becomes also clear, that, of the two lines where the
cone surfaces intersect, only Li lies in the positive–z–half–space, where the mogul–
considerations take place. A visualisation of Cr and Ci, using a cross–section through
the x–y–plane, can be seen in figure 5.8(a).

In figure 5.8(b) we plot a cross section along the plane which contains the considered
rim through the two cones, in the positive–z–half–plane. The cross section of Cr is
of course a half–circle, while the one of Ci is a half–ellipse (long axis along the base
line), which partially lies above the half–circle of the rim. The intersection of these
two lines is the point P , lying between the two Pi points that delimit the considered
rim.

As a consequence, one of the Pi has to lie inside the elliptic cross section of figure
5.8(b) and hence inside the cone Ci. We can construct now a cone Cp with the same
axis and apex like Ci, but smaller apex angle, in a way that the cone contains this Pi.
By construction all straight lines (in the positive–z–half–space) from the origin along
the surface of Cp intersect M, in particular the line from P0 through Pi. Since this
is a contradiction to theorem II, the original assumption of the existence of another
intersected mogul was wrong.
�
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This means:

Lines from the origin through any point inside the penden-
tive can never intersect any moguls except the four ones
that constitute the lower boundary of the pendentive in
z–direction.

Therefore, the introduced pendentive represents the region for the allowed c–vectors for
given a, x, and ϕ is the only relevant region and includes all possibilities.

Before including the basis into consideration, necessary to build not only all lattices
but all crystals, we discuss how one can identify the well known 14 Bravais lattices in the
minimum distance parametrisation.

5.3 Identification of Bravais Lattices

Given the minimum distance parametrisation (MDP) lattice vectors a, b, and c, or equiv-
alently the parameters a, x, ϕ, ξ, η, and ζ [see equation (5.4)and equation (5.21)], we can
proceed to the identification of the symmetries of the described lattice, i.e., to the cate-
gorisation in terms of Bravais lattices. In the following we show that it is indeed possible
to find a one–to–one mapping of the minimum distance parameters and the usual param-
eters of the conventional unit cell of the corresponding Bravais lattice. We will denote
the parameters used for describing the conventional Bravais lattice with tildes to prevent
confusion with those of the MDP. The key problem that had to be solved was, to identify
all possible choices for the three shortest, linearly independent lattice vectors for a given
Bravais lattice.

As a first step we restrict ourselves to the possible symmetries of the 2D lattice spanned
by a and b, parametrised by x ∈ (0, 1] and ϕ ∈ [arccos(x/2), π/2] (the scaling factor a
does not influence symmetry). This is not only done because the concepts are more easily
grasped in 2D, but because it is necessary for the identification of the 3D symmetry to
identify the symmetry of the underlying a–b–lattice–plane first, before taking the third
primitive vector, c, into account.

There are five Bravais lattices in 2D: the hexagonal, the square, the rectangular, the
centred rectangular, and the oblique lattice. Let us start with the centred rectangular
lattice for a full explanation of the identification process, since it is the 2D lattice exhibiting
the most versatile possibilities for the corresponding MDP (compared to the other four), as
will be seen from the result. The centred rectangular lattice is characterised by the lengths
of the two sides of the rectangular unit cell, ã and b̃; w.l.o.g. we assume ã > b̃, ã = b̃ would
correspond to the square lattice.

Given a centred rectangular lattice we ask for the two shortest, linearly independent
lattice vectors, that describe the same lattice if taken as the primitive vectors, i.e., for
possible vectors a and b. To answer this question we consider three distances, namely ã,



5.3. IDENTIFICATION OF BRAVAIS LATTICES 63

b̃, and the distance from the corner of the rectangle to the centred point, being half the
diagonal d̃. Since ã > b̃ one immediately obtains

d̃

2
=

√
ã2 + b̃2

2
<

ã√
2
< ã , (5.37)

leaving only b̃ and d̃/2 as possible candidates for the lengths of a and b. We consider the
three possible cases:

• d̃/2 = b̃ corresponds to a lattice of higher symmetry, i.e., a hexagonal one, since
the side b̃ and the two half–diagonals from the corners delimiting the side b̃ to the
centred point form an equilateral triangle.

• d̃/2 > b̃ leads via equation (5.37) to ã >
√

3b̃. b̃ is now the shortest and d̃/2 is the
second shortest distance, thus

|b|
|a| = x =

b̃

d̃/2
=

2√
1 + (ã/b̃)2

< 1 . (5.38)

Since there is no upper limit for ã/b̃, x can become arbitrarily small. To determine
ϕ we have to consider all angles between lattice vectors having the length d̃/2 and
those of length b̃. Obviously there are only two complementary values, of which we
have to take the smaller one to obey ϕ ≤ π/2. In the ã–b̃–rectangle this is just the
angle between the diagonal and the side b̃, i.e., ã2 = b̃2 + d̃2 − 2b̃d̃ cosϕ. Inserting
equation (5.37) and equation (5.38) leads to

cosϕ =
x

2
. (5.39)

• d̃/2 < b̃ (b̃ < ã <
√

3b̃) means, that a and b both have the length of the half–
diagonal, since there are always two linearly independent lattice vectors of this length
that describe the whole lattice. Vectors having the length of b̃ are therefore too long
to play a role in the MDP, obviously this leads to

x = 1 . (5.40)

Again there are two complementary angles as candidates for ϕ, the smaller one obey-
ing 2(d̃/2)2 − 2(d̃/2)2 cosϕ = b̃2. This leads, together with the boundary conditions
b̃ < ã <

√
3b̃ to

0 < cosϕ <
1

2
. (5.41)
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These and similar considerations for the other three non–oblique Bravais lattices lead to

x = 1 ∧ cosϕ =
1

2
⇐⇒ hexagonal, ã = a, (5.42a)

x = 1 ∧ cosϕ = 0 ⇐⇒ squared, ã = a, (5.42b)

x = 1 ∧ 0 < cosϕ <
1

2
⇐⇒ centred rectangular,

ã = a
√

2(1 + cosϕ), b̃ = a
√

2(1 − cosϕ),
(5.42c)

x < 1 ∧ cosϕ =
x

2
⇐⇒ centred rectangular, ã = a

√
4 − x2, b̃ = ax, (5.42d)

x < 1 ∧ cosϕ = 0 ⇐⇒ rectangular, ã = a, b̃ = ax, (5.42e)

the rest of the x–ϕ–parameter space corresponds to oblique lattices,

x < 1 ∧ 0 < cosϕ <
x

2
⇐⇒ oblique, ã = a, b̃ = ax, α̃ = ϕ, (5.42f)

where we can, w.l.o.g., choose the conventional parameters, the lengths ã and b̃ of the
conventional primitive vectors and the angle α̃ between them, to be those of the 2D MDP.
The correspondences of equation (5.42) are visualised in figure 5.9. The subequation letters

ã

a

b

(a) hexagonal

ã

a

b

(b) squared

ã

b̃

a

b

d̃/2

(c) centred rect., ã <
√

3b̃

ã

b̃

a

b

d̃/2

(d) centred rect., ã >
√

3b̃

ã

b̃

a

b

(e) rectangular

ã

α̃

b̃

a

b

(f) oblique

Figure 5.9: Allowed ξ–η–regions (green) for the six different cases in
equation (5.42), labelled with the same small letters as the equations. The
region is obtained in the same way as in figure 5.5. Quantities describing
the conventional 2D unit cell are marked with tildes, the corresponding
MDP vectors a and b are blue. The origin is always at the initial point
of the drawn vector b, the x–axis is parallel to a.



5.3. IDENTIFICATION OF BRAVAIS LATTICES 65

ã

Figure 5.10: Two adjacent conventional fcc cells with edge length ã. The
distances from the red particle to the blue ones (the 12 nearest neighbours)
are all the same and equal to ã/

√
2.

in equation (5.42) are the same as the ones of the panels in figure 5.9, we will refer to these
six cases of 2D symmetry just through the according letters.

In the figure we also visualise the allowed ξ–η–region, i.e., the possible values for the x–
and y–components of c. It is determined by equation (5.21d) and equation (5.21e) for given
values of x and φ, and equivalent to the projection of the pendentive encompassing the
allowed values for c onto the x–y–plane (which is also the a–b–plane). Until now we always
excluded points at the boundary with η = 0 and ξ < 0, since they are identical (through
mirroring) to the ones with inverted ξ. For the sake of simplicity we will consider all points
of the pendentive, including the whole boundary (except the origin), as candidates for the
MDP vector c. The projections of this complete pendentive will be used for clarifying
explanations in this section.

Proceeding to 3D, we also have to find all possibilities for describing the same lattice
within the MDP, similarly to the 2D case. Let us discuss the fourteen 3D Bravais lattices
of the seven crystal systems.

1. Cubic

• Face Centred Cubic (fcc)
In this Bravais lattice, the three shortest possible, linearly independent primi-

tive lattice vectors have a length equal to the nearest neighbour distance ã/
√

2
(see figure 5.10). Obviously this results in a = ã/

√
2 and x = 1. Considering

all angles between the 12 vectors from one particle to the nearest neighbours we
recognise, that there are only two possibilities for ϕ, since we only take values
less or equal π/2 into account: ϕ = π/2 and ϕ = π/3 (=̂ cosϕ = 1/2 = x/2).

The identification of the values for ξ, η, and ζ follows similarly from all possible
third vectors, linearly independent of the previous two. In summary we get
the restrictions for the minimum distance parameter values to describe an fcc
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ã

Figure 5.11: The conventional bcc cell with edge length ã. The distances
from the red particle to the blue ones (the 8 nearest neighbours) are all
the same and equal to ã

√
3/2.

lattice,

x = 1 ∧





ϕ = π
3
∧ ζ =

√
2
3
∧
{
η = 1

2
√

3
∧ ξ = ±1

2

η = 1√
3

∧ ξ = 0

ϕ = π
2
∧ ζ = 1√

2
∧ η = 1

2
∧ ξ = ±1

2

, (5.43)

where the wedge ∧ is used as abbreviation for “and” and the curly bracket stands
for an “or”–composition of the enclosed lines. As expected, ζ always takes
on the largest possible value compatible with the other parameters, to satisfy
c = b(= a). This result can be visualised in the following way. We first identify
the 2D symmetry of the a–b lattice plane described by x and ϕ [in this case
either 2D-(a) or 2D-(b)], and draw the projection of the pendentive (describing
the allowed ξ–η–region) like in figure 5.9. There we mark the corresponding
(ξ, η)–point(s), indicating whether ζ takes on the largest (like in the fcc case)
or smallest possible value or any value in between by a colour code, see figures
5.12(a) and 5.12(b), where the fcc identification is visualised in this way.

• Body Centred Cubic (bcc)
Again all three vectors a, b, and c are of equal length, which is the nearest
neighbour distance ã

√
3/2 of the bcc lattice, see figure 5.11 (hence, a = ã

√
3/2

and x = 1). Considering any pair of linearly independent vectors from a lattice
point to the nearest neighbours, we find that the enclosed angles can only take
on two complementary values. Obeying ϕ ≤ π

2
we therefore get cosϕ = 1/3. Of

the remaining candidate vectors for c only one is left after applying mirror and
inversion symmetry (η, ζ ≥ 0), giving

x = 1 ∧ ϕ = arccos

(
1

3

)
∧ ξ = −1

3
∧ η =

√
2

3
∧ ζ =

√
2

3
, (5.44)

visualised in figure 5.12(c).
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ξ

η

(a) fcc, 2D-(a)

ξ

η

(b) fcc, 2D-(b)

ξ

η

(c) bcc, 2D-(c)
but special: cos ϕ = 1

3

ξ

η

(d) sc, 2D-(b)

Figure 5.12: Projection of the pendentive (green) and the points for c to
describe the corresponding lattices as labelled in the subcaptions, where
in addition the 2D symmetry of the a–b–lattice plane is given in terms
of the subfigure indices of figure 5.9 [or equivalently, subequation indices
of equation (5.42)].
We use a colour code for the c–points to give information about the
ζ–value: • red means ζ takes on its maximum value (corresponding to
c = b), • yellow stands for the minimum value, and • blue means any
value in between. If only one value for ζ is possible we use red, since this
only happens for points at the rim where c = b.

• Simple Cubic (sc)
Considering the vectors to the 6 nearest neighbours it is easy to obtain

x = 1 ∧ ϕ =
π

2
∧ ξ = η = 0 ∧ ζ = 1 , (5.45)

depicted in figure 5.12(d).

The visualisation through the projections of the pendentive to the a–b–plane gives no
information about the total scaling of the lattice, given by a, which does not influence
symmetry. Nevertheless we can extract the values of x and ϕ from such plots. In
most cases they are just determined through the 2D symmetry and equation (5.42).
For x < 1, x is linked to the horizontal extent of the projected region, which is x2 [see
equation (5.21d)]; for 0 < cosϕ < x/2 [2D-(c) and 2D-(f)] ϕ can be reconstructed if
one draws the full 2D unit cell like in figure 5.5. If the values are not fixed by the
2D symmetry or other conditions, we usually take example values from within the
allowed range for the drawn visualisations.

It is interesting to note, that the underlying 2D symmetry can provide some addi-
tional information. If only one of the (ξ, η)–points for c in the a–b–projections of
figures 5.12 is given, the other ones (if any) can be obtained by applying the corre-
sponding 2D symmetry transformation. All ζ–values of these symmetry points hence
are equal, too. This can be formulated in a more general way: Symmetry points
in the 2D–projection indicate equivalent 3D–lattices if in addition the ζ–values are
equal (as mentioned before, mirrored lattices are considered to be equivalent).

2. Hexagonal (hex)
Let ã be the edge length of the hexagon and c̃ the distance between the hexagonal
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ã

c̃

(a) ã < c̃

ã

c̃

(b) ã > c̃

Figure 5.13: The two qualitatively different possibilities for the 3D hexag-
onal lattice. ã = c̃ is also possible but not shown. The nearest neighbours
to the red particle are coloured blue, the next to nearest ones green.

lattice planes, see figure 5.13. We have to distinguish between the two cases where
either ã > c̃ or ã < c̃, the case of equality will be considered later.

ã > c̃ implies that c̃ is the shortest distance in the lattice and a and b build up
the hexagonal lattice planes, having both length ã. This means x = 1, ϕ = π/3,
ξ = η = 0, and ζ = c̃/ã [see blue point in figure 5.14(a), which is partially covered
by the red one].

ã < c̃ results in both the shortest and second shortest linearly independent vector to
have length ã and lie in the hexagonal plane, while the longest of the MDP vectors
has length a = c̃, i.e., x = ã/c̃, ϕ = π/2; it immediately follows ξ = 0, η = 1/2, and
ζ =

√
3/2 [see red point in figure 5.14(b)].

For ã = c̃ the limiting cases of both previously discussed choices for the MDP vectors
are possible. From the first one we obtain the limiting case x = 1, φ = π/3, ξ =
η = 0, and ζ = 1 [red point in figure 5.14(a)], while the second one gives x = 1,
ϕ = π/2, ξ = 0, η = 1/2, and ζ =

√
3/2 [see upper red point in figure 5.14(c)].

However, since all three MDP vectors now have equal length, we a third possibility
for their succession arises, i.e., a and c lie in the hexagonal plane and b is the vector
perpendicular to it. This yields the additional identification of x = 1, ϕ = π/2,
ξ = ±1/2, η = 0, and ζ =

√
3/2 for the hexagonal symmetry [two lower red points in

figure 5.14(c)]. These additional two points would have also followed from the above
symmetry argument, since the three red points in the 2D projection of figure 5.14(c)
are related to each other through applying the four–fold rotational symmetry of the
square lattice [one of them is obtained through setting c̃ = ã in figure 5.14(b)].
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ξ

η

(a) hex, 2D-(a)

ξ

η

(b) hex, 2D-(e)

ξ

η

(c) hex, 2D-(b)

Figure 5.14: All possible parametrisations of the 3D hexagonal lattice;
for symbols, labels, etc. see figure 5.12.

ã

d̃

α̃

(a) ã < d̃

ã
A

B

C

D

d̃

α̃

(b) ã > d̃

Figure 5.15: The two qualitatively different possibilities for the trigonal
lattice. The nearest neighbours to the red particle are coloured blue, the
next to nearest ones green. Solid lines all have equal length, ã, charted
angles are all equal (α̃), and dotted lines have length d̃. In (b) we also
label the points A to D, see text.

In summary we get





x = 1 ∧





ϕ = π
3
∧ ξ = η = 0 ∧ 0 < ζ ≤ 1

ϕ = π
2
∧ ζ =

√
3

2
∧
{
ξ = 0 ∧ η = 1

2

ξ = ±1
2
∧ η = 0

x < 1 ∧ ϕ = π
2
∧ ξ = 0 ∧ η = x

2
∧ ζ =

√
3x
2

. (5.46)

3. Trigonal (trig, also called rhombohedral)
The trigonal lattice can be formed from an sc lattice, which is stretched along a body
diagonal (also called triagonal) while all edge–lengths remain constant. Therefore
the three primitive vectors describing the conventional unit cell are of equal length,
ã, and enclose pairwise the same angle, α̃ (see figure 5.15), with α̃ < π/2. In a
Cartesian coordinate system they can be given as

ã = ã




1
0
0


 , b̃ = ã




cos α̃
sin α̃

0


 , c̃ = ã




cos α̃

cos α̃
√

1−cos α̃
1+cos α̃√

1+cos α̃−2 cos2 α̃
1+cos α̃


 . (5.47)
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The shorter diagonal of a face of the conventional unit cell is d̃ = ã
√

2(1 − cos α̃).

As long as ã < d̃ (⇔ cos α̃ < 1/2) the MDP vectors are the same as those describ-
ing the conventional unit cell, i.e., x = 1, ϕ = α̃, and ξ = cosϕ, η = cosϕ(1 −
cosϕ)/ sinϕ, and ζ =

√
(1 + cosϕ− 2 cos2 ϕ)/(1 + cosϕ). If ã = d̃ (⇔ cos α̃ = 1/2)

the trigonal lattice is equivalent to an fcc lattice with a cubic lattice constant of ã
√

2.

In the case of ã > d̃ (⇔ cos α̃ > 1/2) the two shortest, linearly independent lattice
vectors have length d̃ and describe a 2D hexagonal lattice plane, which becomes
obvious when recognising that the three dotted lines in each of the subfigures in figure
5.15 constitute an equilateral triangle. The third MDP vector, a, has to point from
one lattice point to one of its next to nearest neighbours [green in figure 5.15(b)],
determining how to stack the hexagonal lattice planes to constitute the complete
trigonal lattice8. As a consequence, x = d̃/ã =

√
2(1 − cos α̃) < 1. For the angle

between the MDP vectors a and b there are two possibilities, to be described in the

following: For both we take, w.l.o.g., b =
−→
AB to be the vector from particle A to

particle B in figure 5.15(b).

• If a =
−→
AC then the angle between a and b is given by9 cosϕ = d̃

2
/ã = x/2. There

are two candidates for c out of the six vectors to the nearest neighbours, their
ξ and η coordinates are (ξ, η) = (0, x/

√
4 − x2) or

(
x2/2, x(2 − x2)/2

√
4 − x2

)
.

ζ always takes on its largest possible value, i.e., ζ = x
√

(3 − x2)/4 − x2).

• On the other hand if a =
−→
AD then the angle between a and b is ϕ = π/2,

again leaving two possibilities for the c–vector, parametrised by (ξ, η, ζ) =
(±x2/2, x/2, x

√
3 − x2/2).

To summarise we write




x = 1 ∧ π
3
< ϕ < π

2
∧ ξ = cosϕ ∧ η = cosϕ(1−cosϕ)

sinϕ
∧ ζ =

√
1+cosϕ−2 cos2 ϕ

1+cosϕ

x < 1 ∧





ϕ = π
2
∧ ξ = ±x2

2
∧ η = x

2
∧ ζ = x

2

√
3 − x2

cosϕ = x
2
∧ ζ = x

√
3−x2

4−x2 ∧
{
ξ = 0 ∧ η = x√

4−x2

ξ = x2

2
∧ η = x

2
2−x2√
4−x2

,

(5.48)
visualised in figure 5.16.

ã is always equal to the length a of the longest MDP vector a, in the case x = 1 we
have α̃ = ϕ, and for x < 1 we obtain α̃ through cos α̃ = 1 − x2/2.

4. Tetragonal
The conventional unit cell of the tetragonal lattice is a rectangular prism with a
square base (ã by ã) and height c̃ (which is different from ã). In principle there
are, similar as for cubic lattices, simple, body centred, and face centred tetragonal

8This is similar to the stacking of the fcc lattice, see section 5.5.
9ABC constitute an isosceles triangle.



5.3. IDENTIFICATION OF BRAVAIS LATTICES 71

ξ

η

(a) trig, 2D-(c)

ξ

η

(b) trig, 2D-(d)

ξ

η

(c) trig, 2D-(e)

Figure 5.16: All possible parametrisations of the 3D trigonal lattice; for
symbols, labels, etc. see figure 5.12.

a′

a′

c′

ã
ã

c̃

Figure 5.17: Equivalence of face centred tetragonal (fct) and body centred
tetragonal (bct) lattices. The fct lattice with lattice constants a′ and c′

(the red particle is a face centred one) can also be described as a bct
lattice with lattice constants ã = a′/

√
2 and c̃ = c′ (the red particle is

located at the body centred position).

lattices. But since each face centred tetragonal lattice can also be described as a body
centred tetragonal lattices, see figure 5.17, only one of them has to be considered.
We chose the body centred one, but just call it “centred tetragonal” for the sake of
simplicity. We analyse the three tetragonal lattices systematically:

• Simple Tetragonal (st)
We have to distinguish between the cases ã < c̃ and ã > c̃, see figure 5.18.
Whichever of these two lengths is smaller is also the length of the MDP vector
c, while the MDP vector a has the other length. The second MDP vector, b,
always has the length of ã. It is easy to find all possible parametrisations for
the st lattice,

ϕ =
π

2
∧ ξ = η = 0 ∧

{
x = 1 ∧ 0 < ζ < 1
x < 1 ∧ ζ = x

. (5.49)

• Centred Tetragonal (ct)
There are three candidate distances for the lengths of the MDP vectors: ã, c̃,
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ã
ã

c̃

(a) ã < c̃

ã

ã

c̃

(b) ã > c̃

Figure 5.18: The two qualitatively different cases occurring for the st
lattice. Nearest neighbours to the red particle are blue, next to nearest
ones green.

ã
ã

c̃

(a) ã
√

2 < c̃

ã
ã

c̃

(b) c < ã
√

2 < c̃
√

3

ã

ã

c̃

(c) c̃
√

3 < ã
√

2

Figure 5.19: The three qualitatively different kinds of ct lattices. Nearest
neighbours to the red particle are blue, next to nearest ones green.

and the distance from the body centred point to a corner of the conventional
unit cell, which is half the triagonal d̃ =

√
2ã2 + c̃2. Since there are three linearly

independent lattice vectors of length d̃/2 and two linearly independent ones of
length ã, there remain only three different cases to be considered, visualised in
figure 5.19.

(i) ã < d̃/2. It immediately follows that d̃/2 < c̃ and ã
√

2 < c̃. c and b have
length ã, while the length of a is d̃/2 [see figure 5.19(a)].

(ii) d̃/2 < ã and d̃/2 < c̃. We obtain the conditions ã
√

2 < c̃
√

3 and c̃ < ã
√

2.
All three MDP vectors have the same length, d̃/2 [see figure 5.19(b)].

(iii) c̃ < d̃/2. This implies d̃/2 < ã and c̃
√

3 < ã
√

2, resulting in |c| = c̃ and
|b| = |a| = d̃/2 [see figure 5.19(c)].

The limiting case between (i) and (ii) (figures 5.19(a) and 5.19(b)), where ã
√

2 =
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ξ

η

(a) st, 2D-(b)

ξ

η

(b) st, 2D-(e)

ξ

η

(c) ct, 2D-(d)

ξ

η

(d) ct, 2D-(c), cos ϕ > 1
4

ξ

η

(e) ct, 2D-(c), cos ϕ = 1
4

ξ

η

(f) ct, 2D-(c), cos ϕ < 1
4

Figure 5.20: All possible parametrisations of the 3D tetragonal lattices;
for symbols, labels, etc. see figure 5.12.

c̃, is just an fcc lattice; and obviously ã = c̃, covered in the second case, is a
bcc lattice. Therefore both special cases have to be excluded from the general
parametrisation for (true) ct lattices.

In case (i) we get x < 1, while in the cases (ii) and (iii) a and b are always
of the length of d̃/2, resulting in x = 1. It is a time consuming but straight-
forward calculation to find all corresponding minimum distance parameters. In
summary we obtain





x = 1 ∧





cosϕ ∈
(
0, 1

2

)
\
{

1
3

}
∧ ξ = cosϕ−1

2
∧ η = sinϕ

2
∧ ζ =

√
1+cosϕ

2

cosϕ ∈
(
0, 1

4

]
∧ ξ = 2 cosϕ ∧ η = 2 cosϕ(1−cosϕ)

sinϕ
∧ ζ =

2
√

cosϕ(1−cosϕ)

sinϕ

cosϕ ∈
[

1
4
, 1

2

)
\
{

1
3

}
∧ ζ =

2
√

cosϕ(1−cosϕ)

sinϕ
∧





(
ξ = 2 cosϕ− 1 ∧
η = 2 cosϕ(1−cosϕ)

sinϕ

)

(
ξ = − cosϕ ∧
η = (1−cosϕ)2

sinϕ

)

x < 1 ∧ cosϕ = x
2
∧ ξ = −x2

2
∧ η = x3

2
√

4−x2 ∧ ζ = x
√

4−2x2

4−x2

.

(5.50)

Figure 5.20(c) corresponds to case (i). The different points in the visualisations
of figures 5.20(d–f) can be described in the following way: At cosϕ = 1/2 all
points corresponding to fcc lattices [figure 5.12(a)] are special cases of ct lattices,
the points that half the lines P2P3 and P3P4 (see figure 5.5) correspond to true
ct lattices. With decreasing cosϕ (i.e., increasing ϕ) only the mid–point of P3P4

and two symmetrically assembled points on the P3P4–line remain, they equally
proceed “inwards” from the corner points P3 and P4 towards the mid–point with
decreasing cosϕ. At cosϕ = 1/3 all three points happen to lie on top of each
other and hence represent the same lattice, a bcc lattice. Further decreasing
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cosϕ results again in a separation into three different points, similarly arranged
on the P3P4–line like above. At cosϕ = 1/4 the symmetrically arranged points
are again located at the corner points giving rise, due to symmetry, to the
appearance of an extra ct point at P2 [see figure 5.20(e)]. For cosϕ < 1/4 this
extra point moves (with decreasing cosϕ) along the P0P2–line towards the origin,
keeping at the lower rim of the 3D–pendentive, i.e., ζ takes on its minimum value
for this point. The only other point to remain if cosϕ is less than 1/4 is the
“bcc–like” one at the mid point of P3P4, which turns into a representative of
an fcc lattice at cosϕ = 0 — the only remaining point then [which includes a
second, similar one due to symmetry, see figure 5.12(b)].

5. Orthorhombic
The orthorhombic unit cell is a rectangular prism with a rectangular base, the three
different edge lengths are labelled ã, b̃, and c̃. There are four different kinds of
orthorhombic lattices, which will be discussed now.

• Simple Orthorhombic (so)
Only the corner points of the orthorhombic unit cell are lattice points for the
so lattice. W.l.o.g. we can name the three edge lengths of the prismatic cell
ordered by magnitude, i.e., ã > b̃ > c̃. The MDP vectors are then the same as
the conventional ones, i.e., |a| = a = ã, b = b̃, and c = c̃, corresponding to

x < 1 ∧ ϕ =
π

2
∧ ξ = η = 0 ∧ ζ < x , (5.51)

visualised in figure 5.22(a).

• Single Face Centred Orthorhombic (sfco, also called base centred)
This lattice has, in addition to the corner points of the prismatic unit cell, one
additional face centred lattice point on two opposing faces of the orthorhombic
unit cell10. Putting the face centred point on the ã–b̃–face, w.l.o.g. we can only
demand ã > b̃, see figure 5.21. There are three candidates for the shortest
lengths, c̃, b̃, and half the ã–b̃–face diagonal, d̃. This results in five different
possibilities for the corresponding MDP vectors.

(i) c̃ ≤ b̃ < d̃/2 results in c = c̃, b = b̃, and a = d̃/2, and after some geometric
considerations [see figure 5.21(a)] we arrive at

x < 1 ∧ cosϕ =
x

2
∧ ξ = η = 0 ∧ ζ ≤ x , (5.52a)

visualised in figure 5.22(b). x = 1, corresponding to b̃ = d̃/2, would describe
a st lattice. To obtain the conventional parameters from the MDP ones,
use c̃ = ζa, b̃ = xa, and ã =

√
4 − x2a.

10For a cubic cell this would be equivalent to a simple tetragonal lattice.
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c̃ ã

b̃

(a) c̃ < b̃ < d̃/2

ã

b̃

c̃

(b) c̃ < d̃/2 < b̃

b̃

ã

c̃

(c) b̃ < c̃ < d̃/2

b̃

ã

c̃

(d) b̃ < d̃/2 < c̃

ã

b̃

c̃

(e) d̃/2 < c̃, b̃

Figure 5.21: The five qualitatively different kinds of sfco lattices; ã > b̃
always holds. Nearest neighbours to the red particle are blue, next to
nearest ones green, and third–next neighbours, if necessary for the MDP,
are yellow.

(ii) c̃ ≤ d̃/2 < b̃ gives [see figure 5.21(b)] a = b = d̃/2 and c = c̃, the possible
ranges for x, ϕ, ξ, η, and ζ are

x = 1 ∧ π

3
< ϕ <

π

2
∧ ξ = η = 0 ∧ ζ ≤ 1 , (5.52b)

visualised in figure 5.22(c). The backwards transformation yields c̃ = ζa,
b̃ = xa, and ã =

√
4 − x2a.

(iii) b̃ ≤ c̃ < d̃/2 [see figure 5.21(c)] means a = d̃/2, b = c̃, and c = b̃, hence

x < 1 ∧ ϕ = π
2
∧ ξ ∈

[
−x2

2
, x

2

2

]
\{0} ∧ η = 0 ∧ ζ =

√
ξ(2 − ξ) , (5.52c)

where the negative ξ–values are only present because we include the whole
boundary of the allowed region, as mentioned above. The ζ–value is always
the smallest one possible compatible with the other parameter values, hence
the yellow colour in figure 5.22(d), where equation (5.52c) is visualised [only
the points with η = 0 correspond to equation (5.52c)].
This converts to c̃ = xa, b̃ = a

√
2ξ, and ã = a

√
2(2 − ξ).

(iv) b̃ ≤ d̃/2 < c̃, described in figure 5.21(d), corresponds to

x < 1 ∧ ϕ = π
2
∧ ξ = 0 ∧ η ∈

(
0, x

2

]
∧ ζ =

√
η(2x− η) , (5.52d)

also visualised in figure 5.22(d). Again, ζ is as small as possible which we de-
scribe using the yellow colour (exactly below the red line which corresponds
to the next item). Thus c̃ = a, b̃ = a

√
2xη, and ã = a

√
2x(2 − η).

(v) d̃/2 < c̃, b̃ leads to a = c̃ and b = c = d̃/2 [see figure 5.21(e)] and we obtain

x < 1 ∧ ϕ = π
2
∧ ξ = 0 ∧ η ∈

(
0, x

2

)
∧ ζ =

√
x2 − η2 , (5.52e)

which is described by the red line in figure 5.22(d). Thus c̃ = a, b̃ =
a
√

2x(x− η), and ã = a
√

2x(x+ η).
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ξ

η

(a) so, 2D-(e)

ξ

η

(b) sfco, 2D-(d)

ξ

η

(c) sfco, 2D-(c)

ξ

η

(d) sfco, 2D-(e)

Figure 5.22: All possible parametrisations of the so and sfco lattices; for
symbols, labels, etc. see figure 5.12.

ã b̃

c̃

(a) d̃/2 < c̃

ã
b̃

c̃

(b) c̃ < d̃/2 < b̃

ã b̃

c̃

(c) b̃ < d̃/2

Figure 5.23: The three qualitatively different kinds of bco lattices. Near-
est neighbours to the red particle are blue, next to nearest ones green, and
third next ones (if necessary for the MDP) yellow.

If we replace the less than–sign (<) in cases (iii)–(v) by a less equal–sign (≤)
we include x = 1 to the corresponding x–ranges, which of course has to be
considered, too. The only difference for x = 1 is, that all the endpoints of the
corresponding ξ and η intervals have to be excluded, since for this case they
correspond to higher symmetry lattices.

• Body Centred Orthorhombic (bco)
For the bco lattice we can again assume w.l.o.g. ã > b̃ > c̃, which means we only

have to consider b̃, c̃, and half the triagonal d̃ =
√
ã2 + b̃2 + c̃2 as candidates

for the MDP vector lengths. This leaves us with three possibilities, visualised
in figure 5.23.

(i) d̃/2 ≤ c̃ results in all three MDP vectors to have the length of d̃/2, with
the aid of figure 5.23(a) on can calculate all possible MDP parameters cor-
responding to such bco lattices,

x = 1 ∧ π
3
< ϕ < π

2
∧ −1

2
≤ ξ ≤ −1

2
+ cosϕ ∧ η, ζ maximal . (5.53a)

Of course, this also includes the bcc and some ct structures, therefore the
corresponding points in the projection [figures 5.12(c), 5.20(d), 5.20(e), and
5.20(f)] have to be excluded. A typical case (assuming cosϕ = 0.3) is
visualised in figure 5.24(a). This parametrisation can of course also be
converted back to the conventional parameters, but these rather lengthy
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ξ

η

(a) bco, 2D-(c)

ξ

η

(b) bco, 2D-(d)

ξ

η

(c) fco, 2D-(f), cos ϕ ≤ x

4

ξ

η

(d) fco, 2D-(f), cos ϕ ≥ x

4

Figure 5.24: All possible parametrisations of the 3D bco and 3D fco
lattices; for symbols, labels, etc. see figure 5.12. In (a) the ct points are
excluded, see figure 5.20.

formulae are not very instructive and are hence only compiled in appendix
C.1.

(ii) c̃ < d̃/2 < b̃ gives a = b = d̃/2 and c = c̃. After similar geometric
considerations [see figure 5.23(b)] the resulting parameter ranges turn out
to be

x = 1 ∧ π
3
< ϕ < π

2
∧ ξ ∈

[
−1

2
+ cosϕ, 1

2

]
\{0} ∧

∧ η = ±ξ
√

1∓cosϕ
1±cosϕ

∧ ζ =
√

±2ξ(1±cosϕ∓ξ)
1±cosϕ

, (5.53b)

visualised in yellow (smallest possible ζ) in figure 5.24(a). The red endpoint
of the yellow line at ξ = 1/2 also belongs to this case. For the back–
transformation formulae see again appendix C.1.

(iii) An example for c̃ < b̃ < d̃/2 is depicted in figure 5.23(c); these conditions
result in

x < 1 ∧ cosϕ = x
2
∧ ξ ∈

(
−x2

2
, 0
)

∧ η = − xξ√
4−x2 ∧ ζ =

√
−2ξ(4−x2+2ξ)

4−x2 ,

(5.53c)

visualised in 5.24(b). In this case it is easy to evaluate the back–transformation,
c̃ = a

√−2ξ, b̃ = ax, and ã = a
√

4 + 2ξ − x2.

• Face Centred Orthorhombic (fco)
W.l.o.g. c̃ < b̃ < ã, therefore we also have for the three face diagonals dãb̃ >
dãc̃ > db̃c̃, and of course also db̃c̃/2 < b̃ holds. Hence, the only candidates for the
shortest distance between lattice points are db̃c̃/2 and c̃; b is always of length
db̃c̃/2, because there always exist two linearly independent lattice vectors of this
length. This means, c and b describe the lattice plane of the face with edges c̃
and b̃.

The next shortest, linearly independent vector, representing a, can then only
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(a) c̃ < b̃ < ã

ã
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c̃

α̃

(b) b̃ < c̃ < ã

ã

b̃

c̃

α̃

(c) b̃ < ã < c̃

Figure 5.25: The three qualitatively different kinds of sm lattices. Near-
est neighbours to the red particle are blue, next to nearest ones green,
and third next ones yellow. Angles of π/2 are indicated by dots.

have the length of dãc̃/2. We obtain

x < 1 ∧ 0 < cosϕ ≤ x
4
∧ ξ = 2x cosϕ ∧ η = 2

sinϕ
cosϕ(1 − x cosϕ) ∧

∧ ζ = 2
sinϕ

√
cosϕ(x− cosϕ)(1 − x cosϕ) , (5.54a)

x < 1 ∧ x
4
≤ cosϕ < x

2
∧ ξ = −x cosϕ ∧ η = x+x cos2 ϕ−2 cosϕ

sinϕ
∧

∧ ζ =
2

sinϕ

√
cosϕ(x− cosϕ)(1 − x cosϕ) , (5.54b)

and the back–transformations are given by c̃ = 2a
√
x cosϕ, b̃ = 2a

√
x(x− cosϕ),

and ã = 2a
√

1 − x cosϕ.

For all the orthorhombic cases, wherever there appears an inequality sign (e.g. <)
we can replace it by a sign that includes the limiting case (e.g. ≤) and still have
orthorhombic symmetry. But then it is of course possible to encounter even higher
symmetries, see the Bravais lattices discussed before.

6. Monoclinic

• Simple Monoclinic (sm)
In an sm lattice, one lattice vector, c̃, is perpendicular to the other two, ã and
b̃, which, in turn, enclose an arbitrary angle. We call this angle α̃, the length of
the perpendicular vector is c̃, and the other two conventional lattice vectors have
lengths ã and b̃, see figure 5.25. W.l.o.g. we can set b̃ ≤ ã and even demand,
that these distances together with the angle α̃ are chosen in a way to satisfy the
2D MDP in their lattice plane, i.e., cos α̃ < b̃/2ã (we have “<” instead of “≤”
to avoid the sfco symmetry). Therefore, there are three possibilities for the 3D
MDP:

(i) c̃ ≤ b̃ ≤ ã, depicted in figure 5.25(a) and resulting in

x ≤ 1 ∧ 0 < cosϕ <
x

2
∧ ξ = η = 0 ∧ 0 < ζ ≤ x , (5.55a)

which corresponds to ã = a, b̃ = ax, c̃ = ζa, and α̃ = ϕ.
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ξ

η

(a) sm, 2D-(f)

ξ

η

(b) sm, 2D-(e)

Figure 5.26: All possible parametrisations of the 3D sm lattices; for
symbols, labels, etc. see figure 5.12.
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c̃

e′

f

α̃

Figure 5.27: The sfcm lattice. Italic symbols denote lengths; bold, upright
ones denote vectors. Angles of π/2 are indicated by dots.

(ii) b̃ ≤ c̃ ≤ ã [figure 5.25(b)], with

x ≤ 1 ∧ ϕ =
π

2
∧ η = 0 ∧ ξ ∈

[
−x

2

2
,
x2

2

]
∧ ζ ∈ [ζmin, ζmax] , (5.55b)

back–transformed using ã = a, b̃ = a
√
ξ2 + ζ2, c̃ = xa, and tan α̃ = |ζ/ξ|.

(iii) b̃ ≤ ã ≤ c̃ [figure 5.25(c)], giving

x ≤ 1 ∧ ϕ =
π

2
∧ ξ = 0 ∧ η ∈

[
0,
x

2

]
∧ ζ ∈ [ζmin, ζmax] , (5.55c)

and ã = xa, b̃ = a
√
ξ2 + ζ2, c̃ = a, and tan α̃ = ζ/η.

Of course, the origin, (ξ, η, ζ) = (0, 0, 0), must be excluded. The corresponding
3D MDP parameter space is visualised in figure 5.26.

• Single Face Centred Monoclinic (sfcm)
The sfcm lattice has, compared to the sm lattice, an additional face centred
point in one (and its opposite) of the rectangular faces of the monoclinic unit
cell. W.l.o.g. we put it on the ã–c̃–face, see figure 5.27. In this case we cannot
restrict ã ≥ b̃ and also α̃ is now completely arbitrary. The way to find the three
MDP vectors in dependence of the sfcm–parameters is rather complicated and
will be performed in four steps.
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First we switch to a description of the lattice through the primitive unit cell
spanned by ã, b̃ and the vector to one of the closest face centred points, which
we call e′ (see figure 5.27). Its length is equal to half the length of the diagonal
of the ã–c̃–face, e′ = d̃/2.

Next, we consider the 2D lattice planes spanned by ã and b̃, called (ã, b̃): We
can describe the same 2D lattice by its 2D MDP vectors, resulting in new vectors
a′ and b′ of lengths a′ and b′ (b′ ≤ a′), which enclose the angle α′, satisfying
cosα′ ≤ b′

2a′
, i.e., (ã, b̃) = (a′,b′). Now the question is: What is the relation

between these new vectors a′ and b′ on the one hand, and the three vectors ã,
b̃, and e′ on the other hand?

To answer this we first notice, that the projection of a point of a neighbouring
(parallel) (a′,b′)–lattice plane, obtained by adding e′ to each point of the first
lattice plane, of course always lies in a WSC11 of the first lattice plane. The
projection of the next but one neighbouring plane (obtained by adding 2e′ to
each point of the first lattice plane) onto the first plane lies exactly on top of
the first lattice plane, since we have then moved along the whole diagonal of the
ã–c̃–face and have hence reached a point also accessible through moving (from
another lattice point) over a distancec̃ perpendicular to the (a′,b′)–lattice (see
again figure 5.27).

Calling the projection of e′ onto the (a′,b′)–lattice plane e′
‖, this means, the

point reached (from any lattice point) by e′
‖ in the (a′,b′)–lattice plane has

to lie exactly halfway between two lattice points. In fact, for any 2D lattice
point there exists another one in a way, that the position vector e′

‖ lies halfway
between them. This is also true for the closest lattice point, which of course
has a WSC, into which e′

‖ must point. We take the lattice vector from this

closest point to e′ and call it ẽ. Now, w.l.o.g., we demand ã = 2
∣∣ẽ‖
∣∣, which

just takes of all possible descriptions of a given sfcm lattice the one with the
smallest possible ã; but this condition also guarantees ẽ = e′.

There are exactly six different points in a 2D–WSC lying halfway between two
lattice points, due to symmetry this number is reduced to three. In our case
of the (a′,b′)–lattice plane they are positioned at a′/2, b′/2 and (−a′ + b′)/2.
For the sake of completeness we also define the vector c′ = 2e′

⊥ [with e′
⊥ being

the component of e′ perpendicular to (a′,b′)] which is of course equal to c̃.

In each of these three cases there are five lengths which have to be considered
when trying to find the 3D MDP vectors:

a′, b′, e′ =
d̃

2
, c′, and f, (5.56)

where f is the length of the vector ẽ− b̃, see figures 5.27 and 5.28. Of course, it
can never be that a′, b′, and c′ are the lengths of the three MDP vectors, since

11Wigner–Seitz unit cell, see section 5.1.
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ã

c̃

fẽ

O

PQ

Figure 5.28: Visualisation why f can be one of the MDP vector lengths,
i.e., smaller than b, using a projection of figure 5.27 onto the ã–c̃–plane.
The vector f = b̃ − ẽ has a different arrowhead indicating that it would
point outside the plane, the projection of its apex is called P .
The dashed red lines are all of equal length, indicating that if P lies on
the green line (as depicted here), then OP ≤ PQ and hence f ≤ b̃. This
can only happen if ã > c̃.

this would lead to a sm lattice. Therefore d̃/2 and/or f have to be the length(s)
of at least one MDP vector.

As a third step we determine the extra length f introduced here. For this we
treat the three cases separately.

(i) e′
‖ points at a′/2, i.e., tilde–quantities are equivalent to the corresponding

primed ones. This results in

f 2 =

(
b′ − a′

2
+

c′

2

)2

=
d̃2

4
+ b′2 − a′b′ cosα′ ≥ d̃2

4
+
b′2

2
, (5.57)

where we used cosα′ ≤ b′/2a′. This obviously gives f > d̃/2, which means
that d̃/2 is always the length of a MDP vector in this case.

(ii) e′
‖ points at b′/2. This results in ã = b′ and

f 2 =

(
−a′ +

b′

2
+

c′

2

)2

=
d̃2

4
+ a′2 − a′b′ cosα′ ≥ d̃2

4
+ a′2 − b′2

2
, (5.58)

again f is bigger than d̃/2, since a′ ≥ b′.
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(iii) e′
‖ points at (−a′ + b′)/2. In this case we obtain

ã = |−a′ + b′| , (5.59)

d̃2

4
=
a′2 + b′2 + c′2

4
− 1

2
a′b′ cosα′ , (5.60)

f 2 =
d̃2

4
+ a′b′ cosα′ , (5.61)

resulting similarly in f > d̃
2
.

Finally, as a fourth step, we have to distinguish between all different possibilities
for the MDP vectors, of which there are in total 56. They are listed in appendix
C.2.

7. Triclinic (tric)
This lattice has no symmetry (except inversion), all parametrisations not enclosed in
the above discussion correspond to lattices of this kind of Bravais lattice. W.l.o.g. we
can choose the MDP vectors as the conventional primitive vectors.

5.4 Basis Particles

We now return to the problem of finding the shortest distance between particles occurring
in the whole crystal, including the basis particles. Therefore we consider an arbitrary basis
consisting of (an arbitrary number of) equally sized hard spheres in addition to the MDP
of equation (5.21) of the lattice. Note that, although the statements in this section are
intuitive and strong evidence through billions of randomly generated crystals exists, they
have not yet been proven analytically.

W.l.o.g. the first basis particle is always positioned at the lattice points, see equation
(5.7). It is therefore easy to conclude, that in the case of only one basis particle, the
shortest distance is just c.

For two basis particles we only have to check which distance between particles in and
at the border of the unit cell is the shortest one. The vector indicating the position of the
additional basis particle inside the unit cell is [see equation (5.6)]

v2 = v2aa + v2bb + v2cc , (5.62)

with v2X ∈ [0, 1). The distances under consideration are the following:

|c|
|v2| |v2 − c|
|v2 − a| |v2 − a − c| (5.63)

|v2 − b| |v2 − b − c|
|v2 − a − b| |v2 − a − b − c|
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One (or, in special cases, more) of these distances is the shortest one.
For more than two basis particles we have [see again equation (5.6)]

vi = viaa + vibb + vicc, i = 2, 3, . . . . (5.64)

In addition to equation (5.63) we have to check for each i the distances between the
additional basis particle i and all the other ones. For this we also have to consider the
basis particles in the 3 × 3 × 3 − 1 adjacent unit cells. We finally arrive at the minimum
distance as a function of the crystal parameters

dmin

a
= d∗min = d∗min (x, ϕ, ξ, η, ζ, {viX}) . (5.65)

We use a star superscript to indicate, that this is a dimensionless quantity, but note that
this time we reduce with the length a, which is why we use a different kind of star (∗) in
contrast to the one that indicates reduction with σ (⋆).

The parameter a is just a factor that scales all the distances in the whole crystal.
Therefore we can use a to finally satisfy the hard core condition. If there exists also a
cutoff distance dcut for the interaction potential (e.g. λ for the SSM), we can set

σ ≤ ad∗min ≤ dcut , (5.66)

because values of a not satisfying the second inequality in equation (5.66) all result in
lattices with zero energy12, of which only the one with the smallest volume fraction is of
interest when looking for the minimal Gibbs free energy, see section 5.6.

There is still one issue to cover concerning crystal structures of hard–core particles,
before we can finally turn towards to the calculation of Gibbs free energies.

5.5 Close–Packed Structures

In 2D there is exactly one possibility to arrange hard core particles in a close–packed way,
viz. the hexagonal lattice with nearest neighbour distance equal to the hard core diameter
σ. To construct the 3D close–packed structure we can use 2D hexagonally close–packed
layers as building blocks, but their arrangement is not unambiguous, i.e., there are various,
different possibilities to arrange them in a close–packed way.

Consider a primitive unit cell for one 2D hexagonal plane which is a rhombus with one
diagonal being equal to the edge length of σ. This diagonal splits the unit cell into two
equilateral triangles. If the adjacent layer has to be packed as closely as possible to the
first one, the particles have to be positioned above the centroids of the equilateral triangles
built by the particles of the first layer, thus minimising the distance between the layers to

the height of a regular tetrahedron of edge length σ, which turns out to be
√

2
3
σ.

Obviously, there are two possibilities for this positioning of the second layer. Iterating
this procedure one finds out [67] that all layers can be classified into three different types,

12This will become more obvious with help of the formula for the lattice sum, equation (5.69).
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(a) fcc (b) hcp (c) fcc+hcp (d) ABAC (e) ABABC

Figure 5.29: Examples for different kinds of close–packed stackings; par-
ticles that are part of an A–plane are coloured yellow, B–plane particles
are red, and those of the C–plane are blue. In (c) we put particles of A–
and C–planes into the same (third) layer, thus visualising the difference
between fcc and hcp.

usually termed A, B, and C layers. They can be identified in the following way. We
position a Cartesian coordinate system in a way that the x–y–plane is parallel to the
hexagonal layers and rotate it until the two primitive vectors of each hexagonal layer are
a1 = σx̂ and a2 = σ

2
x̂ + σ

√
3

2
ŷ, where x̂, ŷ, and ẑ are the unit vectors of the coordinate

system. The A, B, and C layers can now be characterised by the x and y components of
the particle which is closest to the z–axis (there can be three of equal distance), w.l.o.g. we

choose A↔ (0, 0), B↔ σ
(

1
2
, 1

2
√

3

)
, and C↔ σ

(
0, 1√

3

)
. Thus, each close–packed structure

can be characterised by its stacking sequence, e.g. an fcc structure is represented by the
stacking sequence ABC [see figure 5.29(a)], while the hexagonally close–packed structure
(hcp) is simply represented by a stacking sequence AB [see figure 5.29(b)]; of course these
sequences recur periodically, i.e., hcp is the stacking ...ABABAB..., and similar for any
other stacking.

In this way one can represent all possible close–packed stackings by sequences of the
letters A, B, and C. Of course the sequences are not completely arbitrary, as discussed
above particles of consecutive layers occupy tetrahedral sites of the neighbouring layers,
hence consecutive letters in stacking sequences always have to be different. This is also true
for the first and last letters of any possible sequence, since they are also consecutive in the
periodically recurring scheme. In the remaining pool of possible stacking sequences there
are still many different sequences describing the same crystal, due to symmetry; of course
we therefore reduce this pool further by symmetry considerations, to obtain a reduced pool
where different sequences correspond to different crystals.

Since the labelling of the layers is strongly linked to the choice of the origin, we can
always shift the coordinate system in a way to obtain a label of A for the first considered
layer. In general there are three possibilities for this choice, we keep only one representative
of them (this removes the redundancy that e.g. AB, AC, and BC all describe the same
hcp structure). Of course we also exclude sequences that are multiples of shorter ones,
or those that are obtained via cyclic permutation (of another one). Finally, we consider
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the following transformation: inversion (r → −r) and subsequent mirroring13 on the x–y–
plane (z → −z). While this transformation leaves the A layers unchanged, it exchanges
the B and C ones, i.e., B→C and C→B. Again, we only select one representative from the
corresponding equivalent structures.

The first couple of stacking sequences with increasing number of considered layers are
given in table 5.1.

Having thus acquired the necessary tools for the description of crystals consisting of
(equally sized) hard core particles, the MDP (along with a mapping procedure to con-
ventional Bravais lattice parameters) with any possible basis, and the limiting cases for
high densities, the possible close–packed stacking sequences, we are able to proceed to the
next, major task: The minimisation of a thermodynamic potential to find the equilibrium
structures.

13A crystal and its mirrored/inverted counterpart always have equal energies, see next section.
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nr. of layers different stacking(s)

1 —
2 AB (hcp)
3 ABC (fcc)
4 ABAC
5 ABABC
6 ABABAC, ABACBC
7 ABABABC, ABABCAC, ABACABC
8 ABABABAC, ABABACAC, ABABACBC,

ABABCABC, ABABCBAC, ABACBABC
9 ABABABABC, ABABABCAC, ABABABCBC, ABABACABC,

ABABACBAC, ABABCABAC, ABABCACBC,
ABABCBABC, ABABCBCAC, ABACBACBC

10 ABABABABAC, ABABABACAC, ABABABACBC,
ABABABCABC, ABABABCBAC, ABABACABAC,
ABABACACBC, ABABACBABC, ABABACBCAC,
ABABACBCBC, ABABCABCAC, ABABCABCBC,
ABABCACBAC, ABABCBABAC, ABABCBACBC,
ABACABACBC, ABACABCABC, ABACBACABC

11 ABABABABABC, ABABABABCAC, ABABABABCBC,
ABABABACABC, ABABABACBAC, ABABABCABAC,
ABABABCACAC, ABABABCACBC, ABABABCBABC,
ABABABCBCAC, ABABACABABC, ABABACABCAC,
ABABACABCBC, ABABACACABC, ABABACACBAC,
ABABACBABAC, ABABACBACBC, ABABACBCABC,
ABABACBCBAC, ABABCABACBC, ABABCABCABC,
ABABCABCBAC, ABABCACABAC, ABABCACBABC,
ABABCACBCAC, ABABCBABCAC, ABABCBACABC,
ABABCBACBAC, ABACABACABC, ABACABCACBC,
ABACBABCABC

12 ABABABABABAC, ABABABABACAC, ABABABABACBC,
ABABABABCABC, ABABABABCBAC, ABABABACABAC,
ABABABACACAC, ABABABACACBC, ABABABACBABC,
ABABABACBCAC, ABABABACBCBC, ABABABCABABC,
ABABABCABCAC, ABABABCABCBC, ABABABCACABC,
ABABABCACBAC, ABABABCBABAC, ABABABCBACAC,
ABABABCBACBC, ABABABCBCABC, ABABABCBCBAC,
ABABACABACAC, ABABACABACBC, ABABACABCABC,
ABABACABCBAC, ABABACACBABC, ABABACACBCAC,
ABABACACBCBC, ABABACBABABC, ABABACBABCAC,
ABABACBABCBC, ABABACBACABC, ABABACBACBAC,
ABABACBCABAC, ABABACBCACBC, ABABACBCBABC,
ABABCABABCAC, ABABCABABCBC, ABABCABACABC,
ABABCABACBAC, ABABCABCABAC, ABABCABCACBC,
ABABCABCBABC, ABABCABCBCAC, ABABCACABCBC,
ABABCACBABAC, ABABCACBACBC, ABABCACBCABC,
ABABCACBCBAC, ABABCBABCABC, ABABCBABCBAC,
ABABCBACABAC, ABABCBACACBC, ABABCBACBABC,
ABABCBACBCAC, ABACABACBABC, ABACABCBACBC,
ABACBACBACBC, ABACBACBCABC

Table 5.1: The first 133 non–equivalent stacking sequences for close–
packed particles, the number of layers ranging from 1 to 12. The first
four stackings are visualised in figures 5.29(a,b,d,e).
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5.6 Gibbs Free Energy

Our objective focuses on the quest to find all stable crystal structures at zero temperature.
Since we consider infinitely extended, ideal crystals as candidate structures, we work in
the thermodynamical limit, i.e., the number of particles N and the volume V tend to
infinity, while their ratio, the number density ρ = N/V remains finite. At fixed T = 0,
the number density is therefore the only relevant thermodynamic variable in the canonical
(NV T ) ensemble, while in the isobaric (NPT ) ensemble only pressure remains relevant.

In applications of genetic algorithms to NV T ensembles of soft systems in references
[68, 69] the density was optimised, hence the (free) energy was minimised. However there
are three reasons why we chose to work in the NPT ensemble, minimising thus the Gibbs
free energy (enthalpy).

• Firstly, in usual experimental setups it is much easier to work under constant (in
general ambient) pressure.

• Secondly, when phase separation occurs, the coexisting phases have equal tempera-
ture and equal pressure, while density changes discontinuously from one phase to the
other in a first order phase transition. Working in the NPT ensemble we avoid the
occurrence of discontinuities in the thermodynamic variables.

• Thirdly, a reason related to technical issues of the parametrisation of the equilibrium
structures: Keeping the density fixed imposes a constraint on the parameters describ-
ing all possible crystals. For given number of basis particles this is a3x sinϕζ =const.,
i.e., the volume of the unit cell has to be kept constant. Especially when considering
a basis of more than one particle, this results in highly non–trivial alterations of
equation (5.21), which can simply be avoided through letting density be optimised
for given pressure.

Thus, in a first step we divide the zero temperature relation G = H = E + PV by the
number of particles and obtain

g = h = e+
P

ρ
, (5.67)

the Gibbs free energy or enthalpy per particle. The intensive quantities per particle are
denoted by lowercase letters (e, f , h, and g) in contrast to the extensive ones (E, F , H,
and G). Since g and h are equal at T = 0, we will from now on only use the term enthalpy
and the corresponding symbol h, for the sake of simplicity.

To calculate the r.h.s. of equation (5.67) we need P , ρ, and e. The pressure P is our
independent thermodynamic variable, and the density ρ is easily derived for a given crystal,

ρ =
nb

Vc

=
nb

|(a × b) · c| =
nb

a3x sinϕζ
, (5.68)

where nb is the number of basis particles, Vc is the volume of the unit cell, and the
other quantities have been defined in equation (5.10). At zero temperature, the energy
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per particle in a crystal described by equations (5.10) and (5.6), is obtained through the
following lattice sum (see [68])

e =
1

2

∑

(i, j, k) ∈
Z3\(0, 0, 0)

φ (|Lijk|) +
1

nb

∑

(i, j, k)
∈ Z3

nb∑

m,n = 1
m < n

φ (|Lijk + vm − vn|) , (5.69)

where the lattice vectors Lijk are explained in equation (5.2), the basis vectors vi are
defined in equation (5.6), and φ(r) is the pair potential under consideration.

Taking a closer look at equations (5.69) and (5.68) we can easily understand what has
already been stated previously: We recognise, that the density ρ as well as the lengths
of the vectors occurring in equation (5.69) are unchanged under reflection of the crystal
at a plane that contains the origin or under inversion at the origin, which is positioned
at an arbitrary lattice point14. Equivalently one can state, that the energy and enthalpy
per particle are the same irrespective of the handedness of the used Cartesian coordinate
system, as long as the coordinates of all vectors are the same. This symmetry was used in
section 5.1, where we could restrict the z–coordinate of c to positive values as a consequence
of this symmetry.

We can now aim at the task of minimising the enthalpy per particle, given by equation
(5.67), w.r.t. all crystal parameters describing the primitive vectors and the number and
positions of the basis particles.

5.7 Finding Equilibrium Crystal Structures

During the past decades several strategies have been proposed to find the energetically
most favourable particle arrangements of a system. Apart from conventional approaches
that rely on intuition, experience, or plausible arguments when selecting candidates for
ordered equilibrium structures, there are more sophisticated approaches such as simulated
annealing [71–74], basin hopping [75], or meta-dynamics [76–78]. However, all these strate-
gies are affected by different sorts of deficiencies which can significantly reduce their success
rates.

In recent years convincing evidence has been given that search strategies based on ideas
of genetic algorithms (GAs) are able to provide a significant breakthrough to solve this
problem. Generally speaking, GAs are strategies that use key ideas of evolutionary pro-
cesses, such as survival of the fittest, recombination, or mutation, to find optimal solutions
for a problem [22]. The wide spectrum of obviously successful applications in different
fields of condensed matter physics unambiguously demonstrates their flexibility, reliability,
and efficiency: among these are laser pulse control [79], protein folding [80], or cluster
formation [81]. In contrast, attempts to apply GAs in the search for ordered equilibrium
structures in condensed matter theory were realized considerably later. While the first

14Of course, lattice sum and density are also invariant under reflection or inversion at completely arbi-
trarily positioned planes or points, but by convention the origin is always positioned at a lattice point.
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applications probably date back to 1999 [82] their widespread use in hard matter theory
was pioneered by Oganov and co–workers [83, 84] only recently, where they have become
meanwhile a standard tool: a wide spectrum of successful applications ranging from geo-
physical to technologically relevant problems give evidence of the power and the flexibility
of this approach (for an overview see [83, 84]). In soft condensed matter theory the usage
of these search strategies is still in its infancy. First applications to find minimum energy
configurations of soft systems have, nevertheless, unambiguously documented the power
of the algorithm: successful examples are the identification of exotic lattice structures and
cluster phases for particular soft systems [23–25], or of complex, ordered arrangements of
monolayers of binary dipolar mixtures [26]. Recently, we also successfully applied GAs to
hard core systems in 3D [85–87], which will be discussed in part IV. All these investiga-
tions mentioned above give evidence that GA-based search strategies have an extremely
high success rate.

5.7.1 Genetic Algorithm

In this thesis we use the GA pioneered by Dieter Gottwald (described in detail in his
PhD thesis [68]), including some improvements from Julia Fornleitner (see also her PhD
thesis [88]). We will briefly outline the basic principles of this algorithm, before describing
our modifications in more detail.

Each crystal structure is represented by a so called individual I, consisting of a se-
quence of integer numbers [which correspond one–to–one to values of the crystal structure
parameters of equation (5.5) and equation (5.8)] encoded in the binary number system,
resulting in a sequence of zeros and ones (the “genes”) and representing one candidate
structure. This means, that we are working on a grid in parameter space, which is the
reason why we will need a final refinement for the results proposed by the GA.

Another key feature for GAs is the so called fitness function F (I), a value assigned to
each individual which is the higher the “better” the individual. Since we want to find the
minimum enthalpy configuration for given pressure P , we used as a fitness function

F (I) = e
−h(I)−h(I0)

h(I0) , (5.70)

where h(I) is the enthalpy per particle of the crystal structure represented by I. I0 is
some reference structure, used to make the exponent both dimensionless and of the order
of 1, useful for numerical reasons.

A pool of such (initially randomly generated) individuals is then “evolved” through
mutation (random bit–flip at random positions), cross–over (cutting of two individuals,
the parents, at the same position and putting first and second part from different parents
together to build two new individuals), and selection by fitness, for further details concern-
ing these processes cf. [68] or [88]. An optimisation also for the number of basis particles
is not included so far, because of difficulties when crossing–over individuals of different
lengths and when mutating the bits representing the number of particles. Therefore we
have to apply our search strategy to a reasonable range of fixed particle numbers, which
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turned out to be the larger the longer the range of the interaction potential (see chapter
9).

Of course the major modification of the GA presented in [68] is to include the MDP
derived in section 5.2 into the encoding of the crystal structures. For a given number of
basis particles nb we have in total 6 + 3(nb − 1) independent parameters describing the
crystal: six of them for the underlying lattice (x, ϕ, ξ, η, ζ, and a) and three for the
position of each additional basis particle (via, vib, and vic, with 2 ≤ i ≤ nb). Instead
of a we use another parameter, which is strongly linked to a and which is obtained by
the following considerations: By dividing inequality (5.66) by σ we obtain [cf. reduced
quantities according to equation (2.13a)],

1 ≤ a⋆d∗min ≤ d⋆cut . (5.71)

Now further divide the left inequality by a⋆ and the right one by a⋆d⋆cut,

1

a⋆
≤ d∗min ∧ d∗min

d⋆cut

≤ 1

a⋆
. (5.72)

By using 1/a⋆ instead of a⋆ as the sixth parameter, we represent this parameter by an
integer number on a grid of equal spacing of 1/a⋆–values — resulting in a grid for a⋆,
which becomes denser as one approaches the minimum value of a⋆. This provides better
convergence of the GA to the global minimum, since usually the equilibrium structure
exhibits at least one instance of touching or very closely approaching hard spheres (see
again chapter 9), a region of parameter space which is thus sampled with more care on a
finer grid by the GA.

Introducing the (integer) precision parameter ℘, we demand that the 6 + 3(nb − 1)
integer numbers Ni are elements of {0, 1, 2, . . . , Nmax − 1}, with Nmax = 2℘. The mapping
from the Ni to the crystal parameters works as follows [compare with equation (5.21)]:

x = N1+1
Nmax

, (5.73a)

ϕ = arccos
(
x
2

)
+ N2

Nmax−1

(
π
2
− arccos

(
x
2

))
, (5.73b)

ξ = − x2

2
+ x2 N3

Nmax−1
, (5.73c)

η = ηupper
N4

Nmax−1
, where ηupper = min

(
x2+ξ−(ξ+1)x cosϕ

x sinϕ
, x−2ξ cosϕ

2 sinϕ

)
, (5.73d)

(if ξ < 0 then N4 6= 0),

ζ = ζmin + N5

Nmax−1
(ζmax − ζmin) , ζmin,max according to eqs. (5.21f), (5.18) , (5.73e)

(if ξ = η = 0 then N5 6= 0)

vjX : the mapping for the basis particle positions is unchanged compared (5.73f)

to [68]; it uses Ni with i > 6 (i.e. v2a = N7

Nmax
, v2b = N8

Nmax
, . . . , v4a = N13

Nmax
, . . . ) ,

1

a⋆
= d∗min (x, ϕ, ξ, η, ζ, {vjX})

(
1
d⋆
cut

+ N6

Nmax−1

(
1 − 1

d⋆
cut

))
, (5.73g)

(if d⋆cut = 1 then N6 = 0).
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The GA then finds the set {Ni} with the lowest enthalpy for given pressure. It converges,
unsurprisingly, the faster the smaller the number of grid points, i.e., the smaller the binary
precision ℘. Due to the exponential relation Nmax = 2℘ the requirement in computational
time grows very fast with growing ℘. Hence we cannot choose ℘ to be arbitrarily large
to obtain an exact location of the minimum enthalpy configuration. Therefore we select a
reasonable value for ℘ to obtain a good approximation of the minimum with the GA and
subsequently apply a final refinement strategy. With this refinement we find the closest
minimum of the enthalpy per particle, starting from the optimum structure proposed by
the GA. The grid introduced through ℘ then only needs to be fine enough for the GA to
be able to bring us close to the global minimum. Usually ℘ lies in the range of 4− 6, only
for structures with one basis particle already ℘ = 2 proved sufficient.

5.7.2 Powell Algorithm

The final refinement strategy of our choice is the so called Powell algorithm (PA) [89], an
efficient method to find the minimum of a function of several variables, which does not rely
on the evaluation of derivatives of the function w.r.t. these variables.

The reason why we have to avoid derivatives, as they are used, e.g., in the steepest
descent method, is, that we want to investigate the square–shoulder model. For this model
the energy per particle is calculated via a step–shaped interaction potential [see equation
(2.10)], which means the energy per particle, defined by equation (5.69), is step–shaped,
too, in dependence of all the crystal parameters (x, ϕ, ξ, η, ζ, {vjX} , a⋆). Optimisation of
the energy per particle hence faces the problem of the derivative w.r.t. all these parameters
being (a sum of) Dirac δ–functionals and hence mostly zero, pathological for any minimi-
sation using derivatives. Of course, our function to minimise, the enthalpy per particle,
also depends on the density in a continuous way; but since the density only depends on
the crystal parameters x, ϕ, ζ, and a⋆ [see equation (5.68)], derivatives into directions of
parameter space where these four parameters are constant are still zero15.

Therefore we choose the method of Powell described in detail in [90] and provided by
[91]. This method selects in a sophisticated way the consecutive directions of minimisation
in parameter space. The requirements for the PA are the following:

1. Independent variables in a well–defined parameter space. Since x, ϕ, ξ, η, ζ, {viX},
and a⋆ are not independent variables due to the MDP, we use a mapping similar to

15For a steepest descent method, that searches the minimum into the direction of the gradient, this
would result in an optimisation of just these four parameters.
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the equations for the GA parameters, (5.73),

x = t1 , (5.74a)

ϕ = arccos
(
x
2

)
+ t2

[
π
2
− arccos

(
x
2

)]
, (5.74b)

ξ = −x2

2
+ t3x

2 , (5.74c)

η = t4ηupper , where ηupper = min
(
x2+ξ−(ξ+1)x cosϕ

x sinϕ
, x−2ξ cosϕ

2 sinϕ

)
, (5.74d)

ζ = ζmin + t5 (ζmax − ζmin) , ζmin,max according to eqs. (5.21f), (5.18) , (5.74e)

v2a = t6 , v2b = t7 , v2c = t8 , v3a = t9 , . . . , (5.74f)

a⋆ =
[
1 + t3(nb+1) (d⋆cut − 1)

]
/d∗min (x, ϕ, ξ, η, ζ, {vjX}) , (5.74g)

which results in a [3(nb + 1)]–dimensional unit cube as parameter space, i.e., t ≡(
t1, t2, . . . , t3(nb+1)

)
∈ [0, 1]3(nb+1). t1 = 0 must of course be excluded, but since the

region of arbitrarily small x (i.e., t1) usually turns out to be penalised with a high
value of enthalpy per particle, this point will never be approached anyway.

2. A suitable line–minimisation method, i.e. a method used to find the minimum along
a straight line in the multidimensional parameter–space. In principle one can take a
method that relies on derivatives as a line–minimisation method, but of course this
would be of no use in our problem (see discussion above). Our line–minimisation
method is therefore based on a golden section search for the (local) minimum. We
only had to add a prescription of what to do if the enthalpy per particle is a step–
shaped function along the line of consideration in parameter space, where the min-
imum value is hence established for a whole segment: Take the midpoint of the
segment as the point along the line that minimises the enthalpy per particle.

There is an ostensive motivation for this prescription. A constant enthalpy per par-
ticle for the square–shoulder model along a line in parameter space originates either
from shearing the unit cell while keeping its volume constant, or from a movement
of basis particles inside a fixed unit cell (or a combination of the two) — in a way
that the number of shoulder overlaps does not change. The endpoints of the segment
of equal, minimal enthalpy–values are hence arrangements where the shoulders of
two particles touch each other. Of course, we want to find the structure with the
highest density for given energy per particle. Therefore it is useful to arrange the
basis particles in a way, that allows the unit cell to shrink (at least a bit) without
causing any extra shoulder overlaps in subsequent minimisations into directions of
parameter space that change the volume of the unit cell. This is most likely achieved
by using the midpoint of the previously mentioned segment.

3. Boundary conditions. To prevent the line–minimisation from leading out of the unit
cube there are various possibilities, the most commonly used are periodic boundary
conditions or hard walls. We use the hard wall boundary, implemented as a kind of
mirror–boundaries, i.e., when the line–minimisation shoots outside the unit cube, we
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mirror the cube about the facet which the line just pierced instead of changing the
line–direction according to the hard wall condition.

4. Starting point and direction. The starting point for the PA is of course provided by
the GA. The starting directions — note that the PA needs 3(nb + 1) linearly inde-
pendent ones — turned out to be most efficient if chosen exactly into the directions
of the 3(nb + 1) variables ti, i.e., the direction matrix is set to the unit matrix (or a
matrix obtained via an arbitrary permutation of lines in a unit matrix).

5.7.3 Cutoffs

If a pair potential is gradually decaying (|φ(x)| > |φ(y)| ⇔ x < y) but never attaining
exactly the value of 0 (e.g., a Yukawa potential), a cutoff distance has to be introduced,
above which the pair interaction is set to zero. We define the cutoff distance rcut in
dependence of a parameter δ via

(1 − δ)

∫ ∞

σ

d3r φ(r) =

∫ rcut

σ

d3r φ(r) , (5.75)

similar to the definition in [68], with the alteration of the lower integration limit (σ instead
of 0), to account for the hard core in our models. This definition guarantees, that the
neglected contribution to energy is less than δ times the total energy.

5.7.4 A Systematic Search Procedure for the Square–Shoulder
Interaction

In this section we explain an efficient way to find all equilibrium crystal structures for
particles interacting via the square–shoulder interaction [equation (2.10)] at T = 0.

For any energy per particle e, which just counts the mean number of shoulder overlaps
per particle, there exists a configuration having the largest possible density ρ for this
energy. This means if we minimise the enthalpy per particle h for different P , we can only
obtain a certain number of pairs (ei, ρi) which have to satisfy ei 6= ej ⇔ ρi 6= ρj.

Each of these pairs represents a straight line in the h–P–diagram, namely hi = ei+P/ρi.
Since for any P we only need the candidate with the smallest hi, we even obtain

ei > ej =⇒ ρi > ρj . (5.76)

It is also obvious, that with increasing pressure, also density and energy per particle in-
crease, hence:

e versus P and ρ versus P are monotonously increasing, step shaped curves, where
the discontinuities in these curves occur at exactly the same pressure values. The
h–P–curve is therefore the lower envelope of a sequence of intersecting straight lines,
which intersect at the same pressure values where the energy/density curves change
discontinuously.
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Figure 5.30: Schematic representation of our search strategy to identify
MECs in the (h⋆, P ⋆)-plane. The dotted lines represent h⋆ as a function
of P ⋆ for the limiting low and high pressure configurations: The vertical
arrows represent GA–runs that identify, starting from an initial guess
(dot), an energetically more favourable MEC (square). For details see
text.

We introduce a recursive algorithm to find all of these pairs (ei, ρi), corresponding to the
equilibrium configurations, also called minimum enthalpy configurations (MECs).

First we locate the two configurations with the lowest and highest energy– and density–
values, respectively, being the equilibrium structures for very low or very high pressures.
These are both close–packed structures (see section 5.5): one with nearest neighbour dis-
tance λ having hence emin = 0 and ρmin =

√
2/λ3, and the other one exhibiting touching

hard cores, i.e., ρmax =
√

2/σ3. Calculating the corresponding emax, which means finding
the close–packed structure with the lowest energy, is non–trivial but possible, see section
9.1. We therefore assume now that both pairs, (emin, ρmin) and (emax, ρmax), are known.
The corresponding h–lines are the dotted lines in figure 5.30.

We calculate the pressure P[1] at the intersection point of the two corresponding h–
lines and start a sufficient number of GA–runs with different number of basis particles and
subsequent PA for this pressure. In general this will yield a different equilibrium structure
with e[1]– and ρ[1]–values between the two limiting cases. The corresponding h–line is then
intersected with the other two lines, giving two new intersection points at the pressure
values P[2a] and P[2b] (and eliminating the old one).

For each of these pressure values we again look for the equilibrium structure, and
iterating this procedure we cut off kinks from the h–curve thereby generating two new
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ones. Of course, at some point this iteration will stop, when for all existing intersection
pressures no better configuration can be found.

The advantages of this algorithm are:

• It is very efficient, since we keep the number of GA searches as low as possible.

• There is no risk to miss an equilibrium structure, which can happen when working
on a finite P–grid.

• We avoid a GA search for pressure values with competing structures16, where the
GA tends to fail. In fact, when we find a lower enthalpy at a given intersection
pressure value, this happens at a pressure where the difference in enthalpy to the
(two) competing structures is maximal.

5.7.5 Metric Crystal Scaling

The method described in section 5.7.4 is only applicable to the SSM. Energy and density
of models exhibiting other pair potentials are in general continuous curves. It is however
possible to develop a similar method for finding the whole h–P–curve for pair potentials
that exhibit a hard core and a repulsive potential tail φt(r), of which the first and second
derivatives exist and satisfy

φ′
t(r) < 0 ∧ φ′′

t (r) > 0 (5.77)

for all r > 0 [e.g. the hard core Yukawa interaction given by equation (2.3) with ǫY >
0]. The key idea is, to consider equivalence classes of configurations, that enclose all
configurations with the same shape through metric scaling [92], a concept we also present
in [87]. Let us explain what we mean by “same shape”.

We call a crystal configuration, i.e. a set of the unit cell and basis vectors, K. All other
crystals in the equivalence class [K] of crystals with the same shape are simply obtained
by scaling the whole crystal K, i.e., multiplying all vectors with the same scaling factor s,

[K] = {s · K|0 < s <∞} . (5.78)

We will show, that for given pressure there is exactly one configuration out of this equiva-
lence class that has the lowest enthalpy of its class. We will denote this configuration by
K̃ ([K], P ).

Proof: Let K0 and P be given. The question is, how to find the scaling factor s for
which the enthalpy takes on its minimum. To answer this we construct the function

h(K0, P, s) = e(K0, s) +
P

ρ(K0, s)
, (5.79)

16Except at intersection pressures where no better structure is found, but the outcome of the GA search
there does neither enter the list of minimum enthalpy configurations nor has any influence on subsequent
calculations.
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where e(K0, s) is the energy per particle and ρ(K0, s) is the particle density for the configu-
ration K0 scaled with the factor of s. Clearly, ρ(K0, 1) ≡ ρ0 is the density and e(K0, 1) ≡ e0
is the energy per particle of the configuration K0. Thus, the density term is simply given
by

ρ(K0, s) = ρ0/s
3 . (5.80)

Of course the parameter s cannot adopt all positive real numbers. There exists a lower
threshold slow where the shortest distance in the crystal becomes equal to the hard core
diameter, and an upper threshold shigh where the shortest distance is equal to the cutoff,
rcut. But for the following analytic calculations we consider a pair interaction that solely
consists of the tail interaction, i.e. φ(r) = φt(r), for all values of r. We will take the
thresholds into account later on.

The energy per particle for this interaction is obtained via the lattice sum of equation
(5.69) modified with the scaling parameter s by

e(K0, s) = 1
2

∑

(i, j, k) ∈
Z3\(0, 0, 0)

φt (s |Lijk|) + 1
nb

∑

(i, j, k)
∈ Z3

nb∑

m,n = 1
m < n

φt (s |Lijk + vm − vn|) , (5.81)

where L and v are the lattice and basis vectors of K0, respectively. Of this energy function
we can take both the first and second derivatives w.r.t. s,

∂e(K0, s)

∂s
= 1

2

∑

(i, j, k) ∈
Z3\(0, 0, 0)

φ′
t (s |Lijk|) |Lijk| + 1

nb

∑

(i, j, k)
∈ Z3

nb∑

m,n = 1
m < n

φ′
t (s |Lijk + vm − vn|) |Lijk + vm − vn| ,

(5.82a)

∂2e(K0, s)

∂s2
= 1

2

∑

(i, j, k) ∈
Z3\(0, 0, 0)

φ′′
t (s |Lijk|) |Lijk|2 + 1

nb

∑

(i, j, k)
∈ Z3

nb∑

m,n = 1
m < n

φ′′
t (s |Lijk + vm − vn|) |Lijk + vm − vn|2 .

(5.82b)

Considering equation (5.77) we recognise that the addends in both equations (5.82) always
have the same sign, resulting in

∂e(K0, s)

∂s
< 0 ∧ ∂2e(K0, s)

∂s2
> 0 ∀s > 0 . (5.83)

From the first derivative being always smaller than 0 we obtain, that e(K0, s) is strictly
monotonously decreasing. Since we always have φ(r)

r→∞−→ 0 also e(K0, s)
s→∞−→ 0.

The pressure term of equation (5.79) on the other hand is zero for vanishing s and
tends to infinity with s → ∞. Hence we know for the enthalpy per particle h(K0, P, s) =
e(K0, s) + Ps3/ρ0

h(K0, P, s)
s→0
s→∞−→ ∞ , (5.84)
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and therefore the function h(K0, P, s) of s has to have at least one minimum. With help
of equation (5.83) the second derivative of h w.r.t. s is

∂2h(K0, P, s)

∂s2
=
∂2e(K0, s)

∂s2
+

6Ps

ρ0

> 0 ∀s > 0 , (5.85)

which means that there is exactly one minimum. To find this minimum we have to locate
the value of s, smin, where the first derivative vanishes,

∂g(K0, P, s)

∂s
=
∂e(K0, s)

∂s
+

3Ps2

ρ0

!
= 0 ⇒ smin . (5.86)

It is obvious, that through setting

seq = min (max (smin, slow) , shigh) (5.87)

we obtain the enthalpy per particle, h(K0, P, seq), of the equilibrium structure at pressure
P with the hard core and cutoff constraints included, together with the corresponding
configuration K̃([K0], P ).
�

The aim is now, to find all occurring [K0] for the whole pressure regime.

Similar to the case of the square–shoulder potential in the previous section we begin
considering close–packed structures, for simplicity we start with an fcc crystal. For very
low pressures this is the simplest one (least number of basis particles) having minimum
enthalpy, with the nearest neighbour distance being equal to the cutoff, sloppily written
as fcccut. Of course this can be an unphysical result, e.g. for a Coulomb interaction which
is known to freeze in a bcc crystal, due to the numerical error when introducing a cutoff
to an infinitely ranged interaction potential. Nevertheless, within the chosen numerical
accuracy, fcccut will always be the outcome for small enough pressure values.

Using the method described above we can now draw h([fcc], P ) and locate the pressure

threshold Phc above which K̃([fcc], P ≥ Phc) =fccσ, the close–packed fcc crystal where
the hard spheres touch each other. At this pressure value we launch the first GA with
subsequent PA, to find out whether fcc is really the optimum stacking for the close–packed
spheres, for the Yukawa interaction it turns out to be the one (see chapter 10).

It is not completely clear, where to start looking for structures different than fcc, usu-
ally some random points distributed over the pressure regime from 0 to Phc will yield a
new minimum enthalpy structure K1 at some point. Then we can calculate the intersection
points of the curves h([fcc], P ) and h([K1], P ) (blue dots in figure 5.31), and we can apply
the line–intersection–search like in the simpler square–shoulder case, now with curved lines.
Still it is advisable to launch some additional runs also at pressure values not close to any
intersection point, since it is possible now, that a curve just cuts another one twice, with
no previous intersection point in between. This situation is clarified in figure 5.31: It is
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h([fcc], P )

h([K1], P )

h([K2], P )

h([K′
2], P )

P

Figure 5.31: Sketch of possible enthalpy curves for configurations of four
different equivalence classes as indicated in the legend. The intersection
points of h([fcc], P ) and h([K1], P ) are marked with blue dots, for details
see text.

possible, after applying the GA based search strategy at the pressure values corresponding
to the two intersection points marked as blue dots, that we find a better configuration
class, [K2], whose enthalpy curve (green) cuts off one intersection point (in our example
the one exhibiting lower pressure). However, it is also possible, that neither of the two
intersection points lead to further MECs. Still, there can exist a configuration class, [K′

2],
which results in the minimum enthalpy curve at some intermediate pressure range, between
the pressure values of the two previously calculated intersection points (red enthalpy curve).

The presented search strategy works perfectly well as long as the occurring crystals have
cubic symmetry, since the cubic lattices only have one free parameter, the edge length ã
of the cubic unit cell. If however lower symmetry lattices occur, the method of an overall
scaling factor will most probably not suffice to generate the entire enthalpy–pressure–
curve. More parameters than just s have to be considered, leading to a higher dimensional
minimisation problem.

For the case of a hard core Yukawa interaction, which we will investigate in more detail,
there appears only one relevant non–cubic Bravais lattice, the centred tetragonal one, as
will be shown in chapter 10. Therefore we extend the concept of metric scaling to this
kind of lattice. A detailed explanation and visualisation of the ct lattice is given in section
5.3 (figure 5.19), where the identification of Bravais lattices was discussed. The ct lattice
has two free parameters, e.g. the two different edge lengths ã and c̃. Another possibility
of parameters would be to use just one of the edge lengths (similar to a general scaling
factor) and the ratio between them. We utilise even another parametrisation, using the
general scaling factor s and a parameter f , describing the different possible ct lattices in
the following way.

Let (s, f) = (1, 1) correspond to a bcc lattice (which is the special case of ct lattice)
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where the nearest neighbours touch each other at the hard cores, bccσ. The conventional
ct lattice parameters are in this case ã = c̃ = 2σ/

√
3. Keeping s = 1 constant, we want to

change the ct lattice via f in a way, that keeps the nearest neighbour distance constant at
σ. If f is close enough17 to 1, this is equivalent to the condition, that the triagonal of the
ct unit cell is constant, 2σ. As a first step we assume c̃ to vary linearly with f , resulting in

c̃(f) = f
2σ√

3
, ã(f) =

√
3 − f 2

√
2

3
σ . (5.88)

The variation of f from 1 to
√

3/2 covers a so–called Bain transformation [93] from bcc

(f = 1) to fcc (f =
√

3/2).

A Bain transformation is a displacive phase transformation, which is characterised by
a cooperative, homogeneous movement of the particles in a solid crystal. This movement
can be described through the so called Bain strains, combined in a strain matrix that
transforms a set of straight lines into a new set of straight lines [93, 94]. Among the
most popular and extensively studied example of a phase transition describable through a
Bain transformation is the bcc↔fcc transition [92, 95, 96], which is, for instance, found in
iron [97–100]. Recently also computer simulations for iron [101] based on a tight–binding
potential were able to reproduce this kind of phase transition. The consideration of Bain
transformations in soft matter is a comparatively young issue, recent experimental obser-
vations of bcc↔fcc transitions of sphere–forming block copolymer/homopolymer blends
were published in [102]. Another system that is able to solidify both in stable fcc as well
as bcc phases, and represents therefore a suitable candidate for the investigation of such a
transition, are charged colloids interacting via Yukawa potentials [103–105]. Therefore we
will investigate the hard core Yukawa model in chapter 10, in an effort to find new stable
crystal structures.

We further quantify our choice for the parametrisation of all ct lattices, comprising
the Bain transformation from fcc to bcc. To obtain ct lattices with all possible ratios of
ã/c̃ we also need to use values of f outside the interval [1,

√
3/2]. For f >

√
3/2, ã(f)

becomes smaller than σ, which is not allowed. Since ã thus represents the nearest neighbour
distance in this f–regime, we restrict ã to its minimum value of σ for f >

√
3/2, while c̃

can be further increased linearly for large f , leading to arbitrarily small values of ã/c̃. At
f =

√
3/2 a similar situation occurs for c̃, smaller f–values would result in c̃ < σ according

to equation (5.88). Analogously we demand c̃ = σ for f <
√

3/2. But, to really cover all
lattices (i.e. all arbitrarily large ã/c̃–values) within f > 0, we also modify the formula for
ã to 3σ/(2

√
2f) in this f–range. In summary we obtain, together with the overall scaling

factor s,

c̃(f, s) = sσ

{
1, 0 < f <

√
3

2

f 2√
3
, f ≥

√
3

2

(5.89a)

17It will immediately become clear what we mean by “close enough”.
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Figure 5.32: In (a) the functions of equations (5.89a) and (5.89b) for
s = 1 are visualised as indicated in the legend, together with the ratio ã/c̃
in dependence of the Bain parameter f . (b) shows the number density ρ
(also for s = 1) versus f . The vertical dotted lines indicate the values
f =
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3/2 and f =

√
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and

ã(f, s) = sσ





3
2
√

2
1
f
, 0 < f <

√
3

2√
3 − f 2

√
2
3
,

√
3

2
≤ f ≤

√
3
2

1, f >
√

3
2

. (5.89b)

Both, ã and c̃, are monotonous functions of f , ã is decreasing and c̃ is increasing with f .
ã/c̃ is strictly monotonously decreasing with f and covers all values from ∞ to 0, all three
functions are visualised in figure 5.32(a). In figure 5.32(b) we plot the number density in
dependence of f , given by

ρ(f, s) =
s

σ3





16
9
f 2, 0 < f <

√
3

2

3
√

3
2f(3−f2)

,
√

3
2

≤ f ≤
√

3
2

√
3
f
, f >

√
3
2

. (5.90)

It exhibits a maximum at f =
√

3/2, the fcc structure, and a local minimum at f = 1,
corresponding to the bcc structure.

The reason why we introduced this special kind of Bain transformation parameter will
become clear in the discussion of the hard core Yukawa model in chapter 10, where we will
minimise the enthalpy per particle w.r.t. the two ct structure parameters s and f .

5.8 The Continuum Theory

Following the ideas of Glaser et al. [27] for 2D systems, we have developed a mean-field type
theory where we assume that the solid structure is built up by aggregates in the shape of
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spherical clusters, cylindrical columns, planar lamellae, or a distribution with “aggregation”
of the particles over the whole space, corresponding to a compact phase. Within the
aggregate, particles are distributed with a constant effective density, ρeff , interpretable as
a kind of probability density for the discrete particles.

The next, quite drastic step is now, not just to consider a probability density for
the discrete particles, but a continuum of matter (with the same constant density ρeff)
that assembles itself into shapes according to the aggregation of the formerly considered
particles. The task to be performed is to calculate the analogon to the lattice sum of
equation (5.69) in this continuum theory (CT).

Via the shape of the aggregates we can immediately define a position dependent density
for the continuum matter, which we write as

ρ̂(r) = ρeffθC(r) , (5.91)

where θC(r) is assigned the value of 1 if r lies within an aggregate and 0 otherwise. θC(r)
shall satisfy the following condition, which mathematically connects the particle picture
with the continuum one: Consider an arbitrary, simply connected region R. The number
of particles inside this region is trivially given by

N =
∑

νi ∈ R
1, (5.92)

where the sum is taken over all particles inside the region, positioned at νi and indexed
with i. The analogon in the CT is of course

N ′ =

∫

R

ρ̂(r) d3r , (5.93)

and assuming that the continuum matter density ρ̂(r) is a valid approximation for the
arrangement of the real particles positioned at νi it follows

N ≃ N ′ . (5.94)

The reason why we use a “≃”–sign instead of an exact “=”–sign is, that it is impossible
to construct a continuum matter distribution ρ̂(r) that fulfils N = N ′ for arbitrary regions
R. This is best explained via considering R to be a sphere of radius R centred at an
arbitrary point. The number of particles N inside R as a function of R is obviously a
(monotonously increasing) step–function, while N ′ is always a (monotonously increasing)
continuous function of R.

Now we consider a particular particle, positioned at µ. The energy of this particle is

eµ =
1

2

∑

νi 6= µ

φ (|νi − µ|) . (5.95)
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Formally we can also write

eµ =
1

2

∑

∀νi

φ (|νi − µ|) − 1

2
φ (0)
︸ ︷︷ ︸
edisc
self

, (5.96)

where we subtract the so called self–energy (edisc
self ) in the discrete particle model from the

sum over all particles. If φ(r) diverges at r → 0 one either has to use equation (5.95) or
find a suitable method to “renormalise” the energy according to equation (5.96). Switching
to the CT, we need, analogously to the energy assigned to a particle, the energy assigned
to a continuum matter point. Analogous to the case of particle number, we substitute the
sum over particles by an integral over space of the continuum matter density ρ̂(r):

eC(µ) =
1

2

∫

R3

ρ̂(r)φ (|r − µ|) d3r − eself . (5.97)

What remains to be determined is the self–energy term (eself), a problem that strongly
depends on the particular interaction potential φ(r). For the moment we assume that we
are able to determine this quantity, we will resume this task when applying the theory to
the interaction of the square–shoulder model in section 9.3.1.

We are only one step away from the analogon to the average energy per particle in
the CT. Consider equation (5.69), which is nothing else but a detailed formula for the
calculation of this average energy for crystals. It is the specialisation to crystal structures
of the more fundamental formula for the average energy per particle of an assembly of
particles

e =
1

M

∑

µj∈M
eµj

, (5.98)

where eµj
is the energy of the particle positioned at µj [given by equation (5.95)]. M

can be e.g. the set of all particle positions, M = |M| =
∑

µi∈M
is the cardinal number of

M. Clearly, in particular for crystal structures, we can drop many elements from M that
lead to the same energy contributions as other elements, thus reducing equation (5.98) to
equation (5.69). In other words, M is the set of particle positions that result in different
particle energies, points in M are hence called qualitatively different.

The construction of the average energy in the CT also foots on a similar set N of
qualitatively different points in the continuum matter. We replace, in the same way like in
the step from equation (5.92) to equation (5.93), the sums in equation (5.98) by integrals
and define

eC =
1∫

N
ρ̂(r) dnr

∫

N

ρ̂(r)eC(r) dnr , (5.99)

where n is the dimension of N . This formula can be interpreted as the total energy of the
continuum matter confined to N divided by the number of particles in N . In other words,
the average energy per particle approximated by the CT.
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(a) (b) (c) (d)

Figure 5.33: Considered aggregate shapes formed by the continuum mat-
ter: spherical clusters (a), cylindrical columns (b), planar lamellae (c),
and a homogeneous distribution (d).

There is one simplification possible for equation (5.99): N only contains points where
the continuum matter is present, i.e., ρ̂(r) = ρeff ∀r ∈ N . The constant factor ρeff can be
pulled out of both integrals in equation (5.99) and cancelled, hence

eC =
1∫

N
dnr

∫

N

eC(r) dnr . (5.100)

At last we have to construct the CT quantity which is equivalent to the enthalpy per
particle given in equation (5.67). Therefore we need, besides the now calculated analogon
for the energy per particle, the average density ρC in the CT, to calculate the pressure
contribution. From equation (5.91) it is obvious, that ρC is equal to ρeff times the fraction
of space filled by the continuum matter. We finally arrive at the CT approximation for
the average enthalpy per particle,

hC = eC +
P

ρC
. (5.101)

To be able to apply this CT to particular model systems, we have to restrict ourselves
to special, simple shapes of the aggregates.

Special Aggregate Shapes
Let us now discuss the shape and cardinality of N for the four possible aggregate shapes

of clusters, columns, lamellae, and compact phases, visualised in figure 5.33 and motivated
by the results of the GA based search method for the square–shoulder model (see chapter
9).

• Clusters
The approximation for cluster shaped aggregates in the CT is to consider perfect
spheres of matter, which are arranged on a crystal lattice. If we further restrict the
arrangement to be one of the Bravais lattices and all spheres to have the same radius,
we recognise that N has to be contained in one of the equal spheres. The reason for
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this is, that each arbitrary point r inside a sphere is assigned the same energy as any
other point r + Lijk, where Lijk is an arbitrary lattice vector [see equation (5.2)].

The symmetry of the lattice reduces the region of N even more. E.g. even for the
lowest symmetry, a triclinic lattice, we always have inversion symmetry, reducing N
to a hemisphere. Higher symmetries lead to further reduction by planes through the
centre point of the sphere, cutting it into equivalent pieces. Note however, that the
average energy formula (5.100) still holds, if one integrates over a superset of N .

Therefore, to keep equation (5.100) simple, we take the whole sphere corresponding
to a cluster aggregate as integration region, which of course has a dimension n of 3
in this case.

For spheres of volume Vs placed on the lattice points of a Bravais lattice the ratio of
filled to total space is the same as the one of Vs to the volume of a primitive unit cell
Vc, resulting in the average continuum matter density of

ρC = ρeff
Vs

Vc

. (5.102)

• Columns
A phase of columnar shaped aggregates is approximated by the continuum matter
being distributed over infinitely long, parallel cylinders of equal radius. Since an
arbitrary displacement of such a cylinder along its axis is a symmetry transformation,
and hence does not change energy nor density, the only relevant information about
the arrangement of the cylinders has to be given w.r.t. the two independent directions
perpendicular to the parallel cylinder axes. We arrange the cylinders on a 2D Bravais
lattice of which the basis vectors are perpendicular to the cylinder axes and recognise,
that N is contained in the 2D cross–section of one cylinder. The symmetries of
the corresponding 2D Lattice have the same influence as in the cluster case, N
gets reduced from the circular cross–section to a sector of the disk. But, similar to
the cluster case, we take the whole cylinder cross–section as integration regime N .
Clearly, in this case n = 2.

Parallel cylinders arranged on a 2D Bravais lattice fill space with the ratio of the
(circular) cross section Ac of one cylinder to the area of a 2D primitive unit cell Ap

of the lattice, leading to

ρC = ρeff
Ac

Ap

. (5.103)

• Lamellae
Lamellar arrangements of the aggregate are treated as infinitely extended parallel
planes of equal thickness in the CT. Because of the twofold continuous symmetry for
plane shifts, the only relevant information left for their arrangement is the distance
between them. Putting them on a “one–dimensional Bravais lattice” just means, that
they all have equal distance to their neighbouring planes. Analogous to the previous



5.8. THE CONTINUUM THEORY 105

item, symmetry reduces N to (half) a segment, obtained by the intersection of a
straight line perpendicular to the planes and one of these planes, which also means
n = 1. For convenience we will take the whole segment as integration region.

The average density for parallel planes of equal thickness D stacked with nearest–
plane distance L (see also figure 9.8) is given by

ρC = ρeff
D

L
. (5.104)

• Compact phases
As mentioned at the beginning of this section, a compact phase means, that the par-
ticles “aggregate” over the whole space, not forming any specially shaped aggregates.
In CT this corresponds to ρ̂(r) = ρC = ρeff ∀r, i.e., a completely homogeneous phase.
Obviously, all points then get assigned the same energy, resulting in N to contain
only one single point. The zero–dimensional integrals reduce to a simple sum over
this single point, which means eC = eC(r) with r being completely arbitrary.

These four aggregate shapes will be considered in chapter 9, dedicated to the investi-
gation of the square–shoulder model.
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Chapter 6

Charged Yukawa Model

In this chapter we will discuss the results obtained through the mSCOZA (see chapter
4) for the charged Yukawa model, introduced in section 2.4. Since there exist extensive
investigations of this system using MSA (see section 3.3.1) and Monte Carlo simulations
(MC) in [34], we study the system with the same parameters used there as a first step.

Therefore we restrict the inverse screening parameter to the value of α⋆ = 1.8, a value
for which the single Yukawa interaction gives results for the phase diagram comparable to
the Lennard–Jones fluid [106]. The parameter q⋆, controlling the relative strength of the
two competing tails [see equation (2.13m)], is given the values 0, 2, 5, 10, 15, 100, and 300.

We use a ρ–grid of 100.000 points between ρ⋆ = 0 and ρ⋆max = 1 and extended (also
called quadruple) precision floating point variables, i.e., 16 bytes of storage are used for
each real variable. This would give approximately 34 [≃ log10 (2113)] significant digits, but
due to the problem with the inhomogeneity term discussed in section 4.3.2 we can only
guarantee for the leading 20 digits. We work in Yukawa–reduced units, i.e., σ is the length
scale and ǫY is the energy scale (see section 2.8), with the minimum inverse temperature
step–size ∆β⋆Y,min = 10−15, gradually attained when approaching the critical point. A
complete determination of the critical point along with the bi- and spinodal lines for one
q⋆–value takes on the average one to two weeks on one node of the Phoenix Linux Cluster
of the Vienna University of Technology.

6.1 Spinodal and Binodal Lines

We first take a look at the gas–liquid coexistence curve, also called binodal line. A com-
parison of the MSA, the mSCOZA and the MC data is visualised in figures 6.1 and 6.2 for
the q⋆–values specified above. We use the same reduced temperatures as in [34], where
the MC data are taken from. The mSCOZA result for the location of the critical point are
given in table 6.1.

At q⋆ = 0 we obtain the single Yukawa model. Since in this case the inhomogeneity term
of equation (4.17f) and the Coulomb contribution to internal energy per volume [equation
(4.17e)] both vanish, our mSCOZA yields the same results as the usual SCOZA treatment
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Figure 6.1: Coexistence curves of the Charged Yukawa model for vari-
ous values of q⋆ obtained via the MSA (dashed blue lines), the mSCOZA
(solid red lines), and the MC simulations (different symbols as indicated
in the legend). We use the Yukawa–reduced temperature defined in equa-
tion (2.13i) as in [34], where the MC data are taken from.
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Figure 6.2: Coexistence curves of the Charged Yukawa model as in fig-
ure 6.1, but in terms of the RPM–reduced temperature T ⋆RPM of equation
(2.13j).
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q⋆ ρ⋆c T ⋆cY T ⋆cCY T ⋆cRPM

0 0.314495 1.21869 1.21869 —

2 0.298805 1.26954 0.423181 0.634772

5 0.273225 1.34942 0.224903 0.269884

10 0.227140 1.49412 0.135830 0.149412

15 0.173140 1.66520 0.104075 0.111013

100 0.016275 7.98089 0.0790187 0.0798089

300 0.014975 23.6829 0.0786806 0.0789428

Table 6.1: Critical point location of the Charged Yukawa model for vari-
ous q⋆–values with the mSCOZA; the reduced temperature is given for the
three different possibilities of reduction, see equations (2.13i)–(2.13k).

of a single Yukawa model, given e.g. in [20]. For such a model the SCOZA is known to
give better agreement with MC data than the MSA, which can also be seen in figure 6.1.

Several trends can be seen s with varying q⋆: Firstly, as is already well known, the
MSA overestimates the critical temperature the closer we approach the RPM (q⋆ → ∞).
Secondly, the mSCOZA has a lower critical temperature than MSA, the difference in abso-
lute values of T ⋆Y becoming larger as we approach the RPM. But unfortunately thirdly the
relative difference, which is the more relevant quantity for describing the difference in the
location of the critical point and the shape of the coexistence curve, becomes negligible for
high values of q⋆ This is best visualised using the RPM–reduced temperature as in figure
6.2.

In fact, the coexistence curves of the MSA and the mSCOZA become practically identi-
cal for large values of q⋆, resulting also in the same underestimation of the critical density.
To quantify this similarity of the MSA and the mSCOZA for large q⋆–values, we also
investigated several of the critical exponents.

6.2 Critical Exponents

As outlined in section 3.1, we can use the so called effective critical exponents to describe
the critical behaviour of a system. For the seven different q⋆–values under consideration
we therefore calculate the effective critical exponents γeff , αeff , and βeff with the mSCOZA.

The critical properties obtained by an approach from above the critical point could be
calculated with high accuracy due to the interpolation scheme described in section 4.3.4.
This applies to the location of the critical point itself as well as to the critical exponents
γ and α. Therefore the abscissae in figure 6.3, where the temperature parameter τ [see
equation (3.1)] is given in the usual logarithmic scale, extend to −12, which means a
relative approach to the critical point of 10−10%.
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Figure 6.3: Effective critical exponents versus the common logarithm of τ
[see equation (3.1)], of the Charged Yukawa model for q⋆–values indicated
in the legends, obtained via the mSCOZA.

For both, γeff and αeff , visualised in figures 6.3(a) and 6.3(b), respectively, we could
determine the values close to the critical point to be equal to the known SCOZA values
γSCOZA = 2 and αSCOZA = 0 (compare table 3.2). But it is also clearly visible, that there
appears a systematic change with increasing q⋆. For αeff the characteristic global maximum
in the curve αeff(τ) shifts to lower values of τ , and the final value of 0 is attained closer
to the critical point. For γeff the transition from the mean–field critical exponent value of
γMF = 1 to the one of the SCOZA moves the closer to the critical point the larger q⋆. This
is another indication that the mSCOZA becomes similar to the MSA for large q⋆–values,
since the MSA always gives mean–field exponents.

βeff seems to behave strangely at first sight, see figure 6.4(a). It always attains a final
value of 0, which should not happen within any theory (see table 3.2)! But the reason is
a numerical issue resulting in a defective coexistence curve close to the critical point. As
depicted in figure 6.4(c), the high and low density branches of the coexistence curve do not
join ath the critical point because of two numerical inaccuracies.

Firstly, the algorithm used to determine the points where chemical potential and pres-
sure of the two phases are equal (i.e., the points of coexistence for given temperature) relies
on linear interpolation between the points of the ρ–grid (see section 4.3.4).

Secondly, coexistence near the critical point occurs close to the region where the spin-
odal excludes the “forbidden region” and approximate boundary conditions are used (see
section 4.3.1). The closer spinodal and binodal approach each other, the more this ap-
proximation will influence the determination of the binodal. Near the critical region this
results in wrong data for the coexisting state–points.

Therefore we concentrate on calculating the location of the critical point and critical
exponents obtained via an approach from above (τ → 0+) in subsequent considerations.
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Figure 6.4: Effective critical exponent βeff versus log10 τ of the Charged
Yukawa model for q⋆–values indicated in the legend in (a), obtained via
the mSCOZA. The coexistence curve and spinodal line for q⋆ = 5 are
depicted in (b) and (c), the latter being a closeup of the critical region
in (b). Above the critical point, we draw a line between the state points
of minimal 1/χ⋆ for given temperature in (b) and (c), which splits into
the two branches of the spinodal line below the CP.
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Chapter 7

Charged Kac Model

The purpose of this chapter is to investigate the critical behaviour of a system where the
pair-potential φ(r) is a linear combination of two interactions, that are known to exhibit
different critical behaviour individually.

It is well established, that the RPM (see section 2.1) belongs to the Ising 3D universality
class [107, 108], while a system interacting via a Kac interaction (see section 2.3) exhibits
mean field (MF) critical behaviour. In addition, the critical points (CPs) of these two
systems differ significantly: for the RPM the critical point is located in the range T ⋆RPM ≃
0.0489 – 0.0492, ρ⋆ ≃ 0.076 – 0.080 [107–109], and the CP of a Kac system is defined by
T ⋆ ≃ 1.13052, ρ⋆ ≃ 0.27 [62] (for both system the respective natural units have been used
for the reduced units, i.e., the hard core diameter σ for the densities of both systems and
the respective interaction energy at contact for temperature, see section 2.8). Taking a
linear combination of the two potentials results in the charged Kac model,

φCK
ij (r) = φRPM

ij (r) + φKac(r) , (7.1)

with the two contributions given by equation (2.1) and equation (2.7).
If the limit α → 0 in the Kac part is performed exactly, the SCOZA is not applicable to

this system, even in our modified form (mSCOZA, chapter 4). Since we want to rely on the
renowned reliability of the SCOZA in the critical region, we consider a slightly modified
potential, where the parameter α is kept finite:

φij(r) = φRPM
ij (r) − ξ2 q

2

σ
(ασ)2 e−αr

r/σ
, (7.2)

where the strength parameter ǫK of the Kac potential has been changed to ǫK = −ξ2q2σ,
which makes ξ2 the parameter of the relative strength of the two contributing potentials.
We will approximate the potential of equation (7.1) by that of equation (7.2) numerically by
making α as small as possible. Comparing equation (7.2) with equation (2.8) we recognise,
that we are now in fact dealing with a charged Yukawa system, where the Yukawa energy at
contact is just ǫY = −ξ2 q2

σ
(ασ)2 e−ασ. To this model the mSCOZA as described in chapter

4 is now applicable.
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Figure 7.1: mSCOZA coexistence curves of the approximated charged
Kac model for ξ2 = 1 and α⋆ as indicated in the legend. The correspond-
ing critical points are marked by crosses and connected by the dash-dotted
light blue line.

7.1 Gas–Liquid Coexistence and Critical Point Loca-

tion

First we take a look at the coexistence curve at fixed ξ2 and varying α, where the latter
will be specified in terms of the reduced quantity α⋆ = ασ (see section 2.8) from now on.
We start at a value of α⋆ = 1.8, which is the same as in the previous chapter, and then
gradually decrease α⋆. In figure 7.1 we plot some coexistence curves for ξ2 = 1. It is clearly
visible that the coexistence curves, calculated for different α⋆–values within the mSCOZA,
tend to a certain limiting curve. The difference between the curves for α⋆ = 0.1 and
α⋆ = 0.01 is already very small, indicating that α⋆ = 0.01 is sufficiently small to represent
a good approximation of the Kac limit. A combined plot of the mSCOZA coexistence
curve for α⋆ = 0.01 and the MF curve calculated within the exact limit α⋆ → 0 (performed
by Caillol as described in [62]) results in the two curves to lie exactly on top of each other,
which is why we did not plot an extra MF line in figure 7.1. In other words, for decreasing
α⋆ the mSCOZA converges to the MF results.
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This coincidence is valid for any value of ξ2, as the data of table G.1 in the appendix
shows. We also include results for the critical exponent β, obtained via a simple fit of

∆ρ∗(T ) =
ρl(T ) − ρg(T )

ρc
= B|τ |β (7.3)

to the coexistence curve data within a range of τ ∈ (−0.1, 0) (see equation (3.1) for the
definition of τ). The prefactor B and the exponent β are the fit parameters1, ρl and ρg are
the liquid and gas phase densities at coexistence, respectively, and ρc is the critical density
(see [110]). A clear tendency also for the fitted β–values to approach the MF value of 1/2
for decreasing α⋆ is visible, especially in the results for ξ2 = 0.16, since the systems with
this ξ2–value have been studied most intensely over many α⋆–values.

Second, we compare the mSCOZA results for α⋆ = 0.01 (representative of the Kac limit)
with MC simulation data. Grand canonical MC simulations were successfully performed
by our colleagues in Paris, Jean-Michel Caillol, Dominique Levesque, and Jean-Jacques
Weis, for volumes of V ⋆ = 1000, 4000, and 8000 of the simulation box (V ⋆ = V/σ3); for
details see [62]. In figure 7.2 we selected four representative values for ξ2 (given in the
subcaptions) and plotted the data for the coexistence curves in the vicinity of the CP.
The convergence of the simulation data with increasing volume is clearly visible, the result
for V ⋆ = 8000 appears to be close to the infinite system limit. The approximate data for
the CP from the simulations can be obtained by fitting the data for V ⋆ = 8000 to the
universal MF distribution [equation (7.3) with β = 1/2], the result is presented, along with
the mSCOZA data for α⋆ = 0.01 in the following table:

simulation mSCOZA
ξ2 T ⋆c,RPM ρ⋆c T ⋆c,RPM ρ⋆c

100.0 113.4 0.250 113.3 0.249
11.11 12.62 0.251 12.60 0.249
1.0 1.172 0.242 1.167 0.245
0.10 0.1599 0.190 0.1480 0.179
0.05 0.1062 0.151 0.09725 0.0959
0.02 0.0742 0.0758 0.08255 0.0225

Table 7.1: Critical point location (ρ⋆c and T ⋆c,RPM) from the MC simula-
tion (exact Kac limit) and the mSCOZA calculations (approximated Kac
limit, i.e., α⋆ = 0.01) for the charged Kac model.

The comparison with the mSCOZA results shows good agreement for large and inter-
mediate values of ξ2(& 1), and an increasing discrepancy when decreasing ξ2 further. This

1Since we have the same issue with a non–closing coexistence curve as described in connection with
figure 6.4, we also include the value of the critical temperature Tc into the set of fit parameters to get a
better fit. However, the value for the critical temperature in table G.1 is the one from the original, high
accuracy mSCOZA calculation.
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Figure 7.2: mSCOZA coexistence curves of the approximated charged
Kac model (α⋆ = 0.01, black lines) for selected values of ξ2 as indicated
in the subcaptions. The symbols represent Monte Carlo simulation data
of the exact charged Kac model for different sizes of the simulation box:
red circles correspond to V ⋆ = 1000, green squares to V ⋆ = 4000, and
blue triangles to V ⋆ = 8000.

can be best visualised by plotting the data for the CP, T ⋆c,RPM and ρ⋆c , versus ξ2 for small
values of ξ2, see figure 7.3. For ξ2 in the range from 0.06 to 1 the deviation is ≃ 10% for
the critical temperature and ≃ 30% for the critical density. Below ξ2 . 0.06 the RPM
contribution to the potential becomes dominant and we find, not surprisingly, that the
theoretical data start to differ substantially from the simulation results; the critical tem-
perature and density tend to the MSA values for the RPM (ξ2 = 0). The failure of the
MSA to reproduce simulation data is well-known [30].

Despite this deficiency, the mSCOZA is able to provide further insight in the system’s
behaviour at the CP.
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Figure 7.3: Location of the CP of the charged Kac model in dependence
on the relative strength parameter ξ2 in the region of small ξ2. Blue
circles are Monte Carlo simulation data, red triangles are the mSCOZA
data (approximated Kac limit, i.e., α⋆ = 0.01), both sets are connected
by lines as a guide to the eye. Orange and blue crosses mark the result
for the pure RPM from the MC simulation and the MSA, respectively.

7.2 Critical Behaviour

As discussed in chapter 6, the data provided by the numerical solution of the mSCOZA
in the vicinity of the CP is more reliable for T > Tc (i.e., τ > 0). In addition, the critical
exponent γ, describing the divergence of the isothermal compressibility at the CP, is known
to have a value of 1 in the MF theory and 2 for the SCOZA (see table 3.2), which represents
a substantial difference. Therefore we use the effective critical exponent γeff [see equation
(3.5)] to characterise the critical behaviour of the charged Kac system.

The reason why we did not include our findings for γ in table G.1 is, that γ turns out to
be always 2, no matter how small α⋆ or ξ2 are chosen (both can of course never be exactly
zero in practice). But, as can be seen in figure 7.4, the cross–over of γeff from the MF
behaviour (γ = 1) far away from the CP to the non–MF one in its vicinity (γSCOZA = 2)
appears the closer to the CP the smaller α⋆. The curves indicate that for α⋆ = 0 we would
observe the MF value of γeff = 1 over the entire τ–range, reflecting the fact that in the
Kac limit α⋆ → 0 the MF behaviour becomes dominant. This pattern turns out to be the
same for all ξ⋆–values investigated.

The results from the mSCOZA therefore agree with the findings from the MC simu-
lations [62], that a MF critical behaviour is observed for all ξ2–values except for ξ2 = 0
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Figure 7.4: Effective critical exponent γeff versus the common logarithm
of τ for the charged Kac model for ξ2 = 0.16, approximated with different
α⋆–values as indicated in the legend.

exactly, i.e., when the system degenerates to the pure RPM. This is also in accordance
with the predictions of the improved MF theory, also presented in [62].



Chapter 8

Kac–Yukawa Model

In the publication where we investigated the charged Kac model [62], we also stated a
general rule concerning the critical exponent γ of a reference system and the parameter ξ2

for a system where the pair interaction has the form of

φ(r) = φref(r) + ξ2φKac(r) . (8.1)

Here φKac(r) is again the Kac–potential [equation (2.7)] and φref(r) is any reference poten-
tial. The rule connects the location of the CP of the perturbed system where the particles
interact via the potential of equation (8.1) on the one hand, and the critical exponent γ of
the reference system, where the particles interact solely via φref(r), on the other hand.

To derive this rule we need the Landau function L(β, µ, ρ) [111,112], in this case given
by [62]

L(β, µ, ρ) = −βµρ+ βf ref(ρ, β) + 2πβσǫKξ
2ρ2 . (8.2)

µ is the chemical potential and f ref(ρ, β) is the Helmholtz free energy per unit volume of the
reference fluid. At low temperatures and arbitrary µ, L(β, µ, ρ) has in general two minima
as a function of ρ, but there is only one value of µ for given β, i.e. µcoex, for which the
Landau function takes on identical values at the two minima. The corresponding minima
then supply the parameters of the coexisting gas and liquid phases. At the CP these two
minima coincide, which means the second derivative of the Landau function has to vanish
there,

∂2L
∂ρ2

(βc, µ, ρc) = 0 , (8.3)

resulting in

−4πσǫKξ
2 =

1

ρ2
cχ

ref
T

(Tc, ρc)
, (8.4)

where the general formula ∂2

∂ρ2
f(β, ρ) = 1/ρ2χ

T
(T, ρ) has been used. Note that χref

T
(Tc, ρc)

is the isothermal compressibility of the reference system, but evaluated at that state point
in the temperature–density plane, where the CP of the perturbed system is located.
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Of course, for ξ2 → 0 the CP of the perturbed system approaches the CP of the
reference one. Since we know how χref

T
(Tc, ρc) diverges as Tc → T ref

c , namely χref
T

∼ τ−γ ,
we obtain

ξ2 ∼ (Tc − T ref
c )γ . (8.5)

We tried to verify equation (8.4) and, subsequently, equation (8.5) for the Kac–Yukawa
model, i.e., for a system with

φref(r) =

{
∞ r < σ
ǫY

σ
r
e−κr r ≥ σ

. (8.6)

The reason for this choice is, that the reliable SCOZA for multi–Yukawa interactions (see
section 3.3.2) is applicable in this case. We used ǫY = ǫK/σ

2 ≡ −ǫ < 0 (i.e an attractive tail
to make the SCOZA diffusion equation stable) and the usual value of κ = 1.8/σ. Again, the
Kac potential had to be approximated by using a small but finite α, which directly explains
the high numerical effort necessary for the calculations: Since the two terms making up the
net interaction are treated on an equal footing within the SCOZA, the ration between the
Kac and Yukawa contributions to the pair potential should stay well within the bounds on
relative accuracy dictated by the specific representation of floating point numbers. (As a
measure of this ration, the quantity ξ2α⋆2eκ

⋆−α⋆
may be used.) Thus, all calculations in the

interesting parameter regime (small α⋆ and ξ2) had to be done using extended precision
(128 bit for one real variable), consuming about one CPU week to obtain the CP of a
system characterised by a single pair of α⋆ and ξ2 parameters.

We calculated the CP to high accuracy for a sequence of ξ2– and α⋆–values, for a
representative selection see table G.2 and figure 8.1. From the unexpected change in
curvature of the α⋆ = 0.0001–curve in figure 8.1(d) we assume that results for ξ2–values
below 10−8 tend to be unreliable.

For all α⋆ and ξ2 values studied, we also had to calculate the isothermal compressibility
of the reference system at the CP of the corresponding Kac–Yukawa system. Thus, for
given α⋆ we obtain a mapping from ξ2 through the CP data of the perturbed system to
the expression on the right hand side of equation (8.4),

ξ2 −→ 1

[ρc(ξ2)]2 χref
T

(Tc(ξ2), ρc(ξ2))
. (8.7)

In figure 8.2 we compare the two sides of equation (8.4). We note that, the smaller α⋆, the
better the data for the two sides coincide. The systematic deviation, visible for α⋆ = 0.1
and α⋆ = 0.01, is to be expected for finite α⋆: When approaching the CP, as soon as the
correlation length (which diverges at the CP) becomes larger than the range (1/α) of the
Kac–like interaction, the system “becomes aware” of the non–Kac behaviour, and equation
(8.2) [and hence equation (8.4)], which only holds for the mean field type behaviour of the
exact (i.e., limiting) Kac potential, is no longer correct.

In the investigated region a value of α⋆ = 0.0001 proved to give an interaction that is
sufficiently Kac–like, so that equation (8.4) indeed holds for our example reference inter-
action.
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Figure 8.1: Lines of consecutive CPs for the approximated Kac–Yukawa
system in relation to the CP of the reference system, i.e., τ = (Tc −
T ref
c )/T ref

c and ∆ρ∗ = (ρc−ρref
c )/ρref

c , with decreasing ξ2 for three different
values of α⋆, as indicated in the legends. From (a) to (d) we zoom into the
critical region of the reference system; in (c) and (d) points corresponding
to equal values of ξ2 are connected by black lines and labelled with the
corresponding ξ2–value (see table G.2). The CP of the reference system
is indicated by a light–blue cross.

To check the validity of equation (8.5) directly we again use the concept of an effective
critical exponent for γ [see equation (3.5)]. A quantity analogous to equation (8.5) can be
defined as

γeff
ξ =

∂ (log ξ2)

∂ (log τ)
. (8.8)

In figure 8.3 we find excellent agreement between γref
eff (effective critical exponent γ of the

reference system along the critical isochore) and γeff
ξ defined in equation (8.8), as long as
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Figure 8.2: 1/ρ2
cχ

ref
T (Tc, ρc) (in units of σ3ǫ) versus ξ2 for different values

of α⋆ (cf. legend) on a double–logarithmic scale for the approximated
Kac–Yukawa model, compared to 4πξ2 [see equation (8.4)].

equation (8.4) holds. For larger α⋆–values the onset of the strong deviation of γeff
ξ from

γref
eff happens exactly at the point where equation (8.4) is no longer correct, visualised in

figure 8.2. The small right shift of the blue stars relative to the black line is due to the
fact, that the line of consecutive CPs of the perturbed system does not coincide with the
critical isochore (see figure 8.1).

It is also apparent, that γ = 2, the value of γref
eff in the vicinity of the CP for SCOZA,

is barely attained by γeff
ξ before the limit of numerical reliability is reached. Nevertheless

we found strong evidence that the relation between the compressibility (and hence the
critical exponent γ) of a reference (hard core) Yukawa system and the parameter ξ2 (the
strength of an added Kac potential), equation 8.5, indeed holds. On the other hand, for the
relation to be a useful means to derive the critical exponent γ for the reference system, the
numerical effort has still to be increased, going beyond extended precision calculations.1

The work presented in this chapter has been published in [114].

1An attempt to increase the numerical accuracy using FMLIB [113] pushed the amount of required CPU
time beyond practicality.
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Chapter 9

Square–Shoulder Model

The topic of this chapter is to investigate in a systematic and thorough way the ordered
particle arrangements of the square–shoulder model [equation (2.10)], introduced in section
2.5, in 3D1. Using the methods explained in chapter 5, we will work at T = 0 in an NPT
ensemble, i.e., we search for configurations that minimise the enthalpy (which is equal to
the Gibbs free energy in the zero temperature case). These equilibrium configurations are
therefore termed minimum enthalpy configurations (MECs).

To provide a deeper insight into the self–assembly strategies of the system we consider
a short (λ = 1.5σ), an intermediate (λ = 4.5σ), and a large (λ = 10σ) shoulder width.
As a starting point for our systematic search strategy (see section 5.7.4) we need the
close–packed structure of minimum energy for each value of λ.

9.1 Close–Packed Structures

Before looking for the close–packed structure (CPS) with the lowest energy, we introduce
the following convention: If there is more than one CPS that exhibits the lowest occurring
energy out of all CPSs, we only consider the CPS with the shortest stacking sequence
as MEC (see section 5.5). An exception to this rule is that we favour fcc (ABC) to hcp
(AB) in such a case, motivated by the fact that — although the stacking sequence for
fcc is longer than the one for hcp — the crystallographic description (lattice plus basis)
for the fcc structure requires only one basis particle, while for the hcp structure it is a
non–simple one. In general, for all stackings but the ABC stacking, the minimum number
of basis particles in a crystallographic description is equal to the length of the stacking
sequence. This convention is necessary since it is possible that there are infinitely many
stacking sequences of equal energy, e.g. for very short shoulder widths (λ <

√
2σ), where

only nearest neighbour interactions occur, all stacking sequences have an equal energy per
particle of e = 6ǫ.

An important question we need to answer in an effort to find the equilibrium CPS,
i.e., the one exhibiting the lowest energy is: What length should the considered stacking

1Most of this work has been published in [85,86].
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sequences have? In particular, is there a maximum stacking sequence length nmax such that
including all stacking sequences up to this length into the set of candidate CPSs guarantees
that all possible energies per particle for all CPSs are covered?2 We will demonstrate that
this question cannot be easily answered.

In an attempt to find nmax for the square–shoulder interaction we recognise, that nmax,
if it exists, must depend on the inherent cutoff–distance which this interaction comprises,
the shoulder range λ. Consider a particular layer L0, which is of course either an A, B, or
C layer. The two neighbouring layers shall be called L1 and L−1, next nearest neighbours
are L2 and L−2, etc. Then, the lower bound for the shortest possible distance of a particle
in L0 to a particle in a layer Ln is given by the layer distance

dn =

√
2

3
σ|n| , (9.1)

where the height of a regular tetrahedron of edge length σ,
√

2/3σ, is used. If, for a
particular, positive index i, di ≥ λ, then there will not appear any shoulder overlap between
a particle of L0 and any particle in one of the layers Ln with |n| ≥ i. An upper bound for
the smallest such i is easy to calculate, it is given by

i =

⌈
λ

σ

√
3

2

⌉
, (9.2)

where ⌈x⌉ denotes the “ceiling”, the smallest integer number that is greater or equal to x.
Thus, for the energy of each particle in L0 we only have to consider overlaps with particles
of the layers Lk with −i+ 1 ≤ k ≤ i− 1, i.e., 2i− 1 layers in total.

One could thus assume that

nmax = 2i− 1 . (9.3)

However, as will be shown, this is not true. The reason we suspect is, that for the calculation
of e, the average energy per particle, one has to take the average of the particle energies over
all layers (particles in the same layer have the same energy, due to symmetry). Equation
(9.3) just represents the maximum number of layers to consider for the calculation of the
energy of a particle in one particular layer. This energy per particle can, in general, differ
from layer to layer of a stacking sequence.

In figure 9.1 we give an overview of the equilibrium close–packed structures for λ–values
from σ to 4.5σ. Stacking sequences of up to 12 layers have been considered, corresponding
in total to 133 different stacking sequences (see table 5.1). We start at λ = σ, the pure
hard sphere model, where fcc represents our favoured stacking. As already stated above,
for σ ≤ λ <

√
2σ only nearest neighbour overlaps occur, all stackings have the same energy

of e = 6ǫ, and fcc is still the structure of our choice. In the range of
√

2σ ≤ λ < 2
√

2/3σ,
second nearest neighbours start to overlap. Still, all considered stackings exhibit the same

2This would imply that there appears always at least one infinite set of stacking sequences of CPSs, all
elements of which exhibit the same energy per particle.
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Figure 9.1: Reduced energy per particle e⋆, for the energetically most
favourable close–packed particle arrangement with the shortest stacking
sequence, as a function of the reduced shoulder width λ⋆ of the SSM.
Symbols indicate the corresponding stacking sequence, different symbols
have diferent vertical offsets for a better distinction. The graph is ac-
companied by the number of layers to consider for the energy–calculation
of one particle, nmax, in dependence on λ⋆.

energy per particle, e = 9ǫ; fcc is chosen as a representative. For 2
√

2/3σ ≤ λ <
√

3σ
different stackings start to have different energies per particle, fcc exhibits the lowest value
of (still) e = 9ǫ. Hence, again fcc is the favoured structure. Only at

√
3σ ≤ λ <

√
11/9σ

another stacking starts to become the representing CPS: hcp (AB) has the minimum energy
per particle of e = 19ǫ in this range.

In table 9.1 we summarise the other findings visualised in figure 9.1. Two phenomena
deserve to be mentioned: Firstly, the 12–layer structure appearing as equilibrium CPS be-
tween 2

√
11/3σ ≤ λ <

√
15σ. Clearly, this CPS represents an exception to the assumption

that the largest number of layers necessary to consider is given through equation (9.3) by
9. Although being the only exception we found, one counter–example is sufficient to prove
the assumption wrong. Secondly, while, considering up to 12 layers, above λ > 2

√
2/3σ

usually only one CPS out of the pool of 133 stacking sequences exhibits the minimum en-
ergy per particle, in the interval

√
19σ ≤ λ <

√
59/3σ two structures have equal, minimal

energy.

Nevertheless, we are able to find with high reliability the CPS exhibiting the lowest
energy per particle for given λ, which represents the equilibrium structure for our model
at high pressure.
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λ⋆–range
analytic numeric e⋆ optimum stacking sequence(s)

1 —
√

2 ≃ 1.00 — 1.41 6 fcc,hcp,ABAC, . . .√
2 — 2

√
2/3 ≃ 1.41 — 1.63 9 fcc,hcp,ABAC, . . .

2
√

2/3 —
√

3 ≃ 1.63 — 1.73 9 fcc√
3 —

√
11/3 ≃ 1.73 — 1.91 19 hcp√

11/3 — 2 ≃ 1.91 — 2.00 21 fcc

2 —
√

5 ≃ 2.00 — 2.24 27 fcc√
5 —

√
17/3 ≃ 2.24 — 2.38 34 hcp√

17/3 —
√

6 ≃ 2.38 — 2.45 39 fcc√
6 —

√
19/3 ≃ 2.45 — 2.52 85/2 ABAC√

19/3 —
√

7 ≃ 2.52 — 2.65 43 fcc√
7 —

√
22/3 ≃ 2.65 — 2.71 127/2 ABAC√

22/3 — 2
√

2 ≃ 2.71 — 2.83 133/2 ABAC

2
√

2 — 5/
√

3 ≃ 2.83 — 2.87 67 hcp

5/
√

3 — 3 ≃ 2.87 — 3.00 70 fcc

3 —
√

29/3 ≃ 3.00 — 3.11 79 hcp√
29/3 —

√
10 ≃ 3.11 — 3.16 88 fcc√

10 —
√

31/3 ≃ 3.16 — 3.21 95 ABAC√
31/3 —

√
11 ≃ 3.21 — 3.32 100 fcc√

11 —
√

34/3 ≃ 3.32 — 3.37 219/2 ABAC√
34/3 — 2

√
3 ≃ 3.37 — 3.46 112 fcc

2
√

3 —
√

13 ≃ 3.46 — 3.61 124 fcc√
13 —

√
41/3 ≃ 3.61 — 3.70 146 hcp√

41/3 —
√

43/3 ≃ 3.70 — 3.79 152 hcp√
43/3 — 2

√
11/3 ≃ 3.79 — 3.83 155 hcp

2
√

11/3 —
√

15 ≃ 3.83 — 3.87 639/4 ABABCACABCBC√
15 —

√
46/3 ≃ 3.87 — 3.92 173 hcp√

46/3 —
√

47/3 ≃ 3.92 — 3.96 179 hcp√
47/3 — 4 ≃ 3.96 — 4.00 184 fcc

4 —
√

17 ≃ 4.00 — 4.12 190 fcc√
17 —

√
53/3 ≃ 4.12 — 4.20 423/2 ABAC√

53/3 — 3
√

2 ≃ 4.20 — 4.24 214 fcc

3
√

2 —
√

19 ≃ 4.24 — 4.36 229 fcc√
19 —

√
59/3 ≃ 4.36 — 4.43 255 ABABC,ABABCACABCBC√

59/3 — 2
√

5 ≃ 4.43 — 4.47 778/3 ABABCBCAB

2
√

5 — 9/2 ≃ 4.47 — 4.50 263 hcp

Table 9.1: The CPSs of minimum energy for the SSM (third column) for
reduced shoulder width values (λ⋆) up to 4.5. The corresponding reduced
energies (e⋆) are given in the second column.

9.2 Minimum Enthalpy Configurations

With the two limiting cases at hand, the fcc structure with touching shoulders (e = 0) at
low pressure and the CPS from the previous section at high pressure, we can now start
the search strategy outlined in section 5.7.4. However, since the application of the GA
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(section 5.7.1) proved to become significantly more expensive the more basis particles were
considered, we used a modified search strategy: We first look for the MECs that contain
just 1 basis particle over the whole pressure regime using our method of successively cutting
lines (see section 5.7.4). The resulting h(P )–curve is then used as an initial sequence of
straight lines for the search of two–particle MECs, the outcome is fed into three–particle
considerations, and so on. Although this results in many more GA runs for a small number
of basis particles, we achieve a significant reduction in runs for a large number of particles
in the basis, which pays off in total CPU time.

Our choice for the short, intermediate, and large shoulder widths are λ = 1.5σ, λ =
4.5σ, and λ = 10σ, respectively. Let us discuss these three cases in detail. We will use the
abbreviations for the underlying Bravais lattices introduced in section 5.3 and summarised
in table G.3, and reduced units as explained in section 2.8. Also, we will categorise the
occurring MECs in four classes: clusters, columns, lamellae, and compact structures.

9.2.1 Short Shoulder Width (λ = 1.5σ)

The three quantities, enthalpy and energy per particle (i.e., h and e) and the number
density (ρ), in dependence of pressure P , characterise the complete phase diagram at
T = 0. They are plotted, along with visualisations of the resulting MECs, in figure 9.2,
while numerical details can be found in table 9.2. The MECs found can be analysed on

lattice nb e⋆ ρ⋆

fcc 1 0 8
√

2
27

≃ 0.419

bco 1 1 8
3
√

23
≃ 0.556

fco 2 2 16√
455

≃ 0.750

hex 1 4 4√
15

≃ 1.03

sfco 2 5 16
2
√

15+
√

35
≃ 1.17

bco 1 7 8√
35

≃ 1.35

fcc 1 9
√

2 ≃ 1.41

Table 9.2: Numerical details of the ordered equilibrium structures identi-
fied for the SSM with λ = 1.5σ: the underlying lattice is characterised by
the appropriate abbreviation from Table G.3, nb is the number of basis
particles required to describe the MEC. e⋆ and ρ⋆ are the energy per parti-
cle and particle density, respectively. Since the MECs can be described on
the basis of geometric considerations, ρ⋆ can be given in closed, analytic
expressions.

geometric grounds, resulting in closed, analytic expressions for all lattice parameters, as
well as for related thermodynamic quantities (e.g., the density as given in table 9.2). We
discuss the emerging seven MECs in detail, starting at the low pressure limiting MEC and
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Figure 9.2: (a): Reduced enthalpy and energy per particle (h⋆ and e⋆)
versus reduced pressure P ⋆, for the SSM with λ = 1.5σ. The dotted lines
indicate the low and high pressure limiting cases, cf. text. The identi-
fied lattices are labelled with standard abbreviations (see table G.3) and
with their number of basis particles (if different from one). In (b) the
corresponding reduced density ρ⋆ is plotted. (c–i) are visualisations of
the seven MECs found, where we use the following colourcode: green –
particles at the corner positions of the conventional unit cell; red – par-
ticles at body or face centred positions; blue – additional basis particles;
transparent corona – shoulder [only drawn in (c)].
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labelling them with the unambiguous value for the energy per particle (numerical details
on these seven MECs are given in table G.4):

• e = 0. At very low pressure, as discussed in section 5.7.4, all “CPSs” with nearest
neighbour distance equal to the shoulder width λ are MECs. We select (cf. the
arguments put forward in section 9.1) the fcc structure as a representative, see figure
9.2(c). The edge length of the corresponding conventional unit cell is obviously given
by ã =

√
2λ.

• e = ǫ. When increasing the pressure, the first non–trivial structure we encounter is
a bco structure, visualised in figure 9.2(d). The bco unit cell is determined through
three conditions on distances between lattice points: Firstly, the shortest of the three
edges of the conventional unit cell is equal to the hard core diameter, c̃ = σ. Secondly,
the second shortest edge has the length of the shoulder width, b̃ = λ = 3σ/2. And
thirdly, the body centred lattice point has an equal distance from all eight corner
points of λ, too, i.e., |ã + b̃ + c̃|/2 = 3σ/2. This leads, through ã = ãx̂, b̃ = b̃ŷ, and
c̃ = c̃ẑ, to ã =

√
23/4σ ≃ 2.40σ and hence also ρ = 2/(ãb̃c̃) = 8/(3

√
23σ3).

This bco structure can be viewed as a columnar structure: The particles form columns
in the direction of c̃, along which the hard cores of the particles are in contact.
Therefore there appear two intra–columnar shoulder overlaps of a particle with the
two neighbouring particles in a column. Any other overlap is avoided, resulting in
e = ǫ.

• e = 2ǫ. Further increasing the pressure leads to a rather compact, fco structure
with two basis particles (in the primitive unit cell), see figure 9.2(e). Using for the
location of the second basis particle the vector ṽ2, and again ã = ãx̂, b̃ = b̃ŷ, and
c̃ = c̃ẑ, this fco structure can be described in the following way:

The face centred particle at the smallest face touches the corresponding corner–
particles at the shoulders, giving c̃2 + b̃2 = (2λ)2. The extra basis particle has a
distance of σ from one corner particle and the three closest face centred particles
(|ṽ2| = |ṽ2− (ã + b̃)/2| = |ṽ2− (ã + c̃)/2| = |ṽ2− (b̃ + c̃)/2| = σ). The next nearest
corner particle has a distance of λ from the extra particle, |ṽ2 − c̃| = λ. This results
in

ã = 2
√

4σ2 − λ2 x̂ =
√

7σ x̂ ≃ 2.65σ x̂ , (9.4a)

b̃ =
√

2
√
λ2 + σ2 ŷ =

√
13

2
σ ŷ ≃ 2.55σ ŷ , (9.4b)

c̃ =
√

2
√
λ2 − σ2 ẑ =

√
5

2
σ ẑ ≃ 1.58σ ẑ , (9.4c)

v2 =
1

2
√

2

(√
2
√

4σ2 − λ2x̂ +
√
λ2 + σ2ŷ + 3

√
λ2 − σ2ẑ

)
=

=
σ

4
√

2

(√
14 x̂ +

√
13 ŷ +

√
5 ẑ
)
≃ 0.66x̂ + 0.64ŷ + 0.40ẑ . (9.4d)



136 CHAPTER 9. SQUARE–SHOULDER MODEL

(a) hex, e⋆ = 4 (b) sfco, e⋆ = 5 (c) bco, e⋆ = 7

Figure 9.3: Visualisation of particle distances of selected MECs for λ =
1.5σ in the SSM, using similar subcaptions as in figure 9.2. The plotted
rectangles are all equal, having diagonals λ and shorter edge length σ.

The particle density (see table 9.2) follows from ρ = 8/(ãb̃c̃), since we have four basis
particles in the conventional fco unit cell, each of which is accompanied by an extra
particle shifted by ṽ2.

• e = 4ǫ. Proceeding further in the pressure range we arrive at a lamellar structure,
where each lamella is a hexagonally close–packed lattice plane. Using an appropriate
coordinate system we can describe these lattice planes by ã = σ x̂ and b̃ = σ/2 x̂ +
σ
√

3/2 ŷ. The stacking of these hexagonal layers is determined by the shoulder
width. The distance to the twelve third nearest neighbours of a particle, situated in
the two adjacent layers, is equal to λ, e.g., |ã + c̃| = λ. This leads to a hexagonal
3D lattice with c̃ = c̃ ẑ and c̃ =

√
λ2 − σ2 = σ

√
5/2 ≃ 1.12σ. The geometry of

this structure is illustrated in figure 9.3(a). The arrangement of particles in the
rectangular arrangement indicated by black lines is quite typical for many MECs of
this particular shoulder width.

• e = 5ǫ. At even higher pressure values only compact structures are encountered,
the next one having the symmetry of an sfco lattice with one extra basis particle.
The face centred particle is (w.l.o.g.) positioned at the ã–b̃ face. The b̃–c̃ face
is determined by the rectangle described in the previous item [see figure 9.3(b)],
c̃ = σ ẑ and b̃ =

√
5σ/2 ŷ. The rest of the structure parameters are obtained by the

fact that the extra basis particle touches the four particles of one b̃–c̃ face and the
two adjacent face centred particles at the hard core, i.e., |ṽ2| = |ṽ2 − b̃| = |ṽ2 − c̃| =
|ṽ2 − (b̃ + c̃)| = |ṽ2 − (ã + b̃)/2| = |ṽ2 − [(ã + b̃)/2 + c̃]| = σ. This gives

ã = ã x̂ , ã =
√

3σ +
√

4σ2 − λ2 =
(√

3 +
√

7/2
)
σ ≃ 3.05σ , (9.5a)

ṽ2 =
1

2

(√
4σ2 − λ2 x̂ +

√
λ2 − σ2 ŷ + σ ẑ

)
=

=
√

7σ/4 x̂ +
√

5σ/4 ŷ + σ/2 ẑ ≃ σ(0.66 x̂ + 0.56 ŷ + 0.50 ẑ) . (9.5b)

It is interesting to note that in this structure |ṽ2 +(b̃ − ã)/2 (+c̃)| = λ, which means
that e.g. the particles at b̃ + ṽ2 and (ã + b̃)/2 touch each other at the shoulder.
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Figure 9.4: (a): Reduced enthalpy and energy per particle (h⋆ and e⋆)
versus reduced pressure P ⋆ on a double logarithmic scale, for the SSM
with λ = 4.5σ. Symbols (cf. legend) specify to which archetype the corre-
sponding MEC belongs, the horizontal bars at the bottom indicate that no
hard core contacts occur in the respective MECs. In (b) the corresponding
reduced density ρ⋆ is plotted, also on a double–logarithmic scale.

• e = 7ǫ. The last non–trivial compact structure is a bco crystal, see figures 9.2(h) and
9.3(c). Again, one side face is characterised by the before mentioned rectangle (c̃ = σ
and b̃ =

√
5σ/2), while ã is determined by the fact that the centred particle touches

all eight particles at the corners of the unit cell, i.e., ã =
√

4σ2 − λ2 =
√

7σ/2.

• e = 9ǫ. As discussed previously, the high–pressure limiting case MEC is in this case
an fcc crystal with cubic edge length ã =

√
2σ.

9.2.2 Intermediate Shoulder Width (λ = 4.5σ)

Much larger diversity in the MECs can be found for a shoulder width of λ = 4.5σ. The
two limiting cases are now an hcp structure at high pressure values (see table 9.1) and, as
always, an fcc structure at low pressure. Our search strategy revealed in total 33 MECs,
where we considered up to 10 basis particles in the unit cell.

Besides the straightforward investigation concerning the lattice symmetry and conven-
tional unit cell parameters, we will now be able to discern a clear ordering of the occurring
MECs into four structural archetypes: at low pressure clusters are preferred, increasing
the pressure favours columns, which then transform into lamellae and finally into compact
structures. Figure 9.4 shows the phase diagram for our intermediate shoulder width, while
numerical details can be found in tables 9.3 and G.5. A visualisation of all 33 MECs is
given in figure 9.5.
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From the collected data one can see, that at low pressure (i.e., up to P ⋆ ∼ 0.5) the
preferred MECs are clusters. We observe a gradually increasing number of particles in the
cluster (usually equal to the number of basis particles) up to eight particles. In addition,
a strong interplay between the shape of the cluster and the unit cell can be observed: the
more aspherical the cluster, the lower the symmetry of the lattice. This trend stems from
the tendency to avoid inter–cluster shoulder overlaps, i.e., for many clusters the energy per
particle is just given by the number of overlaps inside a single cluster, where the particles
are usually closely packed. Since the spatial extent of the clusters is always much smaller
than the shoulder range λ, the energy per particle for many cluster phases is just given by
the number of distinct particle pairs (overlaps) inside one cluster divided by the number of
particles n forming that cluster, hence e⋆ = (n− 1)/2. A nice example for the complexity
of the cluster phases is depicted in figure 9.5(4), where tetrahedral clusters populate the
lattice points of a triclinic lattice, while another four–particle cluster is situated in the
body of the unit cell in such as to avoid inter–cluster overlaps. It is therefore a cluster
phase with four particles per cluster, hence the name clu(4) in table 9.3.

At the upper pressure limit of the cluster regime, the cluster MECs compete with
structures of another archetype, the columnar ones. The transition from clusters to columns
does not appear at a definite pressure value: After the first columnar structure occurs at
P ⋆ ∼ 0.3, an eight–particle cluster MEC appears at even higher pressure (P ⋆ ∼ 0.5),
which exhibits a relatively large number of inter–cluster overlaps. Only above P ⋆ & 0.68
a sequence of columnar structures represent the MECs. These MECs can form single
or double stranded columns, which now in turn tend to avoid inter–columnar overlaps
(particles of different strands of a double column always touch at the hard core).

The next transition, from the columnar to the lamellar structures, appears much
smoother, since the columns approach each other in one preferred direction, at some point
building lamellae that consist of parallel columns, see figures 9.5(12,15). Besides these inter-
mediate transition stages, the lamellar MECs follow a clear pattern for their arrangement,
while always tending to avoid inter–lamellar shoulder overlaps: Starting with single–layer
lamellae (usually in a 2D hexagonal shape) the nearest neighbour distance decreases with
increasing pressure. If the possibility to maximise the particle density inside a single layer
is exhausted, double–layer lamellae are formed, where again the 2D particle density inside
one layer increases with pressure. While neighbouring particles of different layers in the
same lamella touch each other at the hard cores, the distance between the lamellae is ruled
by two conditions: Firstly, that particles of layers that are part of adjacent lamellae and
face each other, e.g. the blue particles of the leftmost lamella in figure 9.5(19) and the
red ones, may overlap with their shoulders. Secondly, that particles of layers in adjacent
lamellae that do not face each other, never overlap [e.g. the red particles and the green
ones of the leftmost lamella in figure 9.5(19)]. There also appears one triple–layer lamellar
structure [see figure 9.5(24)], at the transition regime to what we call compact phases.

Compact MECs are usually characterised by a large number of nearest neighbours and
the absence of any hard core contact [see the horizontal bar in figure 9.4(a)], except at very
high pressures, where of course finally a CPS appears, in this case an hcp one. A detailed,
geometrical analysis of all 33 MECs is given in appendix D.
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structure stable up to
lattice nb shape e⋆ ρ⋆ h⋆ P ⋆

fcc 1 clu 0 0.0155 1.47 0.0228
sm 2 clu 1/2 0.0235 3.10 0.0612

sfcm 3 clu 1 0.0291 4.30 0.0963
tric 8 clu (4) 3/2 0.0343 5.05 0.122
tric 4 clu 7/4 0.0369 5.77 0.148
tric 6 clu 5/2 0.0454 6.93 0.201
bco 1 col 3 0.0512 9.95 0.356
bco 8 clu 35/8 0.0638 14.9 0.675
tric 2 col 13/2 0.0799 17.7 0.892
sm 2 col 8 0.0923 29.8 2.01
tric 2 col 21/2 0.104 30.5 2.08
bco 1 lam/col 15 0.135 38.6 3.17
trig 1 lam 18 0.154 41.9 3.69
tric 2 lam 20 0.168 49.7 5.00
tric 2 lam (col) 49/2 0.198 54.4 5.94
trig 2 lam 30 0.243 85.5 13.5
trig 2 lam 61/2 0.245 90.6 14.7
ct 2 lam 77/2 0.283 105. 18.9

sfcm 2 lam 56 0.383 127. 27.5
sm 2 lam 58 0.394 131. 28.8
fco 2 lam 143/2 0.484 197. 60.6
bcc 1 com 90 0.567 223. 75.6
ct 1 com 96 0.594 229. 79.1
tric 3 lam 337/3 0.677 237. 84.3
trig 1 com 115 0.692 255. 96.9
sc 1 com 128 0.763 295. 128.

hex 1 com 138 0.811 304. 135.
bcc 1 com 169 0.997 373. 203.
ct 1 com 180 1.05 410. 242.

sfcm 1 com 210 1.21 542. 403.
fcc 1 com 229 1.29 550. 413.
ct 1 com 243 1.34 645. 540.

hcp 2 com 263 1.41 ∞ ∞

Table 9.3: Stable crystal structures of the SSM for reduced shoulder width
λ⋆ = 4.5. nb is the number of particles in the basis, the general shape
is indicated by the abbreviations for cluster, columnar, lamellar, and
compact structures; additional information in the third column is ex-
plained in the text. Irrational numbers are given as floating point values.
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(1) fcc, e⋆ = 0 (2) sm, e⋆ = 1/2 (3) sfcm, e⋆ = 1 (4) tric, e⋆ = 3/2 (5) tric, e⋆ = 7/4

(6) tric, e⋆ = 5/2 (7) bco, e⋆ = 3 (8) bco, e⋆ = 35/8 (9) tric, e⋆ = 13/2 (10) sm, e⋆ = 8

(11) tric, e⋆ = 21/2 (12) bco, e⋆ = 15 (13) trig, e⋆ = 18 (14) tric, e⋆ = 20 (15) tric, e⋆ = 49/2

(16) trig, e⋆ = 30 (17) trig, e⋆ = 61/2 (18) ct, e⋆ = 77/2 (19) sfcm, e⋆ = 56 (20) sm, e⋆ = 58

(21) fco,
e⋆ = 143/2

(22) bcc,
e⋆ = 90

(23) ct,
e⋆ = 96

(24) tric,
e⋆ = 337/3

(25) trig,
e⋆ = 115

(26) sc,
e⋆ = 128

(27) hex,
e⋆ = 138

(28) bcc,
e⋆ = 169

(29) ct,
e⋆ = 180

(30) sfcm,
e⋆ = 210

(31) fcc,
e⋆ = 229

(32) ct,
e⋆ = 243

(33) hcp,
e⋆ = 263

Figure 9.5: Visualisation of all 33 ordered equilibrium structures for the
SSM with λ⋆ = 4.5. Structures are characterised by standard abbrevia-
tions (see table G.3) and their respective e⋆–value. Colour code: green –
particles at the corner positions of the conventional unit cell; red – par-
ticles at body or face centred positions; blue – additional basis particles.
The shoulders of the yellow particles in panel (17) touch the ones of the
other yellow particles, located in the neighbouring layers.
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9.2.3 Large Shoulder Width (λ = 10σ)

Finally, we consider the case of a large shoulder width for which we have chosen a value
of λ = 10σ. Since the hard core region is now relatively small compared to the shoulder
range, at low pressures/densities the core plays a minor role and the system becomes
closely related to the penetrable sphere model (PSM, see section 2.6) [115]. The PSM
belongs to a class of soft matter systems where particles are able to solidify in so called
cluster phases [116], i.e., where particles form stable clusters located at the positions of
periodic lattices. Evidence for this particular phase behaviour has been found in density
functional based investigations and in computer simulations, for the PSM [117] and via
purely theoretical considerations, combined with computer simulations, for a closely related
model potential, the generalised Gaussian core model [24,25,118,119]. As we have already
seen for intermediate shoulder width, such cluster phases are also stable for the square–
shoulder system at low pressure values, where the particles’ hard cores have a negligible
effect on the properties of the system. We will show that, not surprisingly, this cluster
region becomes more pronounced for large shoulder width.

Since the MECs are expected to be rather complex we have considered up to 29 basis
particles in our GA based search strategy, with up to 22 being actually required for the
resulting MECs. In total we have identified as many as 47 MECs, i.e., a relatively large
number, for which we could not perform an exact, i.e. analytical, geometrical analysis, for
practical reasons. Therefore, in figure 9.6, we cannot give information about exact hard
core contacts using a horizontal bar at the bottom of the plot like we did for intermediate
shoulder width in figure 9.4. Nevertheless the thermodynamic properties of all these MECs
are displayed in figure 9.6 and given numerically in table G.6. We point out that the high
pressure limiting configuration is an fcc lattice with e⋆ = 2947. For the case λ = 10σ the
rule for the sequence of structural archetypes (cluster – columnar – lamellar – compact
structures) is strictly obeyed (see symbols in figure 9.6).

As expected cluster structures emerge at low pressure values. A few examples of the ten
cluster structures that have been identified are depicted in Figures 9.7(a–c). The clusters
can contain as many as 22 particles [e.g., in the structure depicted in Figure 9.7(c)] and
are arranged in various symmetry lattices (see table G.6). An example of a typical cluster
is depicted in Figure 9.7(b); in general the intra–cluster arrangement of the particles turns
out to be irregular.

At P ⋆ ≃ 0.76 the transition to columnar structures occurs. The relatively large shoul-
der width allows for much more complicated columnar morphologies than for short or
intermediate shoulder widths, including multi–columnar arrangements or complex helical
columns — cf. figures 9.7(d–f) — while the number of different columnar structures is
significantly smaller than for intermediate shoulder width. In figure 9.7(e) a side view of
a single column gives evidence of its complex internal structure: Ten basis particles are
required to parameterise this columnar MEC, which can be viewed as a helical structure.
We note that helical columns have also been observed in experiment for a particular class
of colloidal particles [120]. The other two columnar structures are examples for multi–
columnar arrangements: Triple columns form the MEC displayed in Figure 9.7(d), while
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Figure 9.6: (a): Reduced enthalpy and energy per particle (h⋆ and e⋆)
versus reduced pressure P ⋆ on a double logarithmic scale, for the SSM
with λ = 10σ. Symbols (cf. legend) specify to which structural archetype
the corresponding MEC belongs, the crosses mark MECs that are vi-
sualised in figure 9.7. In (b) the corresponding reduced density ρ⋆ in
dependence on reduced pressure is plotted, also on a double–logarithmic
scale.

the MEC shown in Figure 9.7(f) can be described as six parallel single columns that are
nearly in close contact and are aligned in parallel to form a sixfold column, as can be seen
from the rightmost column, where the direction of projection is parallel to the columnar
axis.

Most of the MECs identified for the case λ = 10σ have lamellar character: in total we
have identified as many as 28 lamellar MECs. Again, we observe a strategy similar to that
identified for λ = 4.5σ: First the particle arrangement within the single layer structures is
optimised; then, if this possibility for closely packed arrangements is exhausted, multi–layer
structures are formed. The large shoulder width is responsible both for the large inter–
lamellar distance as well as the close contact within the lamellae: One has the impression
that the large range of the shoulder compactifies adjacent layers, bringing them in direct
contact, while maximising at the same time the distance between these groups of layers
[cf. figures 9.7(g–l)].

Finally, we enter the regime of compact structures. Since they resemble very closely
the MECs that have been identified for λ = 4.5σ, they need not be visualised explicitly, see
table G.6 instead. The next section will provide a more fundamental understanding of the
general rule for the MECs of the SSM to build first clusters, then columns, then lamellae,
and finally compact structures with increasing pressure.
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(a) fcc, e⋆ = 3/2

XXz

(b) sfcm, e⋆ = 6; single cluster (enlarged) (c) tric, e⋆ = 140/11 (d) sm, e⋆ = 24

-

(e) tric, e⋆ = 397/10; single column
viewed perpendicular to columnar axis

(f) sfcm, e⋆ = 157/3 (g) sfcm, e⋆ = 118 (h) bco,
e⋆ = 541/2

(i) sfcm, e⋆ = 1400/3 (j) trig, e⋆ = 1709/2 (k) tric, e⋆ = 1074 (l) tric, e⋆ = 4120/3

Figure 9.7: Visualisation of selected MECs for the SSM with λ = 10σ
(see figure 9.6). Structures are characterised by standard abbreviations
(see table G.3) and their respective e⋆-value. Colour code: green – parti-
cles at the corner positions of the conventional unit cell; red – particles
at body or face centred positions; blue – additional basis particles.

9.3 Application of the Continuum Theory

9.3.1 Self–Energy

As mentioned in section 5.8, the first step when applying the continuum theory (CT) to
a certain interaction potential is, to ascertain the self–energy term in equation (5.97), i.e.,
to determine how the so–called “energy assigned to a continuum matter point” should be
calculated. For hard core particles there is a rather intuitive way to solve this problem,
also taken in [27]. It simply relies on the fact, that the only way to obtain a finite value
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for the integral of the interaction potential over space is to exclude the hard core from the
integration region,

eHC
C (µ) =

1

2

∫

R3\Bσ(µ)

ρ̂(r)φ (|r − µ|) d3r , (9.6)

in this way directly approximating equation (5.95) (Bσ(µ) is a sphere of radius σ centred
at µ). But this definition does not only have the disadvantage of cutting a hole out of the
integration regime which usually makes the evaluation of the integral more difficult, it also
lacks the ability to reflect certain physical properties of the corresponding system of real
hard core particles, as will be explained for the interaction of the SSM in the following.

First we insert the chosen potential together with the expression for the density of
equation (5.91) into equation (9.6) and obtain

eHC
C (µ) =

ǫρeff

2

∫

R3\Bσ(µ)

θC(r)θ (λ− |r − µ|) d3r =
ǫρeff

2

∫

Bλ(µ)\Bσ(µ)

θC(r) d3r , (9.7)

where the conventional Heaviside step–function

θ(r) =

{
0, r < 0
1, r ≥ 0

(9.8)

was used.
Now consider a single cluster of N particles, approximated by a continuum matter

sphere of radius R and centre at C, that satisfies N = 4
3
πR3ρeff . In addition, we assume

that λ is greater than the spatial extent of the cluster, i.e., the shoulders of all particles in
the cluster overlap. For the continuum matter sphere this means λ > 2R. The energy of
any particle in the discrete particle treatment is simply ǫ/2 times the number of shoulder
overlaps with the other particles in the cluster, N − 1. Since, in the continuum treatment,
the whole cluster, i.e., the whole sphere BR(C) of radius R and centre at C, is fully
contained within a sphere of radius λ centred around any point inside BR(C), we obtain

eHC
C (µ) =

ǫρeff

2

∫

BR(C)\Bσ(µ)

d3r . (9.9)

The integral in this formula is the volume of the sphere BR(C) representing the cluster,
with a hole cut out by the sphere Bσ(µ). Clearly, this volume is not the same for all points
µ in BR(C), it is larger for points µ at the surface of the sphere that represents the cluster.
In other words, the physical reality that all particles have the same energy, irrespective
of their position in the cluster, is not reflected by the CT when the energy assigned to a
continuum matter point is given by equation (9.6). In fact, in the case discussed here we
obtain the counterintuitive result, that points (i.e., particles) on the surface of the cluster
sphere even have higher energy. Therefore we use a different way to derive the energy
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assigned to a continuum matter point.

Consider an arbitrary arrangement of square–shoulder particles for which no hard core
overlaps occur. Compare the energies of these particles with those of particles that are
arranged exactly on the same positions, but interact via a penetrable sphere interaction
[equation (2.11)] with the same shoulder parameters λ and ǫ. Obviously, each particle has
the same energy, no matter whether the interaction contains a hard core or not, because
hard core overlaps are simply not allowed for the construction of the particle arrangement.
As a consequence, we also demand the CT to provide consistent results for either interaction
in the case of equal ρ̂(r).

But what are the differences between the square–shoulder and the penetrable sphere
models, that the CT should also reflect? Obviously, the hard core is responsible for the
exclusion of any configuration of the particles that would lead to an overlap of the cores.
The CT cannot fully reproduce this phenomenon, since the exact information about particle
positions in the aggregate is lost upon approximating the aggregate by the continuum
matter. What is accounted for is the average density inside the aggregate, ρeff , as well
as the aggregate’s shape. Therefore, the difference between the square–shoulder and the
penetrable sphere model in the CT is, that the hard core delimits the effective density
inside the aggregate, its maximum value is the density of close–packed hard spheres, i.e.,

0 < ρeff ≤
√

2

σ3
. (9.10)

As long as this condition is met, the energies assigned to a point should be the same for
SSM and PSM interactions, respectively3.

Let us therefore insert the PSM interaction [equation (2.11)] into equation (5.97),

eC(µ) =
ǫρeff

2

∫

R3

θC(r)θ (λ− |r − µ|) d3r − eself =
ǫρeff

2

∫

Bλ(µ)

θC(r) d3r − eself . (9.11)

In the PSM there is an easy way to estimate the self–energy. Consider a particle positioned
at µ and let there be N particles in total in a sphere of radius λ centred at µ, i.e.,

N =
∑

νi ∈ Bλ(µ)

1 −→ ρeff

∫

Bλ(µ)

θC(r) d3r , (9.12)

with the integral being used as an approximation for N in the CT, see equations (5.92)
and (5.93). Clearly, the energy of the particle at µ is, according to equation (5.95), given

3Of course there can be configurations for the PSM that satisfy equation (9.10) but violate the hard
core condition. But as long as there exists a possible configuration for the SSM, we have to keep the
corresponding ρeff under consideration.
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by

eµ =
ǫ

2
(N − 1) −→ ǫρeff

2

∫

Bλ(µ)

θC(r) d3r − ǫ

2
, (9.13)

where N has been replaced by the CT approximation [equation (9.12)]. Comparison with
equation (9.11) reveals, that the self–energy term for the PSM is simply

eself =
ǫ

2
, (9.14)

reflecting the fact, that the integration over the whole interaction sphere yields one addi-
tional count of overlaps, the one with the reference particle itself.

In summary we obtain for the energy assigned to a point of continuum matter inter-
acting via a square–shoulder potential

eC(µ) =
ǫ

2


ρeff

∫

Bλ(µ)

θC(r) d3r − 1


 , (9.15a)

subject to the additional condition

0 < ρeff ≤
√

2

σ3
. (9.15b)

This definition has the advantage of leading to the same energy for all points µ within
a small, isolated cluster. At first glance we seem to get the drawback that, due to the
subtraction in equation (9.15a), the energy for a purely repulsive interaction can become
negative, which would also be an unphysical result. But taking a closer look we note, that
this can only happen in two cases:

• For points belonging to a very small and isolated aggregate, which would correspond
to an aggregate of less than one particle, where

∫
Bλ(µ)

θC(r) d3r is so small that

ρeff

∫
Bλ(µ)

θC(r) d3r < 1, and

• for a very dilute continuum matter (ρ⋆eff ≪ 1), for which the corresponding PSM or
SSM systems would most probably not be in equilibrium even for arbitrarily small
pressure (at T = 0),

both unphysical situations anyway.
Now we are ready to apply the CT to the four types of aggregate shapes (see section 5.8).

To start with the simplest case, where calculations can be done analytically without further
approximations, we first consider the homogeneous continuum matter, corresponding to
compact phases. Symbolic calculations in the following sections were done with the aid of
Mathematica [70].
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9.3.2 Homogeneous Distribution

We first repeat the findings of section 5.8 for this case: The continuum matter is completely
homogeneous,

ρ̂(r) ≡ ρeff ≡ ρC ⇐⇒ θC(r) ≡ 1 ∀r ∈ R
3 , (9.16a)

and the energies of all points in space are equal, hence

eC = eC(r) ∀r ∈ R
3 . (9.16b)

Inserting this into equation (9.15a), we obtain for the (average) continuum matter
enthalpy, equation (5.101),

hC = ǫ ρeff
2π

3
λ3 − ǫ

2
+

P

ρeff

. (9.17)

ǫ and λ are the interaction parameters, and the ambient pressure P is the independent
thermodynamic variable. The equilibrium continuum matter distribution is then found
by minimising the enthalpy of equation (9.17) at given ǫ, λ, and P by varying ρeff , the
only remaining variable there. Thus minimisation is easy, equation (9.17) has exactly one
extremum which is a minimum in the range of positive real numbers, setting the first
derivative to zero yields

ρeff =

√
3P

2πǫλ3
. (9.18)

Remember now, that we always have to satisfy the “hard core” condition of equation
(9.15b) for the continuum matter. The strictly monotonous behaviour of equation (9.18)
gives rise to a pressure threshold Pt above which always the close–packed structure (ρ⋆eff =√

2) is the equilibrium one:

Pt =
4π

3

(
λ

σ

)3
ǫ

σ3
. (9.19)

In summary we obtain for a homogeneous continuum matter distribution, describing com-
pact structures of the SSM:

eC ρC hC

P < Pt

√
2π
3
λ3Pǫ− ǫ

2

√
3P

2πǫλ3 2
√

2π
3
λ3Pǫ− ǫ

2

P ≥ Pt
2π
3

√
2
(
λ
σ

)3
ǫ− ǫ

2

√
2

σ3
2π
3

√
2
(
λ
σ

)3
ǫ− ǫ

2
+ Pσ3√

2

(9.20)



148 CHAPTER 9. SQUARE–SHOULDER MODEL

By introducing what we call shoulder–reduced quantities,

P̌ =
Pσ6

ǫλ3
=
P ⋆

λ⋆3
, (9.21a)

ě =
e⋆ + 1

2

λ⋆3
, (9.21b)

ȟ =
h⋆ + 1

2

λ⋆3
, and (9.21c)

ρ̌ = ρ⋆ , (9.21d)

we can write equation (9.20) in a compact way:

ěC ρ̌C ȟC

P̌ < 4π
3

√
2π
3
P̌

√
3
2π
P̌ 2

√
2π
3
P̌

P̌ ≥ 4π
3

2π
3

√
2

√
2 2π

3

√
2 + P̌√

2

(9.22)

The main reason for the introduction of shoulder–reduced quantities is that, for all the
expressions in equation (9.22), there appears no other variable than the shoulder–reduced
pressure P̌ . This means, the shoulder–reduced thermodynamic quantities, as functions of
the shoulder–reduced pressure, are independent of both interaction potential parameters
ǫ and λ.4 In graphical representations we will therefore use shoulder–reduced variables
instead of the usual reduced ones from now on.

9.3.3 Planar Lamellae

We consider an infinite periodic array of parallel, planar lamellae of thickness D, separated
by a distance L (see figure 9.8). Obviously, D < L. W.l.o.g. we put the origin of a
Cartesian coordinate system into the centre of one lamella, with the x–axis perpendicular
to the lamellar plane and the y– and z–axes parallel to this plane. The continuum matter
density in this case can be written as

ρ̂(r) = ρeffθC(r) = ρeff

∞∑

i=−∞
θiL−D

2
,iL+D

2
(x) , (9.23)

with x being the x–coordinate of r and θa,b(x) being an abbreviation for θ(x− a)θ(b− x),
which is nothing else than 1 if a < x < b and 0 otherwise. As discussed in section 5.8, the
points of the segment obtained by intersecting a line orthogonal to the lamellae with one
arbitrary lamella are sufficient to consider for calculating the average energy (exactly half
the segment would be necessary and sufficient). Using Bλ(x) as an abbreviation for the

4They are of course also independent of σ, which was chosen to be the unit of measure for lengths.
Therefore, to be precise, we should say the shoulder–reduced quantities are independent of λ⋆.
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δ

Figure 9.8: Cut through two of the periodically recurring lamellae of
thickness D and distance L. Qualitatively different points are denoted by
x. If L & λ, δ and h can be defined as labelled.

sphere of radius λ with centre at (x, 0, 0), we obtain

eC =
1

D

D/2∫

−D/2

ǫ

2


ρeff

∫

Bλ(x)

θC(r
′) d3r′ − 1


 dx. (9.24)

This 4D integral can indeed be solved, the result is presented in appendix E. But when
combining it with the pressure term using equation (5.104) to obtain the continuum matter
enthalpy per particle hC = eC +P/ρC, minimising this complicated function simultaneously
w.r.t. L, D, and ρeff (the parameters describing the continuum matter) is a hopeless ven-
ture. Therefore we decided to investigate the lamellar energies only under some additional
assumptions:

D, σ ≪ λ and L & λ . (9.25)

They were motivated by results from the genetic algorithm (see section 9.2), where the
assumptions (9.25) were satisfied for all lamellar MECs (except, of course, σ ≪ λ in the
case of short shoulder width). But we will show at the end of this section, that these
assumptions are self–contained, i.e., they can be justified solely within the CT for the SSM
without using any input from other theoretical or even experimental approaches.

To calculate the continuum matter energy per particle [equation (9.24)] under these
assumptions we follow the idea of Glaser et al. [27] and split up this formula in the following
way: Firstly into a contribution of the lamella that contains the origin (and hence the
centres of all considered spheres Bλ(x) with x ∈ [−D/2, D/2]) which we call eintra, that
also contains the self–energy correction. And secondly the contribution stemming from
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overlaps of the considered spheres Bλ(x) with all other lamellae,

eC =
1

D

D/2∫

−D/2

ǫ

2


ρeff

∫

Bλ(x)

θ−D
2
,D
2
(x′) d3r′ − 1


 dx

︸ ︷︷ ︸
eintra

+
1

D

D/2∫

−D/2

ǫ

2
ρeff

∫

Bλ(x)

∑

i6=0

θiL−D
2
,iL+D

2
(x) d3r′dx.

(9.26)
The second condition of equation (9.25) guarantees, that from the contributions of the
other lamellae all but those of the next neighbours vanish. Therefore, for the second part
it is convenient to first consider just 2 lamellae and to call the resulting continuum matter
energy per particle which stems from inter–lamellar overlaps einter. Note, that this splitting
now really demands for x to range over the entire segment [−D/2, D/2] as an integration
region, since for the case of only two lamellae there is no inversion (or mirror) symmetry
at the origin (inside one lamella), which originally reduced the set of qualitatively different
points N of one lamella to only half the segment, see section 5.8. In total we obtain

eC = eintra + 2einter . (9.27)

We first deal with the intra–lamellar part. The integral over d3r′ is descriptively the
overlap volume of the sphere centred around (x, 0, 0) having radius λ and the central lamella
(that contains the origin). Because of D ≪ λ we calculate it only to first order in D/λ,
giving λ2πD — the volume of a flat cylindrical disc, which is independent of x. Therefore
the result from the outer integral over x simply cancels the prefactor of 1/D, yielding

eintra ≃
ǫ

2

(
ρeffλ

2πD − 1
)
. (9.28)

In order to calculate

einter =
1

D

D/2∫

−D/2

ǫ

2
ρeff

∫

Bλ(x)

θL−D
2
,L+D

2
(x) d3r′dx (9.29)

we introduce the overlap parameter δ (see figure 9.8), defined as

δ = D + λ− L . (9.30)

The assumption L & λ can be formulated more exactly using this overlap parameter,

δ < D and δ ≪ λ . (9.31a)

The integration over d3r′ can again be understood in terms of overlaps of the involved
structures, i.e., the spheres Bλ(x) and the neighbouring lamella. For δ ≤ 0 there would
be no overlap at all between points in adjacent lamellae, i.e., einter would be zero. Hence,
at arbitrarily small ambient pressure, a lamellar configuration with δ ≤ 0 will always be
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compressed until a small gain in inter–lamellar energy through an appropriate positive
overlap stabilises the configuration, we can assume

0 < δ . (9.31b)

Thus, all spheres Bλ(x) with x ∈ (D/2 − δ,D/2] have a nonzero overlap volume with the
neighbouring lamella, that has the shape of a spherical segment5. The occurring segments
are cut from a sphere of radius λ and have a height h ranging from 0 to δ. As a consequence
of the right inequality (9.31a) also h ≪ λ, the overlap volume can thus be approximated
by the lowest order expression in h/λ, given by πh2λ.

For x ∈ [−D/2, D/2 − δ] the overlap volume is zero, which means we can restrict the
x–integration regime in equation (9.29) to x ∈ (D/2−δ,D/2]. A transformation of variable
from x to h = x+ δ −D/2 results in an integration regime of (0, δ] for h, the integral can
easily be evaluated as πδ3λ/3. Collecting all prefactors from equation (9.29) this results in

einter ≃
ǫπδ3λρeff

6D
. (9.32)

With equation (5.104) and equation (9.30) the pressure–term is

P

ρC
=
P (D + λ− δ)

ρeffD
. (9.33)

Note, that we must not just keep the leading term for small D/λ and δ/λ in this case,
because this would be Pλ/ρeffD — completely independent of δ. But it is clear, that the
interplay between the opposing effects of a varying overlap parameter δ on energy on one
hand and the pressure–term on the other hand plays an important role when minimising
the enthalpy. The increase in the average density for increasing δ leads to a negative
contribution to the pressure–term which is physically relevant and hence must not be
dropped.

Equations (9.28), (9.32), and (9.33) lead to the following expression for the equivalent
to the enthalpy per particle in the CT:

hC =
ǫ

2

(
ρeffλ

2πD − 1
)

+
ǫπδ3λρeff

3D
+
P (D + λ− δ)

ρeffD
. (9.34)

To find the minimum of this function w.r.t. the three occurring lamellar continuum matter
parameters D, δ, and ρeff , we first consider the effective density. Since hC(ρeff) = c1 +
c2ρeff + c3/ρeff there is exactly one minimum in the range of positive real numbers which
we obtain by setting the first derivative of hC w.r.t. ρeff to 0:

ρeff =

√
6P (D − δ + λ)

πλǫ(2δ3 + 3D2λ)
. (9.35)

If we now insert this result in equation (9.34) we can plot hC(D, δ;P, λ) and ρeff(D, δ;P, λ)
simultaneously (see figure 9.9) for typical values of the parameters P and λ. We recognise,

5A portion of a sphere cut off by a plane; its curved surface is called spherical calotte. A spherical
segment of height h of a sphere of radius r has a volume of π

3 h2(3r − h).
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Figure 9.9: The reduced enthalpy of equation (9.34) in (a) and the re-
duced effective density of equation (9.35) in (b) as functions of the re-
duced thickness D⋆ of the lamellae and the reduced penetration depth δ⋆,
for P̌ = 1 and λ⋆ = 10.

that the minimum of hC lies inside the regime where ρeff is, according to equation (9.35),
larger than

√
2/σ3 — which is not allowed due to equation (9.15b). Therefore we can set

ρeff ≡
√

2

σ3
. (9.36)

We will check whether there exits a pressure regime where this is not valid later on.
Using equation (9.36), hC becomes a function of only two variables, δ and D, and can

easily be minimised. We obtain for the position of the minimum

D = σ

√√√√ Pσ3

πǫλ/σ

(
1 −

√
2Pσ3

9πǫ(λ/σ)3

)
and (9.37a)

δ = σ

√
Pσ3

2πǫλ/σ
. (9.37b)

Introducing P̌ according to equation (9.21b) we can define a shoulder–reduced lamella
thickness Ď and a shoulder–reduced overlap parameter δ̌,

Ď =
D⋆

λ⋆
=
D

λ
=

√√√√√ P̌

π


1 −

√
2P̌

9π


 , and (9.38a)

δ̌ =
δ⋆

λ⋆
=
δ

λ
=

√
P̌

2π
; (9.38b)
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Figure 9.10: Relative penetration depth δ/D in (a) and effective density
of equation (9.35) with δ and D from equation (9.37) in (b) versus P̌ .

the resulting shoulder–reduced thermodynamic quantities are

ȟC =
P̌√
2

+
π

1
4√
3

√
2P̌
(
3
√
π −

√
2P̌
)
, (9.38c)

ρ̌C = ρ⋆C =

√
4P̌
(
3
√
π −

√
2P̌
)

√
6π

√
π −

√
3P̌

√
π +

√
2P̌
(
3
√
π −

√
2P̌
) , and (9.38d)

ěC =
π

1
4

2
√

3

3
√

2πP̌ − P̌√
3
√
π −

√
2P̌

. (9.38e)

Now we check the pressure range for which δ < D holds, and verify the usage of equation
(9.36). Plotting δ/D [see figure 9.10(a)] reveals that there is an upper limit for the pressure
if we want to guarantee that δ < D, our assumption (9.31a), is valid. This pressure limit
can easily be calculated using equations (9.38a,b):

δ

D
=

δ̌

Ď
= 1

/√√√√
2 − 2

3

√
2P̌

π
, (9.39)

which has to be equal to 1 for P̌ = P̌lam,max, leading to

P̌lam,max =
9π

8
≃ 3.53 . (9.40)

If, with δ and D according to equations (9.37), the effective density of equation (9.35)
is greater than the maximum value of

√
2/σ3, then our assumption in equation (9.36) of
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Figure 9.11: Cylindrical columns arranged on a 2D hexagonal lattice, in
a 3D view (a), cut perpendicular to the column axes (b), and cut by a
plane that contains two cylinder axes (c). Arrows indicate the lengths
as labelled. In (c) one can see an example sphere of radius λ around a
point of the cross section of one column having a penetration depth for
the inter–columnar overlap volume of ∆.

ρeff having the highest possible value is valid. As shown in figure 9.10(b) this is indeed the
case in the pressure regime P̌ ≤ P̌lam,max, δ and D having the functional form of equation
(9.37) would keep the effective density according to equation (9.35) above the close-packed
one even up to P̌ = 49π

18
≃ 8.55.

9.3.4 Cylindrical Columns

Similar to the lamellar case we consider now cylindrical columns of radii R ≪ λ, see figure
9.11(a). We arrange them on a 2D hexagonal lattice where they have a distance of L to
the nearest neighbouring column, i.e.,

ρ̂C(r) = ρeff

∞∑

i,j=−∞
θ
(
R2 − |ia + jb + ẑ · r − r|

)
, (9.41)

with a and b being the primitive lattice vectors of the 2D hexagonal lattice lying in the
x–y–plane (|a| = |b| = L is a choice with shortest possible 2D primitive vectors, i.e., 2D
MDP vectors), and ẑ being the unit vector in z–direction. Again a penetration depth δ is
defined as

δ = 2R + λ− L (9.42)

[see figures 9.11(b) and 9.11(c)]. As discussed in section 5.8 the circular cross–section of
one cylinder can be taken as integration regime to obtain the average continuum matter
energy eC. Assuming the origin of our coordinate system in the centre of the circular
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cross–section of one cylinder we obtain

eC =
1

R2π

∫

x2+y2≤R2

ǫ

2




∫

Bλ(x,y)

ρ̂C(r
′) d3r′ − 1


 dxdy , (9.43)

where we used Bλ(x, y) as an abbreviation for the sphere of radius λ with centre at (x, y, 0).
Further, we make the following assumptions:

0 < δ < 2R ≪ λ . (9.44)

Next we again split up the total energy per particle in an intra– and an inter–columnar
part to facilitate calculations. Due to the six nearest neighbours in the 2D–hexagonal
lattice

eC = eintra + 6einter . (9.45)

First we consider

eintra =
1

R2π

∫

x2+y2≤R2

ǫ

2


ρeff

∫

Bλ(x,y)

θ
(
R2 −

(
x′2 + y′2

))
d3r′ − 1


 dxdy . (9.46)

The integral over d3r′ can again be interpreted in terms of overlaps, i.e., of the spheres
Bλ(x, y) with the central cylinder, defined by x′2 + y′2 ≤ R2. Since the radius of the
cylinder, R, as well as the displacement between the cylinder axis and the centre of the
sphere,

√
x2 + y2, are much smaller than the radius of the sphere, λ, this overlap volume

can be approximated by R2π · 2λ, which is independent of x and y. The integral over
dxdy therefore just cancels the prefactor of 1/R2π. Collecting the remaining prefactors
the intra–columnar continuum matter energy per particle leads to

eintra ≃
ǫ

2

(
ρeffR

2π2λ− 1
)
. (9.47)

The inter–columnar energy per particle

einter =
1

R2π

∫

x2+y2≤R2

ǫ

2
ρeff

∫

Bλ(x,y)

θ
(
R2 −

[
(x′ − L)2 + y′2

])
d3r′dxdy (9.48)

is much more complicated to evaluate. First we recognise, that the integral over d3r′

represents the overlap volume between a sphere Bλ(x, y), having its centre at (x, y, 0) inside
the cylinder C1 containing the origin, and a parallel cylinder C2 whose axis contains (L, 0, 0),
as depicted in figure 9.11(c). This figure also shows, that the overlap volume is a portion
near the surface of the sphere, having an individual overlap parameter ∆ = x−R+ δ ≤ δ.
Again applying the assumption (9.44) we can neglect the curvature of the sphere in the
plane perpendicular to the cylinder axes for the calculation of the small overlap volume, i.e,
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we set this overlap volume to be equal to the one of the cylinder C2 and another cylinder
of radius λ and axis through (x, y, 0) pointing in ŷ–direction — perpendicular to the axis
of C2. The resulting overlap volume can be expressed via

V = 16
15
R3
√

2 λ
R

(
2 − ∆

R

){[
4 − ∆

R

(
2 − ∆

R

)]
E
(

∆/R
∆/R−2

)
−
[

∆
R
− 4
]
K
(

∆/R
∆/R−2

)}
, (9.49)

with E(x) and K(x) being the first and second kind elliptic integrals, respectively [121]6.
To be able to use the known power series expansions for the elliptic integrals

E(x) = π

(
1

2
− x

8
− 3x2

128
+ O

(
x3
))

and (9.50a)

K(x) = π

(
1

2
+
x

8
+

9x2

128
+ O

(
x3
))

(9.50b)

in equation (9.49), the overlap parameter ∆, varying between 0 and δ, has to be consider-
ably smaller than 2R, where the argument ∆

R
/∆
R
− 2 of both elliptic functions diverges. At

δ . R the (absolute value of the) argument is smaller or of the order of 1, which would be
acceptable. Therefore we assume δ . R, of course this assumption will have to be checked
for the final equilibrium columns. To lowest order in ∆/R we obtain

V ≃ 6

5
π∆2

√
Rλ . (9.51)

This volume is now independent of y, while x is hidden in ∆. Thus we just multiply
V by the factor of

√
R2 − x2 =

√
R2 − (R− δ + ∆)2 ≃

√
2R(δ − ∆) to respect the y–

integration. The integration over dx can be transformed to one over d∆ from ∆ = 0 to
∆ = δ, the result for the CT equivalent of the inter–columnar energy per particle after
collecting all the prefactors is

einter ≃
ρeffǫ16

√
2δ7λ

175R
. (9.52)

To calculate the pressure term we need the average density which is, according to

equation (5.103), ρC = ρeffR
2π
/√

3
2
L2 . Again we set ρeff =

√
2/σ3, i.e., close–packed

particles inside the columnar aggregate. We arrive at an approximate expression for the
enthalpy per particle,

hC ≃ ǫ

2

(
2
√

2π
R2λ

σ3
− 1

)
+

192ǫ
√
δ7λ

175Rσ3
+

√
3Pσ3(λ+ 2R− δ)2

2
√

2πR2
. (9.53)

With the definitions Ř = R/λ and δ̌ = δ/λ, the minimum w.r.t. δ of this function is given
by the root of

3 · 211

54
π2Ř2δ̌5 − P̌ 2δ̌2 + 2P̌ 2

(
1 + 2Ř

)
δ̌ − P̌ 2

(
1 + 4Ř + 4Ř2

)
= 0 , (9.54)

6The exact, but much more complicated formula for the overlap volume of a sphere and a cylinder also
contains elliptic integrals, see [122].



9.3. APPLICATION OF THE CONTINUUM THEORY 157

 0.2

 0.4

 0.6

 0.8

 1

 0.01  0.1  1

0.39

 
 

δ/2R
Ř
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Figure 9.12: In (a) we plot the ratio of the penetration depth δ over the
column diameter 2R, which has to be smaller than 1 for the approximate
theory to be applicable. We also include the ratio Ř = R/λ, assumed to
be ≪ 1 in our calculations, which is more or less the case.
(b) shows the shoulder–reduced enthalpy per particle and the respective
contributions from the energy and pressure terms, in dependence of the
shoulder–reduced pressure.
The dotted vertical lines indicate the upper limiting pressure, see later.

of which there exists only one real solution in the interesting pressure regime. Inserting
back this solution into equation (9.53) and minimising w.r.t. R is not possible in an analytic
way, which is why we have to do this numerically.

Similar to the homogeneous and lamellar cases all the shoulder–reduced quantities δ̌,
Ř, ρ̌C, ȟC, and ěC for the equilibrium structure only depend, due to the approximation
of R ≪ λ, on the shoulder–reduced pressure P̌ . Except for the effective density all these
quantities are plotted in figure 9.12. As will be shown later, the columnar phase has only to
be considered up to a certain limiting pressure, turning out to have the value of P̌ ≃ 0.39.
One can see that inside the pressure range where the columns have lower enthalpy than
both the lamellae and the homogeneous distribution, all approximating assumptions are
met: δ/2R is always less than 1 [see figure 9.12(a)] and has its maximum value of ≃ 0.66
at the transition pressure to the lamellar phase, and the maximum value of R/λ is ≃ 0.35,
also at the transition pressure.

9.3.5 Spherical Clusters

Finally we consider spherical clusters of equal radius R, arranged on a 3D Bravais lattice,
i.e.,

ρ̂C(r) = ρeff

∞∑

i,j,k=0

θ (R− |r − Lijk|) , (9.55)
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Figure 9.13: Two spherical clusters of Radius R and distance L. Open
arrows indicate how the surface of a sphere of radius λ is approximated
by a plane in the region of the other spherical cluster. δ is the pene-
tration depth, x the offset of an arbitrary point and h the height of the
corresponding spherical segment.

with the lattice vectors Lijk, described in equation (5.2). Again we assume Ř = R/λ ≪ 1
and, as depicted in figure 9.13, define the penetration depth as

δ = λ+ 2R− L . (9.56)

Of course, also 0 < δ and δ̌ = δ/λ≪ 1 shall hold.
As a first step we again calculate the intra– and inter–cluster continuum matter energies

per particle. According to section 5.8, the integration regime N in the formula for the CT
energy per particle [equation (5.100)] is just the whole sphere representing the cluster, the
intra–cluster continuum matter energy per particle is therefore

eintra =
1

4π
3
R3

∫

BR(0)

ǫ

2


ρeff

∫

Bλ(r)

θ(R− |r′|) d3r′ − 1


 d3r . (9.57)

The integral over d3r′ is the overlap volume between the spheres Bλ(r) [with r ∈ BR(0)]
and BR(0). Because of R ≪ λ this is the same situation as discussed for the construction
of the self–energy term in section 9.3.1, the smaller sphere is always contained inside the
larger one. Therefore integration over d3r′ leads to the r–independent result 4π

3
R3, the

integral over d3r just cancels the prefactor of 1/4π
3
R3 and the intra–spherical energy per

particle is given by

eintra =
ǫ

2

(
ρeff

4π

3
R3 − 1

)
. (9.58)

The inter–cluster continuum matter energy per particle is given by

einter =
1

4π
3
R3

∫

BR(0)

ǫ

2
ρeff

∫

Bλ(r)

θ(R− |r′ − Lx̂|) d3r′d3r , (9.59)
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for two clusters separated by the distance L along the x–axis (x̂ is the unit vector in x–
direction). As depicted in figure 9.13, due to R ≪ λ the overlap volume of a sphere with
radius λ centred at an arbitrary point inside one cluster with the neighbouring cluster
[the integral over d3r′ in equation (9.59)] can be approximated by the spherical segment
of height h = x + δ − R, where x is the offset of the mid point of the λ–sphere from the
first cluster in the direction of the other one (see figure 9.13). In this way we neglect the
curvature of the λ–sphere in the region around its surface of the (much smaller) R–sphere.
Through this approximation all points with equal offset have the same overlap volume of

Vs =
π

3
h2(3R− h) , (9.60)

the volume of the spherical segment. It is possible to evaluate now the inter–spherical
energy per particle by multiplying Vs with the disc–like area π(R2 − x2) of points of equal
offset x (the factor from the integration over dydz) and integrating over x from R − δ to
R (where the overlap volume is non–zero). Multiplying by the remaining prefactors we
obtain

einter =
ρeffǫπδ

4 (30R2 − 12Rδ + δ2)

480R3
. (9.61)

To construct the pressure term, we need information about the crystal structure the
spherical clusters are arranged on. In order to keep our considerations simple, we want
to have just one parameter for the spatial extent of the crystal structure. Therefore we
only consider the cubic Bravais lattices. Given the distance between next neighbours (L),
it is easy to calculate the volume per site, Vc, and hence the overall density according to
equation (5.102) in dependence of L, the effective density ρeff of one cluster, and the cluster
radius R:

fcc bcc sc

Vc
L3

√
2

4L3

√
27

L3

ρC ρeff
4π

√
2

3

R3

L3
ρeffπ

√
3
R3

L3
ρeff

4π

3

R3

L3

f 4π
√

2
3

≃ 5.92 π
√

3 ≃ 5.44 4π
3
≃ 4.19

nnn 12 8 6

(9.62)

nnn is the number of next neighbours and f is the numerical prefactor occurring in the
density relation, i.e., ρ = ρefffR

3/L3. With help of these parameters we can write the
continuum matter enthalpy per particle for clusters arranged on cubic Bravais lattices as

hC =
ǫ

2

(
ρeff

4π

3
R3 − 1

)
+ nnn

ρeffǫπδ
4 (30R2 − 12Rδ + δ2)

480R3
+
P (λ+ 2R− δ)3

ρefffR3
. (9.63)

In an effort to minimise this expression analytically, we have to introduce simplifying
assumptions.
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First, we again set the effective density to the close–packed one, which is in agreement
with the findings in section 9.2. Next we consider the three terms occurring in the expres-
sion for einter, namely 30R2, 12Rδ, and δ2. As will be shown shortly, δ/R . 0.5 always
holds in the relevant pressure regime, consequently the second term is at maximum 20%
of the first one, the third hardly reaches 1%. Therefore we just consider the leading term,
omitting the higher order corrections. This approximation still respects the fact, that with
increasing overlap δ the inter–cluster energy increases, too — it does so with the power of
4.

For the pressure term we also use λ ≫ R & 2δ, but with some caution: We cannot
just keep the highest (third) order in λ, because then we loose the information that the
pressure term has to decrease with increasing overlap δ, i.e., decreasing volume. Keeping
also the second order terms in λ we take this fact into account and finally arrive at the
approximation7

hC ≃ ǫ

2

(√
2
4π

3

R3

σ3
− 1

)
+ nnn

√
2ǫπδ4

σ316R
+

Pσ3

√
2fR3

(
λ3 + 3λ2 (2R− δ)

)
. (9.64)

Minimising w.r.t. δ leads to

δ = σ 3

√
6Pσ3λ2

fnnnπǫR2
⇔ δ̌ = 3

√
6P̌

fnnnπŘ2
, (9.65)

and after inserting back into equation (9.64) and setting the first derivative w.r.t. R to be
equal to 0, we obtain a twentieth order algebraic equation in R (more clearly laid out using
shoulder–reduced quantities) for the position of the minimum of hC:

34113P̌ 4 − 2533fnnnπP̌
3Ř2 − 2734fnnnπP̌

3Ř3 − 2934fnnnπP̌
3Ř4 − 21133fnnnπP̌

3Ř5+

+ 2733f 2nnnπ
2P̌ 2Ř8 + 21033f 2nnnπ

2P̌ 2Ř9 + 21133f 2nnnπ
2P̌ 2Ř10 − 2932f 3nnnπ

3P̌ Ř14+

− 21132f 3nnnπ
3P̌ Ř15 + 211f 4nnnπ

4Ř20 = 0 , (9.66)

which Mathematica can still treat in a semi–analytical way. The correct branch is easily
identified through selecting the largest real root of the above equation.

We can insert now the proper values for f and nnn from equation (9.62) to obtain the
result for the different cubic lattices. For each lattice, we obtain an upper pressure value at
which the clusters touch their next neighbours, namely P̌max,fcc ≃ 99.91, P̌max,bcc ≃ 44.75,
and P̌max,sc ≃ 20.53. In figure 9.14 we check the validity of our approximations up to these
pressure values, which obviously cannot hold both at cluster contact. While δ/R . 0.5 is
well met, R ≪ λ is already poor for P̌ & 0.1, the ratio is R/λ & 0.45 for the fcc cluster

7A similar approximation was also tried for the columnar case, but did not work there, since it produced
even negative energies. The reason we suspect is, that the columnar phases appear in a much higher
pressure regime (nearly 2 orders of magnitude higher), resulting in considerable contributions from the
pressure term of smallest order in λ compared to the inter–columnar part.
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Figure 9.14: Graphical check for the validity of δ/R . 0.5 (a) and R ≪ λ
(b). While the first assumption is quite well met for all pressure values
with non–touching clusters, the second one becomes poor for P̌ & 0.1.

phase there8. Nevertheless we made first order approximations that are reasonable for
P̌ . 0.1, which again result in λ–independent shoulder–reduced quantities, and it will turn
out later, that the cluster phase has only to be considered up to a pressure of P̌ ≃ 0.013
anyway.

Now we compare the continuum matter enthalpies per particle of the three considered
cluster lattices. As can be seen in figure 9.15 the shoulder–reduced enthalpies in dependence
of the shoulder–reduced pressure are extremely close to each other. Since this is also the
case for R/λ (see figure 9.14(b)) we conclude: When changing the Bravais lattice for the
spherical clusters from fcc over bcc to sc (for constant λ) at fixed pressure

• nnn decreases as well as f [see the table of expressions (9.62)], resulting in decreasing
eC and ρC,

• the cluster radius R remains approximately constant [see figure 9.14(b)],

• the cluster overlap δ increases [see figure 9.14(a)], causing also an increase in eC and
ρC, in a way that

• at the bottom line the CT enthalpy per particle remains approximately constant (see
figure 9.15).

A closer investigation shows, that this mechanism is slightly overcompensating, i.e., δ is
increased in such a way that the overall density in fact also increases (leading to a slight
decrease in the pressure contribution to enthalpy); the same is true for the energy per
particle.

8Note that for 2R > λ equation (9.58) is no longer valid and needs increasingly significant corrections
as 2R/λ grows beyond 1.
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Figure 9.15: Shoulder–reduced enthalpy for the three considered cubic
lattices and the columnar case as indicated in the legend. The transition
pressure at P̌ ≃ 0.444 between fcc and bcc is visualised by a vertical
dashed line, as well as the transition from fcc to the columnar phase at
P̌ ≃ 0.013.

It is nevertheless possible to recognise an ordering scheme of these three lattices with
increasing pressure, if one is interested only in the lattice exhibiting the lowest hC. Using
the minimum enthalpy per particle–functions given by the above expressions, we find that
at low pressures the fcc enthalpy per particle is the lowest one, above P̌ ≃ 0.444 the bcc
lattice takes over until P̌ ≃ 2.80 · 103, above which the sc lattice provides the minimum
enthalpy per particle. Of course, this transition to clusters on an sc lattice will never appear,
since the maximum pressure values for the bcc and sc phases are given by P̌max,bcc ≃ 44.75
and P̌max,sc ≃ 20.53 (see above). But also the bcc phase will never represent the phase
exhibiting the minimum enthalpy, since the columnar phase is always favoured to any
cluster phase for P̌ & 0.013 (see figure 9.15)9.

9.3.6 Summary and Comparison

We consider now the whole pressure regime, and the equilibrium continuum matter en-
thalpies per particle from the four aggregate shapes. The true equilibrium at given pressure
is of course always the one that exhibits the overall minimum enthalpy, which means we
have to find the lower hull of our four enthalpy curves.

Starting at nearly vanishing pressure we find, that first (fcc) clusters represent the

9The intersections of the bcc and the sc enthalpy curves with the columnar one are at P̌ ≃ 0.0082 and
P̌ ≃ 0.00029, respectively.
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thermodynamically stable structure, i.e., the structure providing the lowest CT enthalpy
per particle. Slowly increasing the pressure reveals, that there appears a transition from
the cluster to the columnar phase, intersecting the corresponding enthalpy curves results
in a transition pressure of

P̌col,clu ≃ 0.013 , (9.67)

also visualised in figure 9.15. As mentioned above this means, in our approximation the
only relevant cubic lattice is the fcc structure when it comes to the overall minimum
enthalpy configuration in the CT.

Further increasing the pressure we find a limiting pressure value above which the en-
thalpy per particle of the hexagonally arranged cylinders is greater than that of the lamellae
and vice versa below:

P̌lam,col ≃ 0.39 . (9.68)

If we now also compare the enthalpies for the homogeneous and the lamellar phases we
recognise, that the two curves intersect at a pressure value of

P̌hom,lam = 4π
(
5 − 2

√
6
)
≃ 1.27 , (9.69)

the lamellar enthalpy is less than the homogeneous one for P̌ < P̌hom,lam, and greater
for P̌ > P̌hom,lam. This guarantees, that our assumptions for the three non–homogeneous
phases, R ≪ λ and δ . R or D ≪ λ and δ < D, are satisfied for the respective pressure
regimes where the different aggregate shapes are stable.

The final result is visualised in figure 9.16. The transition pressures, indicated by
vertical lines, are of course just approximate values within the lowest order theory we
presented in this section. The respective ȟC–curves, that have to be intersected to obtain
the transition pressure values, meet at extremely flat angles. Inclusion of even small higher
order terms might lead to different values.

Nevertheless, the mean–field type CT confirms the sequence of aggregate shapes with
increasing pressure,

cluster — columns — lamellae — compact structures,

that has been also identified in the GA–based search, see section 9.2. Also, the transition
values for the pressure are represented in a qualitative way. This can be visualised by
a combined plot of the CT results and the data (for h, e, and ρ) from section 9.2 for
the three investigated shoulder widths. A combined plot of energy, density, and enthalpy
versus pressure is given in figures 9.17, 9.18, and 9.19.

There appear several phenomena. As expected, the energy– and density–curves of
CT and exact calculations (see section 9.2) are qualitatively different: the exact ones are
step–functions while the CT–curves (for different aggregate types) are continuous, strictly
monotonously increasing functions of pressure. But in general the agreement between
CT and the exact results is reasonably well for intermediate and long shoulder width.
Non–surprisingly, the resulting curves for the short shoulder width–example, λ⋆ = 1.5,
which clearly does not obey λ⋆ ≫ 1 (assumed in the CT), deviates substantially from CT
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Figure 9.16: The shoulder–reduced enthalpy per particle for the four
structural forms of the continuum matter as indicated in the legend ver-
sus shoulder–reduced pressure. Vertical solid lines separate (from left to
right) pressure regions where the minimum enthalpy is achieved by the
(fcc) cluster, columnar, lamellar, or homogeneous phase respectively, at
P̌ ≃ 0.013, 0.39, and 1.27. The dashed vertical line indicates the pres-
sure value of P̌ ≃ 4.19 above which the close–packed structure (ρ̌ =

√
2)

is attained.

results (mind the logarithmic scales). Another issue are the stable pressure regimes of
the respective aggregate types, which are not predicted very well. The reason is, as has
been discussed before, the extremely flat intersection angles of the enthalpy–curves; figure
9.19 shows, that especially the exact curves in the columnar regime exhibit recognisable
deviations from the CT curve even for large λ–values. This is on the one hand due to the
drastic simplifications for the columnar phase in CT, which became necessary because of
the highly complicated expression for the overlap volume that contained elliptic functions,
and on the other hand caused by the assumption that ρ⋆eff =

√
2 also for the columnar
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Figure 9.17: The shoulder–reduced energy per particle for the SSM within
the CT and for three different shoulder widths, as indicated in the legend,
versus shoulder–reduced pressure. Symbols refer to cluster (dots) and
lamellar (triangles) structures for λ⋆ = 4.5 and 10. The pressure ranges
for the different aggregate types within CT are given in the lower section
of the graph.

phase, which is poorly met for λ⋆ = 10 (see section 9.2).
Nevertheless, the numerical agreement between the exact enthalpy–, energy–, and

density–values and the predictions from CT is astonishingly good. In addition, the CT also
provides insight in the interplay between the thermodynamic variables of the SSM through
leading to the definitions of shoulder–reduced quantities. Plotting shoulder–reduced quan-
tities results in the curves for different λ–values to converge to the respective CT curve
with increasing λ.
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Figure 9.18: The (shoulder–reduced) density per particle for the SSM
within the CT and for three different shoulder widths, as indicated in the
legend, versus shoulder–reduced pressure. Symbols refer to cluster (dots)
and lamellar (triangles) structures for λ⋆ = 4.5 and 10. The pressure
ranges for the different aggregate types within CT are given in the lower
section of the graph.
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Figure 9.19: The shoulder–reduced enthalpy per particle for the SSM
within the CT and for three different shoulder widths, as indicated in the
legend, versus shoulder–reduced pressure. The pressure ranges for the
different aggregate types within CT are given in the lower section of the
graph.
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Chapter 10

Hard Core Yukawa Model

In this chapter we investigate the phase behaviour at T = 0 of the hard core Yukawa model
[see equation (2.3)] with the methods described in section 5.7.5. Investigations of this model
using computer simulations have been performed in [103–105] for finite temperatures, i.e.,
T > 0. At zero temperature of course only solid crystals occur. We choose the cutoff–
parameter δ = 10−10, see section 5.7.3. The influence on the phase diagram of this choice
for the cutoff is discussed in appendix F.

First we applied the GA based search algorithm on a coarse P ⋆–κ⋆–grid with up to three
basis particles, although only configurations with one basis particle turned out to be the
MECs (minimum enthalpy configurations). We found the expected bcc and fcc structures;
with general scaling of these two candidate structures (see section 5.7.5) one can easily
calculate the exact phase diagram for T = 0 with bcc and fcc considered, see figure 10.1.
Of course, one can also calculate the information of the corresponding packing fractions,

η = ρ4π
3

(
σ
2

)3
, at the coexistence pressure values. In the MC simulation data of [105] one

can see the tendency with decreasing temperature of the bcc regime becoming broader
and moving towards lower κ⋆–values, while the fluid phase–region becomes continually
smaller. Obviously the fluid phase finally has to vanish, as can be seen in the limiting case
of our T = 0 phase diagram (figure 10.2) in the κ⋆–η–plane, which also matches a coarse
extrapolation of the MC data to T = 0.

At T = 0, the maximum possible interaction range parameter κ to obtain a stable bcc
phase at any pressure value, is κ⋆max ≃ 1.874465; the corresponding packing fraction of the
delimiting point is the one for a bcc crystal with touching hard cores. Since the nearest
neighbour distance is then exactly σ, we call this structure bccσ, its packing fraction is
ηbccσ = π

√
3/8. Above κ⋆max the equilibrium structure is always an fcc crystal (see figures

10.1 and 10.2).
For κ⋆ < κ⋆max the upper bound in the η–range for the bcc region (see figure 10.2)

remains of course the bcc packing where the hard cores touch each other, ηbccσ . The
lower bounds in η as well as in pressure of the bcc region decrease with κ⋆ and finally
have to become zero for κ⋆ = 0, where the hard core Coulomb system is attained. The
difference in h⋆ between the bcc and fcc structures (with optimum scaling factor seq) is
visualised for one selected κ⋆–value in figure 10.3(a). Below the first transition pressure

169
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Figure 10.1: Phase diagram for the hard core Yukawa model in the κ⋆–
P ⋆–plane at T = 0. Solid lines delimit the bcc region, the dashed line
indicates the limiting pressure above which the particles are close–packed
at the hard cores, indicated by the σ–subscript to the fcc crystal structure
abbreviation. The bccσ regime is too narrow to be visible, it is located at
the high–pressure bcc–delimiting line.
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Figure 10.2: Phase diagram of the hard core Yukawa model at T = 0 in
the inverse screening length–packing fraction plane. The vertical broken
line indicates the packing fraction of fccσ (π/3

√
2), i.e., the maximum

possible value for η. The bccσ phase is stable along the vertical solid line
at η = π

√
3/8, the coexistence region between bccσ and fcc is not visible.

the fcc phase is stable, then there occurs a first order phase transition to bcc. Note that
the density (packing fraction) has a positive jump at the phase transition, the nearest
neighbour distance decreases abruptly, as can be seen in figure 10.3(b), where the scaling
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Figure 10.3: Enthalpy and scaling for κ⋆ = 1.5 and T = 0 in the hard
core Yukawa model: (a) The difference between the reduced enthalpies
per particles of the fcc and bcc structures versus reduced pressure. The
pronounced kink at P ⋆ ≃ 18.3 appears because for P ⋆ & 18.3 the particles
in the bcc structure touch each other at the hard cores. In (b) the scaling
factor, giving the nearest neighbour distance as seqσ, is plotted as seq − 1
on a logarithmic scale versus pressure, to visualise the two first order
phase transitions.

factor seq [see equation (5.87)] of the corresponding reference structure, either K0 =fccσ or
K1 =bccσ, is plotted (note, that we always use the densest possible reference structure, i.e.,
smin = 1, see section 5.7.5). The bcc structure is stable up to the pressure where the hard
spheres touch each other, where a second order phase transition to bccσ takes place. Only
slightly above this pressure the next first order phase transition to fcc occurs, and of course
we finally end up with another second order transition to fccσ, occurring at P ⋆ ≃ 21.86
(visible in figure 10.3(b)).

After having evaluated the full fcc–bcc–phase diagram, we launched our GA based
search algorithm on the corresponding transition pressures and some intermediate values.
While the lower transition remained unaltered, and also the intermediate values produced
no new symmetry structures, we observed a change in the phase behaviour at the bccσ–fcc
transition: a new phase emerged, one with only ct symmetry. Since the ct lattice has
two independent parameters instead of just one like bcc or fcc, the simple method of a
general scaling factor was not sufficient to cover all ct lattices and hence to calculate the
phase diagram. Therefore, in addition to the scaling factor s, we used the parameter f [see
equation (5.89)] as a second optimisation variable, describing the continuous transformation
from bcc (f = 1) to fcc (f =

√
3/2) — a Bain transformation.

In figure 10.4 the enthalpy per particle of the ct structure in dependence of the param-
eter f , for κ⋆ = 0.6 and five different pressure values (relative to the enthalpy per particle
of the optimum fcc structure at the same pressure) is plotted. Curve A corresponds to the
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Figure 10.4: Reduced enthalpy per particle difference in the hard core
Yukawa model between the ct and fcc structures for κ⋆ = 0.6 in de-
pendence of the Bain parameter f ; f = 1 corresponds to the bcc and
f =

√
3/2 to the fcc structure. At five different pressure values the

curves are plotted, labelled alphabetically with increasing values: A cor-
responds to the pressure where the ct structure starts to be the MEC, D

is the threshold above which the fcc is stable.
Both the enthalpy per particle of the ctσ structure (thin lines) and the
ct structure with optimal scaling [seq according to equation (5.87), thick
lines] are plotted, however they always lie exactly on top of each other for
f–values between 1 and the position of the (local) minimum. Above the
corresponding minima, the curves of the scaled ct structures for different
pressure values quickly approach a common curve.

pressure value of P ⋆
2 ≃ 52.53547, the largest pressure value where bccσ (f = 1 for ct) is the

preferred structure. When slightly increasing the pressure to P ⋆
3 ≃ 52.59067 (curve B) bccσ

(f = 1) would still be favoured to fcc (f =
√

3/2), but the enthalpy per particle of the ct
structure in dependence of f and s establishes a new minimum at f ≃ 1.02205 and s = 1.
The optimum structure remains a ct one even if the pressure exceeds P ⋆ ≃ 52.64588, above
which fcc would be favoured to bccσ; The example value of P ⋆

4 ≃ 52.66457 is shown as line
C in figure 10.4, f ≃ 1.03172 and again s = 1 characterise the ct structure with minimum
enthalpy per particle in this case.

We have observed that when minimising h⋆ct w.r.t. f and s, the curves h⋆ct(f, seq) and
h⋆ct(f, s = 1) as functions of f are exactly on top of each other for f–values smaller than
the position of the (local) minimum and only differ for larger values of f , of course always
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Figure 10.5: Curves for κ⋆ = 0.6 in the hard core Yukawa model, con-
sidered in the pressure regime above P ⋆ = 52.44, where the bcc structure
starts to exhibit hard cores. In (a) the difference between the reduced
enthalpies per particle of the fcc and bccσ as well as the ctσ and bccσ
structures versus reduced pressure are plotted. In (b) the parameter f of
the corresponding ctσ structure is plotted versus pressure. Due to nu-
merical problems the exact transition pressure between bccσ and ctσ is
slightly overestimated.

satisfying h⋆ct(f, seq) ≤ h⋆ct(f, s = 1). This means that the equilibrium ct structure, if
it exists at all, is a ctσ structure where the nearest neighbours touch each other, i.e.,
seq = 1. This observation drastically simplifies the numerical calculations, since we only
need to find the minimum of a function of one variable, h⋆ctσ

(f), the variable being the Bain
transformation parameter f . This is the reason why the introduction of the parametrisation
of all ct structures according to equation (5.89), where s = 1 always results in a ctσ
structure for f ∈ [

√
3/2,

√
3/2], is beneficial.

One can see in figure 10.4, that the minimum of the enthalpy per particle w.r.t. f
shifts to larger f–values upon increasing pressure. However, the ctσ structure is not the
equilibrium lattice for all values of f up to f =

√
3/2, which would finally correspond to

fccσ. In the κ⋆ = 0.6 example there occurs a first order phase transition from ctσ with
f ≃ 1.0433 to fcc (where s > 1) already at P ⋆

5 ≃ 52.79367.
The difference in h⋆ (and the corresponding parameter f) of the stable ctσ structure

and the optimum bccσ structure in dependence of P ⋆ for our example value of κ⋆ = 0.6 is
plotted in figure 10.5. Between the pressure values of P ⋆

1 ≃ 52.43907 and P ⋆
2 ≃ 52.53547,

bccσ is the stable structure. The transition pressure for the second order phase transition
between bccσ and ctσ, P

⋆
2 , is difficult to determine numerically, because h⋆ctσ

− h⋆bccσ
is a

very flat curve at the transition. Since we set the transition pressure to the value where
a difference in h⋆ of the ctσ and bccσ structures is numerically detectable, this pressure is
always slightly overestimated.

Figure 10.6 shows a close-up of the phase diagram region in the κ⋆–P ⋆–plane where the



174 CHAPTER 10. HARD CORE YUKAWA MODEL

 0

 0.5

 1

 1.5

 2

 0  0.01  0.02  0.03  0.04(
P ⋆ − P ⋆

bccσ

)/ (
P ⋆

fccσ
− P ⋆

bccσ

)

κ⋆
bccσ

ctσ

fcc

(a)

 0

 0.5

 1

 1.5

 2

 0.68  0.681  0.682  0.683
η

κ⋆
κ⋆thresh

b
cc

ctσ

fcc

(b)

Figure 10.6: Close–up of the phase diagram region of the hard core
Yukawa model above the pressure where the bcc structure starts to exhibit
touching hard cores (P ⋆

bccσ
) in (a). P ⋆

fccσ
is the smallest pressure where

fccσ is stable. ctσ labels the region where a centred tetragonal structure
with touching hard cores is the equilibrium one. The dashed line would
be the threshold between the bccσ and fcc regions if no ct structures were
considered.
In (b) a close–up of the κ⋆–η–region where the ctσ structure happens to be
the MEC is visualised. The ct region is bounded by the vertical line cor-
responding to the bccσ structure and the coexistence region (grey) between
ctσ and fcc.

ctσ structure occurs. For a better visualisation we use the (reduced) pressure relative to the
smallest one where bccσ is stable, P ⋆

bccσ
, and in addition divide by the pressure difference

between P ⋆
bccσ

and P ⋆
fccσ

, the smallest pressure for a stable fccσ structure. Thus, on the
abscissa we plot the fraction of the tiny region between the dashed (fcc–fccσ transition)
and the close–by solid line (bccσ–fcc transition) in figure 10.1. For the example value of
κ⋆ = 0.6 we have P ⋆

bccσ
= P ⋆

1 ≃ 52.43907 and P ⋆
fccσ

≃ 62.22915; both tend to infinity as κ⋆

approaches zero.
It is interesting to note, that between the largest κ⋆ value, above which only fcc(σ) is

stable, κ⋆max ≃ 1.874465, and another threshold value of κ⋆thresh ≃ 1.16, no ctσ structure can
be identified, a regime of stable bccσ has a phase boundary immediately with fcc. Below
κ⋆thresh the ctσ region starts to form, becoming broader with decreasing κ⋆. Due to the
numerical problems discussed above, κ⋆thresh is underestimated.

The high density region of the phase diagram can also be visualised in the κ⋆–η–plane,
as is done in figure 10.6(b). The grey area depicted there is the coexistence region; below
κ⋆thresh between the fcc phase and the ctσ phase, above (up to κ⋆max) between bccσ and fcc.
The high density (large η) delimiting line of the ctσ region, beyond which the coexistence
region is situated, moves to larger packing fractions the smaller κ⋆. This means, since the
density is strictly monotonously increasing with f for f ∈ [1,

√
3/2], that f is maximal for
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Figure 10.7: Maximum value of the parameter f , occurring at the transi-
tion between ctσ and fcc, along with the corresponding value of the ratio
of the edge lengths of the ct unit cell, versus κ⋆, for the hard core Yukawa
model.

the structure at the phase transition to fcc. This value is plotted in figure 10.7 along with
the corresponding ratio between the longer and the shorter edge lengths of the ct unit cell.
It is clearly visible that our numerical problems lead to a κ⋆thresh–value that is probably 5%
too small, nevertheless it is obvious that κ⋆thresh < κ⋆max.

Thus, we have revealed the existence of stable ct structures at very high pressure values,
where the bcc structure is known to exhibit touching hard cores, as long as the interaction
range is not too short. They can be understood as “incomplete” Bain transformations
from bcc to fcc, which resemble the more the bcc phase the smaller the pressure. However,
the region where the ct structures are stable turned out to be extremely small, which will
make it difficult to detect in experiments or simulations. Additionally it is also possible,
that the ct stability region shrinks or even vanishes at higher temperatures.
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Chapter 11

Conclusion and Outlook

This thesis has been dedicated to the investigation of the phase behaviour of various model
systems, representing reasonable models for a variety of colloidal systems. All investigated
systems have in common, that the constituting particles, the colloids, interact via a hard
core plus varying potential tails.

The first focus has been laid on the critical behaviour of systems exhibiting long–range
interactions. For the first representative, the charged Yukawa model, we developed a mod-
ified self–consistent Ornstein–Zernike approximation (mSCOZA) to be able to cope with
the infinitely ranged Coulomb interaction, formerly preventing an application of SCOZA.
In addition, we introduced a simple interpolation method for the exact location of the
maximum of compressibility in dependence of density at given temperature, which im-
proved the numerical results for the location of the critical point as well as for the various
thermodynamic properties in its vicinity by orders of magnitude within the used theory.

With help of these methods we could detect, that a variation in the relative strength
of the two competing tails of the charged Yukawa model, the Coulomb and the Yukawa
interactions, does not change the critical exponents of the respective systems. However, the
location of the critical point strongly depends on this relative strength, as does the effective
critical behaviour: Effective critical exponents attain their respective non–mean field–
values the closer to the critical point the stronger the long–ranged Coulomb contribution
to the interaction potential is. Similar findings could be presented for the charged Kac
model, which we were able to approximate in an adequate way by a charged Yukawa
system, using high numerical accuracy calculations.

Further insight could be gained by verifying a relation between the relative strength–
parameter ξ2 of the two potential tails of a Kac–Yukawa model and the critical exponent
γ of the reference system, where particles just interact via the hard core Yukawa poten-
tial. This relation, ξ2 ∼ (Tc − T ref

c )γ, thus provides additional means for the calculation of
critical exponents of (in principle) arbitrary reference systems. Instead of investigating the
divergence of the isothermal compressibility of the reference system at its critical point, one
can determine the locations of the critical points of a series of systems with an additional
Kac interaction, whose relative strength (compared to the tail of the reference system) is
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tuned by the prefactor ξ2.

The second main area of interest was the solid phase behaviour at T = 0 of hard core
systems with two different kinds of repulsive tails, the square–shoulder model and the hard
core Yukawa model. For a successful, numerical investigation of the minimum enthalpy
configurations at given pressure, we had to develop a new parametrisation of all crystal
structures, which easily provides the exact knowledge of the smallest occurring distance
between any points of the crystal lattice. For this so–called minimum distance parametri-
sation we could also provide a complete mapping of its variables to the conventional ones
for Bravais lattices.

This tool provided high success rates in the search for equilibrium structures, i.e., min-
imum enthalpy configurations, using the genetic algorithm developed in our Soft Matter
Theory group, the results were further refined by use of a Powell algorithm. After thorough
investigations of possible close–packed structures, we were able to develop a systematic
search strategy for all minimum enthalpy configurations of step–shaped, monotonously
decreasing potential tails, strongly footing on the aforementioned methods. The square–
shoulder model belongs to this class of systems and displayed an astonishing variety of
equilibrium structures over the entire pressure regime. These minimum enthalpy config-
urations were found to appear in four types of aggregates. With increasing pressure we
encountered clusters, columns, lamellae, and compact structures, a rule which turned out
to be the more satisfied the larger the shoulder width was chosen compared to the hard core
diameter. This sequence of structural archetypes for the square–shoulder model could also
be predicted via a newly developed, mean–field type continuum theory, where the aggre-
gates of particles are replaced by a continuum matter of equal average density, filling space
in the respective shapes. Also, the continuum theory of equilibrium structures proved to
give accurate numerical results for all considered thermodynamic variables and potentials.
In addition, it provided further insight by giving rise to shoulder–reduced quantities, which
lie, when plotted for systems of different shoulder widths, on common curves, as long as
the shouder width is not of comparable magnitude to the hard core diameter.

The systematic search strategy for step–shaped potential tails could also be extended
to certain continuous tails via metric scaling, although only high–symmetry (cubic and
centred tetragonal) structures were fully covered in this case. Since the hard core Yukawa
model was formerly known to exhibit only solid phases with cubic symmetry (fcc and bcc)
and fulfils the requirements of the extended search strategy, it has been a perfect test
system for this method. Our work revealed the existence of another, centred tetragonal
phase in the high density region of phase space. The region of stability for this new phase
strongly depends on the interaction range of the Yukawa tail, at very short ranges only fcc
is stable.

There are various possibilities for further extensions of the methods presented in this
thesis. The most promising ones are probably:

• The application of the interpolation scheme, introduced around the maximum of
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compressibility above the critical temperature, to the two compressibility maxima
below this temperature for SCOZA and mSCOZA. This would give rise to highly
improved boundary conditions and hence a more accurate shape of the spinodal and
binodal lines. Critical exponents, when approaching the critical point from lower
temperatures, would become assessable with similar accuracy like those from above
the critical temperature.

• The implementation of other pair potentials and multiple components in our search
algorithms for solid equilibrium structures. Thus, models having even more relevance
to industrial applications (see introduction) could be investigated.

• The extension of the solid phase methods to finite temperatures.

The work presented in this thesis led to the original publications of [62] and the HPC–
Europa scientific highlight1 [114] concerning the investigations of criticality, and the Soft
Matter hot article2 [85] and [86] describing the findings for the square–shoulder model. The
publications [87,123,124] were still under preparation during the conclusion of this thesis.

1http://www.hpc-europa.org/index.php?section=Transnational&subsection=scientific highlights
2http://www.rsc.org/publishing/journals/SM/HotArticles.asp
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Appendix A

Coulomb Part of the Charged
Yukawa Model

In this appendix we analytically calculate the contribution to the internal energy from the
Coulomb interaction of the charged Yukawa model within the MSA. We follow the way
described in [125] and define

D = 4πβ
q2

ε
, (A.1)

c0(r) = cC(r) + β
q2

εr
, (A.2)

S(r) = 2π

∫ ∞

r

tc0(t) dt , (A.3)

C0(k) = 2

∫ ∞

0

cos kr S(r) dr , (A.4)

J(r) = 2π

∫ ∞

r

thC(t) dt , and (A.5)

H(k) = 2

∫ ∞

0

cos kr J(r) dr . (A.6)

Comparing equation (A.2) with equation (4.6d) we see, that c0(r) = 0 for r > σ, and hence
S(r) and C0(k) exist. Equation (A.5) is strongly connected to the Coulomb energy per
volume [equation (4.8)], considering equation (4.4b) we get

uC =
ρ2q2

ε
J(0) . (A.7)

For physical reasons J(r) therefore exists, and so does H(k). Our goal is now to determine
J(0).

Using

φC(r) = lim
µ→0

q2

ǫr
e−µr (A.8)
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the Fourier transformation of the Coulomb–Ornstein–Zernike relation (4.3b) is

lim
µ→0

(1 + ρH(k))

(
1 − ρ

(
C0(k) −D

1

k2 + µ2

))
= 1 . (A.9)

Now we introduce the Baxter factorisation [126] for the second factor

1 − ρ

(
C0(k) −D

1

k2 + µ2

)
= Q̃(k, µ)Q̃(−k, µ) (A.10)

with

Q̃(k, µ) = 1 − ρ

∫ σ

0

eikrQ(r, µ) dr + ρA

∫ ∞

σ

e(ik−µ)rdr , (A.11)

where for r > σ the Ansatz

Q(r, µ) =
n∑

i=1

die
−zir, r > σ (A.12)

for a linear combination of Yukawa tails outside the core with screening lengths zi has been
used (n = 1, d1 = −A, z1 = µ). Continuity of Q(r, µ) at r = σ leads to

Q(σ, µ) = −Ae−µσ . (A.13)

Now consider the Fourier transformed Ornstein–Zernike relation (A.9) with the limit of
µ → 0 temporarily left out, replace the second factor on the left hand side by equation
(A.10) and divide by Q̃(−k, µ):

(1 + ρH(k))Q̃(k, µ) =
1

Q̃(−k, µ)
. (A.14)
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The inverse Fourier transformation of this equation gives for the left hand side
∫ ∞

−∞
dk e−krQ̃(k, µ) + ρ

∫ ∞

−∞
dk e−krH(k)Q̃(k, µ) =

=

∫ ∞

−∞
dk e−kr

(
1 − ρ

∫ ∞

0

dr′ eikr
′

Q(r′, µ)

)
+

+ρ

∫ ∞

−∞
dk e−kr2

∫ ∞

0

dr′
eikr

′

+ e−ikr
′

2
J(r′) ·

(
1 − ρ

∫ ∞

0

dr′′ eikr
′′

Q(r′′, µ)

)
=

=

∫ ∞

−∞
dk e−kr − ρ

∫ ∞

0

dr′Q(r′, µ)

∫ ∞

−∞
dk eik(r

′−r)

︸ ︷︷ ︸
=2πδ(r−r′)

+

+ρ

∫ ∞

−∞
dk e−kr

∫ ∞

−∞
dr′ eikr

′

J(|r′|) ·
(

1 − ρ

∫ ∞

0

dr′′ eikr
′′

Q(r′′, µ)

)
=

= 2πδ(r) − 2πρQ(r, µ)θ(r) + 2πρJ(|r|) −

−ρ2

∫ ∞

−∞
dr′
∫ ∞

0

dr′′
∫ ∞

−∞
dkeik(r

′+r′′−r)

︸ ︷︷ ︸
2πδ(r′−(r−r′′))

J(|r′|)Q(r′′, µ) =

= 2πδ(r) − 2πρQ(r, µ)θ(r) + 2πρJ(|r|) − 2πρ2

∫ ∞

0

dr′′J(|r − r′′|)Q(r′′, µ) , (A.15)

with the usual Heaviside step function θ(r). The last term can be modified to

−2πρ2

∫ σ

0

dr1J(|r − r1|)Q(r1, µ) − 2πρ2

∫ ∞

σ

dr′′J(|r − r′′|)
(
−Ae−µr′′

)
=

=

∣∣∣∣
r − r′′ = −r1
dr′′ = dr1

∣∣∣∣ = −2πρ2

∫ σ

0

dr1J(|r − r1|)Q(r1, µ) + 2πρ2

∫ ∞

σ−r
dr1 J(|r1|)Ae−µ(r+r1) .

For the right hand side we get using

1

Q̃(−k, µ)
=

1

1 − ρ
∫∞

0
e−ikrQ(r, µ) dr

=
∞∑

n=0

(
ρ

∫ ∞

0

e−ikrQ(r, µ) dr

)n
(A.16)

for the Fourier transformation
∫ ∞

−∞

e−ikr

Q̃(−k, µ)
dk =

∫ ∞

−∞
e−ikrdk + ρ

∫ ∞

−∞
dk e−ikr

∫ ∞

0

dr′ e−ikr
′

Q(r′, µ) + . . .

=

∫ ∞

−∞
e−ikrdk + 2πρ

∫ ∞

0

dr′ δ(r + r′)Q(r′, µ) + . . .

= 2πδ(r), ∀r > 0 . (A.17)

By combining the left and right hand sides this leads (through division by 2πρ) to

J(r) = Q(r, µ) + ρ

∫ σ

0

dr1Q(r1, µ)J(|r − r1|) − ρe−µr
∫ ∞

σ−r
dr1 J(|r1|)Ae−µr1 . (A.18)
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Now we consider r < σ. Since hC(t) = 0 as long as t < σ, we get

J(r) = J(σ) =: J, ∀r < σ . (A.19)

Equation (A.18) is therefore for r < σ

J = Q(r, µ) + ρ

∫ σ

0

dr1Q(r1, µ)J − Aρe−µr
∫ ∞

σ−r
dr1 J(r1)e

−µr1 . (A.20)

Using R = σ − r we transform the last integral via partial integration1:
∫ ∞

σ−r
dr′ J(r′)e−µr

′

= 2π

∫ ∞

R

dr′ e−µr
′

∫ ∞

r′
dt t hC(t) =

= −2π

µ
e−µr

′

∫ ∞

r′
dt t hC(t)

∣∣∣∣
∞

R

− 2π

µ

∫ ∞

R

dr′ e−µr
′

r′hC(r′) =

=
2π

µ

∫ ∞

R

dt e−µRthC(t) − 2π

µ

∫ ∞

R

dr′ e−µr
′

r′hC(r′) =

= 2π

∫ ∞

R

dr′ hC(r′)r′
e−µR − e−µr

′

µ
=

= 2π

∫ ∞

R

dr′ hC(r′)r′ (r′ −R + O(µ))

= 2π

∫ ∞

σ

dr′ r′2hC(r′) − (σ − r)J + O(µ) , (A.21)

where in the last step R in the lower limit of the integral could be replaced by σ because
R = σ − r < σ and the integrand is 0 for all r′–values smaller than σ.

Now we take the limit µ → 0. Through writing Q(r) := Q(r, 0) equation (A.20)
becomes

J = Q(r) + ρ

∫ σ

0

dr1Q(r1)J − 2πAρ

∫ ∞

σ

dr′ r′2hC(r′) + Aρ(σ − r)J . (A.22)

It can easily been seen that Q(r) is a 1st order polynomial in r for r < σ,

Q(r) = a+ b r , (A.23)

which we can insert in equation (A.22), yielding

J = a+ br + ρJ

(
aσ + b

σ2

2
+ Aσ − Ar

)
− 2πρA

∫ ∞

σ

dr′ r′2hC(r′) . (A.24)

In this equation we can collect the powers of r, giving

J = a+ ρJaσ + ρJb
σ2

2
+ ρJAσ − 2πρA

∫ ∞

σ

dr′ r′2hC(r′) and (A.25)

0 = b− ρJA ⇒ b = ρJA . (A.26)

1Also use ∂

∂x

∫ b(x)

a(x)
f(x)dx =

∫ b(x)

a(x)
f ′(x)dx + b′(x)f [b(x)] − a′(x)f [a(x)].
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From the continuity equation (A.13) it follows that a = −A− bσ, together with equation
(A.26) we can therefore eliminate a and b, getting

J = −A− ρJAσ − ρ2J2A
σ2

2
− 2πρA

∫ ∞

σ

dr′ r′2hC(r′) . (A.27)

The remaining integral can also be evaluated (remember that ρ+ = ρ− ≡ ρ/2):

2πρ

∫ ∞

0

dr r2hC(r) = 2π
ρ

2

∫ ∞

0

dr r2 (h++ − h+−) =

=
1

2

(
4πρ+

∫ ∞

0

dr r2g++(r) − 4πρ−

∫ ∞

0

dr r2g+−(r)

)
=

=
1

2
(N+ − 1 −N−) = −1

2
.

This leads to the final equation for J

2J + A(1 + ρJσ)2 = 0 , (A.28)

with the solutions

J =
−1 − Aρσ ±√

1 + 2Aρσ

Aρ2σ2
. (A.29)

To derive the quantity A (which will turn out to depend only on D an ρ) we need
another equality in the Baxter formalism [126],

2πrc(r) = −Q′(r) + ρ

∫ ∞

0

Q(t)Q′(r + t) dt , (A.30)

which we evaluate for r ≫ σ:

2πr

(
− D

4πr

)
= −µAe−µr + ρ

∫ σ

0

(a+ bt)(−µA)e−µ(r+t) dt+ ρ

∫ ∞

σ

Ae−µt(−µA)e−µ(r+t) dt

= . . . = −1

2
ρA2 + O(µ) . (A.31)

This leads to (Aρ)2 = Dρ ≡ κ2, where κ is the Debeye length.
To find out which of the two solutions is the physical one, we use the low density

behaviour of the internal energy. First we recognise that D is density independent, so to
explicitly get the density dependence of uC [equation (A.7)] we use equation (A.29) with
all appearances of Aρ replaced by

√
Dρ,

uC = ρ2 q
2

ǫ
J =

1

4πβσ2

√
Dρ

(
−1 − σ

√
Dρ±

√
1 + 2σ

√
Dρ

)
. (A.32)

To find out which sign we have to take, consider now not the excess internal energy per
volume, but the total one, and expand the square root with the ± sign in front of it in a
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series for small ρ:

U ex,C =
NkT

4πσ2

√
D

ρ

(
−1 − σ

√
Dρ±

(
1 + σ

√
Dρ− 1

2
σ2Dρ± . . .

))
(A.33)

→ NkT

4πσ2

√
D ·





−1

2
σ2D

√
ρ (+)

− 2√
ρ

(−)
. (A.34)

U ex,C has to become zero as ρ goes to 0 while N remains finite. Therefore the solution
with the + sign has to be the right one:

uC =
κ

4πβσ2

(
−1 − σκ+

√
1 + 2σκ

)
, (A.35)

with

κ =

√
4πβρ

q2

ε
. (A.36)



Appendix B

2D Lattices

B.1 Two Dimensional Minimum Distance Parametri-

sation

In contrast to 3D, where all primitive unit cells have the same volume, in 2D they have
the same area. The unification algorithm described in 5.1 therefore changes to

1. Calculate the circumference Σ∗ of the primitive unit cell given by a and b.

2. Calculate the circumferences of the 4 primitive cells defined through

(a,b ± a) , (a ± b,b) , (B.1)

and denote the smallest one by Σ̃.

3. If Σ̃ < Σ∗ then take the corresponding primitive vectors to Σ̃ as the new values for
a and b and start over again.

Another feature of the 2D case is, that if (a,b) is the unit cell with the smallest circum-
ference, there exits no lattice vector shorter than b.

Proof: Assume to the contrary that there exists a lattice–vector c which has length
|c| < |b|. Now consider an arbitrary lattice point from which all three vectors a, b, c
point to another lattice point. It is obvious, that the cells (a, c) and (b, c) have smaller
circumferences than (a,b), in contradiction to the assumption. 2

Equation (B.1) can be reduced to even less possibilities. Firstly, since |a| ≥ |b|, the
circumference of (a ± b,b) is always less or equal the circumference of (a, a ± b), which
means only (a ± b,b) have to be considered. Secondly, since the angle between a and b is
restricted to values between 0 and π/2, we always have |a + b| ≥ |a − b|. Hence, the only
unit cell of equation (B.1) that has to be considered is

(a − b,b) . (B.2)
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In the region where the unification algorithm does not lead to another unit cell the condition

|a − b| ≥ a (B.3)

has therefore to be satisfied, inserting a = a(1, 0) and b = ax(cosϕ, sinϕ) leads to

cosϕ ≤ x

2
. (B.4)

This condition is not only necessary but also sufficient to describe the region that remains
unchanged under the application of the unification algorithm. A derivation, that includes
the rigorous proof that this region only incorporates lattices where b is the smallest lattice
vector (no “local minima”), is done in section 5.2.1.

B.2 Fractal Parameter Space

We consider a 2D lattice with lattice vectors

a = a

(
1
0

)
, and b = a

(
x cosϕ
x sinϕ

)
, (B.5)

where

a > 0 , (B.6a)

0 < x ≤ 1 , and (B.6b)

0 < ϕ ≤ π

2
, (B.6c)

with one single particle in the basis (at the lattice sites). The area–number density is given
as

η =
1

a2x sinϕ
. (B.7)

For constant η we can replace a by 1/
√
ηx sinϕ and the parameter space for the possible

lattices becomes 2D (x and ϕ). For the next steps we have to make a simple variable
transformation to

bx = x cosϕ and (B.8a)

by = x sinϕ , (B.8b)

resulting in

bx ≥ 0 , by > 0 , with b2x + b2y ≤ 1 , and (B.9)

a = 1/
√
ηby . (B.10)

Now we take the hard core of the basis particle into account, which has a diameter of
σ. The condition, that all possible distances between lattice points have to be at least σ
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can, due to the translational symmetry, be formulated just for the central lattice point —
all lattice vectors have to be longer than σ:

(na −mb)2 > σ2 , (B.11)

with n,m ∈ Z. The reason why we use a minus instead of a plus in front of m will be
explained later. Obviously it does not make any difference. Inserting equation (B.5) and
equation (B.8) yields

n2a2 − 2nma2bx +m2a2
(
b2x + b2y

)
> σ2 , (B.12)

which, after division by a2 and usage of equation (B.10), results in

n2 − 2nmbx +m2
(
b2x + b2y

)
> σ2ηby . (B.13)

We define as usual η⋆ = ησ2. The case m = 0 gives by ≤ |n|/η⋆, always fulfilled for n ≥ 2.
The case n = 0 is unphysical (the distance of the origin from itself needs not be greater
than σ), which is why n = m = 0 has to be excluded. We therefore just keep in mind that

by ≤ 1/η⋆ , (B.14)

which is only relevant for large densities. Therefore we consider now m ∈ Z\{0}.
The integers n and m only occur squared or as a product in equation (B.13), which

means that w.l.o.g. we can restrict one of them to be non–negative — we choose

n ∈ N0 . (B.15)

After dividing by m2 (m 6= 0, see above) we can therefore construct whole–square expres-
sions for bx and by and put what remains to the other side of the inequality, resulting
in (

bx −
n

m

)2

+

(
by −

η⋆

2m2

)2

>

(
η⋆

2m2

)2

. (B.16)

This inequality has an easy geometrical interpretation: It excludes the disks (but keeps their
rims) with midpoints at M =

(
n
m
, η⋆

2m2

)
and radii of R = η⋆

2m2 for all possible combinations
of m and n from the quarter–disk–like parameter space defined in equation (B.9).

The possible, or better to say relevant values of n andm can still be narrowed down. Let
us first consider the case where n > m > 0. The abscissa coordinate of the corresponding
midpoint is therefore greater than 1, and we can formulate a necessary condition for the
disk to be relevant. Its radius must have at least such a value, that it overlaps with the
[0, 1] × [0, 1] square in parameter space to have a chance to overlap with the parameter
space defined in equation (B.9), i.e., η⋆

2m2 ≥ n
m
− 1, and after multiplication with 2m2

η⋆ ≥ 2 m︸︷︷︸
≥1

(n−m)︸ ︷︷ ︸
≥1

≥ 2 . (B.17)

Since η⋆max = 2/
√

3 this is impossible, which means n ≤ m for m > 0.
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If we consider m < 0 we get in a similar way η⋆ ≥ 2n|m| ≥ 2, never true except for
n = 0. But for n = 0 equation (B.16) is insensitive to the sign of m, which means all
possibilities are covered within the case m > 0. This explains why we chose the minus sign
in equation (B.11), because now we have m ∈ N.

Next consider all cases for one fixed rational number q = n
m

(≤ 1). This means, the
abscissa of the midpoint of every corresponding disk remains fixed, while its ordinate and
radius (which are always the same) can change with m. As a matter of fact, all these disks
touch the abscissa in the same point (q, 0) (from the same side), simple geometry tells
that all these disks are included in the one with the largest radius, i.e., smallest m. The
smallest possible m for fixed q = n

m
is obtained for the case where m and n are coprime.

Finally we check the disk at M = (0, η⋆/2), more precisely the intersection of its
(circular) rim with the boundary of the parameter space defined in equation (B.9). For
η⋆ ≤ 1 we get two intersection points at (0, 0) and (0, η⋆), resulting in a complete half–disk
to be excluded. But for η⋆ > 1 the second intersection point is at the circular rim of the

parameter space defined in equation (B.9) at
(√

1 − 1
η⋆2 ,

1
η⋆

)
, which then is at the same

time the point with the highest by–value. This means, equation (B.14) is always satisfied.
In summary we get for the set of allowed parameters

S̃ =
{
(bx, by) ∈ R

2|0 ≤ bx, 0 < by, b
2
x + b2y ≤ 1

}
∖
⋃

M

DR(M) , (B.18a)

where DR(M) is the disk of radius R = η⋆

2m2 around the midpoint M =
(
n
m
, η⋆

2m2

)
and

m ∈ N ∧ n ∈ N0 ∧ n ≤ m ∧ m,n coprime. (B.18b)

Obviously this set includes only the irrational numbers on the abscissa itself, a typical
fractal behaviour. This can also be seen in figure B.1, where we plot the allowed region in
bx–by– as well as in x–ϕ–space.
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0 1

1

bx

by

(a)

0 1

π
2

x

ϕ

(b)

Figure B.1: In (a) the allowed region in bx–by–space is plotted for the
special case of η⋆ = 1, where the rims of the excluded disks are just
exactly the so called Ford circles. The region is then a superset of the
Appolonian gasket, a fractal of dimension ≃ 1.3057. For different values
of η⋆ the disks change their radii while still touching the abscissa and
excluding all rational values of bx there.
In (b) we map the region back to x–ϕ–space. We additionally include the
line cosϕ = x/2, above which the minimum distance configurations lie;
the remaining region is coloured blue.
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Appendix C

3D Symmetries in the MDP

C.1 Mapping from the BCO MDP to the Conven-

tional Parameters

In this section we give the back–transformation formulas to obtain the conventional bco
Bravais lattice parameters for given MDP parameters, to complete the discussion of the
bco lattices of section 5.3. Similar to there, we distinguish three cases:

1. d̃/2 is the smallest distance in the bco lattice, the MDP parameters are [see equation
(5.53a)]

x = 1 ∧ 0 < cosϕ < 1
2
∧ −1

2
≤ ξ ≤ −1

2
+ cosϕ ∧ η, ζ maximal . (C.1)

The three corresponding MDP vectors can be envisaged as three linearly independent
vectors pointing from the centred position of the bco unit cell to three corners. Due
to the restrictions of equation (C.1) for b and c we know, that they point to three
corners of one face of the bco unit cell. Hence the distances between the apices of
the three position vectors represent two edge lengths of the bco unit cell along with
its diagonal, and the distance from −c to b and a result in another diagonal and
the third edge length. To know which distances to drop to get rid of the diagonal
lengths, one just has to check which resulting vectors are pairwise orthogonal to each
other. We obtain three candidate lengths

l1 = a
√

2
√

1 − cosϕ , l2 = a
√

2
√

cosϕ− ξ , and l3 = a
√

2
√

1 + ξ . (C.2)

If we want to know exactly which of these li are the conventional unit cell parameters
ordered by magnitude (c̃ < b̃ < ã), we have to consider the following cases:

• 0 < cosϕ ≤ 1
4
: ã = l1

⋆ −1
2
≤ ξ ≤ −1

2
+ 1

2
cosϕ: b̃ = l2, c̃ = l3

⋆ −1
2

+ 1
2
cosϕ < ξ ≤ −1

2
+ cosϕ: b̃ = l3, c̃ = l2

197
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• 1
4
≤ cosϕ ≤ 1

3
:

⋆ −1
2
≤ ξ ≤ 2 cosϕ− 1: ã = l2, b̃ = l1, ã = l3

⋆ 2 cosϕ− 1 < ξ ≤ −1
2

+ 1
2
cosϕ: ã = l1, b̃ = l2, ã = l3

⋆ −1
2

+ 1
2
cosϕ < ξ ≤ − cosϕ: ã = l1, b̃ = l3, ã = l2

⋆ − cosϕ < ξ ≤ −1
2

+ cosϕ: ã = l3, b̃ = l1, ã = l2

• 1
3
< cosϕ < 1

2
:

⋆ −1
2
≤ ξ ≤ − cosϕ: ã = l2, b̃ = l1, ã = l3

⋆ − cosϕ < ξ ≤ −1
2

+ 1
2
cosϕ: ã = l2, b̃ = l3, ã = l1

⋆ −1
2

+ 1
2
cosϕ < ξ ≤ 2 cosϕ− 1: ã = l3, b̃ = l2, ã = l1

⋆ 2 cosϕ− 1 < ξ ≤ −1
2

+ cosϕ: ã = l3, b̃ = l1, ã = l2

2. c̃ < d̃/2 < b̃ with the conditions of equation (5.53b). Let the origin be the centre
of the bco unit cell. Then the two MDP vectors a and b point to two corner points
which can either be the delimiting points for an edge of length ã or b̃, or for a diagonal
of a face having c̃ as an edge length. The two cases can be distinguished by the sign
of ξ: If ξ > 0 then b − a is a lattice vector along an edge of the unit cell, if ξ < 0 it
is a lattice vector along a face diagonal. In any case c̃ = c, we differentiate them:

• ξ < 0: c̃ = a
√−2ξ, b̃ = a

√
2
√

1 − cosϕ+ ξ, and ã = a
√

2
√

1 + cosϕ.

• ξ > 0: c̃ = a
√

2ξ

⋆ 0 < cosϕ ≤ 1
4

and ξ > 2 cosϕ:

b̃ = a
√

2
√

1 + cosϕ− ξ and ã = a
√

2
√

1 − cosϕ,

⋆ else b̃ = a
√

2
√

1 − cosϕ and ã = a
√

2
√

1 + cosϕ− ξ.

3. The case c̃ < b̃ < d̃/2 has already been completely discussed in section 5.3.

C.2 Minimum Distances in the SFCM Lattice

See section 5.3 for an explanation of the symbols. To find out whether a given set of
minimum distance vectors a, b, and c correspond to a sfcm lattice, proceed in the following
way:

Distinguish between:

1. The d̃/2 point lies at a′/2. Candidate lengths are:

• b′, c′, d̃/2, which can appear in the following orders of increasing length:

⋆ b′ → c′ → d̃/2
Check whether the minimum vectors b′ and a′ form a centred rectangular
2D–lattice of kind 5.9(d). Then, check whether c′ ⊥ b′. The result is:

ã = 2a′ ± b′ (ã ⊥ b′) b̃ = c′ c̃ = b′ (C.3)
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⋆ b′ → d̃/2 → c′

Only possible if d̃/2 = c′, otherwise d̃/2 would have been chosen twice (see
next item). Do the same as in the previous item, but exchange the roles of
a′ and b′.

⋆ b′ → d̃/2 → d̃/2
Check whether b′ and a′ form a centred rectangular 2D lattice of kind 5.9(c).
Then check c′ ⊥ (a′ ± b′) and obtain:

ã = a′ ∓ b′ b̃ = c′ c̃ = a′ ± b′ (C.4)

⋆ d̃/2 → b′ → c′

Only possible if d̃/2 = b′ = c′, else see next item. Check whether a′ and
c′ form a centred rectangular 2D lattice of kind 5.9(d) with equal lengths
(which is equal to 5.9(a)). Then check whether b′ ⊥ a′

ã = 2c′ ± a′ (ã ⊥ a′) b̃ = b′ c̃ = a′ (C.5)

⋆ d̃/2 → d̃/2 → b′

Check whether c′ and b′ form a centred rectangular 2D lattice of kind 5.9(c).
Then check a′ ⊥ (c′ ± b′) and obtain:

ã = c′ ∓ b′ b̃ = a′ c̃ = c′ ± b′ (C.6)

⋆ d̃/2 → b′ → d̃/2
Only possible if d̃/2 = b′. Check whether c′ and a′ form a centred rectan-
gular 2D lattice of kind 5.9(c). Then check b′ ⊥ (c′ ± a′) and obtain:

ã = c′ ∓ a′ b̃ = b′ c̃ = c′ ± a′ (C.7)

⋆ c′ → b′ → d̃/2
Check whether c′ and a′ form a centred rectangular 2D lattice of kind 5.9(d).
Then check b′ ⊥ c′, result:

ã = 2a′ ± c′ b̃ = b′ c̃ = c′ (C.8)

⋆ c′ → d̃/2 → b′

Check whether c′ and b′ form a centred rectangular 2D lattice of kind
5.9(d). Then check a′ ⊥ c′, result:

ã = 2b′ ± c′ b̃ = a′ c̃ = c′ (C.9)

⋆ d̃/2 → c′ → b′

Only possible if d̃/2 = c′. Check whether b′ and c′ form a centred rectan-
gular 2D lattice of kind 5.9(d) or the one of equation (5.9(a)). Then check
b′ ⊥ c′, result:

ã = 2c′ ± b′ b̃ = a′ c̃ = b′ (C.10)
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• a′, b′, d̃/2

⋆ b′ → a′ → d̃/2
Check whether b′ and a′ form a centred rectangular 2D lattice of kind
5.9(d). Then check c′ ⊥ (2a′ ± b′) and obtain:

ã = b′ b̃ = c′ c̃ = 2a′ ± b′ (C.11)

⋆ b′ → d̃/2 → a′

Only possible if d̃/2 = a′. Check whether a′ and b′ form a centred rectan-
gular 2D lattice of kind 5.9(d). Then check c′ ⊥ (2b′ ± a′), remember sign
for result:

ã = a′ b̃ = c′ c̃ = 2b′ ± a′ (C.12)

⋆ d̃/2 → b′ → a′

Only possible if d̃/2 = b′ = a′. Check whether a′ and c′ form a centred
rectangular 2D lattice of kind 5.9(d). Then check b′ ⊥ (2c′±a′), remember
sign for result:

ã = a′ b̃ = b′ c̃ = 2c′ ± a′ (C.13)

⋆ a′ → b′ → d̃/2
a′ = b′. Check whether c′ and a′ form a centred rectangular 2D lattice of
kind 5.9(d). Then check b′ ⊥ (2a′ ± c′), remember sign for result:

ã = c′ b̃ = b′ c̃ = 2a′ ± c′ (C.14)

⋆ a′ → d̃/2 → b′

a′ = d̃/2 = b′. Check whether c′ and b′ form a centred rectangular 2D
lattice of kind 5.9(d). Then check a′ ⊥ (2b′ ± c′), remember sign for result:

ã = c′ b̃ = a′ c̃ = 2b′ ± c′ (C.15)

⋆ d̃/2 → a′ → b′

d̃/2 = a′ = b′. Check whether b′ and c′ form a centred rectangular 2D
lattice of kind 5.9(d). Then check a′ ⊥ (2c′ ±b′), remember sign for result:

ã = b′ b̃ = a′ c̃ = 2c′ ± b′ (C.16)

• a′, f , d̃/2

⋆ a′ → d̃/2 → f , d̃/2 → a′ → f , d̃/2 → f → a′

b′ = a′ = d̃/2 ∧ b′ ≥ f �

⋆ d̃/2 → d̃/2 → f
Check whether b′ and c′ form a centred rectangular 2D lattice of kind 5.9(c).
Whichever vector of

b′ + c′ b′ − c′ (C.17)
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is shorter represents c̃, the other one is ã (if they are equal only a centred
tetragonal configuration is possible, see Fig. 5.28).
Now check which two of the following conditions are met:

a′ ± b′ ⊥ c̃ a′ ± c′ ⊥ c̃ (C.18)

the smaller one being (±)b̃, see Fig. 5.28.

• b′, f , d̃/2

There is no way to combine these in an allowed way.

• c′, f , d̃/2

⋆ c′ → d̃/2 → f
Check whether c′ and b′ form a centred rectangular 2D lattice of kind
5.9(d), c̃ = c′. Then, ã = 2b′ ± c̃, whichever is perpendicular to c̃. Set
v = b′ ± c̃, whichever has equal length to b′. Now, like above, check which
two of the following conditions are met:

a′ ± b′ ⊥ c̃ a′ ± v ⊥ c̃ (C.19)

the smaller one being (±)b̃.

⋆ d̃/2 → c′ → f
Only possible for c′ = d̃/2. Proceed as in the previous item with exchanged
roles of b′ and c′.

2. The d̃/2 point lies at b′/2

We know that d̃2 = b′2 + c′2.

• a′, b′, d̃/2

⋆ b′ → a′ → d̃/2
Check whether c′ and a′ form a centred rectangular 2D lattice of kind 5.9(d),
b̃ = c′. Then, c̃ = 2a′ ± b̃, whichever is perpendicular to b̃. Finally check
ã = b′ ⊥ c̃.

⋆ b̃→ d̃/2 → ã
Check whether c′ and b′ form a centred rectangular 2D lattice of kind
5.9(d), b̃ = c′. Then, c̃ = 2b′ ± b̃, whichever is perpendicular to b̃. Finally
check ã = a′ ⊥ c̃.

⋆ d̃/2 → b′ → a′

Only possible if b′ = d̃/2. Check whether b′ and c′ form a centred rectan-
gular 2D lattice of kind 5.9(d), b̃ = b′. Then, c̃ = 2c′ ± b̃, whichever is
perpendicular to b̃. Finally check ã = a′ ⊥ c̃.

⋆ d̃/2 → d̃/2 → a′

Check whether b′ and c′ form a centred rectangular 2D lattice of kind 5.9(c),
c̃ = b′ ± a′, whichever is perpendicular to ã = a′. Then, b̃ = b′ ∓ a′.
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⋆ a′ → b′ → d̃/2
Only possible if a′ = b′. Check whether b′ and a′ form a centred rectan-
gular 2D lattice of kind 5.9(d), b̃ = b′. Then, c̃ = 2a′ ± b̃, whichever is
perpendicular to b̃. Finally check ã = c′ ⊥ c̃.

⋆ a′ → d̃/2 → b′

Only possible if a′ = d̃/2 = b′. Check whether a′ and b′ form a centred
rectangular 2D lattice of kind 5.9(d), b̃ = a′. Then, c̃ = 2b′ ± b̃, whichever
is perpendicular to b̃. Finally check ã = c′ ⊥ c̃.

⋆ a′ → d̃/2 → d̃/2
Only possible if a′ = b′ = d̃/2. Check whether b′ and a′ form a centred
rectangular 2D lattice of kind 5.9(c), c̃ = b′±a′, whichever is perpendicular
to ã = c′. Then, b̃ = b′ ∓ a′.

⋆ d̃/2 → a′ → b′

Only possible if a′ = b′ = d̃/2. Check whether a′ and c′ form a centred
rectangular 2D lattice of kind 5.9(d), b̃ = a′. Then, c̃ = 2c′ ± b̃, whichever
is perpendicular to b̃. Finally check ã = b′ ⊥ c̃.

• a′, c′, d̃/2

⋆ a′ → c′ → d̃/2
Check whether b′ and c′ form a centred rectangular 2D lattice of kind
5.9(d), c̃ = b′, b̃ = 2c′ ± c̃, whichever is perpendicular to c̃. Then, check
ã = c′ ⊥ c̃.

Shuffled sequences of these vectors often only appear when certain vectors have
equal lengths. Anyway, the checking of the 2D centred rectanglar symmetry
and the other conditions as in the previous item are performed completely anal-
ogously.

⋆ a′ → d̃/2 → c′, d̃/2 = c′.

⋆ d̃/2 → a′ → c′, d̃/2 = a′ = c′.

⋆ c′ → a′ → d̃/2.

⋆ c′ → d̃/2 → a′.

⋆ d̃/2 → c′ → a′, d̃/2 = c′.

• b′, f , d̃/2

⋆ d̃/2 → d̃/2 → f
Check whether c′ and b′ form a centred rectangular structure of kind 5.9(c).
c̃ = c′ ± b′ (whichever is smaller), b̃ is the other one. The smallest of the
four vectors a′ ± b′, a′ ± c′ being perpendicular to c̃ is (±)ã.

• a′, f , d̃/2

Since always f > d̃/2, if we also encounter a′ < f , a′ together with two times
d̃/2 will constitute the length–sequence of the MDP vectors. If a′ = f we will
have either d̃/2 → d̃/2 → a′ or d̃/2 → d̃/2 → f , the latter being the only
remaining possibility for a′ > f .
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• c′, f , d̃/2

⋆ c′ → d̃/2 → f
Check whether c′ and b′ form a centred rectangular 2D lattice of kind
5.9(d), c̃ = c′, b̃ = 2b′± c̃, whichever is perpendicular to c̃. Set v = b′± c̃,
whichever has equal length to b′. The smallest of the four vectors a′ ± b′,
a′ ± v being perpendicular to c̃ is (±)ã.

⋆ d̃/2 → c′ → f
Only possible if d̃/2 = c′. Like above with b′ ↔ c′.

3. The d̃/2 point lies at (−a′ + b′)/2

Distances:

d̃2

4
=
a′2 + b′2 + c′2

4
− 1

2
a′b′ cosα′ (C.20)

f =
a′2 + b′2 + c′2

4
+

1

2
a′b′ cosα′ (C.21)

Resulting again in f ≥ d̃/2, where the equality holds only for cosα′ = 0, which
corresponds to a sfco structure. Therefore we can take f > d̃/2 for granted in the
sfcm case. We construct the possible combinations:

• a′, b′, d̃/2

⋆ b′ → a′ → d̃/2
b̃ = c′ and ã = b′. Construct n = ã × b̃ and v = a′ · n0, this results
(possibly) in c̃ = 2v. To verify the sfcm structure construct the projection
of a′ onto the (ã, b̃)–plane: w = a′ − v. Then one of the four equalities
b̃ ± 2w = ±ã has to be met.

⋆ b′ → d̃/2 → a′. Only if a′ = d̃/2. Like the first item with b′ ↔ a′.

⋆ b′ → d̃/2 → d̃/2
b̃ = c′. Check whether b′ and a′ form a centred rectangular structure of
kind 5.9(c). c̃ = b′ ± a′ whichever is perpendicular to b̃. ã can be found
through checking the angle between the candidates and b̃, but this is not
necessary.

⋆ d̃/2 → b′ → a′

Only if d̃/2 = b′ = a′. Like the first item with cyclic exchange of vectors.

⋆ d̃/2 → d̃/2 → b′. Like the third item with c′ ↔ a′.

⋆ a′ → b′ → d̃/2. Only if a′ = b′, like first item.

⋆ a′ → d̃/2 → b′. Only if a′ = b′ = d̃/2, like first.

⋆ d̃/2 → a′ → b′. Only if a′ = b′ = d̃/2, like first.

⋆ d̃/2 → d̃/2 → a′. Only if a′ = b′, like third item.

• b′, c′, d̃/2
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⋆ b′ → c′ → d̃/2
b̃ = c′ and c̃ = b′. Check whether c̃ and a′ form a centred rectangular 2D
lattice of kind 5.9(d) and whether b̃ ⊥ c̃. ã = 2a′ ± c̃(⊥ c̃).

Again, for the shuffled sequences, the idetification is performed analogously,
with the possible necessity of certain length–equalities:

⋆ b′ → d̃/2 → c′, d̃/2 = c′.

⋆ d̃/2 → b′ → c′, d̃/2 = c′ = b′.

⋆ c′ → b′ → d̃/2.

⋆ c′ → d̃/2 → b′.

⋆ d̃/2 → c′ → b′, d̃/2 = c′.

• a′, c′, d̃/2

Obviously a′ = b′. a′ = b′ = d̃/2 ⇒ c′ = a′
√

2(1 + cosα′). Since a distinction
between a′ and b′ is not necessary,

⋆ c′ → d̃/2 → a′, see c′ → d̃/2 → b′,

⋆ d̃/2 → c′ → a′, see d̃/2 → c′ → b′.

• f

⋆ d̃/2 → d̃/2 → f
Check whether c′ and b′ form a centred rectangular structure of kind 5.9(c).
c̃ = c′ ± b′ (whichever is smaller), ã′ is the other one. The smallest of the
four vectors a′ ± b′, a′ ± c′ being perpendicular to c̃ is (±)b̃.

⋆ c′ → d̃/2 → f
Check whether c′ and b′ form a centred rectangular 2D lattice of kind
5.9(d), c̃ = c′, ã = 2b′± c̃, whichever is perpendicular to c̃. Set v = b′± c̃,
whichever has equal length to b′. The smallest of the four vectors a′ ± b′,
a′ ± v being perpendicular to c̃ is (±)b̃.

⋆ d̃/2 → c′ → f
Only possible if d̃/2 = c′. Like above with b′ ↔ c′.



Appendix D

Complete List of Minimum Enthalpy
Configurations for the
Square–Shouler Model with λ = 4.5σ

This appendix is dedicated to the detailed, analytical, geometric analysis of the 33 occurring
MECs at T = 0 for the square–shoulder model with shoulder width λ = 4.5σ. The complete
list of MECs can be found in table 9.3 and figure 9.5, which we will refer to repeatedly. The
MECs will be labelled with their (unambiguous) energy per particle e, starting at the high
density/pressure limiting case. We will also use the abbreviations for the Bravais lattices
listed in table G.3.

• e = 236ǫ. The stable structure at very high pressures is the hcp structure, see
figure 9.5(33). The hexagonal unit cell is given by ã = σ, c̃ = 2σ

√
2/3, and w.l.o.g.,

ã = ã x̂ and b̃ = ã(1/2 x̂ +
√

3/2 ŷ). The second basis particle is positioned at
v2 = σ/2 x̂ + σ/(2

√
3) ŷ + c̃/2 ẑ. An fcc structure with nearest neighbours touching

at the hard cores has an energy per particle of 277ǫ.

• e = 243ǫ. The first different structure when lowering the pressure is a ct one, where
the squared base area has an edge length of ã = σ and the centred particle, painted
red in figure 9.5(32), touches the surrounding corner particles at the hard core. This
gives c̃ =

√
2σ.

• e = 229ǫ. Next we obtain an fcc structure [see figure 9.5(31)] where actually no
spheres touch each other at the hard core: The structure is stabilised by touching
shoulders, ∣∣∣∣3ã x̂ +

ã

2
ŷ +

ã

2
ẑ

∣∣∣∣ = λ . (D.1)

Therefore the length of the unit cell is a = λ
√

2
19

≃ 1.46σ
(
≃ 1.03

√
2σ
)
.

• e = 210. This sfcm structure has also no touching cores, although it looks as if it was
the case at first sight: The face centred particle [red in figure 9.5(30)] seems to touch

205
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the surrounding corner particles, and also the lattice vector from one face centred
plane to another, in our description called b̃ (see figure 5.27), seems to have length
σ. But as a matter of fact the structure is determined by the following conditions
derived from touching shoulders (we use w = (ã + c̃)/2 as short notation for the
centred particle position)

∣∣∣−ã + 5b̃ + c̃
∣∣∣ =

∣∣∣−2ã + 5b̃ − 2c̃ + w
∣∣∣ =

=
∣∣∣−3ã + 5b̃ − 2c̃ + w

∣∣∣ =
∣∣∣−2ã + 4b̃ − 3c̃ + w

∣∣∣ = λ , (D.2)

leading to the only solution with positive lengths of

ã =

√
5

38
λ x̂ b̃ =

λ

95

(√
2 x̂ +

√
3 ẑ
)

c̃ =

√
3

38
λ ŷ . (D.3)

Since λ = 4.5σ, b̃ as well as w have a length which is approximately 3% larger than
σ.

• e = 180ǫ. With the ansatz for a ct structure ã = ã x̂, b̃ = ã ŷ, c̃ = c̃ẑ, w =(
ã + b̃ + c̃

)
/2 and the conditions

|4ã + c̃| = |−3c̃ + w| = λ (D.4)

we get ã =
√

21
389
λ ≃ 1.03σ, c̃ =

√
31
199
λ ≃ 1.78σ, resulting also in |w| ≃ 1.15σ. [See

figure 9.5(29).]

• e = 169ǫ. At this energy we find a bcc structure [see figure 9.5(28)], stabilised by
touching shoulders:

∣∣∣∣3ã x̂ +
ã

2
(x̂ + ŷ + ẑ)

∣∣∣∣ = λ ⇒ ã =
2√
51
λ , (D.5)

resulting in a nearest neighbour distance of ≃ 1.09σ.

• e = 138ǫ. Again there are no touching cores, the appearing hex structure [see figure
9.5(27)] is determined through

4ã = 4c̃ = λ ⇒ ã = c̃ =
1

4
λ = 1.125σ . (D.6)

• e = 128ǫ. This sc structure [see figure 9.5(26)] is determined through

|4ã x̂ + ã ŷ| = λ ⇒ ã =
1√
17
λ ≃ 1.09σ . (D.7)
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• e = 115ǫ. At this energy per particle we find a trig structure [see figure 9.5(25)]
with basis vectors given by equation (5.47) From the conditions

∣∣∣−4ã + b̃ + 2c̃
∣∣∣ = |−4ã + c̃| = λ (D.8)

we obtain cos α̃ = 1
3

and ã =
√

3
43
λ ≃ 1.19σ.

• e = 112.3̇ǫ. This three–layer lamellar structure consists of an underlying tric struc-
ture [see figure 9.5(24)]. It is easier to consider the layers first and then their stacking,
therefore we set here

b̃ = b̃ ŷ , c̃ = c̃ cosα ŷ + c̃ sinα ẑ , ã = ax x̂ + ay ŷ + azẑ . (D.9)

A single–layer is built up by b̃ and c̃. From b̃ = c̃ = σ and |3b̃ + 3c̃| = λ we obtain

b̃ = σ ŷ , (D.10a)

c̃ =
λ2 − 18σ2

18σ
ŷ + σ

√

1 − (λ2 − 18σ2)2

324σ4
ẑ =

=
σ

8
ŷ +

3
√

7σ

8
ẑ ≃ 0.125σ ŷ + 0.99σ ẑ (D.10b)

Now we concern ourselves with the stacking of such layers inside one lamella. The
next layer is determined by the second basis vector which satisfies

|ṽ2| = σ , |ṽ2 + 4c̃| = λ , |ṽ2 − 4b̃| = λ , (D.11)

leading to

ṽ2 =
1

4

√
9λ4 − 290λ2σ2 + 2025σ4

λ2 − 36σ2
x̂ −

(
λ2

8σ
− 17σ

8

)
ŷ +

(λ2 − 17σ2)
√
−λ4 + 36λ2σ2

8σ (36σ2 − λ2)
ẑ =

=
3

8

√
31

7
σ x̂ − 13

32
σ ŷ +

351

16

σ

18
√

7
ẑ ≃ 0.79σ x̂ − 0.41σ ŷ + 0.46σ ẑ . (D.12)

The third layer, described by the third basis vector, follows from

|ṽ3 − ṽ2| = σ , |ṽ3 − ṽ2 ± 4c̃| = λ , (D.13)

giving

ṽ3 =
1

2

√
9λ4 − 290λ2σ2 + 2025σ4

λ2 − 36σ2
x̂ =

3

2

√
31

7
σ x̂ ≃ 1.58σ x̂ . (D.14)

To obtain the lamellar arrangement of these triple–layers we need the third unit cell
vector ã. It is defined through

|ã| = λ , |ã + 3b̃ − ṽ3| = λ , |ã + ṽ2 + 2c̃ − 2b̃ − ṽ3| = λ . (D.15)
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These equations yield quite long expressions in σ and λ, if we immediately replace λ
by 9

2
σ we obtain

ã =

(
180947 + 9338

√
403
)
σ

5616
√

217
x̂ +

(
−17173 + 1334

√
403
)
σ

22464
ŷ −

(
10373 − 406

√
403
)
σ

1728
√

7
ẑ

≃ 4.45σ x̂ + 0.43σ ŷ − 0.49σ ẑ . (D.16)

There are no overlaps between particles of one layer and the same layer in the next
lamella.

• e = 96ǫ. With the same ansatz like above (ã = ã x̂, b̃ = ã ŷ, c̃ = c̃ ẑ, w =(
ã + b̃ + c̃

)
/2) and the conditions

|ã + 2c̃| =
∣∣∣ã + 3b̃ + c̃

∣∣∣ = λ (D.17)

we obtain ã = λ√
13

≃ 1.25σ, c̃ =
√

3
13
λ ≃ 2.16σ for this ct structure [see figure

9.5(23)].

• e = 90ǫ. At this energy we obtain a bco structure [see figure 9.5(22)], stabilised by
touching shoulders through ∣∣∣2ã + b̃ + w

∣∣∣ = λ , (D.18)

leading to ã = 2√
35
λ ≃ 1.52σ.

• e = 71.5ǫ. This structure consists of double layers in a lamellar arrangement
[see figure 9.5(21)]; it is a fco structure, where the following conditions lead to its
stabilisation (ã = ã x̂, b̃ = b̃ ŷ, c̃ = c̃ ẑ, ṽ2 = vx x̂ + vy ŷ):

∣∣∣∣∣2b̃ +
b̃ + c̃

2
− c̃

∣∣∣∣∣ =

∣∣∣∣
ã + c̃

2
+ ṽ2 − ã − 2b̃

∣∣∣∣ =

∣∣∣∣
ã + c̃

2

∣∣∣∣ =

=

∣∣∣∣
ã + c̃

2
+ b̃ + ṽ2 − ã

∣∣∣∣ =

∣∣∣∣∣2c̃ +
ã + b̃

2
+ ṽ2 − ã

∣∣∣∣∣ = λ . (D.19)

The resulting lattice parameters are ã = 5
√

3/19λ, b̃ =
√

3/19λ, c̃ = λ/
√

19, vx =

vy = b̃/2. The particles in one layer form a 2D hexagonal structure with 2D lattice
constant equal to the third bco edge length c̃ ≃ 1.03σ, the particles of the second
layer in the same lamella occupy the sites that are shifted about c̃

2
ẑ and have a

distance from the two closest particles of the first layer of c̃.

The reason why we do not describe the structure as a hexagonal one is, that one
would need then four instead of two basis particles, since the next lamella is again
shifted about c̃

2
ẑ, which means that the lamellae face each other with (relatively)

non–shifted layers.
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• e = 58ǫ. In figure 9.5(20) we have an sm structure with one extra basis particle.
One layer is described by the SM unit cell vectors b̃ = bx x̂+ by ŷ and c̃ = c̃x̂, (b̃ ⊥ c̃
and ã ⊥ c̃), having lengths

c̃ = σ , b̃ =
λ

4
. (D.20)

The other layer is described by the extra basis particle (ṽ2 = vx x̂+vy ŷ+vz ẑ), which

touches the four particles of the rectangle spanned by b̃ and c̃ at the hard core. The
determining conditions are

|ṽ2| = |ṽ2 − c̃| =
∣∣∣ṽ2 − b̃

∣∣∣ = σ , (D.21)

and for the arrangement of the next lamella we have to satisfy
∣∣∣ṽ2 + ã + b̃ + c̃

∣∣∣ = ã = λ . (D.22)

These equations lead to

bx =

(
−1593 +

√
2970249

)
σ

4480
, (D.23)

by =

√
1
2

(
13879 − 3

√
2970249

) (
5301 +

√
2970249

)
σ

412160
, (D.24)

vx = −
(
3481 + 3

√
2970249

)
σ

13440
, (D.25)

vy =
59
√

1
2

(
13879 − 3

√
2970249

)
σ

6720
, (D.26)

vz =
σ

2
. (D.27)

Layers of the same colour in figure 9.5(20) have no overlapping particle shoulders.
Differently coloured particles of ascending layers can only overlap their shoulders if
they are “facing” each other [e.g. the red layer of the left lamella and the green layer
of the right one in figure 9.5(20)]. There are 14 such inter–lamellar overlaps.

• e = 56ǫ. The layers of this lamellar structure [see figure 9.5(19)] are identical to
the ones of the previous case, but their arrangement is different: b̃ and c̃ from the
previous structure “exchange” their roles (the layers are slanted around the longer of
the two vectors instead of around the shorter one)

b̃ = σ ŷ , c̃ =
λ

4
ẑ , ṽ2 =

√
48σ2 − λ2

8
x̂ +

σ

2
ŷ +

λ

8
ẑ . (D.28)

For the vector ã we make the ansatz ã = ax x̂ + ay ŷ leading to the coordinates of
the centred particle of this sfcm structure of w = ã + c̃/2. The components of ã are
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determined through

λ =
∣∣∣w + c̃ + 2b̃ − ṽ2

∣∣∣ =
∣∣∣w − 2b̃ − ṽ2

∣∣∣ (D.29)

⇓

ax =
1

4

√
48σ2 − λ2 +

1

64σ

√
−λ4 + 15872σ2λ2 − 65536σ4 ≃ 9.21σ (D.30)

ay = σ − λ2

64σ
≃ 0.68σ (D.31)

Again, only particles of adjacent (or the same) layers can intersect, i.e., the blue ones
in the central lamella of figure 9.5(19) have overlaps with other particles of the same
lamella (102 in total each) and green ones of the right lamella (10). In the figure
the ŷ–vector points in the direction of the lines of touching particles of equal colour
(≃up), the ẑ–vector points along the lines of equally coloured particles from back to
front, and the x̂–vector is chosen to complete a right–handed system. ã points e.g.
from the lowermost green particle of the left lamella to the lowermost one of the right
lamella.

• e = 38.5ǫ. This ct structure [see figure 9.5(18)] has two basis particles and contains
no touching cores. Its dimensions are

ã =
1

2

√√
457 − 17

14
λ ≃ 1.26σ , c̃ =

24 +
√

457

14

√
537 − 25

√
457

7
λ ≃ 8.82σ

(D.32)
with ã = ã x̂, b̃ = ã ŷ, c̃ = c̃ ẑ, w = (ã + b̃ + c̃)/2, and the extra particle is positioned
at

ṽ2 =
ã

2
x̂ +

ã

2
ŷ +

1

4

√
537 − 25

√
457

7
λ ẑ . (D.33)

This follows from the conditions for the extra particle position (ṽ2 = ã
2
x̂+ ã

2
ŷ+h ẑ)

of
|w| =

∣∣∣−ã + 3b̃ + ṽ2

∣∣∣ =
∣∣∣2b̃ − w + ṽ2

∣∣∣ = λ . (D.34)

There are 9 inter–lamellar overlaps [again, particles of layers that “face” each other
in figure 9.5(18)].

• e = 30.5ǫ. This trig structure [figure 9.5(17)] has also two basis particles. Since α̃ is
very small, we see very clearly the hexagonal layers built by p = b̃ − ã and q = c̃ − ã.
These layers are completely determined by the fact, that its 2D basis vectors satisfy
|3p + 2q| = λ, leading to a layer–(and hence lamellar–)internal energy per particle
of 30ǫ. This means the nearest neighbour distance is λ/

√
19 ≃ 1.03σ.

Now these lamellae are stacked in a way, that, first, one pair of adjacent lamellae are
above each other like in a 3D–hexagonal lattice, with exactly one overlap between
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particles of different lamellae. This is visualised in figure 9.5(17), where the middle
and the right lamellae are stacked in this way. The single overlap is visualised by the
yellow particles which touch each other (if belonging to different lamellae), whence
the green particle, surrounded by six yellow ones in the right lamella, exhibits a
shoulder overlap with the yellow particle of the central lamella.

The next layer has no overlaps with the previous one, it is not stacked in the previous
hexagonally, but in a trigonal way, so that the layer is packed as closely as possible
under these conditions. This is again visualised in figure 9.5(17), where the yellow
particles of the left lamella touch the yellow particle of the central lamella at the
shoulder.

For completeness we present the lattice and basis vectors:

ã = ã x̂ , b̃ = ã(cosα x̂ + sinα ŷ) , c̃ = ã
(
cosα x̂ + cosα sinα

1+cosα
ŷ +

√
cosα−cos 2α

1+cosα
ẑ
)
,

(D.35a)

ã = 5

√
19 + 4

√
21

589 − 76
√

21
λ ≃ 8.86σ , cosα =

13 + 8
√

21

50
≃ 0.993 (D.35b)

ṽ2 = 5
2

√
19+4

√
21

589−76
√

21
λ x̂ + 5

2(63+8
√

21)

√
1281−4

√
21

589−76
√

21
λ ŷ + 2 11+

√
21

19+4
√

21

√
506+96

√
21

24339−76
√

21
λ ẑ

(D.35c)

≃ 4.43σ x̂ + 0.26σ ŷ + 0.75σ ẑ . (D.35d)

• e = 30ǫ. This trig structure represents a stacking of exactly the same layers like in
the previous case, but now there are no overlaps between layers. To stack them as
closely as possible under this condition leads to

ã = λ , cosα =
37

38
≃ 0.974 , (D.36)

with no extra basis particles, see figure 9.5(16).

• e = 24.5ǫ. This tric structure [see figure 9.5(15)] with two basis particles consists
of single–layer lamellae which again consist of double stripes. Particles of different
lamellae do not overlap, the stripes are built up by a sequence of particles touching at
the cores (c̃ = σ). The 2D layer lattice is determined through c̃ = σ ẑ, b̃ = bx x̂+by ŷ

and the conditions 2b̃ = λ and |b̃ − 4c̃| = λ.

The extra particle is positioned in the b̃–c̃–plane and satisfies |ṽ2| = σ and |ṽ2 + 4c̃| =

λ. The layers are then stacked according to |ṽ2 − ã − c̃| =
∣∣∣ṽ2 + ã − b̃

∣∣∣ = λ, and
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∣∣∣ṽ2 + ã − b̃ + c̃
∣∣∣ = λ, finally leading to

ã = −103
128
σ x̂ + 313468

√
95+26185

√
3311

3591040
σ ŷ − 3

44888
√

10

√
40241621573 + 8080691

√
314545σ ẑ

≃ −0.80σ x̂ + 1.37σ ŷ − 4.47σ ẑ (D.37a)

b̃ =

(
2σ − 3λ2

32σ

)
x̂ +

1

32

√
640λ2 − 9λ4

σ2
− 4096σ2 ŷ ≃ 0.10σ x̂ + 2.25σ ŷ (D.37b)

c̃ = σ ẑ (D.37c)

ṽ2 =
λ2 − 17σ2

8σ
x̂ +

1

8

√
34λ2 − λ4

σ2
− 225σ2 ŷ ≃ 0.41σ x̂ + 0.91σ ŷ , (D.37d)

where we have again replaced λ by 9
2
σ in the expressions for the components of ã,

because the full expressions are quite long and non–instructive.

• e = 20ǫ. This tric structure with one basis particle consist of single–layer lamellae
(spanned by b̃ and c̃) where all overlaps occur inside each lamella [see figure 9.5(14)].
The three unit vectors obey

|ã| = | − ã + b̃| = | − ã + b̃ − c̃| = |2b̃+3c̃| = |3b̃+2c̃| = |3b̃ − 3c̃| = λ , (D.38)

leading to

ã = λ x̂ = 4.5σ x̂ , (D.39a)

b̃ =
λ

30

(
x̂ +

√
59 ŷ

)
≃ 0.15σ x̂ + 1.15σ ŷ , (D.39b)

c̃ =
λ

45

(
−x̂ +

16√
59

ŷ + 15

√
34

59
ẑ

)
≃ −0.1σ x̂ + 0.21σ ŷ + 1.14σ ẑ . (D.39c)

• e = 18ǫ. The hexagonal single–layer lamellae of this trig structure [see figure 9.5(13)]
are predetermined by the condition, that the long diagonal of the primitive, hexagonal
2D unit cell is λ/2, leading to an energy per particle of 18ǫ inside one lamella. To get
the smallest distance between layers so that there are no extra overlaps we simply
have to set ã = λ. The angle between the trigonal unit cell vectors is given by
cosα = 23/24 ≃ 0.958.

• e = 15ǫ. An energy per particle of 15ǫ has the bco structure visualised in figure
9.5(12), where the conditions

∣∣∣∣∣
ã + b̃ + c̃

2

∣∣∣∣∣ = 3b̃ = 4c̃ = λ (D.40)

are met. The resulting bco parameters are given by

ã =

√
551

12
λ ≃ 8.80σ , b̃ =

1

3
λ = 1.5σ , c̃ =

1

4
λ = 1.125σ . (D.41)
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• e = 10.5ǫ. This tric structure [see figure 9.5(11)] consist of columns that are built
by close–packed double lines:

c̃ = σ ẑ , ṽ2 = σ

√
3

2
ŷ +

σ

2
ẑ . (D.42)

Parallel to the double–line–plane, the adjacent double lines are close–packed at the
shoulders so that ã = |ã − c̃| = |ã − ṽ2| = λ, i.e.,

ã =

√
λ2 − σ2

3
x̂ +

σ

2
√

3
ŷ +

σ

2
ẑ ≃ 4.46σx̂ + 0.29σŷ + 0.5ẑ (D.43)

To determine the last unit cell vector we have to solve b̃ = |b̃ − c̃| = |b̃ − (ã + ṽ2)| =
λ, leading to

b̃ =
√

9λ2 − 3σ2
3λ4 + 2λ2σ2 − σ4 − 2σ

√
9λ6 − 7λ2σ4 + 2σ6

6 (3λ4 + 2λ2σ2 − σ4)
x̂+

+
2λ2σ + 2σ2 +

√
9λ6 − 7λ2σ4 + 2σ6

2
√

3 (λ2 + σ2)
ŷ +

σ

2
ẑ (D.44a)

≃1.27σ x̂ + 4.29σ ŷ + 0.5σ ẑ . (D.44b)

• e = 8ǫ. Here we encounter close–packed double lines forming columns, that are
arranged on an sm lattice to have no inter–columnar overlaps [see figure 9.5(10)].
One possible parametrisation is

c̃ = σ ẑ (D.45a)

ṽ2 = −
√

3

2
σ x̂ +

σ

2
ẑ ≃ −0.87 x̂ + 0.5 ẑ (D.45b)

ã =
3λ2 + 4λσ − σ2

2
√

3λ
x̂ +

λ− σ

2
√

3λ

√
3λ2 − σ2 ŷ ≃ 4.99σ x̂ + 1.74σ ŷ (D.45c)

b̃ =
3λ2 + 2λσ − σ2

2
√

3λ
x̂ − λ+ σ

2
√

3λ

√
3λ2 − σ2 ŷ ≃ 4.41σ x̂ − 2.73σ x̂ . (D.45d)

• e = 6.5ǫ. Again we get double lines [see figure 9.5(9)], but now the particles along
one line do not touch at the hard core, but the shoulders of a particle and the 4th one
in either direction along the line touch each other. Particles of the second line each
touch one of the first line at the hard core, summing up to a total of 13 overlaps in
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one double line per particle.

c̃ =
λ

4
ẑ = 1.125σ ẑ (D.46a)

ṽ2 =
1

2

√
4σ2 − σ4

λ2
x̂ +

σ2

2λ
ẑ ≃ 0.99σ x̂ + 0.11σ ẑ (D.46b)

b̃ =
7λ

√
4λ2σ2 − σ4

32λ2 − 8σ2
x̂ −

√
7

4

√
9λ4 − 4λ2σ2

4λ2 − σ2
ŷ +

λ

8
ẑ ≃ 0.44σ x̂ − 4.44σ ŷ + 0.56σ ẑ

(D.46c)

ã =
63σ2

√
4λ2σ2 − σ4 − 4λ2

(
49
√

4λ2σ2 − σ4 +
√

329
√

36λ4 − 25λ2σ2 + 4σ4
)

126 (4λ3 − λσ2)
x̂+

−
√

36λ6 − 25λ4σ2 + 4λ2σ4
72
√

7λ2 + σ
(
−32

√
7σ + 7

√
47
√

9λ2 − 4σ2
)

63 (36λ4 − 25λ2σ2 + 4σ4)
ŷ+

− σ2

2λ
ẑ ≃ −4.64σ x̂ − 2.64σ ŷ − 0.11σ ẑ . (D.46d)

• e = 4.375ǫ. This bco structure has clusters of 8 particles at each lattice site [see
figure 9.5(8)]. Inside each cluster all shoulders overlap (28), and there are additional
overlaps between the centred cluster and the one in (ã + b̃ + c̃)/2 direction (4) and
the one in (−ã + b̃ + c̃)/2 direction (3). This gives an energy per particle of 35ǫ/8 =
4.375ǫ. An exact, geometric interpretation has not been possible so far, due to the
large number of basis particles and hence determining equations.

• e = 3ǫ. The lines of this columnar bco structure [see figure 9.5(7)] are beaded by
the smallest unit cell vector. There are only overlaps inside each line, the lengths
are:

ã =

√
47

4
λ ≃ 7.71σ , b̃ = λ = 4.5σ , c̃ =

λ

4
= 1.125σ . (D.47)

• e = 2.5ǫ. Here we have clusters of six particles arranged on a tric lattice [see
figure 9.5(6)]. Overlaps only occur inside a cluster, giving an energy per particle of
6·5
2
ǫ
/

6 = 2.5ǫ. The 6–cluster can be understood as built up by parts of two close–
packed hexagonal layers: from one layer take four particles forming a close–packed
rhombus, and from the next layer take two touching particles of which one occupies
the tetrahedral site of three of the rhombus particles and the other one touches in
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total three particles. This gives

ṽ2 =
σ

2
x̂ + σ

√
3

2
ŷ (D.48a)

ṽ3 = −σ
2

x̂ + σ

√
3

2
ŷ (D.48b)

ṽ4 = σ
√

3 ŷ (D.48c)

ṽ5 =
σ√
3

ŷ −
√

2

3
σ ẑ (D.48d)

ṽ6 =
5σ

2
√

3
ŷ −

√
2

3
σ ẑ . (D.48e)

To stack these clusters as closely as possible without inter–cluster overlaps, satisfy

|c̃ + ṽ5 − ṽ2| = |c̃ + ṽ6 − ṽ2| = |c̃ + ṽ3 − ṽ2| = (D.49a)

= |b − ṽ4| = |b̃ − ṽ6| = |b̃ − c̃ − ṽ6| = (D.49b)

= |ã + ṽ3 − ṽ6| = |ã + ṽ4 − b̃ − ṽ5| = |ã + ṽ3 − c̃ − ṽ6| = λ . (D.49c)

The resulting analytic expressions are very lengthy, numerically we get

ã ≃ 4.94σ x̂ − 1.00σ ŷ − 2.30σ ẑ , (D.50a)

b̃ ≃ 3.90σ x̂ + 1.08σ ŷ + 3.70σ ẑ , (D.50b)

c̃ ≃ 3.64σ x̂ − 2.10σ ŷ + 2.97σ ẑ . (D.50c)

• e = 1.75ǫ. On this tric lattice there are clusters of four particles, arranged in a
rhombus with touching hard cores [see figure 9.5(5)]. Overlaps are inside each cluster
(6), and in the direction of the long diagonal of the rhombus, along which the next
rhombus is positioned, there is one extra overlap. The plane of the rhombus is defined
as the ã–b̃–plane, the vectors are

ṽ2 = σ ŷ , ṽ3 = −σ
2
x̂ +

√
3

2
σ ŷ , ṽ4 = −σ

2
x̂ −

√
3

2
σ ŷ , (D.51a)

ã =
√

3σ+
√

4λ2−σ2

2
x̂ ≃ 5.34σ x̂ , (D.51b)

b̃ =
√

3σ+
√

4λ2−σ2

4
x̂ + 3σ+

√
3
√

4λ2−σ2

4
ŷ ≃ 2.67σ x̂ + 4.62σ ŷ , (D.51c)

c̃ =
λ2(5

√
3σ+3

√
4λ2−σ2)−σ2(3

√
3σ+5

√
4λ2−σ2)

12λ2−4σ2 x̂ +
(λ2+σ2)(σ+

√
12λ2−3σ2)

12λ2−4σ2 ŷ+ (D.51d)

+

q

12λ6+5λ4σ(−7σ+
√

12λ2−3σ2)−3σ5(σ+
√

12λ2−3σ2)+2λ2σ3(7σ+
√

12λ2−3σ2)√
2(3λ2−σ2 ẑ ≃

≃ 2.80σ x̂ + 1.47σ ŷ + 4.06σ ẑ . (D.51e)

• e = 1.5ǫ. One needs eight basis particles to describe this structure of two different
kinds of 4–clusters, with no overlaps between particles of different clusters, arranged
on a triclinic lattice [see figure 9.5(4)]. Again, the large number of eight basis particles
prevents an exact, analytic investigation.
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• e = ǫ. Disjoint 3–clusters are the basis for this sfcm structure [see figure 9.5(3)].
The clusters form equilateral triangles with touching hard cores, the slanting of the
clusters and the unit cell, strongly connected, has not been solved yet.

• e = 0.5ǫ. On this sm lattice there are disjoint dimers on the lattice sites. The two
particles forming the dimer touch each other at the hard core, the packing of the
dimers is determined by

|ã + c̃ + ṽ2| =
∣∣∣ã − b̃ + c̃ + ṽ2

∣∣∣ = |c̃ + ṽ2| =

|c̃| = |b̃| =
∣∣∣−b̃ + ṽ2

∣∣∣ =
∣∣∣−b̃ + c̃ + ṽ2

∣∣∣ = |ã + ṽ2| = λ , (D.52)

leading to

ã =
10λ6σ4−7λ4σ6+λ2σ8+2λ2σ3

√
(2λ2−σ2)3(3λ2−σ2)(λ2+σ2)
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·

·
√
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√

(2λ2−σ2)3(3λ2−σ2)(λ2+σ2)

3λ8+2λ6σ2−λ4σ4 x̂

≃5.23σ x̂ , (D.53a)

b̃ =λ ŷ = 4.5σ ŷ , (D.53b)

c̃ =
6λ6σ+λ4σ3−4λ2σ5+σ7−2λ2

√
(2λ2−σ2)3(3λ2−σ2)(λ2+σ2)

6σ(16λ6−6λ4σ2−3λ2σ4+σ6)
·

·
√

72λ8σ2+39λ6σ4−30λ4σ6+3λ2σ8−6λ2σ3
√

(2λ2−σ2)3(3λ2−σ2)(λ2+σ2)
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2λ
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√
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√
6λ6+λ4σ2−4λ2σ4+σ6

√
6λ

ẑ =

≃− 1.83σ x̂ + 2.14σ x̂ + 3.51σ ẑ , (D.53c)

ṽ2 = − 1
2

√
24λ6σ2+13λ4σ4−10λ2σ6+σ8−2σ3

√
(2λ2−σ2)3(3λ2−σ2)(λ2+σ2)

9λ6+6λ4σ2−3λ2σ4 x̂+
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2λ
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− 1√
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6λ6σ2+λ4σ4−4λ2σ6+σ8+
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(2λ2−σ2)3(3λ2−σ2)(λ2+σ2)

λ2(3λ2−σ2)(λ2+σ2)

≃− 0.78σ x̂ + 0.11σ ŷ − 0.62σ ẑ . (D.53d)

• e = 0. At very low pressure there occurs again a close–packing at the shoulders, as
an example the corresponding fcc lattice is drawn in figure 9.5(1). ã =

√
2λ.



Appendix E

Selected Analytic Expressions in
Continuum Theory

For the calculation of the lamellar energy in the square–shoulder model we split up the
internal energy per particle of equation (9.24) into intra– and inter–lamellar contributions
(see 9.3.3) and get

eintra

ε
= −1

2
+
πρeff

2
·





Dλ2 − D3

6
D ≤ λ

4

3
λ3 − λ4

2D
D > λ

, (E.1)

plotted in figure E.1 (D is the lamella thickness, see figure E.1). One can see, that the
linear approximation used in section 9.3.3 is quite good for D . λ/2, the error is less than
5%.

For the interaction energy between two different layers having distance ℓ we get

einter(ℓ) =
επρeff

24D
·
{

−D4 + 4D3ℓ− 6D2
`

ℓ2 − λ2
´

+ 4D(ℓ− λ)2(ℓ+ 2λ)2 + (ℓ− λ)3(ℓ+ 3λ) ℓ < λ

(D − ℓ− 3λ)(D − ℓ+ λ)3 ℓ ≥ λ
. (E.2)

The total energy per particle is therefore the sum of eintra and all possible inter lamellar
interactions, determined by the interaction range λ. The possible lamellae distances are
ℓ = nL (L being the nearest lamellar distance and n ∈ N), those contributing to the
interaction energy are the ones satisfying ℓ < D+ λ , which results in the maximum value
of n as

N =

⌊
D + λ

L

⌋
, (E.3)

where ⌊ ⌋ denotes the Gaußian floor function. With this we finally get

e = eintra + 2
N∑

n=1

einter(nL) . (E.4)
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Figure E.1:
(
e⋆intra + 1

2

)
/λ⋆3 (red) for a lamella with effective density

ρ⋆eff =
√

2 in dependence of the ratio D/λ. The dashed green line is the
asymptote for large values of D/λ (2

√
2π/3 ≃ 2.96, the value for the

homogeneous distribution), the dashed blue one is the linearised function
for small values.



Appendix F

Influence of a Cutoff on the Hard
Core Yukawa Model

To rule out the influence of the chosen cutoff radius in chapter 10 we further investigated
the low pressure/packing fraction regime. It is clear that at very low pressure the particles,
that are already in an fcc phase, will adjust the nearest neighbour distance in a way to
become exactly equal to the cutoff radius rcut (the structure is termed fcccut). In this
way the interaction energies between all particles vanish, the remaining contribution to
the enthalpy being the volume term. Since the density is constant, ρcut =

√
2/r3

cut, h
⋆

is just a straight line in the h⋆–P ⋆–diagram; we obtain an unphysical second order phase
transition between fcccut and fcc. The regime where this transition occurs is visualised
in figure F.1. As can be seen there, the fcccut–phase only occurs below packing fractions

 0

 0.5

 1

 1.5

 2

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

η

κ⋆

fcc

bcc

fcccut

Figure F.1: The T = 0 phase diagram as in figure 10.2, but with a loga-
rithmic scale on the packing fraction–axis. The dashed line indicates the
limit below which we just obtain an fcc structure with nearest neighbour
distance being equal to the pair potential cutoff rcut.
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which are three to four orders of magnitude smaller than the first order fcc–bcc–transition
packing fractions (note that the difference in ηfcc and ηbcc at the transition is too small
to be visible in either figure 10.2 or figure F.1). Therefore we can assume, that the cutoff
distance has no significant influence on the results for the other phase transitions.



Appendix G

Tables

Table G.1: Critical point location (ρ⋆c and T ⋆c,RPM) and fitted critical expo-
nent β for various values of ξ2 and α⋆ for the charged Kac model (chapter
7). For ξ2 < 0.1 the fitted data for β tends to be unreliable.

ξ2 α⋆ ρ⋆c T ⋆c,RPM β

100. 1.8 0.314445 65.2809 0.402347
0.5 0.25857 107.189 0.455282
0.2 0.25075 112.192 0.487867
0.15 0.25004 112.633 0.492727
0.14 0.24992 112.706 0.49385
0.1 0.249525 112.95 0.496725
0.01 0.249 113.306 0.499831

11.1̇ 1.8 0.31358 7.2724 0.402147
0.5 0.258205 11.9303 0.458607
0.1 0.2492 12.5707 0.498284
0.01 0.248795 12.5988 0.497799

1. 1.8 0.299915 0.678068 0.407351
0.5 0.25156 1.10175 0.464236
0.1 0.243085 1.16016 0.497945
0.01 0.245 1.16723 0.499645

0.6 1.8 0.28944 0.417367 0.410648
0.5 0.24631 0.673785 0.465365
0.1 0.23822 0.70923 0.497732
0.01 0.23785 0.710791 0.497532

0.36 1.8 0.27159 0.261159 0.411219
0.5 0.23748 0.417098 0.465964
0.1 0.23004 0.438768 0.496376
0.01 0.22 0.443552 0.499275

221
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0.25 1.8 0.251165 0.189923 0.412711
0.5 0.22772 0.299591 0.472473
0.1 0.221025 0.314937 0.498725
0.01 0.22 0.323474 0.494371

0.16 1.8 0.21023 0.132612 0.420454
1. 0.217574 0.178782 0.432193
0.5 0.20959 0.203843 0.461918
0.4 0.20787 0.207481 0.478158
0.3 0.20635 0.210442 0.487022
0.2 0.20515 0.212634 0.495717
0.17 0.20486 0.213131 0.497272
0.16 0.20478 0.213279 0.497793
0.155 0.20474 0.21335 0.497941
0.15 0.2047 0.213419 0.496929
0.1 0.20436 0.213986 0.499349
0.05 0.204158 0.214331 0.498864
0.01 0.204089 0.214442 0.49998

0.125 1.8 0.17388 0.111322 0.416685
0.5 0.19524 0.166978 0.473493
0.1 0.19129 0.175065 0.497302
0.01 0.190728 0.175661 0.490538

0.1 1.8 0.124975 0.0974366 0.417448
0.5 0.17843 0.141048 0.472271
0.1 0.176125 0.147629 0.49581
0.01 0.1788 0.14795 0.49751

0.075 1.8 0.0475 0.0874404 0.482061
0.5 0.149 0.116013 0.473831
0.1 0.150085 0.121007 0.490675
0.01 0.1496 0.121242 0.487587

0.06 1.8 0.028575 0.0843423 0.524375
0.5 0.11785 0.102144 0.47329
0.1 0.12291 0.106031 0.489163
0.01 0.124 0.106218 0.467265

0.05 1.8 0.023315 0.0828916 0.523741
0.5 0.08537 0.0941456 0.467864
0.1 0.09489 0.0970958 0.481766
0.01 0.09592 0.0972545 0.485004

0.04 1.8 0.02011 0.0817199 0.519083
0.5 0.048255 0.0882476 0.487491
0.1 0.05781 0.0899971 0.480583
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0.01 0.058 0.0900909 0.456845

0.03 1.8 0.018 0.0807444 0.586359
0.5 0.0295 0.0845853 0.551899
0.1 0.033 0.0854693 0.530362
0.01 0.0328229 0.0855167 0.515019

0.02 0.01 0.0225402 0.0825501 0.525541

0.01 1.8 0.01532 0.0791961 0.515201
0.5 0.01714 0.0801528 0.525892
0.1 0.0174975 0.0803368 0.528195
0.01 0.0175 0.0803464 0.53093
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Table G.2: CP data of the Kac–Yukawa model (chapter 8) for three
different values of α⋆ and a sequence of approximately logarithmically
decreasing values of ξ2. The CPs are given relative to the CP of the
reference system, ρ⋆,refc ≃ 0.314496596966 and T ⋆,refc,Y ≃ 1.21869174843.

α⋆ = 0.1 α⋆ = 0.01 α⋆ = 0.0001

ξ2 ρ⋆
c − ρ⋆,ref

c T ⋆
c,Y − T ⋆,ref

c,Y ρ⋆
c − ρ⋆,ref

c T ⋆
c,Y − T ⋆,ref

c,Y ρ⋆
c − ρ⋆,ref

c T ⋆
c,Y − T ⋆,ref

c,Y

100. -0.0648714 683.285 -0.0652806 684.815 -0.0652835 684.831

60. -0.0647966 409.989 -0.0652012 410.907 -0.0652034 410.916

30. -0.0646309 205.016 -0.065055 205.476 -0.0650642 205.48

20. -0.0644901 136.692 -0.064895 136.999 -0.0648971 137.002

10. -0.064012 68.3679 -0.064418 68.5215 -0.0644224 68.523

6. -0.0634088 41.0382 -0.0638136 41.1306 -0.063817 41.1315

3. -0.0619711 20.5408 -0.0623789 20.5873 -0.062382 20.5878

2. -0.0605822 13.7082 -0.0609867 13.7394 -0.060989 13.7398

1. -0.0567923 6.87532 -0.0571936 6.89127 -0.0571957 6.89143

0.6 -0.0524863 4.14167 -0.052885 4.15151 -0.0528874 4.15161

0.3 -0.0442885 2.09017 -0.0446784 2.09545 -0.0446814 2.09551

0.2 -0.0384683 1.40522 -0.0388163 1.409 -0.0388199 1.40904

0.1 -0.0279289 0.717649 -0.0282894 0.719961 -0.0282913 0.719984

0.06 -0.0207861 0.440149 -0.0211007 0.441895 -0.0211024 0.441913

0.03 -0.0129946 0.228779 -0.0132933 0.230142 -0.0132949 0.230156

0.02 -0.00959185 0.156731 -0.00988317 0.15799 -0.00988515 0.158004

0.01 — — -0.00574965 0.0838376 -0.00575821 0.0838508

0.006 -0.00354341 0.0517463 -0.00378895 0.0529604 -0.0037905 0.0529743

0.005 -0.0030154 0.0438013 — — — —

0.004 -0.00247368 0.0357202 — — — —

0.003 -0.00187178 0.0274542 -0.00209814 0.0286958 -0.00209961 0.0287117

0.002 -0.00129957 0.0189216 -0.00148375 0.020165 -0.00148592 0.0201825

0.001 -0.000652268 0.00994844 -0.000793683 0.0111399 -0.000795359 0.0111608

0.0006 -0.000388833 0.00614903 -0.000494333 0.00724959 -0.000496114 0.00727367

0.0003 -0.000190937 0.00316584 -0.000256705 0.0040876 -0.000266882 0.00411676

0.0002 -0.00012589 0.00213565 -0.000172315 0.00293739 -0.000181582 0.00296995

0.0001 -6.19833·10−5 0.00108206 -7.9269·10−5 0.00167985 -8.8507·10−5 0.00171875

6.·10−5 -3.69059·10−5 0.000653143 -4.22832·10−5 0.00111568 -3.98476·10−5 0.00115938

3.·10−5 -1.83324·10−5 0.000328206 -1.57087·10−5 0.000638829 -7.58478·10−6 0.000688355

2.·10−5 -1.21929·10−5 0.000219248 -7.54543·10−6 0.000458973 -2.65197·10−6 0.000511003

1.·10−5 -6.07735·10−6 0.000109884 -7.62248·10−7 0.000257024 1.65887·10−6 0.000310781

6.·10−6 -3.64512·10−6 6.61426·10−5 9.43259·10−7 0.000165146 3.05862·10−6 0.000217663

3.·10−6 -1.82099·10−6 3.32468·10−5 1.31365·10−6 8.85016·10−5 3.74044·10−6 0.000136055

2.·10−6 -1.21357·10−6 2.22746·10−5 1.13475·10−6 6.0756·10−5 3.79045·10−6 0.000104112

1.·10−6 -6.02284·10−7 1.12276·10−5 7.264·10−7 3.14344·10−5 3.60201·10−6 6.66448·10−5

6.·10−7 -3.6368·10−7 6.90756·10−6 4.78904·10−7 1.92849·10−5 3.36429·10−6 4.85224·10−5

3.·10−7 -1.81643·10−7 3.61375·10−6 2.57422·10−7 9.90556·10−6 3.01371·10−6 3.19096·10−5

2.·10−7 -1.2097·10−7 2.51574·10−6 1.75894·10−7 6.73405·10−6 2.83855·10−6 2.51353·10−5

1.·10−7 -5.88214·10−8 1.35468·10−6 9.17152·10−8 3.47597·10−6 2.54197·10−6 1.68278·10−5

6.·10−8 -3.60338·10−8 9.78465·10−7 5.48238·10−8 2.25417·10−6 2.35006·10−6 1.26999·10−5

3.·10−8 -1.78339·10−8 6.4904·10−7 2.77908·10−8 1.28801·10−6 2.11001·10−6 8.70324·10−6

2.·10−8 -1.17674·10−8 5.39231·10−7 1.86872·10−8 9.65465·10−7 1.94655·10−6 7.0047·10−6

1.·10−8 -4.22122·10−9 3.66405·10−7 1.10194·10−8 5.79658·10−7 1.6212·10−6 4.79046·10−6

6.·10−9 -3.27422·10−9 3.85498·10−7 5.88572·10−9 5.13466·10−7 1.25431·10−6 3.70725·10−6

3.·10−9 -1.45426·10−9 3.52556·10−7 3.12768·10−9 4.1655·10−7 7.04709·10−7 2.56286·10−6

2.·10−9 -8.47615·10−10 3.41575·10−7 2.20746·10−9 3.8424·10−7 4.55198·10−7 2.05677·10−6

1.·10−9 1.23866·10−9 2.67576·10−7 2.76642·10−9 2.8891·10−7 2.17568·10−7 1.33878·10−6
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Table G.3: Standard abbreviations for the 14 Bravais lattices used in this
thesis. The seven crystal systems are separated by double lines.

Bravais lattice abbreviation

simple cubic sc
body centred cubic bcc
face centred cubic fcc

hexagonal hex

trigonal (rhombohedral) trig

simple tetragonal st
centred tetragonal ct

simple orthorhombic so
single face centred orthorhombic sfco
body centred orthorhombic bco
face centred orthorhombic fco

simple monoclinic sm
single face centred monoclinic sfcm

triclinic tric

Table G.4: Stable crystal structures for λ⋆ = 1.5 in the SSM (see sec-
tion 9.2.1). For abbreviations of Bravais lattices see table G.3, lattice
parameters are explained in section 5.3. nb is the number of particles in
the basis, the first one is always located at (0, 0, 0), i.e., the lattice point.
The general shape is indicated by the abbreviations for cluster, columnar,
lamellar, and compact structures. Energy per particle, number density,
enthalpy per particle, and pressure are given in standard reduced units
(see section 2.8).

structure stable up to
lattice nb additional basis vectors shape e⋆ ρ⋆ h⋆ P ⋆

fcc ã⋆ = 2.12132 1 — clu 0 0.419026 1.4673 0.022722

bco

ã⋆ = 2.3979

b̃⋆ = 1.5000
c̃⋆ = 14

1 — col 1 0.556038 4.87251 2.15327

fco

ã⋆ = 2.6105

b̃⋆ = 2.5855
c̃⋆ = 1.5811

2 (0.65264, −0.64639, 0.39528) com 2 0.749611 9.41777 5.56044

hex
ã⋆ = 1.0000
c̃⋆ = 1.1251

1 — lam 4 1.02633 13.4373 9.68586

sfco

ã⋆ = 3.0907

b̃⋆ = 1.1285
c̃⋆ = 1.0009

2 (0.65750, −0.56323, 0.50046) com 5 1.14798 18.2397 15.1988

bco

ã⋆ = 1.3229

b̃⋆ = 1.1180
c̃⋆ = 14

1 — com 7 1.35225 52.6443 61.7223

fcc ã⋆ = 1.41421 1 — com 9 1.41421 ∞ ∞
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Table G.5: Stable crystal structures for λ⋆ = 4.5 in the SSM (see sec-
tion 9.2.2). For abbreviations of Bravais lattices see table G.3, lattice
parameters are explained in section 5.3 (hcp, the last strucuture, is not a
Bravais lattice but the hexagonal close–packed structure, see section 5.5).
nb is the number of particles in the basis, the first one is always located
at (0, 0, 0), i.e., the lattice point. The general shape is indicated by the
abbreviations for cluster, columnar, lamellar, and compact structures.
Energy per particle, number density, enthalpy per particle, and pressure
are given in standard reduced units (see section 2.8); cf. table 9.3 and
appendix D for more explanations.

structure stable up to
lattice nb additional basis vectors shape e⋆ ρ⋆ h⋆ P ⋆

fcc ã⋆ = 6.36396 1 — clu 0 0.015519 1.4673 0.022722

tric

ã⋆ = 5.3194

b̃⋆ = 4.5252
c̃⋆ = 4.5252
ϕ̃⋆ = 89.6◦

ψ̃⋆ = 131.1◦

ϑ̃⋆ = 51.3◦

2 (−0.81024, 0.10954, −0.66177) clu 1/2 0.0235413 3.10122 0.0612361

sfcm

ã⋆ = 8.8652

b̃⋆ = 4.9539
c̃⋆ = 5.43622
α̃⋆ = 59.7◦

3
(−0.53066, 0.86848, −0.12650)
(−0.28185, 0.31369, −0.95327)

clu 1 0.0291432 4.30468 0.0963088

tric

ã⋆ = 8.9400

b̃⋆ = 5.5029
c̃⋆ = 5.4349
ϕ̃⋆ = 84.3◦

ψ̃⋆ = 88.5◦

ϑ̃⋆ = 61.1◦

8

( 3.70338, 2.09473, 1.46530)
(−0.50698, −0.31596, −0.87883)
( 4.08308, −2.64192, 1.64060)
( 3.59316, 0.34289, −2.68731)
(−1.01266, 0.31558, −0.12157)
( 4.25481, −0.80332, −2.47722)
(−0.83304, −0.71614, 0.10106)

clu 3/2 0.0343386 5.04542 0.121745

tric

ã⋆ = 5.3938

b̃⋆ = 5.3938
c̃⋆ = 5.0506
ϕ̃⋆ = 61.0◦

ψ̃⋆ = 30.0◦

ϑ̃⋆ = 57.4◦

4
(−0.87634, −0.53172, 0.02374)
(−0.02621, 1.03954, −0.14489)
(−0.93725, 0.57784, −0.23493)

clu 7/4 0.0369436 5.76683 0.148396

tric

ã⋆ = 5.5623

b̃⋆ = 5.5623
c̃⋆ = 5.5337
ϕ̃⋆ = 69.8◦

ψ̃⋆ = 29.2◦

ϑ̃⋆ = 55.3◦

6

(1.02837, −0.68225, −0.45641)
(0.94629, 0.31420, −0.64168)
(0.14898, 0.99795, −0.05266)
(1.09183, 0.38183, 0.34536)
(0.81156, −0.56895, 0.51702)

clu 5/2 0.0454251 6.92969 0.201219

sfcm

ã⋆ = 7.7998

b̃⋆ = 1.1250
c̃⋆ = 4.5
α̃⋆ = 81.6◦

1 — col 3 0.0512049 9.94791 0.355767

bco

ã⋆ = 6.5090

b̃⋆ = 6.3750
c̃⋆ = 64

8

( 0.18886, −0.76927, 0.77087)
( 1.08823, −0.80489, 1.41865)
( 0.31751, 0.87410, 0.80528)
( 0.39066, −0.03966, 1.55730)
(−0.38677, 0.03757, 0.93309)
( 1.07127, 0.74535, 1.53852)
( 0.96906, 0.00302, 0.70122)

clu 35/8 0.0638386 14.9456 0.674811
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tric

ã⋆ = 5.4310

b̃⋆ = 4.5000
c̃⋆ = 1.1250
ϕ̃⋆ = 65.9◦

ψ̃⋆ = 110.6◦

ϑ̃⋆ = 85.7◦

2 (−0.87315, 0.51230, −0.01753) col 13/2 0.0799011 17.6651 0.892101

tric

ã⋆ = 5.2539

b̃⋆ = 4.5852
c̃⋆ = 1.0000
ϕ̃⋆ = 64.5◦

ψ̃⋆ = 113.0◦

ϑ̃⋆ = 85.0◦

2 (−0.76073, 0.33613, −0.55526) col 8 0.0923016 29.7823 2.01054

tric

ã⋆ = 4.5000

b̃⋆ = 4.5000
c̃⋆ = 1.0000
ϕ̃⋆ = 71.9◦

ψ̃⋆ = 115.3◦

ϑ̃⋆ = 85.2◦

2 (0.00617, 0.97025, 0.41969) col 21/2 0.104269 30.4709 2.08234

bco

ã⋆ = 8.8025

b̃⋆ = 1.5000
c̃⋆ = 14

1 — col(lam) 15 0.134597 38.5818 3.17405

trig
ã⋆ = 4.5000
α̃⋆ = 16.6◦

1 — lam 18 0.154216 41.9457 3.69282

tric

ã⋆ = 4.5000

b̃⋆ = 1.1634
c̃⋆ = 1.1609
ϕ̃⋆ = 83.8◦

ψ̃⋆ = 106.3◦

ϑ̃⋆ = 79.6◦

1 — lam 20 0.168271 49.7316 5.00296

tric

ã⋆ = 4.6008

b̃⋆ = 2.2500
c̃⋆ = 1.0000
ϕ̃⋆ = 78.9◦

ψ̃⋆ = 146.5◦

ϑ̃⋆ = 83.2◦

2 (0.13009, 0.92388, 0.36113) lam(col) 49/2 0.198281 54.4411 5.93677

trig
ã⋆ = 4.5000
α̃⋆ = 13.2◦

1 — lam 30 0.242901 85.4955 13.4799

trig
ã⋆ = 8.8604
α̃⋆ = 6.7◦

2 (−4.37006, −0.25502, −0.14757) lam 61/2 0.245109 90.5729 14.7244

ct
ã⋆ = 1.2656
c̃⋆ = 8.8202

2 (−0.62117, 0.62295, −0.62661) lam 77/2 0.282765 105.305 18.8902

sfcm

ã⋆ = 9.2996

b̃⋆ = 1.0000
c̃⋆ = 1.125
α̃⋆ = 86.3◦

2 (0.69634, 0.45321, 0.56157) lam 56 0.383128 127.765 27.4952

sm

ã⋆ = 4.5125

b̃⋆ = 1.1286
c̃⋆ = 1.0000
α̃⋆ = 86.8◦

2 (−0.74521, −0.50455, −0.47822) lam 58 0.394111 130.992 28.767

fco

ã⋆ = 8.9675

b̃⋆ = 1.7891
c̃⋆ = 1.0330

2 (−0.89248, 0.00270, −0.51646) lam 143/2 0.483543 196.917 60.6447

bcc ã⋆ = 1.5220 1 — com 90 0.567211 223.299 75.6087

ct
ã⋆ = 1.2481
c̃⋆ = 2.1617

1 — com 96 0.593946 229.183 79.1032

tric

ã⋆ = 4.5054

b̃⋆ = 1.0029
c̃⋆ = 1.0010
ϕ̃⋆ = 84.7◦

ψ̃⋆ = 121.6◦

ϑ̃⋆ = 79.7◦

3
(−1.56283, 0.14388, −0.17068)
(−0.69498, 0.45863, −0.55764)

lam 337/3 0.676968 236.852 84.2951
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trig
ã⋆ = 1.1887
α̃⋆ = 70.5◦

1 — com 115 0.691783 255.127 96.9377

sc ã⋆ = 1.0946 1 — com 128 0.762525 295.358 127.615

hex
ã⋆ = 1.1250
c̃⋆ = 1.1250

1 — com 138 0.810983 304.219 134.801

bcc ã⋆ = 1.2612 1 — com 169 0.996907 372.935 203.304

ct
ã⋆ = 1.0336
c̃⋆ = 1.7765

1 — com 180 1.05374 410.006 242.368

sfcm

ã⋆ = 1.6323

b̃⋆ = 1.0324
c̃⋆ = 1.26439
α̃⋆ = 50.8◦

1 — com 210 1.2118 542.216 402.58

fcc ã⋆ = 1.4600 1 — com 229 1.28531 550.261 412.919

ct
ã⋆ = 1.0607
c̃⋆ = 1.3229

1 — com 243 1.34387 645.109 540.383

hcp ã⋆ = 1.41421 1 — com 263 1.41421 ∞ ∞
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Table G.6: Stable crystal structures for λ⋆ = 10 in the SSM (see sec-
tion 9.2.3). For abbreviations of Bravais lattices see table G.3, lattice
parameters are explained in section 5.3. nb is the number of particles in
the basis, the first one is always located at (0, 0, 0), i.e., the lattice point.
The general shape is indicated by the abbreviations for cluster, columnar,
lamellar, and compact structures. Energy per particle, number density,
enthalpy per particle, and pressure are given in standard reduced units
(see section 2.8).

structure stable up to
lattice nb additional basis vectors shape e⋆ ρ⋆ h⋆ P ⋆

fcc ã⋆ = 14.1421 1 — clu 0 0.00141421 1.2271 0.00173538

tric

ã⋆ = 10.9382

b̃⋆ = 10.0478
c̃⋆ = 10.0478
ϕ̃⋆ = 63.1◦

ψ̃⋆ = 29.0◦

ϑ̃⋆ = 58.3◦

2 (0.91005, −0.36001, −0.26719) clu 1/2 0.00238672 2.25868 0.00419747

tric

ã⋆ = 10.7998

b̃⋆ = 10.7998
c̃⋆ = 10.5292
ϕ̃⋆ = 60.3◦

ψ̃⋆ = 24.8◦

ϑ̃⋆ = 57.5◦

3
(−0.81767, 0.51135, −0.30929)
(−0.77857, −0.47770, 0.40698)

clu 1 0.00333482 3.0507 0.0068387

fcc ã⋆ = 15.3659 4
( 0.48070, 0.62031, −0.61979)
(−0.07602, 1.18268, 0.00645)
( 0.55650, 0.62573, 0.56315)

clu 3/2 0.00441009 5.58967 0.0180358

tric

ã⋆ = 11.2657

b̃⋆ = 11.0332
c̃⋆ = 11.0196
ϕ̃⋆ = 60.7◦

ψ̃⋆ = 90.0◦

ϑ̃⋆ = 59.4◦

6

(0.57717, 0.65987, −0.57059)
(0.25561, −0.33266, −0.96606)
(1.23585, 0.03277, −0.06596)
(1.32367, −0.36376, −1.01186)
(0.32746, 0.53230, −1.59208)

clu 5/2 0.00583745 7.43354 0.0287993

tric

ã⋆ = 11.4788

b̃⋆ = 11.2096
c̃⋆ = 11.0512
ϕ̃⋆ = 64.2◦

ψ̃⋆ = 24.7◦

ϑ̃⋆ = 58.6◦

8

(−0.72659, 0.82808, −1.11119)
(−0.59459, −0.73681, 0.36437)
( 0.07109, −0.82039, −1.08788)
(−0.67155, −0.18649, −0.79050)
( 0.22541, 0.26625, −1.13579)
( 0.27800, −0.97247, −0.09709)
(−1.22806, 0.50112, −0.28383)

clu 7/2 0.00732147 9.52129 0.0440847

tric

ã⋆ = 11.8731

b̃⋆ = 11.2962
c̃⋆ = 10.9053
ϕ̃⋆ = 64.3◦

ψ̃⋆ = 94.8◦

ϑ̃⋆ = 56.9◦

9

(0.82474, 0.95319, −0.12807)
(1.44922, 0.46266, −0.75872)
(1.72420, 0.64955, 0.18621)
(0.88737, −0.40089, −0.22773)
(0.16289, 1.42436, −0.97000)
(1.38441, −0.20856, 0.66999)
(1.88014, −0.28258, −0.24801)
(0.46096, 0.47088, −0.92498)

clu 37/9 0.00814847 11.9036 0.0634965
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sfcm

ã⋆ = 19.2684

b̃⋆ = 15.7988
c̃⋆ = 12.7306
α̃⋆ = 38.6◦

13

(0.44755, 0.91801, −0.11148)
(1.48971, −0.84034, 0.51235)
(1.26925, 0.38519, 0.32560)
(0.50674, −0.72028, 0.78984)
(0.94630, −0.87813, −1.43206)
(0.99028, 0.00000, 1.33712)
(0.92942, −1.27158, −0.49641)
(1.40687, −0.36286, −0.37622)
(1.14382, 0.59344, −0.77968)
(0.02512, −1.12245, −0.02828)
(0.50846, −0.20473, −0.83640)
(0.31345, 0.50670, 0.80312)

clu 6 0.0107556 19.0931 0.140824

tric

ã⋆ = 11.9793

b̃⋆ = 11.7424
c̃⋆ = 11.6522
ϕ̃⋆ = 82.5◦

ψ̃⋆ = 136.4◦

ϑ̃⋆ = 49.3◦

17

(−1.02532, −0.19210, 0.00573)
(−1.19948, 0.31935, −1.52332)
(−0.55120, 0.18007, 0.81471)
( 0.70664, 0.73255, 0.36108)
( 0.91136, −0.41257, −0.06429)
( 1.35125, 0.96258, −0.89366)
(−0.31342, 0.27567, −1.05693)
(−0.04768, 0.93504, −0.35263)
(−0.57891, −0.80934, 0.66850)
( 0.52824, −0.69801, −0.94550)
(−0.47050, −0.68437, −0.82459)
( 0.35283, 0.94461, −1.43816)
(−1.40967, −0.69228, −1.16808)
( 0.62834, 0.29371, −0.72043)
( 0.32264, −0.29913, 0.89808)
(−1.09468, 0.75042, −0.56192)

clu 151/17 0.0137918 30.2684 0.294953

tric

ã⋆ = 11.9429

b̃⋆ = 11.9410
c̃⋆ = 11.6799
ϕ̃⋆ = 76.3◦

ψ̃⋆ = 137.2◦

ϑ̃⋆ = 53.9◦

22

( 0.16829, −1.29092, 1.11928)
( 0.89924, 0.51697, −0.01372)
( 0.98247, −1.51476, −0.00191)
( 0.78242, 0.27645, 1.93716)
(−0.24968, −0.98180, 2.16378)
( 1.82481, 0.12528, −0.15331)
( 2.03967, 0.64811, 1.24421)
( 1.80364, −0.91620, −0.02214)
( 0.49318, −1.65921, 2.30030)
( 0.63087, −1.09566, −0.85722)
( 1.70121, −0.86973, 1.77734)
(−0.16829, 0.82686, 0.56432)
( 1.49755, −1.65492, 2.44415)
( 1.07711, 0.45955, 0.98359)
(−0.14167, −1.07789, −0.19995)
( 0.70893, −0.73539, 1.94083)
( 1.20547, −1.55321, 1.16854)
(−0.63886, −0.85711, 0.65633)
( 0.80111, −0.51790, 0.94303)
( 1.79210, −0.28737, 0.91699)
( 0.88172, −0.49542, −0.07884)

clu 140/11 0.0168149 58.1688 0.764095

sm

ã⋆ = 11.6873

b̃⋆ = 10.5914
c̃⋆ = 1.1981
α̃⋆ = 64.8◦

3
( 0.71942, −0.55992, 0.50170)
(−1.01569, 0.37010, −0.39868)

col 24 0.0223623 76.7725 1.18012

tric

ã⋆ = 11.0943

b̃⋆ = 10.9843
c̃⋆ = 2.9682
ϕ̃⋆ = 60.3◦

ψ̃⋆ = 0.0◦

ϑ̃⋆ = 88.3◦

10

(2.94230, 0.15290, 0.57067)
(1.46475, −0.10908, 0.09824)
(2.14261, −0.09525, 1.15847)
(1.48017, 0.62451, −1.18756)
(0.69154, 1.20078, 0.25053)
(2.52663, 0.46006, −1.02081)
(0.44980, 1.03103, −0.85863)
(1.78629, 1.18333, 0.16047)
(0.67062, 0.00018, −0.77257)

col 397/10 0.0318327 105.805 2.10431
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sfcm

ã⋆ = 23.1794

b̃⋆ = 19.2350
c̃⋆ = 1.37171
α̃⋆ = 30.0◦

6

(0.10953, 2.05299, 0.51490)
(0.96675, −0.86729, 0.58831)
(1.69475, 1.84061, 0.23270)
(0.86732, 0.91697, −0.54288)
(1.79105, 0.04499, −0.02499)

col 157/3 0.0393535 148.417 3.78122

tric

ã⋆ = 29.8942

b̃⋆ = 1.4759
c̃⋆ = 1.4759
ϕ̃⋆ = 89.7◦

ψ̃⋆ = 94.5◦

ϑ̃⋆ = 75.4◦

3
(−9.97579, −0.45598, 0.52507)
( 9.96995, 0.68872, −0.35462)

lam 69 0.0476124 152.359 3.96891

trig
ã⋆ = 30.0115
α̃⋆ = 2.8◦

3
( 10.00770, 0.72392, −0.13835)
(−9.94949, −0.72392, −0.69538)

lam 81 0.0556191 183.754 5.71507

tric

ã⋆ = 10.0000

b̃⋆ = 1.2594
c̃⋆ = 1.2594
ϕ̃⋆ = 88.4◦

ψ̃⋆ = 115.5◦

ϑ̃⋆ = 82.1◦

1 — lam 94 0.063675 197.396 6.58375

tric

ã⋆ = 10.0000

b̃⋆ = 1.2666
c̃⋆ = 1.1270
ϕ̃⋆ = 87.2◦

ψ̃⋆ = 106.8◦

ϑ̃⋆ = 79.8◦

1 — lam 105 0.0712557 229.988 8.90612

sfcm

ã⋆ = 2.2513

b̃⋆ = 10.0961
c̃⋆ = 1.1198
α̃⋆ = 81.1◦

1 — lam 118 0.0795273 260.823 11.3583

sfcm

ã⋆ = 1.8840

b̃⋆ = 10.0000
c̃⋆ = 1.17851
α̃⋆ = 86.2◦

1 — lam 135 0.0902723 282.394 13.3056

sfcm

ã⋆ = 1.8157

b̃⋆ = 29.9511
c̃⋆ = 1.04828
α̃⋆ = 88.8◦

3
(−0.30261, −9.98167, −0.52414)
(−0.30261, 9.98167, −0.52414)

lam 156 0.105271 376.348 23.1962

sfcm

ã⋆ = 1.6842

b̃⋆ = 29.9659
c̃⋆ = 1.07873
α̃⋆ = 88.1◦

3
(0.24831, −9.98244, 0.53861)
(0.15551, 9.98448, 0.53785)

lam 166 0.110275 442.171 30.4549

tric

ã⋆ = 10.0400

b̃⋆ = 1.4306
c̃⋆ = 1.0000
ϕ̃⋆ = 87.6◦

ψ̃⋆ = 48.5◦

ϑ̃⋆ = 86.8◦

2 (0.53211, −0.71035, 0.48726) lam 224 0.139592 480.973 35.8712

sfco

ã⋆ = 21.1473

b̃⋆ = 1.1926
c̃⋆ = 1.0035

2 (0.63187, −0.59497, 0.50169) lam 254 0.158042 569.811 49.9115

bco

ã⋆ = 19.9519

b̃⋆ = 1.2034
c̃⋆ = 14

2 (0.67334, 0.59193, 0.46974) lam 541/2 0.166754 579.6 51.5438

tric

ã⋆ = 10.1338

b̃⋆ = 1.1166
c̃⋆ = 1.0027
ϕ̃⋆ = 87.2◦

ψ̃⋆ = 82.3◦

ϑ̃⋆ = 85.4◦

2 (−0.71571, −0.48050, 0.50683) lam 577/2 0.177065 610.643 57.0405
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sfcm

ã⋆ = 1.5362

b̃⋆ = 10.3331
c̃⋆ = 1.33063
α̃⋆ = 85.9◦

2 (−0.01688, 0.76715, −0.66358) lam 310 0.189728 671.757 68.6354

sfcm

ã⋆ = 1.8166

b̃⋆ = 20.9036
c̃⋆ = 1.04883
α̃⋆ = 88.2◦

4
(0.36886, −10.00320, 0.25749)
(0.41713, −8.95333, 0.24496)
(0.05043, 1.04733, −0.00454)

lam 1323/4 0.201273 720.713 78.4889

tric

ã⋆ = 10.0150

b̃⋆ = 1.0004
c̃⋆ = 1.0004
ϕ̃⋆ = 87.6◦

ψ̃⋆ = 83.6◦

ϑ̃⋆ = 63.2◦

2 (0.78038, −0.52974, −0.33224) lam 370 0.223798 896.562 117.844

sfcm

ã⋆ = 1.5284

b̃⋆ = 10.7833
c̃⋆ = 1.33064
α̃⋆ = 86.5◦

3
(−0.04424, −0.78253, −0.66286)
(−0.04357, 0.76287, 0.66490)

lam 1400/3 0.274122 1064.19 163.795

tric

ã⋆ = 10.8326

b̃⋆ = 1.0212
c̃⋆ = 1.0021
ϕ̃⋆ = 87.6◦

ψ̃⋆ = 90.8◦

ϑ̃⋆ = 66.0◦

3
( 0.84700, 0.43518, −0.31251)
(−0.83454, 0.17346, −0.52499)

lam 1538/3 0.296985 1092.93 172.329

sfcm

ã⋆ = 1.7384

b̃⋆ = 10.6935
c̃⋆ = 1.00364
α̃⋆ = 86.9◦

3
(−0.30041, 0.83415, 0.48144)
( 0.27907, −0.83761, 0.48239)

lam 1691/3 0.325603 1309.48 242.84

hex
ã⋆ = 1.0000
c̃⋆ = 10.3631

3
(−0.03918, −0.55348, −0.83315)
( 0.48765, −0.26251, 0.83412)

lam 584 0.334728 1318.8 245.957

sfcm

ã⋆ = 1.7321

b̃⋆ = 10.0298
c̃⋆ = 1
α̃⋆ = 84.7◦

3
( 0.20810, 0.90662, −0.37256)
(−0.28868, −0.81888, 0.49975)

lam 1829/3 0.346844 1454.34 292.97

tric

ã⋆ = 10.7391

b̃⋆ = 1.0082
c̃⋆ = 1.0000
ϕ̃⋆ = 87.9◦

ψ̃⋆ = 84.3◦

ϑ̃⋆ = 64.3◦

4
( 0.82080, −0.51066, −0.25637)
(−1.83105, −0.10682, 0.08345)
(−0.84078, 0.12547, −0.52808)

lam 2961/4 0.41027 1619.37 360.676

sfcm

ã⋆ = 1.7325

b̃⋆ = 10.7097
c̃⋆ = 1.00026
α̃⋆ = 84.4◦

4
(−0.04638, −0.90004, −0.44012)
( 0.53847, 0.85487, −0.00735)
( 0.13599, 1.72489, −0.33990)

lam 3147/4 0.433182 1855.18 462.825

trig
ã⋆ = 10.0061
α̃⋆ = 5.7◦

4
(−0.88681, −0.49292, 0.24717)
( 0.89793, 0.43402, 0.08106)
(−1.79042, 0.20013, −0.17545)

lam 1709/2 0.462511 1987.26 523.915

tric

ã⋆ = 10.7241

b̃⋆ = 1.0299
c̃⋆ = 1.0051
ϕ̃⋆ = 88.8◦

ψ̃⋆ = 88.4◦

ϑ̃⋆ = 60.8◦

5

( 0.89821, −0.42417, 0.19397)
( 1.74685, 0.04932, −0.08573)
(−0.84984, 0.35880, −0.38605)
(−1.76301, 0.40938, 0.01837)

lam 4861/5 0.51614 2198.95 633.175

tric

ã⋆ = 10.2614

b̃⋆ = 1.0000
c̃⋆ = 1.0000
ϕ̃⋆ = 89.0◦

ψ̃⋆ = 87.0◦

ϑ̃⋆ = 60.0◦

5

(−1.85235, 0.20014, 0.28491)
(−2.75370, −0.17014, 0.04770)
(−0.93578, 0.20525, −0.28667)
( 0.87877, −0.51321, −0.07651)

lam 1074 0.562847 2542.46 826.516
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tric

ã⋆ = 10.6968

b̃⋆ = 1.0028
c̃⋆ = 1.0017
ϕ̃⋆ = 87.3◦

ψ̃⋆ = 85.8◦

ϑ̃⋆ = 61.0◦

6

(−3.85697, 0.02173, 0.43799)
(−1.99446, 0.56669, 0.07387)
(−2.92166, 0.20578, −0.24926)
(−1.15187, −0.19189, −0.40894)
(−4.87233, 0.27444, 0.18639)

lam 2499/2 0.639245 2827.04 1008.44

tric

ã⋆ = 9.9906

b̃⋆ = 1.0000
c̃⋆ = 1.0000
ϕ̃⋆ = 88.5◦

ψ̃⋆ = 88.8◦

ϑ̃⋆ = 60.0◦

6

(−3.85440, −0.08768, 0.42100)
( 0.91163, 0.02133, 0.48209)
(−1.85083, −0.02566, 0.09628)
(−0.91956, 0.46710, −0.04917)
(−2.95541, 0.43216, 0.20464)

lam 4120/3 0.693699 3283.51 1325.09

fcc ã⋆ = 1.7277 1 — com 1575 0.775581 3377.76 1398.18

ct
ã⋆ = 1.4064
c̃⋆ = 1.1876

1 — com 1736 0.851639 3630.32 1613.28

sfcm

ã⋆ = 1.2830

b̃⋆ = 1.1111
c̃⋆ = 1.81737
α̃⋆ = 54.8◦

1 — com 1922 0.944364 4112.56 2068.69

fcc ã⋆ = 1.5714 1 — com 2106 1.03096 4471.26 2438.49

ct
ã⋆ = 1.2480
c̃⋆ = 1.1168

1 — com 2350 1.14955 4964.88 3005.94

fcc ã⋆ = 1.4359 1 — com 2740 1.35105 7374.94 6262.05
fcc ã⋆ = 1 2 — com 2947 1.41421 ∞ ∞
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gels,” Phys. Rev. Lett., 92, 068301 (2004).

[24] B. M. Mladek, D. Gottwald, G. Kahl, M. Neumann, and C. N. Likos, “Formation
of polymorphic cluster phases for a class of models of purely repulsive soft spheres,”
Phys. Rev. Lett., 96, 045701 (2006).

[25] B. Mladek, D. Gottwald, G. Kahl, M. Neumann, and C. Likos, “Erratum: Formation
of polymorphic cluster phases for a class of models of purely repulsive soft spheres
[Phys. Rev. Lett. 96, 045701 (2006)],” Phys. Rev. Lett., 97, 019901 (2006).

[26] J. Fornleitner, F. Lo Verso, G. Kahl, and C. N. Likos, “Genetic algorithms predict
formation of exotic configurations for two-component dipolar monolayers,” Soft Mat-
ter, 4, 480 (2008).

[27] M. Glaser, G. Grason, R. Kamien, A. Košmrlj, C. Santangelo, and P. Ziherl, “Soft
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[115] C. N. Likos, M. Watzlawek, and H. Löwen, “Freezing and clustering transitions for
penetrable spheres,” Phys. Rev. E, 58, 3135 (1998).



BIBLIOGRAPHY 243

[116] C. N. Likos, A. Lang, M. Watzlawek, and H. Löwen, “Criterion for determining clus-
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May 2007 Visit to the Université Paris Sud through the HPC-EUROPA project
(RII3-CT-2003-506079), with the support of the European Commu-
nity – Research Infrastructure Action under the FP6 “Structuring the
European Research Area” Programme.


