
Unterschrift Betreuer

Dissertation

Self-Assembly of Shape- and Interaction
Anisotropic Particles on a Surface

Ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

unter der Anleitung von
Ao.Univ.Prof. DI Dr. Gerhard Kahl
Institut für Theoretische Physik (E136)

durch

DI Susanne Wagner
Matrikelnummer: 1125888

Wien, 30.Juni 2022
Unterschrift Studentin





Abstract

The self-assembly behaviour of colloidal and patchy particles, i.e., colloids with lo-
calized surface functionalizations, is central to a rapidly growing field of research
in chemistry and physics. Over the last three decades, the surge of attention
towards syntheses of these particles is explained by the manifold existing and
future technological applications of materials with nano- and micrometre-sized
structures.
In computational and theoretical models, hard-core particles have a long history,
dating back to the 1950s, when computers started to become an indispensable
tool in statistical physics. The patchy particle model was invented in the 1980s
for a theoretical description of associated liquids. Nowadays, the explanation
of colloidal and patchy particles’ self-assembly using modelling and simulations
to compute phase behaviour can serve as a predecessor for directing efforts in
real-life implementations.

In this PhD-Thesis, I present two research projects, both focusing on ensem-
bles of elliptic particles using Monte Carlo simulations.
In the first project, which is presented in Part II of this thesis, different lattice
configurations formed by hard-core elliptic particles are investigated. There are
infinitely many possible lattice configurations for these types of particles. My
investigations provide an answer to the question of which one of these lattices is
the entropically most favourable one. I present an in-depth analysis of a possible
lattice parameterization as well as the search for two lattice candidates, namely
the parallel and diagonal lattices, for the following free energy computations. By
the use of finite-size corrections, I show that the parallel lattice is entropically
more favourable than the diagonal lattice state.
In the second project, presented in Part III, the self-assembly scenarios of hard-
core elliptic particles decorated with attractive short-range patches are investi-
gated. By imitating the adsorption process of particles into assembled structures
on a surface using grand-canonical Monte Carlo simulations, I characterize vari-
ous such assemblies, ranging from porous networks to chains. Structural proper-
ties, as well as some dynamic effects, are described.
Part I of this thesis collects the description of all methods used throughout the
research projects presented in Part II and Part III.
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Kurzfassung

Das Selbstorganisationsverhalten von kolloidalen Teilchen, die über sogenann-
te Patches - Interaktionsflächen auf den Oberflächen der Kolloide - gegenseitige
Bindungen eingehen können, ist ein sich rasant entwickelnden Forschungsgebiet
in der Chemie und Physik. Die Vielfältigkeit der bestehenden und zukünftigen
technologischen Anwendungen von Materialien mit Strukturen auf Nano- und
Mikrometerskalen, begründet das starke Interesse an der Erforschung von Syn-
these und Phasenverhalten dieser Teilchen.
In simulationsbasierten und theoretischen Modellen haben Kolloide mit hartem
Interaktionspotential eine lange Geschichte, beginnend in den 1950er Jahren als
Rechenmaschinen zu einem unverzichtbaren Werkzeug in der statistischen Physik
wurden. Das Modell von harten Teilchen mit Patches wurde in den 1980er Jah-
ren für die theoretische Beschreibung von assoziierten Flüssigkeiten entwickelt.
Heutzutage sind Teilchenmodellierung und Simulationsuntersuchungen zur Be-
rechnung des Phasenverhaltens und der Selbstorganisation dieser Teilchen ein
wichtiger erster Schritt in Richtung experimenteller Realisierungen.

In dieser Dissertation stelle ich zwei Forschungsprojekte vor. Mittels Monte-
Carlo-Simulationen werden Ensembles von elliptischen Teilchen untersucht. Im
ersten Projekt, vorgestellt in Teil II, untersuche ich Gitterkonfigurationen welche
von harten elliptischen Teilchen gebildetet werden. Ellipsen haben eine unendli-
che Zahl an Möglichkeiten, sich in Gitter zu konfigurieren. Meine Untersuchun-
gen zeigen, welches dieser Gitter das entropisch günstigste ist. Ich präsentiere
eine Gitterparametrisierung sowie die Bestimmung von zwei Gitterkandidaten,
namentlich dem parallelen und dem diagonalen Gitter. Darauf folgend werden
die freien Energien dieser Gitterkandidaten berechnet. Unter Anwendung von
Fehlerkorrekturen, welche von Effekten der endlich großen Simulationsbox stam-
men, wird gezeigt, dass das parallele Gitter das entropisch günstigste ist.
Im zweiten Projekt, vorgestellt in Teil III, werden die Selbstorganisations Szena-
rien von mit Patches dekorierten harten elliptischen Teilchen, untersucht. In den
Simulationen wird der Adsorptionsprozess der Teilchen auf eine Oberfläche mit
Hilfe des großkanonischen Ensembles nachgeahmt. Die enstehenden Teilchenan-
ordnungen werden charakterisiert. Diese reichen von porösen Netzwerken bis hin
zu Kettenkonfigurationen. Strukturelle Eigenschaften, sowie einige dynamische
Effekte werden beschrieben.
Teil I dieser Arbeit umfasst die Beschreibung aller Methoden zusammen, welche
in den Forschungsprojekten aus Teil II und Teil III verwendet werden.
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Andreas Zöttl and Gaurav Shrivastav as well as to Florian Benedetti, Carina Karner
and Emanuela Bianchi. Thank you for making office time so much more enjoyable.
Thank you for your advice, support and friendship.
A special thank you and acknowledgement of his work goes to Franciszek Bartnik, who
I was supervising on his Master Thesis and whose code also contributed to the following
work.
To all members of the Biointerface Doctoral College: It was such a joyous and educa-
tional experience getting to know all of you! I am happy to say that the time spent
with you greatly served my personal development equally as much as it created valu-
able scientific experiences in the interdisciplinary field.
To my supervisor Gerhard Kahl, thank you for giving me the chance to begin my PhD
within the Soft Matter Group and the Biointerface Doctoral College. Thank you for
creating opportunities, so I could meet and learn from different people. Also thank
you for your careful proofreading of this thesis.
Very importantly, I want to thank all external scientific advisors who have helped me
immensely with the advancement of my projects and from whom I have learned so
much, Eva G. Noya, Yura Kalyuzhnyi and Andrij Baumketner.

On a more personal level, I want to thank you, Gaurav, who has supported me while
writing this thesis with your always kind words. I will always remember our coffee
break and your wise words, ”Everything good needs time, even time needs time.”,
which became my motto during the writing process of this thesis. Thank you, Florian,
for your immense support during the series of technical crises. My deep gratitude goes
to Carina, who has never failed to believe in me successfully finalizing my PhD jour-
ney. Without you, I would not have accomplished what is now finally achieved. Your
scientific experience, along with your interest in sharing it with me, was so valuable.
Thank you for your support, friendship, spark, and curiosity!
Finally, I would not be finishing this thesis today without the special friendship and
support of two persons - Raphaela, I admire your fearlessness and strong will! Clemens,
you helped me so much by listening and simply understanding.

With the end of my academic education path, I want to express my gratitude to
all lecturers who sparked my interest and curiosity and the tutors who have helped
me countless times understand complex problems. Most importantly, thank you to
all my lecture hall and office comrades. Thank you for your companionship and your
friendship throughout the years!

VII





All jenen die mich aufzogen, nährten, lehrten und bildeten -
meinen Eltern, Großeltern, LehrerInnen, FreundInnen und Geschwistern.

* * *
To everyone who raised, nurtured, taught and educated me -

my parents, grandparents, teachers, friends and siblings.

IX





Contents

I. Methods 1

1. Simulation Program 3
1.1. Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Modularity and Configurable Parameters . . . . . . . . . . . . . . 6

2. Algorithmic Details 13
2.1. Simulation Box Matrix & Unit Box Coordinates . . . . . . . . . . 13
2.2. Lattice MC-moves . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3. Cluster Moving Algorithm . . . . . . . . . . . . . . . . . . . . . . 21
2.4. Algorithms for Particle Network Analysis . . . . . . . . . . . . . . 26

3. Analysis of Simulation Trajectories 35
3.1. Block-Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2. Autocorrelation Time . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3. Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4. Truncation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 37

4. Free Energy Computations 39
4.1. Thermodynamic Integration . . . . . . . . . . . . . . . . . . . . . 39
4.2. Umbrella Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3. Hamiltonian Integration . . . . . . . . . . . . . . . . . . . . . . . 41
4.4. Einstein Molecule Method . . . . . . . . . . . . . . . . . . . . . . 43
4.5. Finite-Size Corrections . . . . . . . . . . . . . . . . . . . . . . . . 51

5. Structural Analysis 53
5.1. Pair- and Radial Distribution Function . . . . . . . . . . . . . . . 53
5.2. Nematic Order Parameter . . . . . . . . . . . . . . . . . . . . . . 54
5.3. Loop Order Parameter . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4. Degree Order Parameter . . . . . . . . . . . . . . . . . . . . . . . 57
5.5. Largest Cluster Size . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6. Loop & Cluster Size Distributions . . . . . . . . . . . . . . . . . . 57

II. Lattices of Hard Ellipses - A Study of Entropies 59

1. Introduction 61

XI



2. Hard Ellipses Model 65
2.1. Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2. Overlap Criterion by Vieillard Baron . . . . . . . . . . . . . . . . 66

3. Ellipse Lattices 69
3.1. Lattice Parameterization . . . . . . . . . . . . . . . . . . . . . . . 69
3.2. Lattice Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3. Consistency Check . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4. Free Energy Computation 79
4.1. Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2. Simulation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4. Analysis of Simulation Trajectories . . . . . . . . . . . . . . . . . 90

5. Finite Size Corrections 93
5.1. Fitting the Finite-Size Correction Model . . . . . . . . . . . . . . 93
5.2. Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6. Lattice Deformations 99

7. Discussion & Outlook 103

III. Patchy Elliptic Particles - A Self-Assembly Study 105

1. Introduction 107

2. Elliptic Patchy Particle Model 111
2.1. Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2.2. Approximation of Constant Range Potential through Osculating

Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2.3. Maximum Patch Amplitudes θa,max and θb,max . . . . . . . . . . . 114
2.4. Examples for Limiting Parameters . . . . . . . . . . . . . . . . . . 115
2.5. Classification of Elliptic Patchy Particles . . . . . . . . . . . . . . 115

3. Methods and Model 119
3.1. A Note on Units . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.2. Particle Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.3. Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.4. Truncation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 121

4. Results on Self Assembly of Patchy Ellipses with θ = 45◦ 123
4.1. Snapshots & Simulation Trajectories . . . . . . . . . . . . . . . . 123
4.2. Ensemble Averages - State Variables . . . . . . . . . . . . . . . . 125

XII



Contents

4.3. Structural Analysis - Loop Order Parameter . . . . . . . . . . . . 129
4.4. Analyzing the Assembly Processes into Porous Networks . . . . . 130
4.5. Assembled Porous Networks . . . . . . . . . . . . . . . . . . . . . 136
4.6. Self-Healing in Porous Networks . . . . . . . . . . . . . . . . . . . 139

5. Results on Self Assembly of Patchy Ellipses with θ = 15◦ 143
5.1. Snapshots & Simulation Trajectories . . . . . . . . . . . . . . . . 143
5.2. Ensemble Averages - State Variables . . . . . . . . . . . . . . . . 145
5.3. Chain Formation at Low Temperature - T ∗ = 0.07 . . . . . . . . . 149
5.4. Chain Formation at High Temperature - T ∗ = 0.115 . . . . . . . . 155

6. Summary & Outlook 159

A. Appendix - Lattices of Hard Ellipses 161
A.1. Derivation of Free energy term A0 . . . . . . . . . . . . . . . . . . 161
A.2. Complete Autocorrelation Analysis . . . . . . . . . . . . . . . . . 164
A.3. Truncation Analysis on Free Energies . . . . . . . . . . . . . . . . 165
A.4. Simulation Trajectories . . . . . . . . . . . . . . . . . . . . . . . . 174

B. Appendix - Patchy Elliptic Particles 177
B.1. Simulation Trajectories θ = 45◦ and θ = 15◦ . . . . . . . . . . . . 177

Bibliography 191

XIII





Part I.

Methods

1





1. Simulation Program

For the purpose of conducting research projects within my PhD, I developed a
Monte-Carlo (MC) program for the simulation of various particle models on a
two-dimensional plane. The types of simulation comprise thermodynamic ensem-
bles, such as the canonical, grand-canonical and isobaric-isothermal ensemble, as
well as advanced methods such as the Gibbs ensemble, Replica Exchange Monte
Carlo and free energy methods, such as Einstein Molecule method and thermo-
dynamic integration methods.
In this chapter, I want to roughly sketch out the structure and functionality of
this program. I will also clarify the naming conventions of MC-parameters and
variables that will be used throughout the thesis.
I will refrain from explaining the basics of Monte-Carlo simulations in Soft Mat-
ter systems. Instead, I will refer to standard literature such as Understanding
Molecular Simulations by Frenkel and Smit [1], Computer Simulation of Liquids
by Allen and Tildesley [2] or A Guide to Monte Carlo Simulations in Statistical
Physics by Landau and Binder [3].

While developing the MC-program, the following design goals stood out:

1. Modularity - creating a code that is modularized in logical entities enter-
ing the simulation of the system. Details on all modules are discussed in
section 1.2.

2. Configurability - simulation parameters can be configured upon execution
of the code, either via terminal input or via configuration files. Still, there
exists an option of using default parameters, meaning that the user can use
hard-coded, predefined simulation parameters.

3. Designing the code for multiple use cases such as different thermody-
namic ensembles, free-energy methods or extended ensembles. Combining
multiple options for simulation methods was achieved by using a Fortran
preprocessor, specifically the Intel® preprocessor fpp. The preprocessor
interprets directives within the code aimed at the preprocessor specifically.
By defining macros and using if-else conditions, the preprocessor se-
lects pieces of code that put together give the source code for the defined
simulation method. Further explanation of available macros (indicated as
MACRO) follows in section 1.1.
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Chapter 1. Simulation Program

4. Usability - simulations may extend over several days of computing time.
Because of time limits on supercomputers, the simulation program needed
to be designed such that after initial equilibration, a simulation can be
paused at any moment. After this pause, the simulation can be safely
resumed.

1.1. Functionality

The functionality of simulation methods, such as simulation of different ther-
modynamic ensembles and other advanced methods within the MC-program are
briefly explained in this section. Parameters that reference a parameter within
the MC-program are written as parameter. Also, with each method, the macros
that must be defined are specified as MACRO.

Canonical Ensemble - NVT

In each cycle a total number of N MC-moves are proposed. A MC-move is either
a translation or rotation move of a single particle and picked with probabilities
probT and probR(→ module_mc.F90). Usually with probT=0.5 and probR=0.5.

Isothermal-Isobaric Ensemble - NPT, NPTA, NPTL

In the isothermal-isobaric ensemble, volume varies, and pressure is kept constant.
Therefore attempts to change the volume (using NPT) and also shape (using
NPTL and/or NPTA) of the simulation box are introduced. The additional MC-
move changing size and/or shape of the simulation box is attempted with an
overall probability of probV, such that probV+probT+probR=1.
For simulations of liquids or gases, the shape of the simulation box remains
constant, and only its size is scaled (NPT). The respective MC-move proposes a
volume change to log V [1, p. 119].
If a solid or any other system with internal stresses and strains is simulated, MC-
moves acting on the shape of the simulation box to release these stresses must
be integrated. Therefore by defining an additional macro NPTL the two sides
Lx and Ly of the box are attempted to be changed independently of one another.
The respective probabilities for a MC-move acting on the two sides are probLx

and probLy, such that probLx+probLy=1.
For full flexibility of the simulation box shape, another macro NPTA is defined
that introduces a MC-move attempting to change the angle theta enclosed by
Lx and Ly with probability probTh, such that probLx+probLy+probTh=1.

Varying Lattice Conformation - NPTW, NPTT

For the problem of lattice conformations of hard ellipses (see specifically in
part II) the lattice parameter space spanned by two lattice parameters, ω and
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1.1. Functionality

τ , must be sampled. A high probability of a specific lattice parameter will then
indicate a stable state point. For this problem, two lattice state MC-moves were
introduced - a ω-move (NPTW) and a τ -move (NPTT) which attempt changes
of the two lattice parameters. The two methods work independently from one
another, meaning that the method NPTW attempts changes in ω at constant
τ , and the method NPTT attempts changes in τ at constant ω. An in-depth
discussion of the underlying algorithm is presented in section 2.2.
Lattice parameter moves are attempted with probability probOm and probTa.
The probability probOm is chosen such that probR+probT+probOm=1 and prob-
ability probTa is chosen equivalently. Both methods use a maximum displace-
ment dOmax and dTmax that are adjusted to achieve an acceptance ratio between
OmRatio_lower and OmRatio_upper or TaRatio_lower and TaRatio_upper.

Grand Canonical Ensemble - MVT

For simulation of the grand canonical ensemble, in which, in addition to the vol-
ume and temperature, the chemical potential µ is kept constant, particle insertion
and deletion moves are introduced. These moves occur with an overall probability
probN. Within this implementation, the probability of choosing an insertion over
a deletion move is always 50%. Other than that, different schemes for choosing
between insertion and deletion move exist in the literature, see [1, p. 130] and
might be designed to achieve better efficiency of the algorithm as it adjusts in-
sertion and deletion probability to the current particle density. However, in the
framework of this program, this scheme could not be realized. Alternatives to
adjusting to the present adsorption or desorption behaviour of the system could
not be designed while guaranteeing detailed balance conditions.
If a particle deletion is picked for an empty simulation box, the MC-move is
immediately rejected. On the opposite side, the simulation box can be filled up
with particles up to the closest packing fraction. The allocated memory for the
arrays holding positions and orientations was chosen according to the maximum
number of particles N in the simulation box.

Extended Hamiltonians - Einstein Molecule Method - EIN, POINT

For more elaborate simulation methods such as the Einstein Molecule Method
(see section 4.4), the Hamiltonian with the kinetic and particle interaction term
can be extended by an Einstein Crystal potential, i.e. quadratic restoring forces
of particles to their equilibrium lattice positions and orientations. In the code,
the Einstein crystal Hamiltonian is switched on using EIN. Another step of the
Einstein Molecule Method(section 4.4) involves umbrella sampling (section 4.2)
where particles are treated as point particles. For this step, the macro POINT
is defined.
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Chapter 1. Simulation Program

Replica Exchange MC - REX

In Replica Exchange Monte-Carlo simulations, a number of simulation boxes, so-
called replicas, are simulated in parallel with each box at a different temperature,
covering a predefined temperature range. Between the replicas, swap moves are
proposed with probability probS attempting to swap configurations between two
boxes. In total, probT+probR+probS=1.
Maximum displacements for translation and rotation are adjusted to achieve an
acceptance rate of MC-moves within every box independently.

Gibbs Ensemble - GIBBS

The Gibbs Ensemble is mostly used to simulated phase coexistence between liq-
uid and gaseous states [1]. The overall thermodynamic parameters N,V and T are
given. The two boxes have volumes V1, V2 and particles N1, N2 but share the
overall constant volume V=V1+V2 and particle number N=N1+N2. With a proba-
bility of probV a volume exchange between the two boxes is proposed. Particles
are exchanged between two simulation boxes with probability probX. In total
probT+probR+probV+probX=1.
Like for Replica Exchange simulations, maximum displacements for translation
and rotation are adjusted in each box independently, resulting in a larger maxi-
mum displacement for the gas phase and a smaller one for the liquid phase.

Simulation of Direct Coexistence - COEX1, COEX2

In contrast to Gibbs Ensemble, where the simulation design tries to imitate liq-
uid and gas states in bulk, direct coexistence simulations explicitly simulate the
interface between two phases (usually liquid and solid phase) within the simula-
tion box. Using this method, first, a solid phase must be equilibrated within a
simulation run in the canonical ensemble (NVT). The equilibrated configuration
is taken as the initial configuration of the direct coexistence simulation. There-
fore, the simulation box size is doubled. The program takes an empty copy of
the original simulation box and merges the two boxes at one edge. The second
simulation box is initialized with a random configuration of particles at a chosen
density. Within the first step (defining COEX1), the solid particles are omitted
from all MC-moves while the particles in the liquid phase are relaxed while in
contact with the solid interface. The next step (defining COEX2) considers all
particles, solid and liquid particles, within a canonical ensemble.

1.2. Modularity and Configurable Parameters

In the following, all modules within the MC-program are briefly discussed. The
module structure was chosen such that they represent logical and practical en-
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1.2. Modularity and Configurable Parameters

tities. The most important parameters of each module are listed in table 1.1-
table 1.6, explained, and options for program configuration are given.

Global Parameters - module_parameters.F90

The module contains all global parameters such as precision prec of real numbers,
the integer kind intk, the path to the project’s folder location, internal paths,
as well as file names and formats. Finally, this module also contains the number
of particles N 1 which is a static parameter.

Initial Configuration - module_ini.F90

Depending on particle type and on the type of problem, different initial config-
urations can be created. Generally the type of initial configuration is selected
by two parameters or_order and pos_order, which indicate the particles’ ori-
entational and positional order. The options for the parameter indicating the
positional ordering, pos_order are given in table 1.1.

parameter value description

pos_order

rand random positions
equ positions from an equilibrated conf.
exp (exp-hex) expanded hexagonal lattice conf.
exp-squ expanded square lattice conf.
ldg low density groundstate
cpd positions according to closest packed den-

sity
tau positions according to ellipse lattice param-

eter τ

or_order

rand random orientations
equ orientations from an equilibrated conf.
dimer, trimer, zigzag,
line

orientations for patchy disk particle lattice
phases

kagome orientations for the patchy disk particle
kagome lattice

ome orientations according to ellipse lattice pa-
rameter ω

Table 1.1.: Parameters of module_ini.F90 and description of values for configu-
ration.

1In the grand-canonical ensemble N refers to the maximum number of particles in the
simulation box. The number of particles is then defined as NPart.

7



Chapter 1. Simulation Program

Monte Carlo Parameters - module_mc.F90

The module module_mc.F90 contains all parameters building the framework of
all different types of MC simulation. Some of these are the MC simulation’s total
length in cycles, length of discarded cycles and sampling step size.

The main structural component of the MC simulation is the cycle. In each
cycle a number of N (→ module_parameters.F90) MC-moves are proposed. A
typical MC-move is proposed to a randomly chosen particle or cluster of particles
(see section 2.3). Different types of MC-moves depend on the chosen statistical
ensemble. On average N*probT translation MC-moves are proposed every cycle,
with the probability parameter probT. Probability parameters for each type of
MC-move are set within module_mc.F90.
Every MC-simulation consists of a number of cycles (no_cycles) of which a num-
ber of cycles (disc_cycles) are used for an initial equilibration as well as for
adjusting MC-parameters such as the maximum displacements. This adjustment
is made such that acceptance ratios of MC-moves within target intervals are
achieved. These cycles (disc_cycles) are not used for sampling; configurations
are discarded. For the remaining number of cycles (samp_cycles), the sampling
process takes place. For the duration of the sampling cycles, configurations and
system parameters are saved every samp_step cycle.
As an overview of the most important parameters from module_mc.F90, see ta-
ble 1.2.

parameter description

no_cycles total number of cycles
disc_prop proportion of no_cycles used for adjusting maximum

displacements that then will be discarded
equ_prop proportion of no_cycles used for an initial equilibra-

tion of the configuration in the canonical ensemble for
subsequent simulation using NPT or REX

samp_step number of cycles between sampling two configurations
par_step number of cycles between sampling system parameters,

such as total energy, number of particles N for MVT
or ω, τ for NPTW and NPTT

adj_step number of cycles between computing acceptance ratios
and adjusting maximum displacements accordingly

probT, probR, ... probabilities for proposing an MC-move according to
the ensemble

Table 1.2.: Configurable parameters of module module_mc.F90 used to define
the framework of the MC-simulation.
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1.2. Modularity and Configurable Parameters

Acceptance Statistics - module_acc.F90

This module contains all parameters that are used to adjust the acceptance ra-
tios of proposed MC-moves; see table 1.3. This adjustment takes place only
within the first equilibration cycles disc_cycles and every adj_step cycle (→
module_mc.F90). When disc_cycles are completed, the maximum displace-
ments are fixed at an average value from the last tr_len adjusted maximum
displacements. This feature is implemented in order to average out fluctuations
that might occur during the adjustment of the maximum displacement.

parameter description

tr_len tracking length for maximum displacement dUmax
dUmax_init initial value for maximum displacement dUmax (can be

adjusted to system’s initial density)
dUmaxUP maximum value for dUmax
dUmaxLOW minimum value for dUmax

TRatio_upper upper bound for targeted acceptance ratio
TRatio_lower lower bound for targeted acceptance ratio

Table 1.3.: Configurable parameters of module_acc.F90 and descriptions for ad-
justing acceptance ratios for translation MC-moves. Other types of
MC-moves use the same naming convention.

Particle Parameters - module_particle.F90, module_numpart.F90

In this module particle parameters determining the particle geometry and in-
teraction sites as well as subroutines for determining the interaction potential
between two particles are contained.
Further, the definition of the simulation unit of length is related to a particle’s
geometric property, such as the diameter σ := 1 for disk particles. All other
geometric properties are given in this length unit defined corresponding to the
particle type. The particle types include single patchy disk particles (SPP), dou-
ble patchy disk particles (DPP), hard disk particles (HDP), hard elliptic particle
(HEP), elliptic patchy particles (EPP) as well as super-elliptic hard particles
(SEP). The interaction model, overlap criteria and length units are presented
for each research project dealing with a specific particle type independently; see
part II and part III.

Thermodynamic Parameters - module_thd.F90

The module module_thd.F90 includes the thermodynamic parameters, such as
temperature, pressure, chemical potential, etc. for the selected ensemble type.
The simulation unit for the Boltzmann factor is chosen as kB = 1.

9
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parameter description

eps energy per particle in a bond of two particles, i.e. 50%
of the pair-potential depth, such as ε for square-well
potentials2)

max_no_bonds maximum number of bonds per particle
maxNN maximum number of neighbours

ia_diameter interaction diameter, i.e. longest dimension
rho_0 density for closest packing configuration
A_part area of the particle
SIGSQ maximum extent squared of the hard core body

acc_rule acceptance rule is 0 for point particles (see section 4.4)
and 1 else

Table 1.4.: Parameters in module_particle.F90 that are not specific to one par-
ticle type.

parameter unit description

rho_star − reduced particle density, ρ∗ = ρ/ρ0 with density of clos-
est packing ρ0

T, beta [ε], [ε−1] temperature and inverse temperature in units of the
patch’s square-well depth3, ε

P_star [A−1
part] reduced pressure in units of the inverse particle area

mu_star [T ] chemical potential in thermal units
Tmax,Tmax [ε] min. and max. temperatures used in replica exchange

MC (REX)
beta_f [β] ficticous inverse temperature for cluster-move MC

(CMMC)

Table 1.5.: Configurable parameters of module_thd.F90, units and descriptions.

Loop Parameters - module_lcl.F90, module_cpc.F90

Instead of performing loops over all particle pairs when computing the total en-
ergy of the system, the simulation time can be drastically reduced by using linked
cell lists [1, p. 550] or the nearest neighbours for closed packed conformations.
The loop-options LCL and CPC refer to linked cell lists and closest packed con-
formations, respectively.
Within the MC-program, the cells must be configured by providing the number of

2Square-well potentials are used as part of the Kern-Frenkel type of patch-potential in
part III

2Patches in part III are designed using a square-well potential of depth ε.
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cells no_cells and additionally a two-dimensional array no_cells_1d providing
the number of cells along the x- and y axis.

Parameters for Einstein Molecule Method - module_emm.F90,
module_field.F90

The module module_field.F90 offers the option of extending the Hamiltonian
of the simulated system. Apart from the particles’ interaction potential, an
additional field term can be added to the Hamiltonian. To be more specific, this
module is accessed when simulating states for the Einstein Molecule method (see
section 4.4).
The module module_emm.F90 is used for processing the simulation data and
computing the free energy contributions.

parameter value or unit description

tf_method non, log, mob selects method of transformation for nu-
meric integration of ∆A2 within the Einstein
Molecule Method (see section 4.4).

Lambda [βσ−2], [βrad−2] value for the re-scaled Einstein spring con-
stant, with σ as the respective unit of length

no_lambdas - number of sampling points in the numeric in-
tegration ∆A2.

tf_param - the transformation parameter for the selected
transformation method.

trunc_length 0.0− 1.0 truncation length for MC-trajectories

Table 1.6.: Configurable parameters in module_field.F90 for simulation and
configurable parameters of module_emm.F90 for computation of free
energies within the Einstein Molecule method (see section 4.4)

LOG module - module_log.F90

The objective of module_log.F90 is to read and write to PAR-files that are stored
with simulation output files and store names and values of configured parameters
from all modules. In this way, the module ties together all modules containing
configurable parameters.
Three types of PAR-files exist: PAR_ini, PAR_sim and PAR_equ, where the first
one includes configuration parameters for the initial configuration while the latter
two include simulation parameters.

Testing MC-moves - module_testmoves.F90

The module module_testmoves.F90 entails all methods for testing whether a
proposed MC-move is accepted or not. Subroutines for each MC-move include
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the energy calculation of the new and old configuration as well as the Metropolis
algorithm [4] resulting in an acceptance or rejection of the proposed move.

Cluster-MC functions - module_cluster.F90

This module includes all functions used for the cluster moving algorithm (see
section 2.3). Also cluster analysis tools are contained in this module.

Modules for post-processing - module_analysis.F90, module_ana.F90,
module_thdint.F90

The modules contain post-processing functions and respective parameters. These
modules are used not within the simulation program but within post-processing
programs such as Analysis.F90 or FreeEnergy.F90.

However, most of the post-processing is preformed using a newly developed
python3 [5] package, customized for data analysis of the simulation output by
the Fortran-95 simulation program. This package mostly relies on the python-
modules pandas [6], numpy [7] and networkx [8].

12



2. Algorithmic Details

Within this chapter, the parts of the algorithms used for simulation and analysis
are discussed in detail. In section 2.1 the representation of particle positions
within the simulation box and, in particular, this representation for a lattice of
ellipses is presented. Following, section 2.2 presents two types of MC-moves to
sample a lattice-configurations of hard ellipses with different lattice parameters.
Another simulation method, the cluster move algorithm, as proposed by White-
lam [9] and an adaption to chain-movement, is presented in section 2.3. Finally,
section 2.4 presents a newly developed method for the analysis of particle net-
works. The so-called loop-detection algorithm identifies particle loops within a
network, based solely on its abstract graph properties.

2.1. Simulation Box Matrix & Unit Box
Coordinates

Within the MC-simulation program the N particle positions are stored as a vector
~ui (with i = 1...N) in unit-box coordinates. These are Cartesian coordinates
within the unit square with the center at the point of origin for the most efficient
implementation of periodic boundary conditions [1, p. 32]. The particles’ real
positions, represented as vectors ~ri (i = 1, ..., N) are obtained by transformation
of ~ui via the simulation-box matrix, B:

~ri = B · ~ui (2.1)

The form of the simulation-box matrix determines the shape and size of the
physical simulation box.

2.1.1. Representation of the hexagonal lattice of disks

A particular lattice state is always represented as N particle positions ~ui in the
unit box and a simulation-box matrix. For the hexagonal lattice I chose to split
the lattice points into two rectangular sub-lattices ~ulm and ~ul′m′ . The indices
(l,m) as well as (l′,m′) giving the lattice positions such that each particle i has
a unique lattice position, i ≡ (l,m), i ∈ [1, N

2
] and i′ ≡ (l′,m′), i′ ∈ (N

2
, N ]. The

sub-lattices both carry Nx particles along the x-axis and Ny

2
particles along the

13
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y-axis, such that N = Nx ·Ny. The lattice positions are given by:

~ulm =

(
ux,l

uy,m

)
=

(
−0.5 + ax(l − 1)
−0.5 + ay(m− 1)

)
, l ∈ [1, Nx] and m ∈ [1,

Ny

2
] (2.2a)

~ul′m′ =

(
ux,l′

uy,m′

)
=

(
−0.5 + ax(l′ − 0.5)
−0.5 + ay(m′ − 0.5)

)
, l′ ∈ [1, Nx] and m′ ∈ [1,

Ny

2
] (2.2b)

with lattice constants:

ax = N−1
x (2.3)

ay = 2N−1
y (2.4)

Given the unit-box coordinates, the simulation-box matrix for a hexagonal lattice
of disks with diameter σ = 1 at a reduced density ρ∗ = ρ/ρcpd, with ρcpd referring
to the density at closest packing, will then take the form:

Bdisk(N, ρ∗) =

√
N

ρ∗

[
1 0

0
√

3
2

]
(2.5)

2.1.2. Lattices of Elliptic Particles

In the following we will consider a special class of lattices of elliptic particles.
These lattices are based on the hexagonal lattice of disks, which means that
they can be related to the hexagonal lattice by a number of affine transforma-
tions. When creating these lattices for ellipses with a certain aspect ratio κ at
reduced density ρ∗ = ρ/ρcpd, we follow the steps below, each step performing a
transformation on the hexagonal lattice of disks:

proposition: A simulation-box matrix Bell shall be formulated such that ~ri
gives the position of each particle i in the lattice:

~ri = Bell · ~ui (2.6)

step 1: Starting with the the hexagonal lattice of disks, the unit-box coordi-
nates are given by ~ui as specified for sub-lattice coordinates (l,m) and (l′,m′) in
eq. (2.2). The real positions of disk particles ~r ′i are then given by the matrix
Bdisk as in eq. (2.5):

~r ′i = Bdisk(N, ρ∗) · ~ui (2.7)
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step 2: To create ellipses from disks we transform the present configuration via
elongation along the x-axis and compression along the y-axis. The aspect ratio
of the ellipses is defined as κ = a

b
, with semi-major axis a and semi-minor axis

b. By applying a transformation H1(κ) such that the total area is conserved,
i.e. det(H1) = 1, the unit of length for disks, given by the diameter σ = 1,
simply transforms into the equivalent unit of length for ellipses, 2

√
ab = 1. The

respective unit area defining the simulation units is given by 4ab = 1. The
transformation matrix is given as:

H1(κ) =

[√
κ 0

0 1√
κ

]
(2.8)

Figure 2.1.: Origin of closest packings of ellipses at different values of ω. The
orange wedge indicates possible values for ω that all result in dif-
ferent ellipse lattice configurations. Top configuration at ω = 0 is
named parallel, bottom configuration at ω = π

6
is named diagonal

configuration.

step 3: Due to the six-fold rotational symmetry of the original hexagonal
lattice of disks, an additional rotation, R is introduced before applying H1 in
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step 2. As can be seen in fig. 2.1, each angle of rotation ω within [0, π
6
) results

in a different configuration:

~r = R(ω′)H1(κ)R(ω)Bdisk(N, ρ∗) · ~u (2.9)

A second rotation by an angle ω′ is introduced for the sole reason to align the
lower lattice axis with the x-axis. For deriving ω′ we take a vector ~c which is a
unit vector aligned with the horizontal lattice axis:

~c =

(
cosω
sinω

)
(2.10)

After performing the transformation (~c → ~c ′ = H1(κ)~c), the rotation angle ω′

for horizontal alignment of ~c is therefore given by:

cosω′ =
êx · ~c ′

|~c ′|
= cosω′ =

cosω√
cos2 ω + κ−2 sin2 ω

(2.11)

step 4: The larger the angle ω the stronger the distortions of the rectangular box
by H1. The simulation box will therefore be a parallelogram with short distances
between periodic boundaries. For simulating particle conformations in the bulk,
such a geometric shape of a simulation box is not desirable due to increased
effects of the periodic boundaries in the bulk. To avoid this distortion, for ω > π

12

another lattice representation is used by introducing another transformation T
with the effect of mirroring the unit-box positions along the identity-line (at 45◦).
The matrix H1 is then applied onto the mirrored coordinates:

H1
′ · ~u ′ = TH1T

−1T · ~u. (2.12)

Effectively the replacement done is H1 → TH1, with T as:

T =



[
0 1
1 0

]
, if ω ≤ π

15

[
1 0
0 1

]
, otherwise.

(2.13)

Note that using this effective replacement, the unit-box coordinates remain un-
touched as T−1T = 1. However, the mirror-transformation will transform the
particles’ orientations ω as ω → π

6
− ω.

step 5: In addition to the lattice parameter ω, introduced in step 3 that rep-
resents the relative orientation of the ellipses to the lattice axis, another lattice
parameter, that will be named τ , is needed to take into account an additional
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ω = 0

(a) (b) (c)

ω = π
6

(d) (e) (f)

Figure 2.2.: Lattice configurations of ellipses demonstrating parameter τ at two
lattice parameters ω: (a) τ = 0.9, (b) τ = 1.0, (c) τ = 1.2, (d)
τ = 0.8, (e) τ = 1.0 and (f) τ = 1.14.

freedom of the lattice to arrange the particles positions in horizontal and verti-
cal direction. This parameter therefore determines the relative positions of the
ellipses to one another, as can be seen in fig. 2.2. Another affine transformation,
H2, is introduced that acts on the particles’ position only and not on their shape:

H2(τ) =

[√
τ 0

0 1√
τ

]
. (2.14)

In the case of a rectangular simulation box τ is interpreted as a parameter that
represents the aspect ratio of the box, given by κbox = Lx

Ly
relatively to the aspect

ratio κbox,0 which is the box’s aspect ratio obtained from H1 alone - τ = κbox

κbox,0
.

This condition of a rectangular simulation box is fulfilled for values ω̂1 = 0 and
ω̂2 = π

3
, which are named the diagonal and parallel configuration respectively in

part II.

summarizing all steps: Following all these steps, the total simulation-box ma-
trix, Bell factorizes into the following sub-matrices:

Bell(ω, τ, κ,N, ρ∗) = R(−ω′) ·H1(κ) ·R(ω) ·H2(τ) ·T(ω) ·Bdisk(N, ρ∗), (2.15)

where the matrices H1(κ),H2(τ) and R(ω) define the lattice state while T(ω) and
R(−ω′) define it’s representation in the simulation box and hence are optional.
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For the case of ω < π
12

the simulation-box matrix gives:

Bell =

[
1√
κ

cosω sinω′ −
√
κ sinω cosω′ 1√

κ
sinω′ sinω +

√
κ cosω cosω′

1√
κ

cosω cosω′ +
√
κ sinω′ sinω 1√

κ
sinω cosω′ −

√
κ cosω sinω′

]
·

(2.16)

·
[ 1√

τ
0

0
√
τ

]√
N

ρ∗

[
1 0

0
√

3
2

]

Implementation For the implementation within the Fortran-95 Simulation Pro-
gram an array SB of dimension (2, 3) was chosen, such that:

SB(1:2,1:3) = (2.17) 1√
κ

cosω sinω′ −
√
κ sinω cosω′ 1√

κ
sinω′ sinω +

√
κ cosω cosω′

√
N
ρ∗
·
√
τ

1√
κ

cosω cosω′ +
√
κ sinω′ sinω 1√

κ
sinω cosω′ −

√
κ cosω sinω′

√
3

2
·
√

N
ρ∗
· 1√

τ


For the case of ω > π

12
(see step 5 ), SB(1,3) is exchanged with SB(2,3) and

ω → π
6
− ω.

With this form of implementation, the following is true:

det(SB(1:2,1:2)) = 1 (2.18)

SB(1,3) · SB(2,3) = Abox (2.19)

The implementation is motivated by partly separating box shape and box size,
given by its area Abox into distinct elements in the array.

2.2. Lattice MC-moves

The obstacle of finding the candidate lattice structures from a lattice parame-
terization for lattices of hard ellipses, see section 2.1.2 was tackled by designing
special Monte-Carlo moves that attempt to change the lattice parameters ω and
τ .

Studying the lattices of hard ellipses, I designed the lattice MC-moves for each
lattice parameter independently. For lattice moves, I chose to represent the parti-
cle positions and orientations as a combination of the lattice sites and orientation
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and the respective deviation:

~ri = Bell(ω, τ)(~u 0
i + ∆~ui) (2.20a)

φi = φ0
i + ∆φi (2.20b)

with the simulation-box matrix Bell(ω, τ) representing the transformation of the
unit-box coordinates ~u into simulation box coordinates ~r and simultaneously
defining the lattice state (ω, τ) (see for more details section 2.1.2). The coor-
dinates ~u 0

i and φ0
i define the lattice-positions in unit-box coordinates and the

particle’s ideal orientation in the reference lattice state. The simulation-box ma-
trix was defined such that the unit box coordinates ~u 0

i , as given in eq. (2.2) are
independent of the lattice parameters ω and τ . The particles’ lattice orientations
φ0
i however depend on the lattice state ω via φ0

i = ω′(ω), as derived in eq. (2.11).

Lattice MC ω-move

When attempting a lattice MC ω-move, a random displacement ∆ω is chosen
within an interval (−∆Ωmax,∆Ωmax). The bounding maximum displacement
∆Ωmax is adjusted during the course of the discarded cycles (see section 1.2).
The adjustment is made according to the move’s acceptance ratio, equal to the
adjustment of the maximum displacements for single-particle translation and ro-
tation moves, with the goal of reaching an acceptance ratio between 20− 50%.

During the move from the old ωo to the new state ωn by a random step ωn =
ωo + ∆ω, the particles’ positions and orientations change accordingly. Consider-
ing the positions, eq. (2.20a), the unit-box coordinates ~u 0

i stay unchanged as the
ω-state affects the matrices R(ω), R(−ω′) and T(ω) as part of the simulation-box
matrix:

Bell(ωo)→ Bell(ωn = ωo + ∆ω) (2.21)

The transformation of particle orientations φi, in eq. (2.20b), are given by:

φi → φi − ω′(ωo) + ω′(ωn), (2.22)

as by design the particles lattice orientations φ0
i = ω′. The update of the orien-

tations is done corresponding to the new and old lattice parameter ωo/n via:

ω′(ωo/n) = arccos
( cosωo/n√

cos2 ωo/n + 1
κ2 sin2 ωo/n

)
. (2.23)

Notice, that if the updated angle, ωn falls below or above ω = π
12

compared to
the old angle, ωo, the simulation-box matrix will undergo the mirroring trans-
formation T (see section 2.1.2). Also the particles’ positions are mirrored by
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interchanging their x- and y-coordinates.

Lattice MC τ -move

A lattice MC τ -move, τn = τ o+∆τ , is attempted via choosing a random displace-
ment of the lattice parameter τ ∆τ within the interval (−∆τmax,∆τmax). The
interval’s borders are adjusted to achieve an imposed acceptance ratio between
10− 60%.

The move will attempt a change within the simulation-box matrix,

Bell(τ o)→ Bell(τn = τ o + ∆τ) (2.24)

Within the chosen implementation of the simulation-box matrix, see eq. (2.17),
the τ -move aims only at two simulation-box entries according to:

SB(1, 3)→ SB(1, 3) ·
√
τn√
τ o

(2.25)

SB(2, 3)→ SB(2, 3) ·
√
τ o√
τn

(2.26)

Within the τ -move, the overall area of the simulation box is not changed.
Overlapping particles will be the result of τ -moves that extend over the minimum
or maximum value for τ . Because these moves are rejected anyhow, a proper
definition of the minimum and maximum value for τ is not necessary.

Relations to existing algorithms

The above-suggested algorithm for lattices of hard ellipses relates closely to a MC-
algorithm called the lattice switch algorithm introduced by Bruce, Wilding, and
Ackland [10] and applied further in [11] [12]. In the initial contribution, [10], the
authors study the problem of hard-sphere packings in three dimensions in order
to compare hcp and fcc packings and to find the entropically more favourable
lattice type. By splitting the particles’ positions into lattice sites and deviations
(similarly to eq. (2.20)), the authors propose the additional MC-move that acts
on the lattice coordinates only, called the lattice-switch. Compared to my method
proposed for hard ellipses in two dimensions, within the study by Bruce, Wilding,
and Ackland of the hard-sphere lattices, the authors have to make the additional
effort of biasing pathways from the hcp to the fcc lattice-type using a suitable
order parameter. Without going into detail about the defined order parameter
and biased configuration distribution, I want to point out here that within the
hard ellipse lattices, this biasing procedure was not necessary due to the fact
that the competing candidate lattice types are infinitely degenerate and lattice
parameters (ω, τ) are continuous variables along the corresponding axes. Due to
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this continuity, the transition through all lattice candidate structures is smooth
and can be easily sampled without the need for biasing pathways.

2.3. Cluster Moving Algorithm

In MC simulations, the single-particle MC-moving scheme, in which one par-
ticle is translated or rotated at a time, is the basis for studying Molecular or
Soft-Matter systems. In addition to single-particle moves, cluster moves can be
introduced that are designed to move several particles as a cluster in concert.
Whitelam and Geissler [9] have given a collection of criteria when it is advisable
to use cluster moves instead of single-particle moves.

Within my MC-program, the cluster MC-move algorithm using the static link-
ing scheme by Whitelam and Geissler [9] was implemented. This algorithm will
shortly be summarized in the next section. Further, a small modification of this
cluster MC-move algorithm is introduced for chain-forming clusters and briefly
described. Finally, intricacies when applying cluster MC-moves are discussed,
and solutions to potential problems are proposed.

2.3.1. Cluster MC-move Algorithm with Static Linking
Scheme

The cluster moving algorithm used in this MC-program uses a recursive cluster
formation algorithm with a static linking scheme, closely following the same
cluster moving algorithm as proposed by Whitelam described in detail in [13].

Within the pseudocluster formation, a random particle is picked as the initial
particle, and following a static linking scheme in a recursive manner, other par-
ticles can join the so-called pseudocluster. In a static linking scheme, the linking
probability solely depends on the initial state, named µ, before the cluster is
moved. The linking probability pij(µ) for hard core particles, i and j with an
attractive patch potential, εij is given by [13]

pij(µ) = Θ(nc − nC)Iij(µ)(1− exp[β̃fβεij]), (2.27)

with nC as the maximum cluster size, Iij a function that is unity when particles
i and j interact and zero otherwise. The maximum cluster size, C is drawn from
an inverse probability distribution p(ξ) ∼ ξ−1 for every new cluster move. Ad-
ditionally to this kind of upper bound for the cluster size, other restrictions had
to be installed further explained in section 2.3.3. Finally a fictitious reciprocal
temperature parameter β̃f ∈ [0, 1] is introduced. Within the linking probability
eq. (2.27), this parameter interpolates between the physical reciprocal tempera-
ture β and infinite temperature. As an effect in the limiting case of an infinite
reciprocal temperature β̃f = 0, the linking probability will be zero, and single-
particle instead of cluster moves will be performed. For simulations done within
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this thesis, β̃f = 0.5.

Once the pseudocluster is formed either a cluster-translation or a cluster-rotation
are proposed and the new state, ν is then accepted with an acceptance probability
Wacc, depending on the total energy Eν and Eµ in the old and new state:

Wacc(µ→ ν) = min
(
1, exp[−β(1− β̃f )(Eν − Eµ)]

)
. (2.28)

Cluster-Moves embedded in MC-program

Within the MC-program, I embedded cluster moves such that either a cluster-
translation or cluster-rotation (with probCT and probCR)is proposed every cycle
with a probability probCM. With the complementary probability either a single-
particle translation or rotation MC-move (with probT and probR) is proposed.

Maximum displacements in translation dCUmax and dCPhimax for clusters are
treated independently from respective maximum displacements for single-particle
moves. Here, a cluster-move with one particle in the pseudocluster is still con-
sidered as a cluster move.

Statistics for ratios of accepted versus proposed cluster moves for rotations
and translations (AcCTM and AcCRM) as well as for the average cluster size of all
formed pseudoclusters (CS) and of all moved pseudoclusters (AcCS) are recorded.

2.3.2. Cluster MC-moves for Chains of Convex Particles with
Patches

Specifically for particle models that assemble into chains, a variant of the clus-
ter rotation MC-moves was implemented to facilitate equilibration using cluster
motions reminiscent of a more realistic dynamic of chains. The type of particle
for which this kind of cluster rotation MC-move might be helpful is a particle
with an attractive patch located at a vertex of positive curvature. Usually, these
types of particles have the ability to form chains with high flexibility - where the
proposed cluster MC-move is designed to explore this flexibility.
For a particle of this chain-forming type (see part III), the use of Whitelam’s clus-
ter move algorithm led to the observation that the chains, once formed, remained
very stiff. Within Whitelam’s cluster rotation MC-move, clusters of particles are
rotated with respect to the cluster’s center of mass. Particularly in the case of
very strong interactions when chains do not break apart anymore once they are
formed, with a very high probability, the apparent problem is that the possible
flexibility of these chains cannot be explored by the present cluster MC-move
algorithm. When a pseudocluster that is a fraction of a chain is undergoing a
rotation with reference to its center of mass, this rotation move will most likely
break the bonds connecting the pseudocluster to the chain. Hence, when the
interaction is very strong, this cluster rotation MC-move will be rejected with a
very high probability.
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In an attempt to remedy this issue, a new reference point for the cluster rotation
was chosen. For the chains, we take either of the two end-points of the chain
as the reference point. The end-points of the chain are the two exterior vertices
of the particles at the ends of the chain. When a pseudocluster is formed, the
reference point is randomly chosen between the two end-points.
This new reference point was chosen such that detailed balance is guaranteed -
meaning that the location of the reference point with respect to the pseudocluster
must not change during the rotation of the pseudocluster. Any reference point
that does not fulfil this requirement breaks detailed balance.

2.3.3. Intricacies when using Cluster MC-moves

This section lists a few intricacies that should be considered when implementing
cluster MC-moves. I present solutions to problems I faced when studying the
patchy ellipses particle model (part III). Particles of the studied type assemble
into chain structures, connected networks and open lattices.

Center of Mass and Periodic Boundary Conditions

The calculation of the center of mass (CM) of a cluster within a simulation
box with periodic boundary conditions must be done with special care. When
a pseudocluster extends over the simulation box boundary, a straightforward
calculation of the CM, e.g. via ~rcm = 1

npc

∑npc

i=1 ~ri (with npc as the number of

particles in the pseudocluster) will lead to a wrong result, due to the minimum
image convention. Therefore by using a transformation proposed by Bai and
Breen [14] will be used to calculate the correct CM. The algorithm uses two
independent transformations, one for the particles’ x-coordinates, which are pro-
jected onto a one-dimensional ring and a second and equivalent transformation
for the y-coordinates. The center of mass of each coordinate is calculated in the
transformed ring coordinates, and finally, the true CM can be attained by back
transformation into the planar simulation box [14].

Rotation with Reference to End-Points and Periodic Boundary Conditions

With the newly proposed chain-cluster rotation MC-move, a special intricacy
upon rotating the particles with reference to one of the end-points of the chain
may occur. Due to periodic boundary conditions, the distance vector between
the reference point and the particle that is rotated could be chosen as the wrong
distance-vector when using the minimum image convention, as can be seen in
fig. 2.3. When viewing the reference point solely and the particle that is rotated,
there is no way of deciding which distance vector - either the distance with or
without minimum image convention - is the appropriate one. To determine this
appropriate vector, information on the location of the connecting particles is
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Figure 2.3.: Rotating chain particle p4 with respect to the chain’s end point (~re.p.)
with (red) and without (black) minimum image convention. Further,
particle positions in black with respect to the former chain particle,
building up the chain and the correct distance vector for each particle
iteratively.
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needed. The proposed algorithm to perform the rotation of all pseudocluster
particles correctly is the following:

1. start by picking the position of the particle whose vertex serves as the
reference point (particle pi=1, position ~ri) and setting end-point vector ~re.p.

as the distance between exterior vertex and ~ri

2. rotate particle pi by using the distance vector ~re.p.

3. determine the bonding neighbors of particle pi

4. pick the bonding neighbor that is part of the pseudocluster pi=i+1

5. add the distance vector, ~ri−~ri+1 to the end-point vector ~re.p. → ~re.p. +(~ri−
~ri+1)

6. rotate particle pi+1 using the updated vector ~re.p.

7. iterate step 2. - 6. until the last particle in the chain (when there is no left
bonding neighbor as part of pseudocluster in step 4.)

The described algorithm only works for chains without branching points, which
restricts the number of bonds to one per patch. This restriction on the particle
model must be considered when applying this type of cluster MC-move.
For other types of chains, e.g. chains with branching points, a slightly extended
algorithm could be used, in which the algorithm proceeds from step 5 for each
branch independently.

Maximum Cluster Size due to Finite Box Size

When dealing with chain-like clusters and chains extending over the size of the
simulation box, two problems can occur: (1) a chain that is enclosed in itself via
the periodic boundary conditions will be broken apart by a cluster-rotation, and
(2) a cluster-rotation on a chain that is not enclosed and is longer than the extent
of the simulation box, can result in an internal overlap of particles. Remember
here that interactions within the pseudocluster are considered to be conserved
within a cluster MC-move.
For these two reasons, an upper limit for the chain length was determined for
which cluster rotations can be performed. This upper limit is defined by the
minimum number of particles necessary to form a chain that is enclosed in itself
via the periodic boundary conditions. Cluster rotation MC-moves are immedi-
ately rejected if this maximum number of particles is exceeded (see subroutine
set_pseudocluster_parameters()).
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Cluster Rotations and Linked Cell Lists

When rotating large clusters (e.g. chains), the positional displacement of particles
far from the reference point of rotation (either center of mass or end point of the
chain) can easily be larger than the maximum displacement allowed for either
single particle or cluster translations. Using linked cell lists, where particle pair
interactions are checked only within a cell and its eight neighbouring cells, this
new position might not be located within one of these nine cells, determined
by the particle’s initial position. For this reason, for cluster rotation MC-moves
specifically, a computationally more expensive function virtual_cell_index(i)

is used to determine the cell index of the particle’s new location. With this cell
as the central cell, new overlaps and interactions with particles of the central and
surrounding cells are computed.

As a result, a re-calculation of the old and the new interface energy of the
pseudocluster, with the respective cell indices of the old and new positions, is
mandatory.

2.4. Algorithms for Particle Network Analysis

In a system of patchy particles (see part III), we observe particles forming network
structures. The presented analysis of these structures relies on the representation
of the particle network as abstract graphs. First, I discuss the network represen-
tation as different types of abstract graphs and then will describe the analysis
methods, specifically the loop-counting and artefact-cleaning algorithm, based
on these graphs in detail.

2.4.1. Particle networks as abstract graphs

Dealing with the particle network in a more abstract way, mathematical graphs,
specifically simple and undirected graphs [15], consisting solely of nodes and
edges, are used to represent the physical particle network. Three different repre-
sentations are identified.

The three types of graph-representations are the particle-based, the patch-based
and the full graph-representation (see fig. 2.4). While in the particle-based graph,
we represent each particle by one node and its bonds to other particles by an edge,
in the patch-based network, each patch is represented by a node and patches on
the same core particle are connected by an edge of a different type. The full
network consists of two different types of nodes, one representing particle cores
and the other patches. An edge again represents either a bond or connects a
patch to its core particle node. In all graph types, the particle nodes are named
pi and the patch nodes of the i-th particle are named piA, piB, and so forth.
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The use of these different types of networks becomes more evident when looking
at the calculation of structural characteristics, such as distributions for quanti-
ties like bonds per patch, loop size or cluster size. For the calculation of each
characteristic, a specific representation of the particle network might turn out to
be most useful.

Figure 2.4.: Types of graphs based on patchy particle network, explained by us-
ing the example of elliptic patchy particles. From left to right: (a)
particle network of patchy ellipses, (b) the full network with core
and patch - nodes, (c) the particle-based network with nodes repre-
senting particle cores and (d) the patch-based network with nodes
representing patches.

2.4.2. Loop-detection algorithm

The here proposed algorithm was designed to detect loops in networks formed by
a specific patchy particle model, which are patchy ellipses (introduced in part III)
with two oppositely located patches.

Specifically, we characterize the boundary to a pore in a network as a loop.
This boundary is a chain of particles enclosing the pore. The loop, as we define
it, is not a proper characteristic of the abstract graph, as the abstract graph does
not include any spatial information. To explain in more detail, a self-enclosed
chain of particles is represented as a circuit in the abstract graph, i.e. a path
that starts and ends at the same node and does not visit any node more than
once. Determining whether the circuit is a loop that in its particle network coun-
terpart does or does not enclose another loop cannot be determined directly as
a well-defined property of the abstract graph.

However, the proposed algorithm identifies loops solely using the abstract graph
of the network and no further information on the particles’ positions. This is
achieved by the algorithm attempting to exploit further characteristics of a loop
and its neighbourhood reflected in the graph.

The loop-detection algorithm consists of two parts, where the first part, named
the loop-counting algorithm, attempts to count loops for each particle in the net-
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work and the second part, the so-called artefact-cleaning algorithm, is respon-
sible for finding artefacts, i.e. falsely detected loops within the loop-counting
algorithm:

Loop-Counting Algorithm. For analyzing the loop property, we use the full-
network representation (introduced in section 2.4.1) of the particle network. The
graph is built using the python package networkx [8].
The loop-counting algorithm surveys the environment of each particle pi to find
the loops that include this particle. In this algorithm, it is assumed that each
particle can be part of at most two loops. This number could change for a
different particle model, and the algorithm might be adapted. Trying to find at
most two loops per particle, the algorithm follows these steps:

1. pick a particle pi, which will be named the base particle

2. the base particle’s node, as well as edges to the two patch nodes in the
graph is removed

3. the shortest path1 between the two patch nodes of pi is searched

4. if a path is found, then save it as the first loop L1; if no such path is found
reiterate from step 1., otherwise continue:

5. find the first branching points along each of the two paths of L1 starting
from piA and piB (i.e. patch nodes to particle node pi)

6. all particle nodes between piA and piB and the respective branching points
are deleted.

7. apply the shortest path method once more to possibly find a second path
between the two patch nodes piA and piB.

8. if a path is found, then save it as the second loop L2; if no path is found,
exit and start from step 1.

The loop-counting algorithm produces a collection of all detected loops L1,i and
L2,i named the loop collection L.

Remarks. A branching point is characterized by three connected patch-nodes,
e.g. p1A, p2A and p3A representing the patches of three different particles. These
three patch-nodes can be connected differently - as three fully connected patch-
nodes or as three patch-nodes with only two bonds, as can be seen in fig. 2.5.

1using a standard method within the networkx -package
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Figure 2.5.: Different scenarios of branching points within the full graph. The full
graph consists of particle nodes (here p1, p2 and p3) as well as patch
nodes (here p1A, p2A and p3A). The branching points are searched
from the path describing the first loop L1 marked in red. All four
scenarios must be detected as a branching point.

Limitations. Networks in which each particle belongs to exactly two loops can
be called pure loop networks. Loop networks consisting of loops with a particular
size, e.g. a network of loops with size six is a honeycomb-lattice, is called a pure
and monodisperse2 loop-network. In networks other than pure, monodisperse or
nearly monodisperse networks where defects and polydispersity3 play a big role,
the limitations of the algorithm stumbling across those network properties will
become evident.
One type of error in the loop-counting algorithm can occur in a not fully con-
densed network, i.e. when many particles are present that are not forming loops.
Here, a branching point that is encountered can, with a higher possibility, lead
to a dead end. As a consequence, a second loop following the branched path
from this branching point might not be successful, as demonstrated in fig. 2.6.
If a second loop is determined, it could be an artefact. As an effect, in specific
configurations, some legit loops might not be detected or artefacts generated.

2In the sense that loops of only one size exist.
3In the sense that loops have dissimilar sizes.
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Figure 2.6.: A loop L2 indicated by the black line that is not detected due to the
particle indicated in green. When L1 has been detected at any of the
blue particle’s positions, the second loop L2 will not be found due to
the branching point (in yellow) detected at the green particle. This
green particle acts as the described ’dead-end’. Therefore L2 is not
found with any of the blue particles as the base particle (Loop-Error
1). Additionally, if the base particle is at any other position in L2,
the true loop L2 is not detected either, due to the shorter path length
of the loop artefact indicated in red.

Figure 2.7.: A loop L2 indicated by the black line is not detected for any of the
blue particles as the base particle. This is due to the fact that a
shorter path, indicated in red is found. The red particles create the
loop artefact.
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When loops of very dissimilar sizes are neighbours in the loop network, an-
other type of error might occur. This problem occurs again in trying to find the
second loop due to the loop detection relying on the shortest path method. As a
demonstrating example, a cluster of small loops neighbouring a very large loop
can be considered, and a particle at the border between these two domains. As
the first loop, a small loop is detected. In trying to detect the second loop, the
shortest path method might not find the second shortest path via the very large
loop but rather via the cluster of smaller loops, as can be seen in fig. 2.7.

The described limitations of the counting algorithm create erroneous loops, called
loop artefacts. Further, another error might occur, which is a true loop not being
detected at all. However, for a loop to be not detected at all means, it is not
detected with any of the loops particles as the base particle. Concluding, the
error associated with the existence of loop artefacts is predominant.

Therefore the second part of the algorithm - also relying solely on graph proper-
ties - deals with the detection of artefacts, i.e. falsely characterized loops from
the first part - the loop counting. We find this artefact-cleaning algorithm to be
working quite well, but it is still not free of any errors.

Artefact-Cleaning Algorithm. The limitation of the proposed loop detec-
tion algorithm for configurations consisting of loops with very dissimilar sizes
requires a cleaning procedure of the loop collection from loop artefacts created
by the loop-counting algorithm.
As described in the limitations of the loop-counting algorithm (see fig. 2.6 and
fig. 2.7), artefacts are created by the algorithm relying on finding the adjacent
loop to the base particle by using the shortest path method. It should be noted
here that besides creating artefacts, which this part of the algorithm tries to elim-
inate, the loop-counting algorithm further does not guarantee to find all loops.
So even if the cleaning procedure worked perfectly, it could not be guaranteed
that the final loop collection is complete.
The cleaning procedure was designed to detect loop artefacts within the pri-
mary loop collection L, defined as the set of all loops - legit loops and artefacts
- detected by the loop-counting algorithm. Based on this loop collection, the
artefact-cleaning algorithm explores the neighbourhood of a selected test loop
that will be called l0. The exploration of this loops neighbourhood is done by
building a sub-network, called skeleton, of loops bordering l0. These loops that
border lO might lie within l0 or outside of l0. Further, the algorithm building
the skeleton (loop neighbourhood) to loop l0 guarantees that all skeleton loops
lie either inside l0 or fully outside of l0. By exploring the size of the skeleton
compared to the size of the test loop l0, a criterion is formulated by which l0 is
either identified as a legit loop or an artefact.
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In more detail, the algorithm follows the following steps:

1. start with particle index i=1

2. determine L(pi) = {l|pi ∈ l}, i.e. the set of all loops containing particle pi

3. if |L(pi)| ≤ 2 - the number of loops in L(pi) is less or equal to two - start
from step 1. with i+=1

4. if |L(pi)| > 2 - the number of loops in L(pi) is larger than to two - continue
with the next step:

5. all ordered pairs of loops from the set L(pi) are created, and referred to as
loop0 for the test loop and loop1.

6. for each pair, the recursive function is_artefact is called to test whether
loop0 is an artefact or not:
The recursive function is_artefact builds the loop neighbourhood, loops
recursively with loop1 as the initial loop. The recursive function follows
these steps:

i. The skeleton particle set, referred to as skeleton is built as the the
difference of the particle sets defined by loops and loop0

ii. the break conditions are tested in the given order:

• if the size of skeleton is greater than a certain threshold, depend-
ing on the loop size of loop0, the test loop is not an artefact

• if all particles in skeleton have been proposed in step iii. and the
size of skeleton is smaller than this threshold, the test loop is an
artefact

• if in the preceding iteration, another loop was detected as artefact,
due to a cross-over with the test loop, both loops are returned as
artefacts

iii. if none of the breaking conditions is true, a particle pj from skeleton,
that has not yet been checked, is picked

iv. each loop loop from L(pj) that is new to skeleton is tested for a
cross-over with the test loop loop0

v. if there is a cross-over detected, both loops loop and loop0 are marked
as artefacts

vi. checked_parts is extended by pj and loops is extended by loop

vii. the recursive function is_artefact is called with the extended set of
loops

32



2.4. Algorithms for Particle Network Analysis

7. all loops marked as artefact are immediately deleted from the loop collection
L and not considered in the following iterations

8. the cleaning-algorithm proceeds by starting over from step 1. with i+=1

Remarks: The threshold, mentioned in the breaking conditions for the recursive
function is_artefact, is estimated as the maximum number of particles that
could fit inside the test loop. The estimate assumes a circular shape of the test
loop and the particles placed within the test loop at a packing fraction, η = 0.7.
The additional testing for a cross-over of loop0 with every new loop in step
5. ensures that all neighbouring loops are either fully inside or outside the test
loop and loop0 is indeed an inner or outer boundary of the skeleton. This is
hugely important since the criterion of whether a test loop is an artefact or not
relies on an estimate of the size of the neighbouring particle network with the
test loop loop0 as the boundary. If the skeleton (i.e. the explored neighbouring
particle network) always lies outside the test loop and can be continually grown
without a size limit, the test loop is classified as a legit loop. If otherwise, when
all particles within the skeleton have been proposed in step iii to expand the
neighbourhood, and the skeleton size is still below the described threshold, the
test loop is classified as an artefact. Also, the cross-over testing serves as a second
artefact criterion: the fact that two closed paths that cross each other contradict
the definition of a legit loop is used as such, and both of these paths are classified
as artefacts.
Finally, it is important to note that if a test loop loop0 passes the artefact-
cleaning algorithm with one instance for an initialization loop loop1, it does not
necessarily pass the cleaning for every one of these loops. If a loop is detected as
an artefact, it is instantly marked as a real artefact by the algorithm.

Limitations to the algorithm. The proposed loop-detection algorithm, in-
cluding the loop-counting and artefact-cleaning algorithm, is still not perfect in
detecting loops. For specific use of this algorithm, a test configuration should be
analyzed manually to see for which configurations the loop detection algorithm
is not reliable.

Extension to other systems / Generalization. The proposed algorithm for
counting loops was specifically designed for the system presented in part III. The
algorithm, as presented here, relies on network and particle characteristics as
for the particle model proposed in part III. For example, with two patches, the
number of loops adjacent to one particle is two or less. With more than two
patches, this number increases, which must be considered in the loop detection
algorithm when extending it to other patchy systems.
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3. Analysis of Simulation
Trajectories

This chapter presents a short summary of methods used in this thesis for the
analysis of simulation trajectories. These methods include basic block averaging,
as discussed in section 3.1 and analysis of the autocorrelation time section 3.2 as
well as error analysis (section 3.3) and truncation analysis (section 3.4).

A Monte-Carlo simulation starts from an initial state and samples neighbour-
ing states in configuration-space. This phase-space trajectory can be visualized
via the progression of a collective variable1 or observable, such as the total en-
ergy. Pure visual analysis of the processes of different collective variables (e.g.,
total energy, volume, ...) can already provide substantial information.
If a chosen collective variable fluctuates around a constant value over the course
of the simulation time (mc-time), we can assume that an equilibrium stage is
reached. However, a detailed analysis of such scenarios is indispensable and not
covered in this thesis.

3.1. Block-Averaging

In specific cases, taking block averages might give better insight into the system’s
equilibration behaviour. For this analysis, a block size sblock is specified, and the
simulation trajectory, visualized by using a collective variable, is grouped within
subsequent blocks of this size. For each block, the mean and standard deviation
of the chosen collective variable is computed. Analyzing the simulation process
using the block averages with the help of capturing the fluctuations in the er-
ror bars makes the progression of the mean clearer. As a crude condition for
equilibration, this type of analysis can be used and from it determined, if for
a block size sblock similar to the autocorrelation time τa.c. (see section 3.2) the
block-averages remain the same over time within the standard error bars.

Block averaging is also applied as a powerful tool to find the best estimate of
the error to a sequence of correlated data [16]. As described in this contribution,
the correlations will lead to an underestimation of the statistical error, which can
be resolved using this rigorous form of block-size analysis. This type of analysis,

1a variable of the form c(~rN , φN )

35



Chapter 3. Analysis of Simulation Trajectories

however, is not used in this thesis. For the presented projects, an error analysis
was performed using independent trajectories as described in section 3.3.

3.2. Autocorrelation Time

The auto-correlation time τa.c. is estimated from the temporal auto-correlation
function,

fc(t) = 〈c(to)c(to + t)〉to , (3.1)

by determining the first incident where fc(τa.c.) = 0. Here, the collective variable
c(~rN(t), φN(t)) is stated as c(t). As time we mean the Monte-Carlo time. The
quantity to is a reference time in the trajectory and 〈·〉to the average taken over
different reference times to in this trajectory.
The auto-correlation time τa.c. is used to assess Monte Carlo simulation parame-
ters, such as the total number of cycles and sampling step size. For systems with
long correlation times, it is further necessary to perform a number of independent
simulations on the same system parameters in order to collect sufficiently many
uncorrelated data points.

3.3. Error Analysis

The estimator for the error to the mean 〈x〉 of an observable x taken from an
uncorrelated sample of size n is given as [3, p.31]:

err ≈ σx√
n

(3.2)

where σx is the sample standard deviation to 〈x〉, which is taken as an estimate
to the standard deviation σ of the underlying distribution.
When dealing with small sample sizes, the estimate given in eq. (3.2) will un-
derestimate the true error [17]. Here it is common to use the sample standard
deviation as the estimator of the error:

err ≈ σx (3.3)

For both types of error estimators, eq. (3.2) and eq. (3.3), it is important to use
an uncorrelated sample. If the sample is correlated, both of these estimators will
underestimate the true error.
MC-simulation trajectories can be subjected to large correlations. Different
methods for dealing with strong correlations exist: The error estimate can be
corrected using the auto-correlation time [3, p.32]. Another method would use
block-size analysis to find the best estimate for the error to a correlated trajectory
[16]. Generally, when strong correlations emerge, it is necessary to run several
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independent simulations. The averages from data acquired from independent
MC-runs are used to build an uncorrelated sample.

3.4. Truncation Analysis

The sampling of configurations in a simulation process starts after the equilibra-
tion phase, disc_cycles (→ module_mc.F90). The equilibration phase in the
simulation method is used to adjust simulation parameters, such as maximum
displacements. The system itself might not be yet equilibrated when the sam-
pling starts. When simulating self-assembly processes such as nucleation, the
onset of the cluster growth is non-deterministic and follows stochastic principles.
Hence the true equilibrium configuration will be reached at a later point in the
simulation process. In these cases, the statistical analysis of the target structure
will be performed over a truncated trajectory with the truncation point chosen
where the target structure is reached. The truncation point tp is given as a
number within (0, 1), indicating a fraction of the total simulation length. Here,
the location of this truncation point was determined by visual analysis of the
evolution of some observable over the course of the simulation time. Similarly,
a study of the mean’s dependency on the truncation point can be performed by
truncating the trajectory at several truncation points tp. The truncation point
at which the mean reaches a plateau should then be evaluated.
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4. Free Energy Computations

In Statistical Physics, the Helmholtz free energy is the natural thermodynamic
potential of the canonical ensemble. Hence the free energy function of a system
provides complete information. Here, we try to compute the free energies for
specific configurations in order to determine the true ground state at a particular
thermodynamic state point.

More advanced simulation techniques must be used to uncover the Helmholtz
free energy of a thermodynamic state. Here I will cover some basic methods
which were used within this thesis, namely Umbrella Sampling, Thermodynamic-
and Hamiltonian Integration. All these techniques are standard methods and are
known from literature [1][2][3].

The next method covered in this chapter is the Einstein Molecule Method (see sec-
tion 4.4), which combines Umbrella Sampling and Hamiltonian Integration and
was developed by Noya and Vega [18, 19] as a variation of the original method,
published by Frenkel and Ladd in 1984 [20]. This method is used to compute
free energies of solids using the Einstein Crystal as a reference system [1, p. 243].
As an extension to the published methods, I will propose the use of the Möbius-
transformation technique, section 4.4.3 in the numerical integration part of the
Einstein Molecule method that allows for fewer integration points by restricting
the sampling on the important parts of the integrand and thus leads to faster
convergence.

Finally, section 4.5 covers a specific correction of finite-size effects arising in
the simulation-based methods.

4.1. Thermodynamic Integration

4.1.1. Integration along Isotherms

To determine thermodynamic potentials like the Helmholtz free energy, one can
use the partial derivatives of the potential and then perform a numeric simulation
for sampling points along an integration path. A numeric integration technique
will then determine potential differences [1, p. 242].
The thermodynamic integration relation for integrating along an isotherm can
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be derived from the differential form of the Helmholtz free energy [21]:

dA = d(U − TS) (4.1)

Together with the first, dU = dQ − pdV , and second law of thermodynamics
for reversible processes, dQ = TdS, the total differential of the Helmholtz free
energy can be written as:

dA = −pdV + SdT (4.2)

and hence, the partial derivative of A for a constant temperature process (T =
const) is

−p =
(∂A
∂V

)
T

. (4.3)

This relation integrated along an isotherm gives

A(V2, T ) = A(V1, T )−
∫ V2

V1

p(V, T )dV (4.4)

If a system with a known Helmholtz free energy can be identified as state 1,
the free energy of state 2 can be computed by computing a series of ensemble
averages from Monte Carlo simulations, either in the NVT ensemble (with the
integrand = 〈p〉dV ) or NpT ensemble (with the integrand = pd〈V 〉), to evaluate
the integral.
For two-dimensional systems and in reduced units the above expression can be
reformulated:

A(ρ∗2, β) = A(ρ∗1, β) +

∫ ρ∗2

ρ∗1

p∗(ρ∗, β)

η0ρ∗
2 dρ∗, (4.5)

with η0 the packing fraction at closest packing and ρ∗ the reduced number density
of particles. Further the pressure p∗ in its reduced, dimensionless form is given
by p∗ = Apartp

kBT
, with Apart as the area of a particle in two dimensions..

4.1.2. Integration along Isochores

In a similar fashion as for isotherms, the thermodynamic integration rule for
isochores can be derived [1, p. 242].
Via the partition function in the canonical ensemble, Z(N, V, T ) and its relation
to the free energy A = −kBT lnZ(N, V, T ), the relation:

U =
∂(βA)

∂β
(4.6)
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can be derived, assuming U = 〈V〉, where V describes the potential energy within
the hamiltonian H = T +V . By integrating both sides, this relation can be used
to express a free energy difference by an integral over temperatures:

A(V, T2)

kBT2

=
A(V, T1)

kBT1

−
∫ T2

T1

U(T )

kBT 2
dT . (4.7)

4.2. Umbrella Sampling

The free energy difference between two states, now called state 1 and state 2 can
also be expressed via the systems partition functions Z1 and Z2 by [1, p. 192]:

A2 − A1 = −kBT ln
[Z2

Z1

]
(4.8)

= −kBT ln
[ 1
N !

∫
d~r N exp (−βU2(~r N))

1
N !

∫
d~r N exp (−βU1(~r N))

]
(4.9)

= −kBT ln
[∫ d~r N exp (−β(U2(~r N)− U1(~r N)) exp (−βU1(~r N))∫

d~r N exp (−βU1(~r N))

]
(4.10)

= −kBT ln
〈

exp (−β(U2(~r N)− U1(~r N)))
〉

1
(4.11)

This expression can be used to compute the Helmholtz free energy difference by
sampling in only one state, here, state 1. The expression, however, is only valid
if the two states satisfy the condition that their probability distributions have
sufficient overlap - meaning that regions of high probability in configuration space
are the same. In other terms, the behaviour of the two systems must be similar.
If two systems with distinct probability distributions are to be compared, the
relation can be established by dividing the whole path into separate steps and
applying umbrella sampling for each step [1, p. 193].

4.3. Hamiltonian Integration

As shown in [2, p. 298] a system can be transferred from one state A into an-
other state B with respective Hamiltonians HA and HB. The process underlying
Hamiltonian integration is described by:

H(λ) = (1− λ)HA + λHB (4.12)

with λ ∈ [0, 1].
If only the interaction energies U changes from state A to B then H(λ) can be
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rewritten as:

H(λ) = T + (1− λ)UA + λUB (4.13)

with the kinetic energy T =
∑

i p
2
i /2m and U(λ) = (1 − λ)UA + λUB being the

interaction potential.

The Helmholtz free energy of the combined system is then given by:

A(N, V, T, λ) =− kBT lnZ (4.14)

=− kBT ln
( 1

N !

∫
exp (−βH(λ))d~rNd~pN

)
(4.15)

=− kBT ln
(ΛdB

N !

∫
exp (−βU(λ))d~rN

)
. (4.16)

It can be seen that only the interaction potential U(λ) remains as an explicit
dependency in the expression for the free energy A. The integration over all
momenta of the N particles yields the thermal de-Broglie wavelength ΛdB which
will be set to 1 from here on.

In order to find an expression for the Helmholtz free energy that can be used
in simulation, the derivative of the free energy is taken with respect to λ:

∂A(N, V, T, λ)

∂λ
= −kBT

1

Z

1

N !

∫
(−β)

∂U(λ)

∂λ
exp (−βU(λ))d~xN (4.17)

=
1

Z

1

N !

∫
∂U(λ)

∂λ
exp (−βU(λ))d~xN (4.18)

=
〈∂U
∂λ

〉
N,V,T,λ

. (4.19)

By integrating both sides over the interval λ ∈ [0, 1], we arrive at:

A(N, V, T, λ = 1) = A(N, V, T, λ = 0) +

∫ 1

λ=0

〈∂U
∂λ

〉
N,V,T,λ

dλ. (4.20)

This expression is useful for simulations since the integrand,〈∂U
∂λ

〉
N,V,T,λ

= 〈UB − UA〉N,V,T,λ (4.21)

(4.22)

is easily accessible by means of simulation.

Now that umbrella sampling and Hamiltonian integration were discussed in a
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4.4. Einstein Molecule Method

general manner, the following section will deal with the application of those two
methods to create a suitable integration path to compute Helmholtz free energies
for solids.

4.4. Einstein Molecule Method

The Einstein Molecule Method [18][19] uses umbrella sampling and Hamiltonian
integration (as described above) to establish a path from the ideal Einstein
Molecule as a reference state to the target structure, which is a particle con-
figuration in a solid-state. Using this approach, the Helmholtz free energy splits
into the following constituents:

A = A0 + ∆A1 + ∆A2 (4.23)

where A0 denotes the Helmholtz free energy of the reference state and ∆A1 and
∆A2 account for an umbrella sampling step and a step of Hamiltonian integration
respectively along the path from the reference system to the wanted structure.

4.4.1. Reference State

The reference state, as proposed in the original version [20] of this method, is the
Einstein Crystal of N particles in a defined lattice configuration. The particles
are bound to their fixed lattice sites by harmonic springs. The lattice sites com-
prise an equilibrium position for the locations as well as for the orientations for
all particles. In the Einstein Molecule method, the reference state is the Einstein
Molecule, which resembles the Einstein Crystal very closely: the lattice sites are
not fixed but are carried along with reference to one particle (particle with in-
dex i = 1), which therefore is named the carrier particle. All lattice positions
are referenced to this particle’s position. This special form was named Einstein
Molecule by Vega and Noya in their original publication of the Einstein Molecule
method [18].

The Hamiltonian, used as the Einstein Molecule Hamiltonian within this the-
sis, with spring constant ΛE is given by:

Hein-mol =
N∑
i=1

~p 2
i

2m
+ ΛE

( N∑
i=2

(~ri − ~ri,0)2 +
N∑
i=1

(φi − φi,0)2
)

. (4.24)

Note that the momenta are considered for all particles, but the components of the
harmonic potential are zero for the first particle since it is the carrier of the lattice.
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Chapter 4. Free Energy Computations

Orientational Einstein Energy. In the Einstein Molecule Hamiltonian in
eq. (4.24), the orientational part of the potential energy was chosen as ∝ ∆φ2

i ,
reflecting a C1-symmetry of the underlying particle. This part of the potential
must always be chosen according to the particle’s rotational symmetry. For more
information and potentials reflecting different types of rotational symmetries, see
[22].

4.4.2. Procedure

The Einstein Molecule method aims at transferring the Hamiltonian of an ideal
Einstein Molecule into the Hamiltonian for the wanted solid system step by step.
By tracing the changes in the Helmholtz free energy along each step, the free
energy difference between the reference and the final system can be computed.
The steps that are taken in the transformation are the following:

0.1 Ideal Einstein Molecule

0.2 constraint Einstein Molecule (with position of the carrier particle fixed)

1.0 constraint Einstein Molecule with solid interaction (add solid interactions)

2.1 constraint solid (decrease Einstein Molecule interactions stepwise)

2.2 free solid (release carrier particle)

reference system [0.1]

The reference system is the ideal Einstein Molecule. The Helmholtz free energy
of the ideal Einstein Molecule of point particles moving and rotating in two
dimensions is given by:

Aid ein[NkBT ] =
1

N
ln ρ+

(
1− 1

N

)
ln
(βΛE

π

)
+

1

2
ln
(βΛE

π

)
+ ln (2π), (4.25)

accounting for A0 in eq. (4.23). Here the thermal de-Broglie wavelength ΛdB = 1.
Details on the derivation of this expression can be found in appendix A.1.

step 1 [0.1→ 0.2]

Constraining the free Einstein Molecule by fixing the position of the carrier par-
ticle corresponds to subtracting the respective term in the Helmholtz free energy
due to the movement of the carrier particle:

Afix ein − Aid ein = −kBT ln
(Zfix ein

Zid ein

)
(4.26)

= kBT ln
( V

ΛdB

)
(4.27)
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4.4. Einstein Molecule Method

This step is specific to the Einstein Molecule method, in contrast to the original
method proposed by Frenkel and Ladd.

step 2 [0.2→ 1.0]

In this step, the solid interaction is added on top of the constraint Einstein
Molecule interactions. The induced free energy change is computed using um-
brella sampling. Hence:

Afix ein,sol − Afix ein = −kBT ln
〈

exp (−β(Ufix ein,sol − Ufix ein))
〉

fix ein
(4.28)

= −kBT ln
〈

exp (−βUsol)
〉

fix ein
(4.29)

step 3 [1.0→ 2.1]

In this step the Einstein field is gradually turned off by increasing λ from 0 to
1. The change in the free energy is computed via Hamiltonian integration - with
interactions UA = Usol + Ufix ein in state A and UB = Ufix ein in state B. The
interaction energy of the combined system is thus U(λ) = Usol + (1− λ)Ufix ein:

Afix sol − Afix ein,sol = −
∫ 1

λ=0

〈Uein〉N,V,T,λdλ (4.30)

The integration parameter λ is used to tune the Einstein field spring constant
ΛE. In practice the integral in eq. (4.30) is evaluated numerically. Potentially a
suitable transformation method of the integration parameter λ can be used.

step 4 [2.1→ 2.2]

In the last step the carrier particle is released again. The carrier particle is able
to move freely throughout the box and the solid becomes the unrestricted target
solid. The corresponding free energy difference is given by:

Asol − Afix sol = −kBT ln
( V

ΛdB

)
(4.31)
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Summarizing all steps [0.1→ 2.2]

Adding up the free energy differences of all steps, the resulting Helmholtz free
energy for the target state becomes:

Asol =Aid ein︸ ︷︷ ︸
=A0

+Afix ein − Aid ein︸ ︷︷ ︸
=kBT ln ( V

ΛdB
)

+Afix ein,sol − Afix ein︸ ︷︷ ︸
=∆A1

+ (4.32)

(4.33)

+ Afix sol − Afix ein,sol︸ ︷︷ ︸
=∆A2

+Asol − Afix sol︸ ︷︷ ︸
=−kBT ln ( V

ΛdB
)

(4.34)

and finally:

Asol = A0 + ∆A1 + ∆A2 (4.35)

with the terms now in units of NkBT given by:

A0

NkBT
=

1

N
ln (ρ) +

(3

2
− 1

N

)
ln (

βΛE

π
) + ln (2π) (4.36a)

∆A1

NkBT
= − 1

N
ln
〈

exp (−βUsol)
〉

fix ein
(4.36b)

∆A2

NkBT
= − 1

NkBT

∫ 1

λ=0

〈Uein〉N,V,T,λdλ (4.36c)

4.4.3. Practical Realisation

Numerical evaluation ∆A1

For the numerical evaluation of ∆A1 a trick is used proposed in ref. [18]. The
expression for ∆A1 in eq. (4.36b) can reach very large values due to overlapping
particles in the sampled configurations. To avoid this problem the solid potential
energy in the exponent, Usol, is shifted by the constant ground state energy of
the target lattice structure, Ulat. The final expression then reads:

∆A1 = Ulat − kBT ln
〈

exp (−β(Usol − Ulat))
〉

fix ein
(4.37)

which can be handled better numerically.

Choice of ΛE

The numerical values of the analytical term A0, as well as both terms ∆A1 and
∆A2 determined from simulation, depend explicitly on the Einstein spring con-
stant ΛE. However, the final result for the total Helmholtz free energy A(N, ρ, T )
must not depend on a specific choice of the Einstein spring constant ΛE. In prac-
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4.4. Einstein Molecule Method

tice, this requirement cannot be strictly fulfilled as a consequence of different
numerical issues, as discussed below. Hence one has to choose a range of values
for the spring constant within a range for which this is true, must be chosen.
Taking a too small spring constant ΛE leads to numerical errors in the final results
because the Einstein Molecule [state 0.1] and the mixed system with Einstein
Molecule and solid interaction [state 0.2] will have probability distributions in
phase space that have not sufficient overlap. Hence the chosen states are not
suitable for umbrella sampling (see section 4.2). On the other hand, a spring
constant ΛE that is too large will create an unnecessarily large interval for the
Hamiltonian integration in ∆A2 and therefore will demand a higher amount of
computational resources for the same accuracy of determining the numerical in-
tegral.
Hence the spring constant ΛE should be chosen in between these two extremes.
Moreover, in a correct application, the independence of the total Helmholtz
free energy of the spring constant ΛE must be checked in applying the Ein-
stein Molecule method and if proven right, indicates a suitable choice of spring
constant and a reliable result for the Helmholtz free energy.

Scaling of the spring constants

Studying the model of hard disks in the hexagonal lattice configuration, a nice
behaviour of function ∆A1(ΛE, ρ

∗ = const) depending on the spring constant
ΛE at a constant reduced particle density ρ∗ was observed. When introducing a
scaling to the spring constants according to

Λ′E = (
1√
ρ∗
− 1)2ΛE, (4.38)

it can be observed, that all ∆A1(Λ′E, ρ
∗) will fall on the same master-curve for dif-

ferent ρ∗. This can be understood, as 1√
ρ?

is the lattice constant in the hexagonal
lattice, i.e. the inter-particle distance of neighbouring disks, this value subtracted
by the disk diameter σ = 1 gives the surface to surface distance of two neighbour-
ing disks. And this distance is entering the scaling factor. The same observations
in three dimensions were made in a study on hard spheres by [23].

Numerical Integration Methods - ∆A2

The integral ∆A2, see eq. (4.36c), is rewritten as:

∆A2

NkBT
= − 1

NkBT

∫ ΛE

0

[〈∆R2〉λ + 〈∆Φ2〉λ]d(λ · ΛE) (4.39)

with 〈∆R2〉λ and 〈∆Φ2〉λ as the mean-squared displacements of the particles from
the lattice sites and orientations at state λ respectively (omitting the thermody-
namic state N, V, T in the notation). The numerical integration is carried out
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over nsp in the interval [0,ΛE] sampling points creating a partition of the interval
of integration into sub-intervals. The accuracy of the numerically computed value
of ∆A2 depends on 1) the number of sample points nsp, 2) the value of the spring
constant ΛE as the upper bound of the interval of integration [0,ΛE], 3) the spe-
cific numerical integration method used, possibly including 4) additional refined
methods of numerical integration, using transformations of the integrand.
Concerning the last two points - within the projects of this thesis the numeri-
cal integration method used is the Gauss-Legendre quadrature [24, p. 144]. Due
to the particular shape of the integrand (see fig. 4.1) different transformations
of the integrand prior to applying the numerical integration method were applied:

Depending on the underlying system, the dimension, and the particle model,
the integrand in ∆A2 can display a very large peak Making a straightforward
application of any numerical integration method and gaining converging results
is very hard and time-consuming.
Within this thesis, the integrand usually showed a very pronounced, strongly
localized peak at λ = 0: This is due to the fact that for this λ-value the particles
regain their full mobility when losing their constraint to their lattice positions
via the spring constants. Here the mean squared displacement of the particles
might grow considerably. This effect can be clearly seen in part II.
No standard numerical integration method with a fixed sampling point distribu-
tion is able to cope with such a pronounced peak unless an extremely fine grid
is used; however, such a procedure is highly inefficient as it is computationally
expensive, and the high density of grid points is redundant for a big part of the
λ-range, where the integrand is flatter. To remedy this shortcoming, a suitable
transformation of the λ-axis is needed that stretches areas under the peak and
compresses areas with an almost constant integrand. In this way, the sample
points are re-distributed along the λ-axis to regions where they are required.
Two possible transformation methods are presented here:

Logarithmic transformation A logarithmic transformation of the integration
variable λ for applications of the Einstein Molecule method was proposed in [1,
p. 260] and used in [18][19]. Using a transformation parameter c, the transfor-
mation is given by:

λ −→ ln (λ+ c). (4.40)

Any constant factor of λ (e.g. by ΛE) will only shift this transformation by a
constant and will therefore leave the results unaffected:

λ −→ ln (ΛEλ+ c′) = ln (ΛE) + ln (λ+ c). (4.41)

The success of this transformation, therefore, depends on a suitable choice of c
and on the number of sampling points nsp.
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Möbius-transformation. The Möbius transformation presented in [25] applied
to the integration variable λ effectively distributes the majority of sampling points
at the peak. The Möbius transformation applies to an interval [−1, 1]. Hence in
a first step a linear transformation [0,ΛE]→ [−1, 1] is applied by transformation
rule λ→ x = (2λ− 1) is applied:

∆A2 = − 1

2N

∫ 1

−1

[〈∆R2〉λ + 〈∆Φ2〉λ]d(2λ− 1). (4.42)

This integrand with x ∈ [−1, 1] and its peak at x0 = −1 is then subjected to the
Möbius transformation χ : x 7→ u with transformation parameter ξ:

u = χ(x, ξ) =
x− ξ
1− xξ

. (4.43)

The according inverse-transformation φ : u 7→ x reads:

x = φ(u, ξ) =
u+ ξ

1 + uξ
. (4.44)

With this transformation the integral takes the form:

∆A2 = − 1

2N

∫ 1

−1

[〈∆R2〉λ + 〈∆Φ2〉λ]φ′(u)du (4.45)

= − 1

2N

∫ 1

−1

[〈∆R2〉λ + 〈∆Φ2〉λ]
1− ξ2

(1 + uξ)2
du. (4.46)

Lastly, the Gauss-Legendre quadrature rule is applied to the integral with weights
wi and values for the abscissae ui:

Gn =
n∑
i=1

wig(ui) (4.47)

The effect of the Möbius integration on the integrand form can be seen in an
example in fig. 4.1. The integrand is a taken from a system of hard ellipses
treated in part II.
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Figure 4.1.: Integrand using nsp = 100 grid points before (top) and after (bottom)
a Möbius transformation of the integrand. The Möbius transforma-
tion was applied with parameter ξ = 0.993 for a system of N = 288
particles in lattice state ω = 30◦, full information on the underlying
system in part II - chapter 4.
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4.5. Finite-Size Corrections

Computation of the free energy based on numerical simulations is subjected to
finite-size effects. The proposed method determines the free energy of a solid only
for a specific system size N , usually in a simulation box with periodic boundary
conditions. When applying finite-size corrections, for which Bruce and Wilding
give a precise summary in [26, p. 22], the object of interest is the thermody-
namic limit, i.e. N → ∞, for the intensive form of the Helmholtz free energy
N−1A(N), also named the free energy density. To compute the thermodynamic
limit properly from free energies at finite ensemble sizes, finite-size corrections
must be applied. To achieve this goal, several computations of the free energy at
different system sizes are necessary. The size dependency can then be studied by
using fitting models or a convergence criterion.

If it is observed that the free energy is not dependent on the size N , it is possible
to directly determine the thermodynamic limit from simulation results. If a sys-
tem size is reached that yields the same result for the intrinsic function N−1A(N)
as a considerably smaller system, it can be concluded that the thermodynamic
limit has been reached (as observed in [10, p. 3004]).

Usually, such a large system size cannot be simulated within a reasonable time
span. Here finite-size corrections and fitting procedures must be applied to de-
termine the thermodynamic limit [26]. For the finite-size correction, a function
f f.s.(N−1) is proposed that can be fitted to the simulation data of the free energy
βN−1A(N), and the thermodynamic limit is then approached through extrapo-
lation. Finite-size corrections are discussed and proposed in literature [27][23].

For the problem of hard ellipse lattices (see part II - chapter 4) specifically,
we propose a fitting function for the free energy of the form :

Af.s.α (N)/NkBT = aα + cα ·
N b−1

κbox,α

(4.48)

with b < 1, α indicating the type of solid phase and κbox,α giving the aspect ratio
of the simulation box as fraction of Lx over Ly.

The application of this particular finite-size correction to the free energy dif-
ferences can be followed in part II - chapter 5.
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Analysis of structural information of configurations is performed in post-processing.
In the structural analysis, spatial and orientational correlations between the par-
ticles are identified. Standard distribution functions such as the pair-distribution
and radial distribution are discussed. Suitable order parameters are used to fur-
ther analyze the structures. Definition and implementation of the nematic order
parameter are discussed. In addition to these standard methods, a new order
parameter for loop networks is proposed. The computation of the loop order
parameter relies on the also newly proposed loop-detection algorithm presented
in chapter 2 - section 2.4.

5.1. Pair- and Radial Distribution Function

Definition The 2-particle distribution function or pair-distribution function
g(2)(~r1, ~r2) is defined in Hansen and McDonald [28, p. 33] via the n-particle

densities, ρ
(n)
N (~r n), specifically by the 1- and 2-particle densities ρ

(1)
N and ρ

(2)
N , by:

g(2)(~r1, ~r2) =
ρ

(2)
N (~r1, ~r2)

ρ
(1)
N (~r1)ρ

(1)
N (~r2)

, (5.1)

In [28] it is further shown that from eq. (5.1) the radial distribution function,
g(r = |~r1 − ~r2|) can be expressed for homogeneous and isotropic systems via
δ-distributions of the two particle positions as:

g(r) =
1

ρN

〈 N∑
i=1

N∑
j=1
j 6=i

δ(~r − ~rj + ~ri)
〉

. (5.2)

With simulation results at hand, a different definition of the radial distribution
function on a discretized r-axis, is more useful. Using central bins bl = (l+ 1

2
)∆b

of size ∆b, the definition reads [2, p.272]:

g(bl = r ± l∆b
2

) :=
n(bl)

nid(bl)
, (5.3)

with n(bl) being the average number of particles in bin bl, given as n(bl) =
hist(b)/N/#conf, and nid(bl) as the corresponding quantity in the ideal gas,
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nid(b) = ρ∆A. The radial distribution function therefore captures the struc-
tures deviation from the ideal gas, i.e. random distribution [28].

The two definitions in eq. (5.2) and eq. (5.3) can be related by taking some math-
ematical reformulation. The steps to be taken are the discretization of the r-axis
via binning, bl = (l + 1

2
)∆b with l ∈ Z+. Also the ensemble average is approxi-

mated by the sample mean 〈A〉 ≈ 1
n

∑n
k=1A(µk) of a sample of n configurations

µk = (~r1,k, ..., ~rN,k). Following the principles of importance sampling [4], the

sample has to be generated from a probability distribution p(µ) ∼ exp (−βΦ(µ))∫
exp (−βΦ(µ))dµ

.

Evaluation of the summation over δ-distribution, δ(r − |~rj − ~ri|) comes down to
creating the histogram hist(bl) of particle pairs separated by distances r = |~rj−~ri|.
In creating the histogram hist(bl) it has to be considered that the probability of
counting pair separations r of a specific bin bl is also depending on the bin’s area
∆A(bl). The bin area grows with the radius, and in the histogram this effect has
to be repaired by normalizing to a count per unit-area.

5.2. Nematic Order Parameter

The nematic order parameter in two dimensions is defined as the largest eigen-
value and the director of the field (or orientations) as the corresponding eigen-
vector of the matrix Qαβ [29][30]:

Qαβ =
1

N

N∑
i=1

[
2uα(i)uβ(i)− δαβ

]
(5.4)

=
1

N

N∑
i=1

Qi
αβ (5.5)

Here N is the number of particles, α, β = (1, 2) indicates the first or second
cartesian coordinate and ~u(i) is the director of the i-th particle. The matrix Qi

αβ

takes the following form:

Qi
αβ = 2uα(i)uβ(i)− δαβ (5.6)

=

[
2u2

1 − 1 2u1u2

2u1u2 2u2
2 − 1

]
. (5.7)

Using parameterization in polar coordinates,

u1(i) = ~u(i) · ê1 = |~u(i)| cos (φ) = cos (φ) (5.8)

u2(i) = ~u(i) · ê2 = |~u(i)| sin (φ) = sin (φ) (5.9)
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for substitution, the matrix terms then give:

Qi
αβ =

[
cos (2φ) sin (2φ)
sin (2φ) − cos (2φ)

]
. (5.10)

Before looking at the eigenvalues of Qαβ which define the nematic order pa-
rameter, it shall be noted that the eigenvalues of Qi

αβ are λ = ±1. Using the
derived expression for matrix Qi

αβ the eigenvalues Λ of the full matrix Qαβ can
be determined from the characteristic polynomial, giving:

Λ = ± 1

N

√[(∑
i

cos (2φ)
)2

+
(∑

i

sin (2φ)
)2]

, (5.11)

with sums extending overall N particles. This can also be expressed as:

Λ = ± 1

N

√∑
i

∑
j

cos
(
2(φi − φj)

)
. (5.12)

Implementation. The nematic order parameter can be implemented either by
calculating the full matrix Qαβ from the system’s configuration and then comput-
ing eigenvalues using numerical methods. Alternatively, it can be determined by
calculating the largest, positive eigenvalue forQαβ according to eq. (5.12) directly:

1 Lambda = N

2 do i=1,N

3 do j=i+1,N

4 Lambda = Lambda + 2*cos (2*( phi_i -phi_j))

5 end do

6 end do

7 Lambda = sqrt(Lambda)/N

In the first line, Lambda is initialized with N, accounting for the excluded terms
i = j in line 2-7.

5.3. Loop Order Parameter

Based on the loops and their sizes, gathered by the loop-detection algorithm (see
chapter 2 - section 2.4), a loop order parameter Γ was formulated.
The target order parameter Γ should achieve unity for a perfectly ordered sys-
tem. Perfect order is here claimed to be a loopy network of a uniform loop size.
Disorder within the configuration in terms of loops of smaller or larger size than
the targeted loop size should be detected by the order parameter giving a value
Γ < 1.
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The described behaviour of the order parameter Γ was achieved by calculating a
weight factor wi,l′ for each particle i. The index l′ takes values l′ = 1, 2, as each
particle is part of at most two loops, named Li,l′ . The particle’s weight factor
depends on the loop sizes |Li,l′|. The weight is determined by a target distri-
bution, e.g. a Gaussian distribution G(x|µ, σ) with mean µ = 6 and standard
deviation σ = 0.5. The weight factor is used to detect loops of target size (here
|L| = µ = 6) and assigning a maximum weight, w = 1 to them. Loops with size
smaller or larger than the target size are penalized by assigning a smaller weight:

w(i, l′) = exp
[−(|Li,l′ | − µ)2

σ2
] ∝ G

(
x = |Li,l′ |

∣∣∣µ, σ). (5.13)

The local loop order parameter γ(~ri) is formulated for a particle with index i and
at a position ~ri. As stated above, for the case where each particle is adjacent
to at most two loops - written as Li,l′ with index l′ = 1, 2 - the local loop order
parameter γ(~ri) is then stated as an average value for the two weights taken from
the loops adjacent to particle i:

γ(~ri) =
1

2

2∑
l=1

w(i, l′). (5.14)

Finally, the global loop order parameter Γ, is defined by an average over the local
order parameters:

Γ =
1

N

N∑
i=1

γ(i). (5.15)

For means of implementation, the global order parameter can also be written as
a sum over all loops Ll, with l = 1, ..., NL and NL indicating the total number of
loops:

Γ =
1

2N

NL∑
l=1

|Ll| · w(l). (5.16)

The underlying distribution to assigning the weight factors to the loops can
also be chosen differently. While a δ-distribution would solely count loops of
exactly the target size, the Gaussian distribution with a very narrow width (small
standard deviation) assigns a weight also to loops of similar size. In some systems,
it might be interesting to also render the tail of the loop size distribution within
the order parameter. For such systems, the asymmetrical log-normal distribution
can be helpful [31]. When utilizing the log-normal distribution or any other
asymmetrical distribution, it should be noted that the mode instead of the mean
of the distribution should be chosen as the target loop size.
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5.4. Degree Order Parameter

Another order parameter that measures order on the basis of the number of bonds
per particle is defined in the following. For determining the number of bonds per
particle, the particle-based graph is used, and the networkx [8] function for the
node degree is applied to each node. The degree of a node is defined as the
number of edges incident to that node [15].
The order parameter Dd for particles with d bonds is then defined as:

Dd =
Nd

N
, (5.17)

where Nd is the number of particles of degree d and N is the total number of
particles.
Using this type of order parameter, structural order is directly related to the
number of particles with a specific number of bonds. This type of order parameter
is useful only if a unique mapping between the number of bonds for each particle
and a specific particle arrangement is possible.

5.5. Largest Cluster Size

When observing self-assembly processes, the largest cluster size is a prevalent
measure of the stages in the process. [32]. The largest cluster size can be used
as an absolute size or as a relative size comparing the size of the largest cluster
to the total number of particles in the system:

Cmax = max
i∈Nclust

|Ci| (5.18)

cmax =
Cmax

N
(5.19)

For determining the collection of clusters Ci, a networkx method [8] is used on
the particle-based graph (see chapter 2 - section 2.4.1).

5.6. Loop & Cluster Size Distributions

Apart from scalar quantities such as order parameters, also distributions of quan-
tities such as loop size, loop numbers, cluster size and cluster numbers can be
determined and analyzed.
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Part II.

Lattices of Hard Ellipses - A Study
of Entropies

59





1. Introduction

Hard-core particles were present from the very beginning when computer simula-
tions entered as a method of understanding liquid properties. The first computer
simulations of a liquid were performed for hard disks in 1953 by Metropolis,
Rosenbluth&Rosenbluth and Teller&Teller [4]. A decade later, in 1957, another
milestone in the history of computer simulations occurred with the observation
of hard-core spheres crystallizing at high densities [33]. This observation was
ground-breaking as the ordering of particles into lattices was believed to be driven
by the particle’s attractive forces. As hard-core spheres have purely repulsive
interactions, this explanation did not hold. Alder and Wainwright, who first ob-
served this behaviour, used Monte-Carlo simulations. Using Molecular Dynamics
showed the same behaviour and was achieved by Hoover, and Ree [34] almost a
decade later in 1968.
Although a theory on the ordering of hard-core particles existed as early as 1949
with Onsager’s theory of nematic fluids [35], the observations of the crystalliza-
tion of hard spheres were particularly important for a wider acceptance, even
though not immediate, of understanding entropy as a thermodynamic potential
capable of driving systems in ordered phases [36].

The principle of entropic ordering, first appearing in Onsager’s theory of nematic
fluids [35] but understood and accepted only later with [34], is fundamental and
comes into play for all types of interactions, not just hard-core interactions. In
thermal systems, i.e. systems with attractive and/or repulsive interactions other
than hard-core interactions, the entropy is in interplay with other thermodynamic
potentials, e.g. the internal energy, to minimize the underlying thermodynamic
potential. This could be the Helmholtz Free Energy for systems described by
the canonical ensemble or the Gibbs Free Energy for systems described by the
isobaric-isothermal ensemble.

With the crystallization of hard spheres, another important chapter in the his-
tory of computer simulations of molecular systems was opened - the chapter on
studying crystalline phases. For liquid phases, the advance in computational
methods was most interesting as fundamental theories of liquids were very lim-
ited for practical purposes. With the use of thermodynamic integration from the
ideal gas as a reference state, most fundamental properties such as the free energy
could be computed. This method was extended to crystalline phases in 1984 by
Frenkel and Ladd. They proposed a method relying on the Einstein Crystal as a
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Chapter 1. Introduction

reference system to compute the free energy of a crystal via a suitable thermo-
dynamic integration path [20]. This method is widely used and was reformulated
in a slightly different form by Vega and Noya [18] in 2007. Finally, this method
helped to solve a decades-long dispute on the true lattice ground state of hard
spheres. Noya and Almarza computed free energies showing that the fcc lattice
state is entropically favoured over the hcp lattice state by a minute free energy
difference [23].

The particle type studied in this project is the hard-core ellipse. Ellipses with
a hard-core interaction first became a subject to computer simulations in 1970,
when Vieillard-Baron proposed an overlap criterion for particles of elliptic shape.
First simulation studies were conducted by Vieillard-Baron [37] on the isotropic-
nematic transition, as well as the solid-nematic melting transition and made
predictions on the transition densities. In later publications on the hard ellipse
model, the focus remained on these two transitions. Important contributions
following Vieillard-Baron were made by Cuesta, and Frenkel [38] as well as Ward
and Lado [39]. In the next century, Davatolhagh and Foroozan [40] described
the diffusive behaviour in isotropic and nematic phases of hard ellipses and Luo,
Sagis and Ilg [41] proposed expressions for the free energy in dilute and nematic
phases and compared these to free energies obtained from simulations, using the
thermodynamic integration method. An extensive study on hard ellipses was
performed in 2014 by Bautista-Carbajal, and Ordiozola [42] in which the authors
computed phase diagrams of hard ellipses with aspect ratios 1 < κ < 5 employing
the replica-exchange Monte Carlo method [43].

Despite the importance of the hard ellipses as a model system for nematic phases,
the following pages will focus on the crystalline phase of ellipses. Already with
the very first publication on hard-ellipses studied by Monte-Carlo simulation
methods by Vieillard-Baron [37], the infinitely degenerate ground-state - at least
for closest packing - of the ellipse solid was observed. Further, a construction of
these infinitely many lattice states of ellipses was described. An in-depth study
of these infinitely many lattice configurations has not been published to the best
of my knowledge. A clear understanding of the crystalline ellipse phase is miss-
ing. Frenkel and Cuesta [38] as well as Bautista-Carbajal and Ordiozola [42] use
different crystalline lattice states for their studies on the solid-nematic transition.
While the first used the later defined parallel lattice state in their studies of the
solid-nematic melting transition, the also later defined diagonal lattice was used
by the latter.

The research project presented here addresses the crystalline phases of hard-
core elliptic particles in two dimensions and tries to provide a missing link in
the understanding of the ellipse crystalline phase. In chapter 2 the overlap crite-
rion by Vieillard-Baron [44] is presented. The infinite number of possible lattice
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states already described by Vieillard-Baron [37] is further increased by introduc-
ing a second lattice parameter acting on the positional order of the ellipses (see
chapter 3 - section 3.1). Within the huge parameter space representing all ellipse
lattices, two candidate lattice structures, namely the parallel and diagonal lattice
configuration, are isolated (see chapter 3 - section 3.2). Helmholtz free energies
of these candidate structures are computed within the canonical ensemble (see
chapter 4) using the Einstein Molecule method proposed by [18] as a variant of
the Frenkel Ladd method [20]. Finally, a prediction of the free energy difference
between the parallel and diagonal lattice configuration in the thermodynamic
limit is attempted using finite-size corrections (see chapter 5).
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2. Hard Ellipses Model

As early as 1970 J. Vieillard-Baron put forward a criterion to check for overlap
between two ellipses of same aspect ratio in a closed-form expression [44]. Us-
ing this criterion allowed him to conduct computer simulations of hard elliptic
particles and made him a pioneer in studying assembly scenarios of anisotropic
particles. To this day, the Vieillard-Baron criterion is used widely due to its low
computational cost and its simple, analytical form. Another criterion that can
be used for determining overlap of two ellipses is the recently published formula
for the distance of closest approach [45] between two ellipses. This method even
allows to identify overlap of ellipses with distinct aspect ratios.

2.1. Units

The chosen unit of length within the simulations is:

2
√
ab = 1. (2.1)

Here, the parameters a and b refer to the semi-major and semi-minor axis of the
ellipse respectively. The unit of length is the natural extension of the typical unit
of length σ = 1 for isotropic hard core particles (i.e. disks), with σ being the
diameter of the disks. The unit in eq. (2.1) represents the geometric mean of the
ellipse’s two axes, the major axis 2a and minor axis 2b. Therefore for disks with
a = 0.5 and b = 0.5 the length unit σ = 1 is restored.
The ellipse aspect ratio is given as:

κ =
a

b
. (2.2)

With the length unit at hand (see eq. (2.1)), the following relations for the semi-
major and semi-minor axes a and b are derived:

a =

√
κ

2
(2.3)

b =
1

2
√
κ

. (2.4)
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Chapter 2. Hard Ellipses Model

2.2. Overlap Criterion by Vieillard Baron

In the MC Program written in the course of this thesis, the criterion by Vieillard-
Baron [37][44] is applied to check the overlap between two ellipses. The original
overlap criterion is based on the following analytical expressions:

Ψ = 4(f 2
1 − 3f2)(f 2

2 − 3f1)− (9− f1f2)2. (2.5)

Specifying the two ellipses with α = 1 or 2, the functions f1 and f2 read:

fα = 1 +G−
[(~r · ũα)2

a2

]
−
[(~r · ~u ′α)2

b2

]
, (2.6)

with

G = 2 +
[a
b
− b

a

]2

sin2 θ. (2.7)

Here, uα and u′α are the unit vectors pointing in direction of the major axis and
minor axis of ellipse α respectively. Further, θ indicates the angle enclosed by
the two ellipses’ directors ~u1 and ~u2.

Using eq. (2.5) to (2.7), Vieillard-Baron’s criterion states that for overlap of
two ellipses α = 1 and 2, the relation Ψ > 0 must hold and that either f1 < 0 or
f2 < 0.

Implementation. The Monte-Carlo Program stores particle orientations in
degrees with respect to the the x-axis. Hence the reformulation using the orien-
tation of the ellipse in terms of φ reads:

fα = 1 +G− (2.8)

−
[r · êx cos (φα) + r · êy sin (φα)

a

]2

−
[r · êx cos (φα + π) + r · êy sin (φα + π)

b

]2

(2.9)
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2.2. Overlap Criterion by Vieillard Baron

Figure 2.1.: Parameters that enter the Vieillard-Baron criterion for overlap.
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3. Ellipse Lattices

In search of the true lattice ground state of hard ellipses, a parameterization of
the possible candidate structures is put forward, with the mathematical details
covered in part I - section 2.1.2. In this chapter the described lattice parameteri-
zation is once more motivated and specified. Following the lattice parameteriza-
tion, the optimization procedures for finding entropically favoured lattice-types
is presented.

3.1. Lattice Parameterization

A parameterization for two-dimensional lattices of ellipses is specified. These
types of lattices can be constructed by suitable transformations of the hexagonal
lattice of disks. Details on this construction as well as its implementation for
purposes of simulations can be found in part I - section 2.1.2.

An ellipse can be created starting from a disk by using an affine transforma-
tion, i.e. an area-preserving linear transformation, that stretches the disk along
one axis and compresses it along the orthogonal axis. When applying this trans-
formation to a lattice of disks, the direction of this transformation can be chosen
using any angle ω ∈ (0, π

6
). For each angle ω, a different ellipse lattice type is

produced, resulting in an infinite number of possible ellipse lattice configurations,
parameterized by ω. This construction of these types of ellipse lattices was first
described by Vieillard-Baron [37]. The interval for ω reflects the six-fold rota-
tional symmetry - or C6-symmetry - of the hexagonal lattice. Here, the resulting
lattice state is named ω which also serves us as the first lattice parameter char-
acterizing the ellipse lattice.
In the next step, the six nearest-neighbour distances within the ω-lattice are
inspected more closely. In a hexagonal lattice of disks, these six distances are
equal. Due to the symmetry of the ω-lattice, for this types of lattices, three
distinct nearest-neighbour distances occur in the general case. However, when
ω = 0 and ω = π

6
, the number of distinct nearest-neighbor distances reduces to

two. In both cases, the lost symmetry in contrast to the hexagonal lattice al-
lows for another affine transformation that acts on the positions of the particles
solely and can change these interconnected distances. For the latter case, this
transformation is formulated in part I - chapter 2 - eq. (2.14). The positional
alignment of the particles is taken into account via the second lattice parameter τ .
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Chapter 3. Ellipse Lattices

The parameterization (ω, τ) covers all possible two-dimensional lattices of el-
lipses. In the following, a simulation-based lattice optimization (see part I -
section 2.2) is used to probe the parameter space spanned by ω and τ and find
the entropically most favourable lattice types.

3.2. Lattice Optimizations

By applying the lattice MC method (see part I - section 2.2) at constant volume
the entropically most favourable lattice configurations within the (ω, τ)-lattice
space are searched. The lattice MC methods are proposed as independent varia-
tions of ω and τ . Therefore the optimization is approached in two steps: first, the
ω-optimization is carried out, followed by a τ -optimization. The optimal lattice
states are reflected in the resulting probability distribution function (pdf) over
the lattice parameters ω and τ .

The above optimization procedure was carried out in detail for three different
reduced particle densities, namely ρ∗ = 0.97, 0.98 and 0.99 as well as for three
different ellipse aspect ratios, namely κ = 2, 4 and 6. Throughout, a system of
N = 128 particles was studied, arranged in a lattice with Nx = 8, Ny = 16.

Context. The optimization problem is approached by varying the two lattice
parameters ω and τ separately while keeping the other lattice parameter constant.
Although this setup is not complete, it is deemed justified in this particular
case: The first optimization step of the parameter ω clearly indicates two lattice
candidates in the resulting probability distribution of lattice states with all of
the other candidate structures strongly suppressed (see fig. 3.2). With this clear
indication of two very distinct optimal lattice parameters, ωopt = 0 and ωopt = π

6
,

which will be named the diagonal and parallel configuration respectively, the
second optimization step with respect to the parameter τ is only applied to these
two optimal ω-parameters.

ω - Optimization

In a first step all states along the ω-axis, with ω ∈ (0, π
6
) are probed via ω

MC-moves while keeping a constant lattice parameter τ = 1. A number of 60
independent simulations were run, each over 5.0E+05 cycles, with a probability
of proposing an ω-move of probOm=0.05 and probabilities for a translation or
rotation move of probT=probR=0.475. Each of the 60 simulations started from a
different initial lattice configuration, where these initial ω-states covered the total
ω-axis (0, π

6
) uniformly. For the first 2.5E+04 cycles, the lattice was equilibrated

at its initial ω-state by proposing particle translations and rotations only. The
total equilibration phase extended over 5.0E+04 cycles, where in the second half
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3.2. Lattice Optimizations

of the equilibration phase, also ω-moves were allowed.
In fig. 3.1, trajectories of the lattice parameter ω over the course of the simulation
time for all simulations are shown. From inspecting the simulation processes, the
truncation point for trajectories was set to 50% or at 2.5E+05 cycles, indicated
as green vertical lines in the figure. Only samples beyond this point were con-
sidered in the evaluation of the probability distribution function, or pdf. The
corresponding pdfs are depicted in fig. 3.2. It is clearly the case that lattice
states with ω values other than ω = 0 and ω = π

6
are strongly suppressed. The

system strives to either a lattice state with ω = 0, which we call the diagonal
state or to a state with ω = π

6
, which we call the parallel state. Each of these two

states is favoured among all densities and ellipse aspect ratios invested here. It is
further observed that the shape of the peak in the pdf is broader and lower for all
diagonal states and narrower and higher for all parallel states. These observed
tendencies of the peaks deforming with increasing aspect ratio are that they get
higher and narrower. The same tendency is observed for increasing densities.
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Chapter 3. Ellipse Lattices

ρ∗ = 0.97

(a) (b) (c)

ρ∗ = 0.98

(d) (e) (f)

ρ∗ = 0.99

(g) (h) (i)

Figure 3.1.: All simulation trajectories showing the varying ω over MC-time for the ω-
optimization. The simulations were done at denisities ρ∗ = 0.97, 0.98 and 0.99
(rows) and ellipse aspect ratios κ = 2, 4 and 6 (columns). For each system, 60
independent simulations where carried out with distinct initializations for ω. The
red bar indicates the end of the equilibration phase and the green bar the start of
the sampling.

72



3.2. Lattice Optimizations
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Figure 3.2.: Probability distribution functions (pdf) from MC-simulations with varying lattice
parameter ω for denisities ρ∗ = 0.97, 0.98 and 0.99 (rows) and ellipse aspect ratios
κ = 2, 4 and 6 (columns).
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τ - Optimization

In a second step, the lattice parameter τ is optimized for each of the two optimal
ω-values. The lattice MC method (see section 2.2) with varying lattice parameter
τ and fixed lattice parameters ω = 0 and ω = π

6
was used. A total number of ten

simulations were run in parallel for each lattice type and each density, all with
an initial value of τ = 1. Similar to the ω-optimization, the first 2.0E+05 cycles
were run without lattice moves. This is so that the lattice relaxes within the
proposed lattice state. Only after these cycles, lattice moves varying parameter
τ are proposed with a probability of 0.05, compared to probabilities 0.475 for
both translation and rotation moves. After a total of 2.0E+06 discarded cycles,
the sampling began with a step-size for sampling lattice parameters τ of 2.0E+02
cycles. With a total length of 2.0E+07 cycles, each simulation results in a total
size of 9.0E+04 sampled lattice parameters.

Figure 3.3 shows the pdf over the lattice parameter τ for different densities ρ∗

and lattice states ω. It can be observed that for all densities and lattice states,
the pdf yields a non-symmetric distribution with a tail towards smaller values of
τ . The value for τ giving the maximum probability is identified as the optimal
lattice parameter. All achieved parameters from this optimization can be seen in
table 3.1.
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3.2. Lattice Optimizations

ωopt τopt(N = 128) τopt(N = 100)

ρ∗ = 0.92
0◦ 0.9295(34) 0.9306(04)
30◦ 0.9559(06) 0.9552(63)

ρ∗ = 0.93
0◦ 0.9448(05) 0.9445(60)
30◦ 0.9644(41) 0.9663(62)

ρ∗ = 0.94
0◦ 0.9574(38) 0.9565(60)
30◦ 0.9726(10) 0.9726(77)

ρ∗ = 0.95
0◦ 0.9660(37) 0.9651(15)
30◦ 0.9770(55) 0.9784(39)

ρ∗ = 0.96
0◦ 0.9752(18) 0.9749(58)
30◦ 0.9830(69) 0.9840(41)

ρ∗ = 0.97
0◦ 0.9826(36) 0.9819(14)
30◦ 0.9881(74) 0.9887(45)

ρ∗ = 0.98
0◦ 0.9891(68) 0.9892(75)
30◦ 0.9924(90) 0.9932(73)

ρ∗ = 0.99
0◦ 0.9951(80) 0.9949(08)
30◦ 0.9966(36) 0.9968(93)

ρ∗ = 0.995
0◦ 0.9976(78) 0.9975(83)
30◦ 0.9983(43) 0.9984(39)

Table 3.1.: Results for the optimal lattice parameters ω and τ for ellipse lattices
of N = 100 and N = 128 particles at densities ρ∗ = 0.93 up to 0.995
and ellipses with aspect ratio κ = 2 as obtained from the optimization
procedures using the lattice MC method.
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Figure 3.3.: Results showing the pdfs from MC-simulations with varying lattice parameter τ
with ellipse aspect ratio κ = 2. Top: denisities ρ∗ = 0.93, 0.95 and 0.98 for parallel
(green) and diagonal (pink) lattice types. Center: diagonal lattice type for eight
different densities, as labeled. Bottom: results for the parallel lattice type at the
same densities.
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3.3. Consistency Check

Figure 3.4.: Consistency check between lattice-optimization using τ -moves (top)
and direct free energy computations (bottom) for a lattice of N = 36
ellipses with aspect ratio κ = 2 in the diagonal (left) and parallel
(right) lattice sate.

3.3. Consistency Check

In an attempt to check the consistency of the τ -optimization approach with the
underlying thermodynamic potential of the free energy, a number of free energy
computations were carried out for the two lattice states - parallel and diagonal
- at a density ρ∗ = 0.95 for a system of N = 36 particles with aspect ratio
κ = 2. Free energies were computed for this rather small system size at different
lattice parameters τ , using the Einstein Molecule method (part I - section 4.4).
The lattice state τ with minimal free energy was evaluated by minimizing the
quadratic function fitted to the data points, as can be seen in fig. 3.4. The lattice
parameter τmin that minimizes the free energy functional was then compared to
the lattice parameter τmax that maximizes the probability distribution function
obtained from the τ -lattice MC procedure. In both lattice systems, i.e. the
parallel and the diagonal state, we found that the varying lattice parameter
approach produces the same results as the free energy approach with an accuracy
of ≈ 99%.
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4. Free Energy Computation

The free energy computation for the two ground-state candidates - the diagonal
and the parallel lattice - is based on the Einstein Molecule method, described in
detail in part I - section 4.4. This chapter reports simulation details and results
on the total free energies Atot[NkBT ] (see part I - eq. (4.35)) of these two lattice
types at two densities ρ∗ = 0.95 and 0.98, for ellipses with κ = 2 and for six
system sizes, N = 32, 72, 128, 200, 288 and 392. The prediction of the free
energy and the corresponding error are estimated by performing ten independent
computations for each state-point. With all these efforts taken, the results will
show that the parallel lattice state is the entropically favoured lattice state, i.e.
the lattice state with the lowest free energy. This is true in lattices of both den-
sities and for all system sizes considered in this study.

4.1. Prerequisites

4.1.1. Simulation Box Shapes

Numerical results of the free energy using a simulation-based method always de-
pend on the simulation box size and shape. These features are responsible for
errors, which amongst others, occur due to the aforementioned finite size of the
simulation box and its shape. The error associated with the size of the simulation
box can be taken into account by applying finite-size corrections. The effect of
the simulation box shape can be considered by comparing free energy compu-
tations performed for different box shapes. Within this project, the finite-size
corrections were computed using different box sizes. An analysis of different box
shapes is not included in this thesis but is considered in a forthcoming publica-
tion [46].

The finite-size correction method, as discussed in part I - section 4.5 is applied
by computing the free energies at a number of different system sizes, in terms of
the particle number N , and fitting the relation proposed in part I - section 4.5 -
eq. (4.48). As can be seen from the correction model the simulation box aspect
ratios for each lattice, the parallel and diagonal individually, must be the same
across all system sizes N for a correct fitting procedure. As the ultimate aim
is to compute free energy differences between the diagonal (d) and parallel (p)
lattice type, ∆Ap−d = Ap − Ad, the box aspect ratios κbox,p and κbox,d, within
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Chapter 4. Free Energy Computation

eq. (4.48) (in part I) of the parallel and diagonal lattices should ideally be the
same.
For the following computations of the free energies of lattices of ellipses with as-
pect ratio κ = 2, we have selected a box shape for each lattice that is sufficiently
similar to a quadratic shape and at the same time are similar to each other. The
simulation box shape most similar to a quadratic shape for the diagonal lattice
of ellipses with κ = 2 is a box hosting a (Nx = 2, Ny = 4)-lattice arrangement of
particles. The same lattice arrangement is picked for the parallel lattice. From
these box shapes, cascades of larger simulation boxes can be constructed (see
fig. 4.1):

N=32 boxi=1 = 2× boxi=0 = (4, 8)

N=72 boxi=2 = 3× boxi=0 = (6, 12)

N=128 boxi=3 = 4× boxi=0 = (8, 16)

N=200 boxi=4 = 5× boxi=0 = (10, 20)

N=288 boxi=5 = 6× boxi=0 = (12, 24)

N=392 boxi=6 = 7× boxi=0 = (14, 28)

Due to stacking order and periodic boundary conditions the condition that Nx for
the diagonal and Ny for the parallel lattice are even numbers must be fulfilled.
This however rules out half-step enlargements increases of the box size in the
parallel lattice. For the diagonal lattice the following box shapes are allowed:

N=18 boxi=1 = 1.5× boxi=0 = (3, 6)

N=50 boxi=1 = 2.5× boxi=0 = (5, 10)

N=98 boxi=2 = 3.5× boxi=0 = (7, 14)

N=162 boxi=3 = 4.5× boxi=0 = (9, 18)

N=242 boxi=4 = 5.5× boxi=0 = (11, 22)

N=338 boxi=5 = 6.5× boxi=0 = (13, 26)
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Figure 4.1.: Cascades of simulation boxes in the parallel (red) and diagonal lattice
(green) starting from the initial boxes boxi=1 = (Nx, Ny) = (2, 4).

4.1.2. Autocorrelation Analysis

Prior to computing the contribution ∆A2 (part I - eq. (4.36c)) to the total free
energy by simulation of all state-points along the thermodynamic integration axis
from the mixed, H(λ) = λHein + Hsol, to the pure state, H(λ = 0), the auto-
correlation times τ rot

a.c. and τ trans
a.c. , estimated from the autocorrelation function

frot(t) = 〈Uein,rot(to)Uein,rot(to + t)〉 and ftrans(t) accordingly, were studied in pre-
ceding simulations for each of these states. The autocorrelation time is observed
to be the longest for states with λ ≈ 0. Therefore the maximum auto-correlation
time corresponds to the mixed state with the lowest contribution of the Einstein
crystal and highest contribution of the pure hard core particle interactions, hence
almost the free solid.

Simulation Details. Simulations for the evaluation of the auto-correlation
time were done for two densities ρ∗ = 0.95, 0.98 and all investigated system sizes,
namely N = 32, 72, 128, 200, 288 and 392. For each set of density and system
size a total of five independent simulations were performed with Einstein spring
constants Λ′ = 46, 47, 48, 49 and 50 (see part I - chapter 4 - eq. (4.38)). The
mean auto-correlation time is then retrieved from taking the mean of the auto-
correlation functions. The simulation parameters for system sizes N = 32 and
N = 72 are set to a total simulation length of 1.0E+07 cycles, a parameter step
size of 1000 cycles and a total of 1.0E+06 discarded cycles. For system sizes
N = 128, N = 200 and N = 288 the corresponding parameters are 2.0E+07
cycles for the simulation length, a step-size of sampling parameters of 2.0E+03

81



Chapter 4. Free Energy Computation

and a total of 2.0E+06 discarded cycles. For the largest system size of N = 392
these parameters are 3.0E+07 cycles, a parameter sampling step-size of 3.0E+03
and a total of 3.0E+06 discarded cycles.

Results. From the simulation trajectories the autocorrelation functions (part I
- section 3.2 - eq. (3.1)) of the total Einstein energies relating to translations,
Etrans =

∑N
i=1 Λ∆r2 and rotations are determined. The best estimate of the

autocorrelation time τa.c. is taken as the time at which the mean of the autocor-
relation functions reaches a value of zero. A selection of autocorrelation functions
for each of the five independent simulations, as well as the average autocorrela-
tion function are depicted in fig. 4.2 and 4.3. These figures show the mixed state,
H(λ) with λ closest to zero, which corresponds to λID = 1. The system sizes are
N = 72 and N = 288. The autocorrelation times are indicated by vertical red
lines.
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Figure 4.2.: Translational (top) and rotational (bottom) autocorrelation functions of five in-
dependent runs (left) and the respective mean (right) for λID = 1, ρ∗ = 0.98 at
a system size of N = 72 in the diagonal lattice state ω = 0. Estimates of the
autocorrelation times are indicated by red vertical lines.
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Figure 4.3.: Translational (top) and rotational (bottom) autocorrelation functions of five in-
dependent runs (left) and the respective mean (right) for λID = 1, ρ∗ = 0.98 at
a system size of N = 288 in the diagonal lattice state ω = 0. Estimates of the
autocorrelation times are indicated by red vertical lines.
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The corresponding autocorrelation times that are extracted from the means
of the autocorrelation functions for translation and rotational contributions of
the Einstein energy are summarized in Appendix A.2. These values serve as
reference values for determining the simulation parameters in the computation
of free energies (see next section 4.2).

4.2. Simulation Details

Reference State. The reference state, the Einstein Molecule, is defined, as
given in part I - eq. (4.24), but with the orientational part of the Einstein Hamil-
tonian chosen as:

Hein,rot = ΛE

N∑
i=1

(
(φi − φi,0) mod π

)2
, (4.1)

reflecting the ellipses’ C2 symmetry.

Spring Constants. According to the procedure described in part I - section 4.4
- section 4.4.3, appropriate Einstein spring constants were determined. Here,
scaled spring constants Λ′E are used, see part I - eq. (4.38). Numerical values for
these scaled spring constants Λ′E = 46, 47, 48, 49 and 50 are utilized.

Numerical Integration. For the computation of ∆A2 (part I - eq. (4.36c)) a
total number of nsp = 100 sampling points in the numerical integration were
used. The numeric integration relies on the Gauss-Legendre quadrature. Before
applying the quadrature rules, the integrand is further transformed using the
proposed Möbius transformation with a transformation parameter ξ = −0.9993
close to the sharp peak at the transformed coordinate u = −1 for all systems
(see part I - section 4.4 - section 4.4.3).

Simulation Parameters. The simulation parameters, such as the total simu-
lation length (no_cycles), the sampling step width (par_step) and number of
discarded cycles (disc_cycl) were set according to the autocorrelation time τa.c.,
estimated in section 4.1.2. The parameter step size par_step was set similar to
τ trans

a.c. . The total simulation length was set at approximately a thousand times
the parameter step size. For very large systems, i.e. N = 288 and N = 392, a
simulation length shorter than this was realized, due to limited computational re-
sources. Depending on the system size and therefore the total simulation length,
the number of discarded cycles is 1% or 4% of the total number of cycles. The au-
tocorrelation differs among the λ-states, and so the simulation parameters given
in table 4.1 are dependent on λID. Here λID is a numbering of the total 100
different λ-values within the interval of integration λ ∈ [0, 1].
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λID no_cycles par_step disc_cycl

N = 32, 72
1-10 8.0E+08 8.0E+05 8.0E+06
11-40 2.0E+08 2.0E+05 2.0E+06
41-100 5.0E+07 5.0E+04 5.0E+05

N = 128, 200
1-10 2.0E+09 6.0E+06 2.0E+07
11-40 1.0E+09 1.0E+06 1.0E+07
41-100 2.0E+08 2.0E+05 2.0E+06

N = 288
1-10 (ρ∗ = 0.98) 2.0E+09 8.0E+06 8.0E+07
1-10 (ρ∗ = 0.95) 3.68E+09−4.80E+09 8.0E+06 8.0E+07

11-40 2.0E+09 2.0E+06 2.0E+07
41-100 2.0E+08 2.0E+05 2.0E+06

N = 392
1-10 (ρ∗ = 0.98) 2.0E+09 8.0E+06 8.0E+07
1-10 (ρ∗ = 0.95) 2.8E+09−3.36E+09 8.0E+06 8.0E+07

11-40 2.0E+09 2.0E+06 2.0E+07
41-100 2.0E+08 2.0E+05 2.0E+06

Table 4.1.: Simulation parameters for ∆A2 for different system sizes and for dif-
ferent λID at densities ρ∗ = 0.95 and ρ∗ = 0.98 and for the diagonal
and parallel lattice state.

All relevant simulation parameters for the evaluation of ∆A1 are collected in
table 4.2.

Additional Information. For computational efficiency, testing overlap between
particle pairs is restricted to nearest neighbours only. For each particle, a total
of six next neighbours are used to compute the pair interaction potential.

no_cycles par_step disc_cycl

N = 32, 72 5.0E+07 5.0E+04 5.0E+05

N = 128 2.0E+08 2.0E+05 2.0E+06

N = 200, 288 1.0E+07 1.0E+05 1.0E+05

N = 392 2.0E+05 2.0E+05 2.0E+03

Table 4.2.: Simulation parameters for ∆A1 for different system sizes at densities
ρ∗ = 0.95 and ρ∗ = 0.98 and for the diagonal and parallel lattice state.
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4.3. Results

For each of the five values of the spring constant Λ′E two independent computa-
tions were performed, resulting in a total of ten independent computations for
∆A2 for each lattice state and for each density. For the contribution ∆A1, in
total, five independent computations were made, one for each Λ′E. For each of
the ten computations, a total free energy Atot = A0(Λ′E) + ∆A1(Λ′E) + ∆A2(Λ′E)
is computed, where all contributions explicitly depend on the Einstein spring
constant Λ′E. The term A0(Λ′E) is the free energy of the reference system and
is derived for the two-dimensional Einstein Crystal in appendix A.1. The final
total free energy is estimated as the mean of these ten computed free energies.
The error to this mean is estimated using the standard deviation σ (see part I -
chapter 3 - section 3.3).

Truncation Analysis. The truncation analysis (see part I - chapter 3 - sec-
tion 3.4) was performed for the quantity ∆A2. The values for ∆A2(tp) are com-
puted from the simulation trajectories truncated at the given truncation point
tp for every λ-state in the integration interval, λ ∈ (0, 1). In total 21 different
truncation points within the interval tp ∈ (0.0, 0.5) were considered.
As an example, the truncation analysis of a system size of N = 392 at ρ∗ = 0.95
for the diagonal and parallel lattice state is shown in fig. 4.4. The full results of
this truncation analysis are shown in Appendix A.3. For almost all systems, the
final quantity Atot(tp) = A0 + ∆A1 + ∆A2(tp) shows only a weak dependence
on the truncation point. Truncation points for the final results were chosen as
tp = 0.3 in systems with almost no dependence on the truncation length. In sys-
tems with a recognizable dependence, the truncation point was chosen as specified
in table 4.3.
Table 4.3 summarizes the final results of the total free energies for each of the two
lattice types, parallel (p) and diagonal (d) and the corresponding error estimates
for all studied system sizes and densities. Further, table 4.4 and fig. 4.5 collect
the computed free energy differences between the diagonal and parallel lattice
states.
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Figure 4.4.: Truncation analysis on Atot[NkBT ] for all ten independent simula-
tions individually, at system size N = 392. First two panels show
ρ∗ = 0.95, second and fourth ρ∗ = 0.98. The first and third panel
show results of the diagonal lattice configuration (ω = 0◦) and second
and fourth the results on the parallel lattice configuration (ω = 0◦).
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N ρ∗ lattice tp Atot[NkBT ] σ copies

32 0.95 d 0.0 9.154(3) 0.005(3) 10
32 0.95 p 0.0 9.057(8) 0.011(7) 10
32 0.98 d 0.0 11.753(9) 0.006(5) 10
32 0.98 p 0.0 11.589(0) 0.011(1) 10

72 0.95 d 0.0 9.318(4) 0.006(9) 10
72 0.95 p 0.0 9.267(7) 0.005(6) 10
72 0.98 d 0.0 11.980(3) 0.005(0) 10
72 0.98 p 0.0 11.897(2) 0.005(1) 10

128 0.95 d 0.3 9.383(9) 0.004(5) 10
128 0.95 p 0.3 9.347(6) 0.005(6) 10
128 0.98 d 0.3 12.075(8) 0.004(5) 10
128 0.98 p 0.3 12.020(9) 0.004(5) 10

200 0.95 d 0.3 9.413(9) 0.004(2) 10
200 0.95 p 0.3 9.384(8) 0.004(9) 10
200 0.98 d 0.3 12.124(5) 0.004(7) 10
200 0.98 p 0.3 12.082(7) 0.004(7) 10

288 0.95 d 0.3 9.436(1) 0.003(5) 10
288 0.95 p 0.3 9.408(1) 0.005(0) 10
288 0.98 d 0.3 12.151(5) 0.005(8) 10
288 0.98 p 0.3 12.120(3) 0.003(4) 10

392 0.95 d 0.4 9.442(4) 0.002(3) 10
392 0.95 p 0.4 9.420(7) 0.003(5) 10
392 0.98 d 0.4 12.167(9) 0.003(0) 10
392 0.98 p 0.4 12.141(7) 0.002(9) 10

Table 4.3.: Results for average free energies Atot and standard deviations, σ from
a total of ten copies for densities ρ∗ = 0.95 and 0.98 in parallel (p)
and diagonal (d) state.
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Figure 4.5.: Resulting free energy differences between the diagonal and parallel
lattice state, ∆Ad−p, for all system sizes and at densities ρ∗ = 0.95
and ρ∗ = 0.98.

N ρ∗ ∆Ad-p[NkBT ] σ copies

32 0.95 0.096(5) 0.012(9) 10
32 0.98 0.164(9) 0.012(9) 10

72 0.95 0.050(7) 0.008(9) 10
72 0.98 0.083(1) 0.007(1) 10

128 0.95 0.036(3) 0.007(2) 10
128 0.98 0.054(9) 0.006(3) 10

200 0.95 0.029(1) 0.006(5) 10
200 0.98 0.041(8) 0.006(7) 10

288 0.95 0.028(1) 0.006(1) 10
288 0.98 0.031(2) 0.006(7) 10

392 0.95 0.021(7) 0.004(2) 10
392 0.98 0.026(1) 0.004(2) 10

Table 4.4.: Results for average free energy differences ∆Ad-p and standard devia-
tions, σ from a total of ten copies for densities ρ∗ = 0.95 and 0.98 at
different system sizes.
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4.4. Analysis of Simulation Trajectories

Here a closer look at the simulation trajectories for prediction of the total free
energies Asol is made. The simulation trajectories for one of the ten independent
simulations in the system of size N = 288 in the diagonal lattice state ω = 0◦ is
shown for values of λID = 1, 50 and 100 in fig. 4.6. From this analysis, the slow
relaxation behaviour of the lattice at λ ≈ 0 becomes evident once more. A full
account of this analysis on the system with N = 288 in both lattice states and
at both densities can be seen in appendix A.4.
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Figure 4.6.: A system of N = 288 particles in the diagonal lattice state (ω = 0◦)
at ρ∗ = 0.95. Top row: trajectories of the translational Einstein
energy - contribution λΛ′∆R2 to the systems energy for different
values of λ ∈ (0, 1), given by their IDs λID = 1, 50 and 100 (from left
to right). Bottom row: The same trajectories as in the top row but
for the rotational Einstein energy contribution. The x-axes are given
in units of the sampling step size (=8E+6, 2E+5 and 2E+5 cycles
from left to right). The block-analysis is performed with a block size
of sblock = 20. Units of the y-axes is kBT .
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Figure 4.7.: The same system parameters as for fig. 4.6 but for the parallel lattice
state ω = 30◦.
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5. Finite Size Corrections

In this chapter, it is attempted to find the thermodynamic limit of the difference
of the total free energies between the diagonal and parallel lattice state, ∆Ad-p.
The thermodynamic limit of this quantity can only be defined in its intensive
form:

lim
N→∞

(∆Ad-p(N)

NkBT

)
(5.1)

In this chapter I use finite-size corrections based on the finite-size model intro-
duced in part I - eq. (4.48) for the total free energy. This model is used for both
lattice types, the parallel and diagonal one, indicated via the subscripts α = p, d.
Taking the difference of the proposed finite-size models (part I - eq. (4.48)) the
fitting model for ∆Ad-p(N) becomes:

∆Af.s.
d-p(N)

NkBT
= (ap − ad) + (c′p − c′d)N b−1. (5.2)

This is the form of the finite size correction model that is used from here on.
From this fitting procedure, a value of the parameter b will be obtained, which
is very close to zero. Therefore a second fitting through linear regression was
applied to ∆Ad-p(N).

In the following sections, the described fitting procedures are performed, and
the results for the fitting parameters are given. A discussion of the results is
presented in the last chapter (see chapter 7).

5.1. Fitting the Finite-Size Correction Model

The data for the difference in free energy density ∆Ad-p/NkBT as given in ta-
ble 4.4 is fitted to the free-parameter model:

f(N) = a+ cN b−1, (5.3)

according to eq. (5.2). With b ≤ 1 the fitting parameter a corresponds to the
thermodynamic limit of ∆Ad-p:

lim
N→∞

∆Ad-p/NkBT = a = ad − ap. (5.4)
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Results for fitting ∆Ad-p versus the system size at both densities ρ∗ = 0.95 and
ρ∗ = 0.98 are shown in fig. 5.1. One plot shows ∆Ad-p versus N for showing the
asymptotic behaviour (i.e. parameter a) as N → ∞ by the red horizontal line.
It corresponds to the thermodynamic limit and is the resulting prediction for the
free energy difference between the diagonal and parallel configuration for infinite
system size. The other plot shows ∆Ad-p versus N−1 for demonstration of the
near-linear behaviour, as parameter b is indeed very small. Fit parameters are
summarized in table 5.1.

ρ∗ a b c

0.95 0.018(2) -0.065(5) 3.141(8)
0.98 0.011(6) 0.080(6) 3.705(6)

Table 5.1.: Fitting parameters of ∆Ad-p to f(N) = a+ c ·N b−1 for ρ∗ = 0.95 and
0.98.
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5.1. Fitting the Finite-Size Correction Model

Figure 5.1.: Parameters of fitting model to data points for ∆Ad-p/NkBT versus
N−1 for ρ∗ = 0.95 (top,left) and ρ∗ = 0.98 (bottom,left). Fitting
model versus N in the right column, showing the fitting parameter
a as the asymptote in red.
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5.2. Linear Regression

Since the second fitting parameter b ≈ 0 (see table 5.1), the finite size correc-
tion model eq. (4.48) suggests a nearly linear functional form for ∆Ad-p(N). In
this section, two linear regression models f1(N) = k1 · N + d1 and f2(N−1) =
k2 ·N−1 + d2 are applied to the data points ∆Ad-p(N), using the finite size cor-
rection model as in eq. (5.2) but now assuming b = 0.

The linear regression model is a way of considering also the acquired error bars in
the final predictions. The regression model makes predictions on the parameters
k and d as well as of the confidence interval ∆k and ∆d for a confidence level of
90%. Numeric values of this procedure are collected in table 5.3 and table 5.2.

Figure 5.2 shows the linear regression models with data points and error bars
for both densities ρ∗ = 0.95 and 0.98. The two linear regression models make
consistent predictions for the thermodynamic limit limN−→∞∆Ad-p/NkBT which
are given together with confidence intervals of 90% as k1 ± ∆k in the first and
d2 ±∆d in the second model.

ρ∗ k1 ±∆k(90%) d1 ±∆d(90%)

0.95 0.0163 0.0033 2.6103 0.7349
0.98 0.0136 0.0023 5.1130 0.5134

Table 5.2.: Parameters or the linear regression procedure f1(N) = k1N + d1 for
ρ∗ = 0.95 and 0.98.

ρ∗ k2 ±∆k(90%) d2 ±∆d(90%)

0.95 2.5433 0.1441 0.0166 0.0021
0.98 4.7870 0.1575 0.0159 0.0023

Table 5.3.: Parameters or the linear regression procedure f2(N−1) = k2N
−1 + d2

for ρ∗ = 0.95 and 0.98.
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5.2. Linear Regression

Figure 5.2.: Both linear regression models, f1(N) in the top and f2(N−1) on the
bottom. The linear regression model is given for ρ∗ = 0.95 in yellow
and ρ∗ = 0.98 in blue.

97





6. Lattice Deformations

A first attempt to capture the different lattice deformations is made by plot-
ting configurations of particles and indicating their rotational and translational
displacements. A colour gradient is used to emphasize particles with strong ro-
tational or translational displacements in the lattice. Plots are shown in fig. 6.1
and fig. 6.2 for a system size of N = 392 and at density ρ∗ = 0.98.

Particle-Translations. For viewing collective particle translations in the lat-
tices, the Einstein crystal energy contributions given as λVtrans is used as a mea-
sure for each particle’s displacement from its lattice site. The depicted configu-
rations are taken from simulations in the mixed state, H = Hlat + λ · Hein, with
λ ≈ 0. A collection of lattice configurations for the parallel and diagonal lattices
of size N = 392, are depicted in fig. 6.1 all colored using the same scale.
It can be seen that particles in the parallel lattice configuration undergo collec-
tive displacements of greater magnitude than in the diagonal lattice configura-
tion. Further, these snapshots make clear that these collective displacements are
mostly oriented along the x- and y-directions in both lattice types. This could
be a defining lattice property, but equally, there might also be different direc-
tions of wave propagation that are suppressed within the simulation box due to
incompatibility with the periodic boundary conditions.
The predominant lattice deformation in the diagonal lattice seems to be the col-
lective shifting of chains of ellipses, i.e. neighbouring ellipses in x-direction.
The above analysis can serve only as a starting point for a considerably more
detailed analysis to answer questions on the characteristic vibrational modes, di-
rections of propagation and wave properties, such as the existence of transversal
versus longitudinal waves.

Particle-Rotations. For detecting collective particle rotations, the quantity
φ2
i , where φi is the i-th particle’s orientation with respect to the x−axis, is used

in a colour-coded representation. A collection of snapshots can be seen in fig. 6.2.
Here, larger orientational freedom of particles in the parallel lattice can be clearly
seen. In both lattices, the re-orientations seem to occur collectively. While for
the parallel lattice, these collective orientational displacements occur in columns
(i.e. along the vertical axis for the here presented snapshots) and in rows (i.e.
along the horizontal axis) of ellipses.
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Chapter 6. Lattice Deformations

Figure 6.1.: Lattice deformations in the diagonal (top panel) and parallel (bottom
panel) lattice according to positional displacement, using each parti-
cle’s contribution λΛ∆R2

i to the Einstein translational energy as the
color code, with ∆Ri being the i-th particle’s squared displacement.
The ten snapshots for each lattice state depict one snapshot for each
of the ten independent simulations on a system of size N = 392
particles at density ρ∗ = 0.98.
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Figure 6.2.: Lattice deformations in the diagonal (top panel) and parallel (bottom
panel) lattice according to orientational displacements with reference
to the x-axis. Each particle’s squared orientational displacement φ2

i

is indicated by a green-scale. The ten snapshots for each lattice state
depict one snapshot for each of the ten independent simulations of a
system size N = 392 particles at density ρ∗ = 0.98.
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7. Discussion & Outlook

The main result of the simulation studies covered in this thesis is the positive free
energy difference between the diagonal and parallel lattice state at finite sizes,
as shown in chapter 4, as well as in the thermodynamic limit when employing
a suitable finite-size correction model, as shown in chapter 5. These results ex-
pose the parallel lattice state as the true lattice ground state of the ellipse solid
for ellipses with aspect ratio κ = 2 and at the studied densities ρ∗ = 0.95 and 0.98.

Results have shown that the difference in the free energy density, ∆Ad−p/NkBT
is lower for ρ∗ = 0.95 than for ρ∗ = 0.98 at finite sizes N . In the thermodynamic
limit however ∆Ad-p/NkBT is lower for the higher density. The result in the
thermodynamic limit is therefore conclusive, with the theoretical limit of the free
energy difference going to zero as the density ρ∗ −→ 1.
Further, the free energy difference at densities ρ∗ < 0.95 is expected to remain
positive as, eventually, when the nematic phase is entered, the ellipses are also
aligned in parallel. This phase in particular does not appear for κ = 2 but only
for κ & 2.4 [38][42]. However, the preference for the parallel alignment within the
nematic phase (for κ & 2.4) and within the crystalline phase (for κ = 2) seems
conclusive.
From qualitative results on lattice deformations, presented in chapter 6, it is
hypothesized that the advantage of the parallel lattice state stems from wider
rotational freedom of individual particles when aligned in a parallel manner. In
the parallel lattice state, individual particles achieve larger orientational displace-
ments. Further collective orientational displacements occur in columns of ellipses
in the parallel lattice, whereas in the diagonal lattice state, these collective ori-
entational displacements occur in lines but not with the same magnitude.

Open questions regarding the parallel and diagonal lattice state are numerous.
In an attempt to uncover the importance of the entropy contributions originating
from rotational versus translational movement of the particles alone, it could be
interesting to compute free energy differences of toy models: one of them with
only translational degree of freedom for the ellipse particles, the other one with
only the rotational degree of freedom.
A more in-depth study of the lattice dynamics could shed more light on the rea-
sons for the ellipses’ preference for the parallel state. The hypothesis drawn from
the present study is that the local free volume maximization is best in the parallel
configuration. However, non-local dynamics, such as lattice vibrations, seem to
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Chapter 7. Discussion & Outlook

be more pronounced in the diagonal configuration. These two opposing effects
might need more thorough investigation, specifically in light of the simulation
box sizes, as the emergence of vibrational modes in the lattice is believed to be
strongly dependent on the simulation box size and shape in relation to periodic
boundary conditions. Therefore studying the effect of different box shapes and
sizes, also including boxes that are not of a rectangular geometry, could lead to
interesting insights.
Finally, it should be mentioned that the framework for studying the hard ellipses
with κ = 2 could be easily extended to study the lattice conformations of the
super-ellipses. Numerical overlap criteria for this shape are proposed in [47].
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Part III.

Patchy Elliptic Particles - A
Self-Assembly Study
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1. Introduction

Patchy particle models have their roots in the 1980s, when primitive models for
molecules such as water [48][49] were invented as a tool for trying to understand
associated liquids in general [50]. In specific, a considerable amount of effort was
spent to understand water and methanol from simulation-based approaches but
also within theoretical frameworks [51]. These primitive models for molecules
came with a hard-sphere core mimicking the very short-range repulsive forces
between the constituents of the liquid as well as with localized and attractive
short-range potentials modelling the bonding forces between the liquid molecules.

Through vast advances in the synthesis of colloidal and patchy particles begin-
ning in the 1990s, patchy particles were realized in experiments on the micro-
and nanometer scale. In 1987 Casagrande introduced the first synthesized Janus
particles [52] as spherical colloids with one hemisphere hydrophilic and the other
hydrophobic. Since then, various types of Janus particles have found a wide
range of applications in the chemical industry [53][54]. Since the first synthesis
of a Janus particle, researchers have succeeded in gaining very high control over
the particle’s shape, size and patch placements [54][55] in the synthesis process of
colloidal patchy particles. Surface functionalizations are no longer restricted to
hemispheres like in Janus particles but can be placed in almost arbitrary geome-
tries onto colloidal particles via synthesis methods such as particle lithography
or templating, to name a few [54]. These techniques allow for controlled surface
functionalization of particles where patchy surface functionalization can be real-
ized for example via DNA-strands or proteins [54]. Contrary to applying patches
onto existing colloids, another route to synthesizing patchy particles is the syn-
thesis from colloidal clusters, where some of the cluster particles act as patches
[56][57].

The emerging structures from directed self-assembly of colloidal and patchy par-
ticles on surfaces can, for example, be used for lithographic masking and the
fabrication of nanostructured materials [58]. Further, they can be used as tem-
plates for colloidal crystal growth, called epitaxy. Self-assemblies into open struc-
tures hold potential applications as selective membranes and filters [59]. Further,
because of their optoelectronic properties, colloidal crystals in two- and three-
dimensions can be used as photonic materials [60][61] and have found many
applications, for example, as photodetectors [62]. Authors in [63] have given
colloidal topological insulators as an example for a potential future application.
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Chapter 1. Introduction

Applications of these new types of materials are manifold [58] where the ap-
plications given here are only a few examples. The interest in colloidal patchy
particles has grown significantly as these types of particles are promising units
for bottom-up materials design. The versatility of patchy particles with regard
to different shapes, patch geometries, patch types and interactions opens a huge
field of possibilities for designing new types of material.

Here, computational methods, such as molecular simulations and recently also
machine-learning approaches [64], are an important tool for mapping phase di-
agrams, exploring design principles of particles and generally understanding the
principles governing particle assemblies better. Recently [64][65] reverse- engi-
neering methods became of interest, where methods are developed to find particle
models matching an assembly with certain desired structural properties. Various
computational efforts to understand the assembly processes of patchy particles
better are therefore an important predecessor for real-life implementations.

Here again, simulation-based approaches provide a potential first step when ex-
ploring the vast possibilities of the assembled structures. Numerous efforts on
studying colloidal and patchy particle assemblies in two and in three dimen-
sions have been made, with just an overview given in literature reviews such as
[65][66][67][68].
In two dimensions specifically, Karner, Bianchi and Dellago [69] intensively inves-
tigated the tilings of patchy rhombi on surfaces, and described design principles
for those patchy rhombi in order to get assemblies of open and closed lattices.
Further, assembly of patchy rhombi in chains was investigated [32]. Another
study shows the assembly of regular patchy polygon-shaped platelets into porous
as well as closed assemblies [70].
In experiments, a type of an open lattice structure in two dimensions has previ-
ously been assembled using a spherical patchy particle type, called the triblock
Janus particle [71]. These particles assemble into open two-dimensional kagome
lattices where these lattice structures were later also observed in computer sim-
ulations [72].

Colloidal self-assembly of ellipsoids into irregular but also open structures on
different interfaces (for example water-air, water-oil) have been achieved in ex-
periments by [73] using polystyrene ellipsoids of aspect ratio κ ≈ 5.1. In these
assemblies, one prevalent type of the colloid ellipsoids assembly is the open tri-
angle shape with contact of the ellipsoids at the tips. Enforcing this type of
arrangement using attractive patches could lead to stable porous lattice struc-
tures on surfaces. The stabilization of such patchy ellipses into regular porous
two-dimensional lattices is one of the main results in the following self-assembly
study. Further, a synthesis method of polymer ellipsoidal particles for large-scale
fabrications was proposed in 2017 [74], making it a promising particle type for
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future applications.

Within the work of my PhD, a patchy ellipse model combining anisotropic inter-
actions via extended patches and anisotropic shape was put forward [75]. The
patches placed on the hard-core ellipse are of Kern-Frenkel type [76], i.e., ex-
tended patches with constant depth and constant short-range interaction with
angular dependency. For ellipses, an approximate constant short-range potential
was designed by using osculating circles at the ellipses’ vertices. The proposed
model is shown to be very versatile in specific patch designs, in terms of radial and
angular interaction range as well as the placements and combination of patches
on the elliptic core.
Further, the self-assembly of two types of patchy ellipses with two opposed
patches is studied. With these two patchy ellipses differing solely in the an-
gular extent of the patches, very different self-assembly processes and structures
are observed.

Throughout the next pages, chapter 2 discusses the patchy ellipse model, chap-
ter 3 presents two specific particle models, MC-simulation details and specifics of
analysis that are the basis for the self-assembly studies conducted on these two
types of patchy ellipses. The results of these self-assembly studies are presented
in chapter 4 and chapter 5. Finally, chapter 6 will give a short summary and
discusses outlooks for potential future studies.
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2. Elliptic Patchy Particle Model

The newly proposed model of patchy ellipses [75] was put forward as a model
that captures shape- and interaction anisotropy of particles in two dimensions.
The shape of the ellipses is controlled by the aspect ratio κ. The interaction
anisotropy enters the model through patches of Kern-Frenkel type potential with
an approximate constant range square-well interaction. The model offers four
positions for possible patches, which are located at the vertices and co-vertices
of the ellipse, as can be seen in fig. 2.1.

2.1. Model Description

This model was designed as an attempt for the generalization of the patchy disk
model with Kern-Frenkel type potential [76] to anisotropic hard core interactions.
We introduce the model’s anisotropy parameter κ which is defined as the aspect
ratio of the elliptic core particle. The core particles interaction is modelled as a
hard-core interaction for which the Vieillard-Baron criterion for detecting over-
laps of ellipses [37], as described in part II - chapter 2 was used.
The particle’s patches are modelled as Kern-Frenkel type patches and are added
to the hard elliptic core centered at the midpoint of the great- and small osculating-
circles of the ellipse’s vertices and co-vertices. Hence the proposed model provides
four patch positions - for patches at the vertices (i = a) and for patches at the
co-vertices (i = b) - with the usual model parameters of the Kern-Frenkel patch
potential, which are the patch amplitude θi, interaction range δi and the square-
well depth εi.
A representation of the particle’s parameters for one patch at each vertex can be
seen in fig. 2.1.

2.2. Approximation of Constant Range Potential
through Osculating Circles

The osculating circles are the best approximation using a circular arches to the
ellipse. Hence also the constant range interaction potential is only approximately
of a perfect constant range. Some limit of this model must be specified. Therefore
a function τi is introduced to capture the relative deviation of the present model
from a perfect constant range interaction.
First, a full definition of the given geometry, the elliptic curve and osculating
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Figure 2.1.: Model specifications of the elliptic patchy particle (EPP): ellip-
tic hard-core particle (in solid black lines) and Kern-Frenkel type
patches centered at the vertex’s and co-vertex’s osculating circles
Ka,1 and Kb,1 (in red lines), published in [75]

circles at vertices is given. Taking an elliptic particle with its center at the origin
in and vertices aligned with the x- and y-axes of the reference frame S, the
particle’s shape is described by:

E :
(x
a

)2

+
(y
b

)2

= 1, (2.1)

with a and b representing the semi-major and the semi-minor axes respectively.
The aspect ratio κ of the ellipse is defined as κ = a

b
.

The four osculating circles, one for each vertex are named Ka,1, Kb,1, Ka,2 and
Kb,2. Equations for Ka,1 and Kb,1 in S are given as:

Ka,1 :
(
x− (a− ra)

)2

+ y2 = r2
1 (2.2)

Kb,1 : x2 +
(
y − (b− rb)

)2

= r2
2, (2.3)
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2.2. Approximation of Constant Range Potential through Osculating Circles

with center points Ma,1 and Mb,1 and radii ra and rb:

Ma,1 = (a− ra, 0) , Mb,1 = (0, b− rb) (2.4)

ra =
b2

a
, rb =

a2

b
. (2.5)

As this model aims to approximate a constant-range potential, an analytical
expression for the deviation of the approximating osculating circle from the ellip-
tical arch, defined as τa is required. The limits of the patch model can be defined,
depending on a certain criterion for a maximum deviation, as will be specified in
section 2.3.

In the next sections, analytical expressions for τa and τb, the deviations of the
small and great osculating circle, respectively, from the elliptical arch are derived.

2.2.1. Small Osculating Circles Ka through Va

A new reference frame S ′ with origin at the center of the small osculating circle
Ka,1 is chosen. All coordinates and objects with respect to this frame are denoted
with primes. An expression for τa(φ

′) as the deviation of the approximated
osculating circle Ka,1 through vertex Va,1 from the elliptical arch E shall be
derived.
Without loss of generality, it is sufficient to analyse a special ellipse with a = α
and b = 1. The equations of this ellipse E and its small osculating circle Ka,1 are
given by:

E :
1

α2
(x′ + (α− 1

α
))2 + y′2 = 1 (2.6)

K1 : x′2 + y′2 =
1

α2
(2.7)

Transformation of cartesian into polar coordinates, (x′, y′) −→ (r′, φ′) leads to
the expressions for r′E and r′K1

:

r′E(φ′) =
( 1
α
− α) cosφ′ ±

√
(α2 − 1) sin2 φ′ + α2

cos2 φ′ + α2 sin2 φ′
(2.8)

r′K1
(φ′) =

1

α
(2.9)

The function τa(φ
′) defining the deviation of the osculating circle radius from the

ellipse radius is then given by:

τa(φ
′) = r′E(φ′)− r′Ka

(φ′). (2.10)
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2.2.2. Great Osculating Circle Kb through Vb

For the calculation of τb, the reference frame S centered at the ellipse is chosen.
The axes of the ellipse are a = α and b = 1 as above, however, the ellipse’s
orientation is chosen such that a aligns with the positive y- and b with the
positive x−axis. The equations of the ellipse E and the great circle Kb,1 from
the center point of the ellipse are given by:

E : x2 +
1

α2
y2 = 1 (2.11)

K2 :
(
x− (1− α2)

)2

+ y2 = α2 (2.12)

and in polar coordinates this leads to expressions for rE and rK2 :

rE(φ) =
(α2 − 1) cosφ±

√
cos2 φ− (α2 − 2) sin2 φ

1
α2 sin2 φ+ cos2 φ

(2.13)

rK2 = α2 (2.14)

The deviation of the osculating circle radius from the ellipse radius is then given
by:

τb(φ) = rK2(φ)− rE(φ). (2.15)

2.3. Maximum Patch Amplitudes θa,max and θb,max

The actual interaction range of the ellipse’s patches at vertex i = a, b is δi(φ),
with φ as the angle in reference system S (see Figure 2.1) and is given as:

δa(φ
′) = (r′Ka

+ δa,0)− r′E (2.16)

δb(φ) = (rkB
+ δb,0)− rE, (2.17)

with δi,0 as the approximated constant interaction range of the Kern-Frenkel
interaction potential for each patch i.
Hence the interaction ranges δi are related to the above-introduced expressions
τi by:

δa(φ
′) = δa,0 − τa (2.18)

δb(φ) = τb + δb,0. (2.19)
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2.4. Examples for Limiting Parameters

The breakdown of the approximation to this constant range interaction will be
defined as the relative deviation εi

δi,0
exceeds a predefined ratio ε:

τa(φ
′) < εδa,0 (2.20)

τb(φ) < εδb,0. (2.21)

The maximum patch amplitude θmax,i for each vertex is calculated, solving the
maximization problem, stated as:

arg max
φ′

(
τa(φ

′)− εδ0

)
(2.22)

arg max
φ

(
τb(φ)− εδ0

)
. (2.23)

This maximization gives the maximum angles φ′max,a and φmax,b for the small and
great osculating circle, respectively. One obtains the maximum patch amplitudes
θmax,a and θmax,b as angles measured from the center of the osculating circles by
applying basic trigonometry.

2.4. Examples for Limiting Parameters

In table 2.1 maximum patch amplitudes θi,max, corresponding to φi,max, as well
as the relative surface coverage pi for two values of ε and three different particle
models κ = 2, 4 and 6 are collected. For the relative surface coverage pi, the
ratio of the patches to the full ellipse’s arc length was used. More specifically,
the definition for pi relates the patch’s and the ellipse’s arc lengths within the
first quadrant only:

pi =
θirKi

aE(e)
, (2.24)

with half the patch’s arc length for the angle θi in the numerator and the quarter
the ellipse’s arc length with semi-major axis a and eccentricity e =

√
1− κ−2 in

the denominator.

2.5. Classification of Elliptic Patchy Particles

The proposed model of elliptic patchy particles offers a great number of choices of
patch placements and patch dimensions. Here, I want to propose a classification
for particle models of this type, based on the placement of patches.
I determine three classes of patch arrangements, namely solo-patch, pair-patch
and mixed arrangements (see fig. 2.2).
The class of solo-patch arrangements comprises four types, type A and type B,
with only one of the respective patches, as well as two types of particles with both
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θa,max θb,max φa,max φb,max pa pb

κ = 2
ε = 0.1 % 29.30◦ 11.77◦ 7.20◦ 41.69◦ 0.11 0.36
ε = 0.5 % 45.29◦ 17.28◦ 10.86◦ 55.40◦ 0.21 0.63

κ = 4
ε = 0.1 % 36.71◦ 6.03◦ 2.17◦ 61.51◦ 0.04 0.40
ε = 0.5 % 57.60◦ 8.76◦ 3.11◦ 71.55◦ 0.06 0.59

κ = 6
ε = 0.1 % 43.05◦ 4.17◦ 1.09◦ 70.96◦ 0.02 0.43
ε = 0.5 % 67.97◦ 6.04◦ 1.50◦ 78.08◦ 0.03 0.62

Table 2.1.: Examples of the maximum patch amplitudes θi, respective angles φi
and surface coverages pi for ellipses of aspect ratio κ and for two
values of the ratio ε defining the breakdown of the quasi-constant
range potential [75]

patches AB involved. Two types of AB particles must be distinguished, AB+
indicating patch B placed at the next vertex from patch A in positive direction
of rotation and AB- indicating patch B placed at the next vertex from patch A
in negative direction of rotation.
Within the class of pair-patch arrangements, patches either of type A or B appear
only in pairs. This class comprises three particle types, which are AA, BB and
AABB particles, indicating a pair of A-patches, a pair of B-patches and a pair
of A- and B-patches each, respectively.
Types of the mixed class are particles with a solo patch as well as a pair of patches
involved. There are two types of mixed particles, AAB and ABB.
In total, nine types of particles can be classified into three different classes. Parti-
cles of the same type can be further distinguished according to patch amplitudes
θa and θb as well as patch interaction ranges δa and δb.
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Figure 2.2.: Three classes of patchy particles depicting solo-patch, pair-patch and
mixed arrangements, as described in the text.
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3. Methods and Model

In the following chapter, the particle models and simulation details underlying
the self-assembly studies of two types of patchy elliptic particles are presented.

3.1. A Note on Units

Throughout this simulation study, thermodynamic variables are given in their re-
duced form, i.e., as dimensionless quantities. Further, simulation units are used
in which the Boltzmann constant is set to kB = 1.

The temperature T [ ε
kB

] in its reduced form is given by:

T ∗ =
T

ε
,

where ε is the bonding energy of two patchy particles, i.e., the square-well depth
of the patch potential given in the Kern-Frenkel model. Since throughout all
patchy particle models used in this thesis ε = 1, the numeric values of the tem-
perature T and its reduced form T ∗ are the same.

The chemical potential µ[kBT ] in its reduced form is given by:

µ∗ = βµ =
µ

T
,

where β is the inverse temperature.

Finally, the particle density in its reduced form is given by:

ρ∗ =
ρ

ρ0

,

where ρ0 = 2√
3

is the density of the closest packed configuration of ellipses.

3.2. Particle Models

The particle models underlying this study are patchy elliptic particles of type AA,
i.e., two opposite and symmetric patches located on the vertices of the ellipse’s
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major axis. The ellipses have an aspect ratio of κ = 2. For both patches, the
depth of the square-well potential is ε = 1kBT . Two ellipse models, one with
opening angle θa = 15◦ and the other with θa = 45◦ are studied, both with a
patch interaction range of δa = 0.17. This allows for a maximum of one bond
per patch for 15◦-particles and a maximum number of two bonds per patch for
45◦-particles.

3.3. Simulation details

As a basis of the study, extensive MC-simulations in the grand-canonical ensem-
ble on a grid of a total of 13 values of the chemical potential and eight values
of the temperature were performed. At each thermodynamic state point, a total
number of 12 independent simulations were performed.

The box shape is chosen to fit the target lattice state. For patchy ellipses with
θ = 45◦ we assume this target state to be a porous network of ellipses forming
loops of size six. We assume this to be the energetic ground state where all
bonding sites are saturated. The positions of the ellipses in this network also
fit the kagome lattice, nonetheless, I will refer to it as the porous network state
with loops of size six. The aspect ratio for simulation boxes fitting this type of
target lattice is the same as for a hexagonal lattice of disks. A simulation box
with dimensions Lx = 36 and Ly = 31.2 was therefore chosen, fitting 1296 disks
in a hexagonal lattice in the closest packed configuration. This box shape could
theoretically host a total of 648 patchy ellipses in the described porous network
state.
For the self-assembly simulation of patchy ellipses with θ = 15◦ the same simu-
lation box size and shape is chosen. As these types of particles are expected to
form chains, a simulation box fitting a specific lattice is not necessary.

The initial particle configuration at each thermodynamic state point is a set of
randomly positioned particles in a dilute gas configuration. The dilute gas con-
figuration is then abruptly exposed to the system variables µ∗ and T ∗. The goal
here is to observe the self-assembled structures and possibly the self-assembly
process and equilibrium target phases. In order to enhance the system’s possibil-
ity to explore configuration space faster, the cluster-moving algorithm proposed
by Whitelam et. al. [9] is used. Simulating systems of 15◦-particles, this algo-
rithm is used in an adapted form, proposing cluster-rotations that mimic chain
motions (see part I - chapter 2 - section 2.3).

The relevant MC-simulation parameters are a number of 2.0E+05 initial MC-
cycles for θa = 45◦ particles and 1.0E+05 initial cycles for θa = 15◦ particles.
The initial cycles at the beginning of each MC-simulation are then discarded, and
configurations are sampled only during cycles succeeding these initial discarded
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cycles. This sampling of configurations is done every 2.0E+03 cycles. Each cycle
in the MC-simulation consists of N proposed MC-moves, where N = 1296, i.e.
the theoretical limit of ellipses fitting the area of the simulation box in a closed-
packed configuration. A MC-move in the grand-canonical ensemble is either a
translation or rotation move of a single particle proposed with a probability of
each 0.38, or further a cluster-rotation or cluster-translation move, each pro-
posed with a probability of 0.095. The remaining 0.05 is the chance for selecting
a particle insertion or deletion move. The cluster moving scheme according to
[9] (details in section 2.3) uses a parameter βf = 0.5.

The final length of simulation runs varies with the thermodynamic state points.
We have long runs, with no cycles > 6.0E+06 at negative chemical potential µ∗

were the transition from the gaseous to solid phase is observed, medium sim-
ulation lengths, with 2.0E+06 < no cycles < 6.0E+06 at intermediate chemi-
cal potentials and at low temperatures (T ∗ < 0.1). For thermodynamic state-
points at high temperatures (T ∗ > 0.1) and at predominantly positive chemical
potentials µ∗ the simulation lengths for the trajectories are much shorter, at
no cycles < 2.0E+06. Almost all simulations were run for approximately the
same time of roughly 20 CPU-days. With roughly the same CPU-time for each
simulation run, shorter simulation lengths are achieved for systems including a
lot of particles, whereas longer simulation lengths are achieved for systems with
fewer particles.

3.4. Truncation Analysis

For each simulation process, a truncation point was defined individually by in-
specting the energy, number of particles and energy per particle trajectories. For
systems that reach a steady state, i.e., no varying thermodynamic variables Epot,
N and Epot/N , the truncation point was located at approximately where this
steady state is reached. For systems not entering a steady state, i.e., systems
with very slow relaxation behaviour, the truncation point was chosen such that
at least the last 100 configurations of the process are included in the final anal-
ysis.
For the complete analysis following in this chapter, when taking an ensemble av-
erage over an observable, e.g., for the potential energy 〈Epot〉, only configurations
beyond the truncation point in the simulation process are taken into this average.
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4. Results on Self Assembly of
Patchy Ellipses with θ = 45◦

This chapter presents the results of the self-assembly study on the particle model
of patchy ellipses with patch opening angle θ = 45◦.
In the following, the ensemble averages of the total energy, number of particles,
energy per particle (section 4.2) and the global loop order parameter (section 4.3)
shall be examined. Further, the assembly processes from a gaseous phase into a
porous network are inspected more closely (section 4.4), and a structural analysis
of the assembled networks by means of the radial distribution function is made
(section 4.5). Another interesting process observed within the simulations is the
process of self-healing, i.e., the rearrangement of particles in a condensed phase
in order to achieve a more ordered phase (section 4.6). Overall, it is seen that
the temperature, T ∗ = 0.16 brings forward the most ordered loop networks.

4.1. Snapshots & Simulation Trajectories

For elliptic patchy particles with a patch opening angle of θa = 45◦ it is known
from chapter 2 that for each patch, a maximum number of two bonds is possible.
An energetic ground state is achieved when all of the particle’s patch bonding
sites are saturated. The types of regular configurations for the patchy ellipse
model at hand fulfilling the condition that all bonding sites are saturated can be
concluded from the Euclidean tilings, where the edge of a polygon is character-
ized as the patchy ellipse particle [77]. Two tilings are compatible with a number
of two bonds per patch, which are the hexagonal tiling and the truncated square
tiling. Both will result in porous networks with loops of either size six or sizes
four and eight.
In the following study, the porous network of ellipses with loops of size
six - compatible with the hexagonal tiling - is identified as the target structure
for most of the studied simulation state-points. When a network is formed with
loops including not only loops of size six, I will talk about loop defects in the
porous network, whereas when the system fails to build a completely saturated
network structure, I will call these defects network defects. Further, particle
configurations at high particle densities, either with an underlying network struc-
ture but with the pores being filled with particles or configurations completely
lacking a network structure, will be called crowded configurations.
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In fig. 4.1 a selection of snapshots for thermodynamic state-points, µ∗ = −7.0,
−2.0 and 5.0 and T ∗ = 0.055, 0.1 and 0.16, is shown. The snapshots repre-
sent the last sampled configuration for the related simulation processes and at
the respective thermodynamic state-point. Figure 4.1 gives an overview over all
characterized phases - a gaseous phase (for T ∗ = 0.16, µ∗ = −7.0) and several
types of condensed phases. Of these we characterize porous networks close to the
energetic ground state (i.e. all bonding sites saturated) for (µ∗, T ∗) = (−7.0, 0.1)
and (−2.0, 0.16). The most prevalent loop size in these networks is size six,
however, loop-defects occur. Defective porous networks are characterized at
(µ∗, T ∗) = (−7.0, 0.055), (−2.0, 0.055) and (−2.0, 0.1) and finally crowded states
arise at µ∗ = 5.0.

Figure 4.1.: Snapshots for three chemical potentials (µ∗ = −7.0, −2.0 and 5.0)
and three temperatures (T ∗ = 0.055, 0.1 and 0.16 as labeled) with
particles colored according to their bonding energy - no bonds (grey),
one bond (light blue), two bonds (dark blue), three bonds (light
green) and four bonds (dark green).
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Trajectories. A complete record of all simulation trajectories showing the
evolution of the total energy, the number of particles and energy per particle
over MC-time can be seen in appendix B.1.

4.2. Ensemble Averages - State Variables

In the following, an overview of all thermodynamic state points included in this
study is given by presenting state variables such as the potential energy, Epot,
the number of particles N and energy per particle Epot/N computed as ensemble
averages over all 12 independent trajectories. The results for these ensemble
averages are shown in fig. 4.2 to fig. 4.4.
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Figure 4.2.: Total energy Epot in units of kBT for constant µ∗ across temperatures
T ∗ (top) and for constant T ∗ across chemical potentials µ∗ (bottom).

125



Chapter 4. Results on Self Assembly of Patchy Ellipses with θ = 45◦

Viewing the potential energy, Epot (fig. 4.2) for a single chemical potential,
e.g. µ∗ = −7.0 along the temperature axis, we see that the potential energy
is monotonically increasing with increasing temperature. From a temperature
T ∗ = 0.115 to T ∗ = 0.13 a sudden change in the potential energy shows that
from the condensed phase with Epot � 0 the gaseous phase with Epot ≈ 0 is
reached. The potential energy for any constant temperature is monotonically
decreasing with increasing chemical potential. The characteristic feature of a
monotonically increasing Epot with increasing T ∗, as well as monotonically de-
creasing Epot with increasing µ∗ is found for all state-points included in this study,
while the phase transition from the condensed to gaseous phase can be observed
only for the three lowest values of the chemical potential (µ∗ = −7.0,−6.0,−5.0)
and for lowest three temperatures (T ∗ = 0.055, 0.07, 0.085).

In fig. 4.3 the number of particles is shown in the same representation as for
the potential energy. The monotonically decreasing number of particles at con-
stant chemical potential µ∗ with temperature increasing T ∗ goes along with the
increase in potential energy for the respective lines of constant µ∗. The states in
the (µ∗,T ∗)-plane, identified as gaseous states from the potential energy curves,
reveal themselves as almost empty phases, with very few to no particles present
in the simulation boxes.
From tracing the number of particles along the isotherms, it can be noted that
for the highest chemical potential, µ∗ = 5.0, the number of particles for all tem-
peratures reaches very similar values. All systems reach their maximum number
of particles for this value of the chemical potential.

From the energies per particle Epot/N seen in fig. 4.4 we again follow a line of con-
stant µ∗ = −7.0 from low to high temperatures. Up to a temperature T ∗ = 0.115
the energy per particle is decreasing, almost reaching Epot/N = −2.0. For higher
temperatures, the system is in the gaseous phase. In this phase Epot/N < 0.0,
hints at the formation of small clusters in the otherwise almost empty state.
Viewing isotherms in the condensed phases across µ∗ and going from µ∗ = −7.0
to higher chemical potentials, the energies per particle are increasing along each
of these isotherms. At the highest value of the chemical potential, µ∗ = 5.0, at
which crowded states are observed, Epot/N is almost constant across all tem-
peratures. The lowest energy per particle is observed for thermodynamic state
points with temperature, T ∗ = 0.16 and low chemical potentials, i.e., µ∗ = −7.0,
−6.0, −5.0 and −4.0. At these state-points, the systems almost approach the
minimal energy per particle Epot/N = −2.0, which corresponds to exactly four
bonds for each particle, i.e. completely saturated bonding sites. The minimal
energy per particle Epot/N = −2.0 corresponds to a loop network free of any
network defects. As the configurations assembled in the simulations underlying
this study are not free of those defects, this theoretical minimum is not achieved.

126



4.2. Ensemble Averages - State Variables

0.06 0.08 0.10 0.12 0.14 0.16
T *

0

200

400

600

800

N

mu* = -7.0
mu* = -6.0
mu* = -5.0
mu* = -4.0
mu* = -3.0
mu* = -2.0
mu* = -1.0
mu* = 0.0
mu* = 1.0
mu* = 2.0
mu* = 3.0
mu* = 4.0
mu* = 5.0

6 4 2 0 2 4
*

0

200

400

600

800

N

T* = 0.055
T* = 0.07
T* = 0.085
T* = 0.1
T* = 0.115
T* = 0.13
T* = 0.145
T* = 0.16

Figure 4.3.: Total number of particles N for constant µ∗ across temperatures T ∗

(top) and for constant T ∗ across chemical potentials µ∗ (bottom).
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Figure 4.4.: Energy per particle Epot/N in units of kBT for constant µ∗ across
temperatures T ∗ (top) and for constant T ∗ across chemical potentials
µ∗ (bottom).
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4.3. Structural Analysis - Loop Order Parameter

For a first insight into the structure of the assembled states, the global loop
order parameter Γl (defined in part I - chapter 5 - section 5.3) is determined.
The loop order is a scalar quantity with Γl ∈ (0, 1), where Γl = 1 corresponds to
a network in which all loops are of size l. Γl = 0 corresponds to the absence of
loops. The loop collections for each configuration used to compute the loop order
parameter are determined using the loop-detection algorithm (part I - chapter 2
- section 2.4.2).

Figure 4.5.: The global loop order parameter Γ for all µ∗ versus T ∗ (top) and all
T ∗ versus µ∗ (bottom). Each data-point represents the average of 12
independent simulation processes.

With a loop size of l = 6, for the analysis of the loop order parameter Γ6, I
use the log-normal distribution with a mode of m = 6 and a standard deviation

129



Chapter 4. Results on Self Assembly of Patchy Ellipses with θ = 45◦

σ = 0.5. This choice of parameters makes the loop order parameter very specific
to loops of size six, which is the kind of structural order that we want to analyze
in these types of networks.
Figure 4.5 shows all computed loop order parameters Γ6 for state points in the
(µ∗,T ∗)-plane. The highest loop order parameter is achieved at negative chemical
potentials, µ∗ = −7.0,−6.0,−5.0 and −4.0. With increasing chemical potential,
the loop order parameter drops to Γ6 ≈ 0.2 for all temperatures. A global maxi-
mum of the loop order parameter is achieved with Γ6 ≈ 0.82 for the temperature
T ∗ = 0.16 and for the chemical potential µ∗ = −4.0.

4.4. Analyzing the Assembly Processes into Porous
Networks

The self assembly process from a gaseous phase into a porous network is observed
at eight different thermodynamic state points, i.e., for a chemical potential µ∗ =
−7.0 and for temperatures T ∗ = 0.055, 0.7, 0.085, 0.1, 0.115 as well as for the state
points (µ∗, T ∗) = (−6.0, 0.13) and (−5.0, 0.145). For observing the trajectories
at these state-points, be referred to appendix B.1.
Here, a closer look at the assembly process shall be taken by taking one particular
state point, namely (µ∗, T ∗) = (−6.0, 0.13) as an example.

Trajectories and snapshots. The energy, number of particles and energy per
particle trajectories for all twelve independent simulation runs at the state point,
µ∗ = −6.0 and T ∗ = 0.13 are shown in fig. 4.6. Observing these trajectories, it
can be seen that the time for the transition from the gaseous into the condensed
phase follows stochastic principles. Further, the energy per particle achieves al-
most Epot/N = −2.0 in all runs. In fig. 4.7 (a) one of these trajectories is shown.
Here we follow the self-assembly process into a porous network in one simulation
process, with snapshots shown in fig. 4.8, where the black stars in the energy
trajectory indicate the MC-times at which these snapshots are taken. Figure 4.7
(b) shows the order parameter Nd (part I - section 5.4), i.e. the proportions
of particles with d number of bonds for the same simulation process. Further
fig. 4.7 (c) and (d) show the order parameters, Γ6 and Cmax, i.e. the loop order
parameter and the largest cluster size, for all 12 simulation runs.

From the snapshots shown in fig. 4.8, the formation of several nuclei (see config-
uration 400) can be seen, and, within this selection of snapshots, starting from
configuration 680, we see that one cluster prevails, increasing in size over the
course of the following simulation cycles. It is believed that we observe a nu-
cleation process following the classical nucleation theory [78], as the growth of
a single nucleus is observed. However, details on whether the growth happens
through attachment of single particles or particle clusters, cannot be answered
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within the current analysis. An in-depth study of these nucleation processes is
necessary before answering these questions.
Although the nucleus is not growing completely free of defects (see fig. 4.9), the
main source for defects in configuration 2400 seems to stem from when the nu-
cleus extends over the whole simulation box and the network is trying to close.
As will be shown in section 4.6, networks of patchy ellipses at high enough tem-
peratures, have the capacity to rearrange particles and curing these defects.

Figure 4.9 gives a closer insight into the growth of the nuclei at different state
points. In these snapshots, the loop-size color scheme is used to highlight loops
of sizes six, five and seven. It is seen that a regular structure of loops with size
six is dominant in most nuclei, with loop defects of sizes five and seven eventually
occurring. For the lowest temperature, T ∗ = 0.055, the nucleus is the most defec-
tive, in the sense that no loops of size six are observed in the nucleus. For higher
temperatures, such as T ∗ = 0.1, 0.13 and 0.145, the arrangement of ellipses into
loops of size six is more stable.
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Figure 4.6.: Energy, number of particles and energy per particle trajectories for all
twelve independent simulation processes at T ∗ = 0.13 and µ∗ = −6.0
as a function of MC-time. Data points and error bars correspond to
mean and standard deviation of blocks of size sblock = 100.
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Figure 4.7.: All plots show data of the state-point at T ∗ = 0.13 and µ∗ = −6.0.
(a) Energy trajectory for a single simulation process over the MC-
time. Data points and error bars correspond to mean and standard
deviation of blocks of size sblock = 100. Specific configurations indi-
cated by black star symbols are shown as snapshots in fig. 4.8.
(b) Order parameter Nd, showing the proportion of particles with a
certain degree, i.e. the number of bonds d.
(c) Loop order parameter for all 12 independent simulation runs over
MC-time and finally (d) showing the cluster order parameter Cmax,
i.e. the size of the largest cluster again for all 12 simulation runs.
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Figure 4.8.: Snapshots for a system at T ∗ = 0.13 and µ∗ = −6.0 showing the nu-
cleation process. The colors follow the bonding-energy color scheme
defined in fig. 4.1. All snapshots correspond to the marked MC-times
in fig. 4.7 (a).
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Figure 4.9.: Snapshots of nuclei and the first completely connected configuration
at different thermodynamic state-points, highlighting the loops of
size six (dark green), five (blue) and seven (yellow). The particles
color is chosen using a hierarchical order according to loop size 6 of
highest priority followed by loops of size 5, 7, and loops of larger
sizes.
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4.5. Assembled Porous Networks

Characteristic Lengths. For the interpretation of the radial distribution func-
tion (RDF) it is important to know the characteristic distances between particles
in the target structure. In a network of loops, the particle positions in each
loop form approximately a regular polygon. In a polygon with n edges we have
kmax = bk

2
c such characteristic distances which will be named l(k)(n) of order

k = 1, ..., kmax. The distance of order k = 1 gives the distance to the direct
neighbouring particle. Second order with k = 2 indicates the distance to the sec-
ond neighbouring particle and so forth. These characteristic distances l(k)(n), for
the k-th distance in a regular n-polygon the following relation has been derived:

l(k)(n) =

√
2a

tan (π
n
)

√
1− cos

(2πk

n

)
, (4.1)

where a is the semi-major axis of the ellipse. With the chosen unit of lengths,
2
√
ab = 1, this quantity is a =

√
κ

2
.

In the following analysis of the radial distribution function, the characteristic
distances of for n = 6, i.e. in a loop of size six, are indicated by colored bars,
where the width of the bars is chosen as 2δa, with δa being the patch interaction
width.
In fig. 4.10 the radial distribution function, RDF is given for thermodynamic
states at which the nucleation process is observed. This analysis of the RDF,
however, only includes the configurations succeeding the truncation point, and
further, each RDF comprises configurations of all 12 independent simulations.

From fig. 4.10 the first three peaks are identified as the characteristic lengths
in a loop of six particles. However, the marked regions for the characteristic dis-
tances of particles in the hexagon do overlap with the distances in loops of seven
or five particles. Comparing the different temperatures, it can be clearly seen
that the strongest correlations at the peak positions is observed for T ∗ = 0.16.
The correlations at the peaks decrease with lower temperature, as do the long-
distance correlations.
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Figure 4.10.: RDF for thermodynamic states µ∗, T ∗ at which nucleation is ob-
served. Snapshots for three thermodynamic state-points showing
the last configurations of the simulation.
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Figure 4.11.: The loop size distribution at different state points (µ∗, T ∗) (as la-
beled) at which nucleation is observed in the simulations. Each dis-
tribution represents the average of 12 independent and truncated
simulation processes.

The loop size distributions for a selection of the state points exhibiting the
nucleation process is shown in fig. 4.11. Overall, loops with sizes five, six and
seven are most prevalent at all of these state points. It is seen that the highest
proportion of loops with size six is obtained at T ∗ = 0.16. As the temperature is
decreasing, this proportion drops. Instead, the loops with size five are increasing
as the temperatures gets lower. The number of loops of size seven stays relatively
constant.
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4.6. Self-Healing in Porous Networks

In this section, we follow two simulation trajectories at T ∗ = 0.16. One state
point has a negative chemical potential µ∗ = −2.0 and the other has a positive
chemical potential µ∗ = 1.0. At these state points the particles assemble very
quickly into a condensed state, with the whole assembly process taking place dur-
ing the initial and later discarded cycles of the MC-simulation. Already from the
beginning of the sampling cycles in the MC simulation, a fully assembled network
state is observed. Following the total energy and number of particles along their
trajectories (see appendix B.1), it is interesting to see that with the total energy
decreases with MC-time, so does the number of particles. This slightly decreasing
tendency of the total number of particles with MC-time being observed, indicates
that some sort of structural reorganization is going on.
These processes are visualized in fig. 4.12 and fig. 4.13 by showing the loop or-
der parameter Γ6 (see section 4.3) over MC-time. Respective snapshots for the
marked MC-times are shown using the loop color scheme.

In fig. 4.12 we see a porous network evolving with MC-time from a network
with substantial loop defects (i.e. loops with size not equal to six) and network
defects (i.e., particles with unsaturated bonds). Over the course of the simula-
tion, most of these defects diminish and in the final configuration we see domains
of regular porous networks with loops of size six and domain boundaries, with
mostly loops of size five and seven. The loop order parameter Γ6 shows that the
rearrangement of particles forming loops of size six is happening in the first half of
the simulation run, with the order parameter plateauing at Γ6 = 0.8. From here
on, the configuration seems to be in a steady state, i.e. no substantial changes in
structure or thermodynamic state variables (see trajectories in appendix B.1).

Further fig. 4.13 shows the self-healing process in a more crowded configuration
at a positive µ∗ = 1.0. From the snapshots, we see that over time the initially
disordered and crowded configuration establishes network domains with loops of
size six and single particles captured inside the pores. This ordering transition is
also seen from the loop order parameter Γ6, initially at Γ6 ≈ 0.2 and increasing
over MC-time to a final Γ6 ≈ 0.4. Within this simulation run, judging from the
loop order parameter, no steady state was reached. It could be hypothesized that
the target structure, which is not yet reached, is a network with loops of size six
and single particles occupying the space within the pores.
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Figure 4.12.: For a single simulation process at T ∗ = 0.16 and µ∗ = −2.0 the
top panel shows the loop order parameter Γ6 as a function of the
MC-time, while the bottom panels show snapshots at the indicated
MC-times. Loops of different sizes (dark green - size 6, blue - size 7,
yellow - size 5) are indicated in the snapshots. The sampling starts
at the red dashed line. The truncation point is indicated by the
green dashed line.
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Figure 4.13.: For a single simulation process at T ∗ = 0.16 and µ∗ = 1.0 the top
panel shows the loop order parameter as function of the MC-time,
while the bottom panels show snapshots at the indicated MC-times.
Loops of different sizes (dark green - size 6, blue - size 7, yellow -
size 5) are indicated in the snapshots. The sampling starts at the
red dashed line. The truncation point is indicated by the green
dashed line.
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5. Results on Self Assembly of
Patchy Ellipses with θ = 15◦

In the following chapter, the self-assembly behaviour of patchy elliptic particles
with a patch opening angle of θa = 15◦ forming particle chains is examined.
In section 5.1 an overview of assembled structures in the simulations is given.
Further, section 5.2 discusses the computed ensemble averages for state variables
such as potential energy, number of particles and energy per particle.
In a further analysis, the assembly processes of chains going from negative to
positive chemical potentials µ∗ are discussed for two temperatures T ∗ = 0.07
and T ∗ = 0.115 separately. These two temperatures are chosen as examples for
two temperature regimes where different assembly processes are observed, one at
low temperatures T ∗ < 0.1 and one at high temperatures T ∗ > 0.1. The low-
temperatures assembly of chains follows a continual growth process of the chain in
an otherwise empty simulation box. This type of assembly is looked at in more
detail in section 5.3. At higher temperatures, e.g., T ∗ = 0.115, the assembly
of chains is happening from a particle gas, i.e., freely moving single particles
eventually binding with other particles and forming chains. More details on the
assembly process at this temperature is given in section 5.4.

5.1. Snapshots & Simulation Trajectories

The snapshots in fig. 5.1 shown for a selection of thermodynamic state points
provide evidence of the rich assembly behaviour of these particles. We distinguish
a regime of sparse chains, at µ∗ − 6.0 and T ∗ = 0.055 and a regime of packed
chains, e.g., at state points (µ∗, T ∗) of (−1.0, 0.055) and (3.0, 0.1).
Further we identify disordered, fluid configurations, occurring for example at
T ∗ = 0.16 and at T ∗ = 0.1 for µ∗ = −6.0 and −1.0. The fluid phases show
almost empty configurations for the lowest chemical potentials. At the chemical
potential of value µ∗ = −1.0, a fluid phase hosting single particles as well as
clustered particles forming chains a few particles long, is observed. At the highest
temperature T ∗ = 0.16, the observed chains have a considerably shorter length,
with the most prevalent chain length being two particles.

Simulation Trajectories. A complete record of simulation trajectories accord-
ing to potential energy, number of particles and energy per particle is summarized
in B.1.
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Figure 5.1.: Snapshots at three chemical potentials (µ∗ = −6.0, −1.0 and 3.0)
and three temperatures (T ∗ = 0.055, 0.1 and 0.16) with particles
colored according to their bonding energy - no bonds (grey), one
bond (light blue) and two bonds (dark blue). For the state point
µ∗ = 3.0 and T ∗ = 0.055 no simulation results were obtained due to
exceedingly long simulation times.
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5.2. Ensemble Averages - State Variables

Here, an overview of all thermodynamic state points included in this study is
given. For this overview, the ensemble averages of state variables such as the
potential energy, Epot, number of particles N and energy per particle Epot/N are
computed over all 12 independent trajectories. The results for these ensemble
averages can be seen in fig. 5.2 to fig. 5.4.

The potential energy Epot, presented in fig. 5.2, shows a monotonically increasing
behaviour as the temperature grows for each of the chemical potentials. Follow-
ing a single curve of constant µ∗, a transition from a condensed phase at low
energies to a phase with Epot ≈ 0 can be seen. A similar transition is seen for the
isotherm T ∗ = 0.07 of Epot versus the chemical potential µ∗. The decreasing be-
haviour of Epot with growing µ∗ is following a steep curve, while for an isotherm
T ∗ = 0.16, the decrease in energy follows a much flatter curve.

Figure 5.3 shows the total number of particles for the respective state-points.
Empty states with N ≈ 0 can be identified at µ∗ = −6.0,−5.0 and −4.0. For
each isotherm, a transition occurs from a state with negative chemical potential,
characterized by a low number of particles, to a phase with positive chemical
potential, characterized by a high number of particles.

The energies per particle shown in fig. 5.4 display a qualitatively very similar
behaviour as the potential energy Epot in fig. 5.2. From viewing the isotherms
of the energy per particle, it can be seen that the transition from negative to
positive chemical potentials goes along with the particles bonding. The bond-
ing probability is higher for lower temperatures, with the lowest temperature
T ∗ = 0.055 almost achieving the theoretical minimum of Epot/N = −1.0 at the
chemical potential µ∗ = −6.0. For the isotherm of T ∗ = 0.055, the energy per
particle slightly increases with increasing chemical potential µ∗ at µ∗ > −4. This
behaviour is also observed at isotherms T ∗ = 0.07 and 0.085. However, results
at these state points must be treated carefully since, for these low temperatures,
the simulations did not reach a steady state.
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Figure 5.2.: Total energy Epot in units of kBT for constant µ∗ across temperatures
T ∗ (top) and for constant T ∗ across chemical potentials µ∗ (bottom).
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Figure 5.3.: Total number of particles N for constant µ∗ across temperatures T ∗

(top) and for constant T ∗ across chemical potentials µ∗ (bottom).

147



Chapter 5. Results on Self Assembly of Patchy Ellipses with θ = 15◦

0.06 0.08 0.10 0.12 0.14 0.16
T *

1.0

0.8

0.6

0.4

0.2

0.0

E p
ot

/N

mu* = -6.0
mu* = -5.0
mu* = -4.0
mu* = -3.0
mu* = -2.0
mu* = -1.0
mu* = 0.0
mu* = 1.0
mu* = 2.0
mu* = 3.0
mu* = 4.0
mu* = 5.0
mu* = 6.0

6 4 2 0 2 4 6
*

1.0

0.8

0.6

0.4

0.2

0.0

E p
ot

/N

T* = 0.055
T* = 0.07
T* = 0.085
T* = 0.1
T* = 0.115
T* = 0.13
T* = 0.145
T* = 0.16

Figure 5.4.: Energy per particle Epot/N in units of kBT for constant µ∗ across
temperatures T ∗ (top) and for constant T ∗ across chemical potentials
µ∗ (bottom).
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5.3. Chain Formation at Low Temperature -
T ∗ = 0.07

Over the course of simulation runs at low temperatures (T ∗ = 0.055 and 0.07) as
well as for negative chemical potentials µ∗ < 0, very slow self-assembly processes
of chains can be observed. Due to this slow MC dynamics at these state points
in our simulations, we did not reach a steady-state and hence cannot make con-
clusive predictions on the target states at each chemical potential. However, we
assume that at low enough temperatures, because of the high bonding energy,
the particles will mainly appear in chains and the chemical potential will dictate
the overall density, i.e., the number of particles in the box.
In fig. 5.5 the snapshots at different stages of this assembly process in one such
simulation run at T ∗ = 0.07 and µ∗ = −4.0 are shown. The assembly process
at this particular state-point is observed being realized in two stages: first, the
assembly of particles into chains, and second, the alignment of those chains such
that a higher overall density is reached.

Figure 5.5.: The self assembly process for one simulation run at ∗ = 0.07 and
µ∗ = −4.0 over the course of MC-time, with two configurations being
separated by 2.0E+03 MC-cycles.
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Figure 5.6.: The largest cluster size Cmax (top) and the degree order parameter
Nd (bottom) for one simulation run at ∗ = 0.07 and µ∗ = −4.0 over
MC-time for the self assembly process shown in fig. 5.5.

The order parameters Cmax, i.e. the largest cluster size and the proportion
of particles Nd with degree d for the same simulation run as shown in fig. 5.5
at T ∗ = 0.07 and µ∗ = −4.0 is depicted in fig. 5.6. The slow growth of the
chains can be observed during the first half of the simulation run. A maximum
chain length of Cmax > 30 is most likely extending over the periodic boundary
conditions. In the same panel the degree order parameter Nd for d = 0, 1 and
2 bonds per particle is showing, that the proportion of particles within chains,
i.e. d = 2, is growing continually. The proportion of single particles (d = 0) is
almost zero while the proportion of particles at the end of chains (d = 1) sinks
as the chains grow in size.
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Further, the nematic order parameter was determined for all simulation
runs at state points with temperature T ∗ = 0.07 and at µ∗ = −4.0 and µ∗ = 0.0.
In fig. 5.7 the nematic order parameter for these two states is plotted for each
simulation trajectory individually at different MC-times. While the simulation
run shown in fig. 5.5 reaches a global nematic order parameter of Λ ≈ 0.8, other
simulation runs achieve considerably lower global nematic order. This is under-
stood to be due to different domains of aligned chains with different directors
arising in most of the simulations, such as shown in fig. 5.7.

Figure 5.7.: Nematic order parameter with MC-time for twelve independent sim-
ulation runs at thermodynamic state points (µ∗ = −4.0, T ∗ = 0.07
(top) and (µ∗ = 0.0, T ∗ = 0.07 (bottom). Snapshots of last configu-
rations at maximum and minimum global nematic order parameter
at each state-point shown.
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In the radial distribution function (RDF), shown in fig. 5.8 of different
thermodynamic states with T ∗ = 0.07, high correlations occur at integer mul-
tiples of the distance corresponding to the major axis of the ellipse, 2a =

√
2.

These correlations occur due to chain formation. Also, a bump in the RDF at a
distance just above the distance for the length of the minor axis 2b is observed,
growing in size as the chemical potential increases. This marks the decreasing
distance between chains as the overall density in the simulation box grows.

Figure 5.8.: RDF for different chemical potentials µ∗ at temperature T ∗ = 0.07.
High correlation occur at integer multiples of the distance corre-
sponding to the major axis of the ellipse 2a =

√
2 due to chain

formation.
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5.3. Chain Formation at Low Temperature - T ∗ = 0.07

In fig. 5.9 the chain length distribution at T ∗ = 0.07 is shown for three dif-
ferent chemical potentials. At the chemical potential of negative value µ∗ = −5.0
an exponential decay is observed - a particle without bonds, i.e. a cluster size
equal to one, shows the highest probability, while the probability of clusters, i.e.
chains, of larger sizes follows an exponential distribution, as can be determined
from the log-plot (see fig. 5.10). For chemical potentials µ∗ = 0.0 and 1.0 the
shape of the distribution changes. A typical chain length of eight and ten parti-
cles for the chemical potentials µ∗ = 0.0 and 1.0 can be determined respectively.
The typical chain length is increasing as the chemical potential is growing.
An analysis of the tails of these distributions as well as of the maximum lengths
at different state points is difficult to describe and therefore not presented here.
This is because the chains extend over the periodic boundaries of the simulation
box because at low temperatures T ∗ < 0.1.

Figure 5.9.: Chain length distribution at T ∗ = 0.07 for three different chemi-
cal potentials µ∗ on a linear scale. Each distribution represents the
average of 12 independent and truncated simulation processes.
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Figure 5.10.: Chain length distribution at T ∗ = 0.07 for three different chemi-
cal potentials µ∗ on a log-scale. Each distribution represents the
average of 12 independent and truncated simulation processes.
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5.4. Chain Formation at High Temperature -
T ∗ = 0.115

At a higher temperature, T ∗ > 0.1 and specifically for T ∗ = 0.115, the assembly of
chains at lower chemical potentials µ∗ starts from a particle gas, i.e., freely mov-
ing single particles eventually binding with other particles and forming chains.
At higher chemical potentials, these chains undergo a second transition, from
freely moving chains at lower µ∗ to domains of packed chains at higher chemical
potentials. The orientation and distribution of these domains are still changing
over the course of the MC-time, as can be seen in fig. 5.11.

Figure 5.11.: Self assembled states at T ∗ = 0.115 and µ∗ = 4.0.
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The overall chain-formation behaviour can be captured by determining the size
of the longest chain, given by the order parameter Cmax, at each thermody-
namic state point, as shown in fig. 5.12. This analysis shows that the chain length
is critically dependent on the temperature T ∗ with lower temperatures stabilizing
longer chains and higher temperatures stabilizing shorter chains. Also, the rate
of growth of the longest chain with increasing chemical potential µ∗ is larger for
higher temperatures.

Figure 5.13 shows chain length distributions at temperature T ∗ = 0.115 and
for three chemical potentials, µ∗ = −5.0, 0.0 and 4.0. At the chemical potential
µ∗ = −5.0, almost no chain formation is visible, only a few particle pairs, i.e.
chains of length two, form. For higher chemical potentials, exponential distri-
butions over chain lengths are observed, however, still with single particles most
common. With increasing chemical potential, also the maximum chain length is
increasing.

Figure 5.12.: Largest cluster size Cmax for high temperatures T ∗ > 0.1.
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Figure 5.13.: Chain length distribution at T ∗ = 0.115 for three chemical po-
tentials µ∗ = −5.0, 0.0 and 4.0. Each distribution represents the
average of 12 independent and truncated simulation processes.
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6. Summary & Outlook

In the preceding chapters, the self-assembly properties of patchy ellipses with
two opposing patches of Kern-Frenkel type located on the vertices of the hard
core ellipse of aspect ratio κ = 2 have been studied via MC-simulations in the
grand-canonical ensemble. The self-assembly of two types of these patchy el-
lipses, differing in the patch opening angle, have been studied, where strikingly
different types of assemblies are observed.

For patchy ellipses with a patch opening angle θa = 45◦ allowing for up to two
bonds per patch, the particles assemble mainly into porous networks. At positive
chemical potentials, crowded and disordered states are observed, but also crowded
states with a network structure and single particles occupying the pores in the
network. The structural properties of these networks have been studied using a
newly proposed loop order parameter, defined specifically for this purpose. Also,
dynamic properties such as the assembly process into these networks, as well as
self-healing properties of assembled lattices with defects were highlighted. The
networks were shown to assemble via a nucleation process at negative chemical
potentials. Further, self-healing properties of the lattices at high temperatures
were shown to exist. At the highest temperature, T ∗ = 0.16, the assemblies were
observed to yield the best lattices, in the sense that they have the least defects.
We believe that this is the case due to the fact that the bonding energy is lower
compared to temperatures strong and rearrangement of particles is possible be-
cause the breaking of bonds once formed is more likely. This way the dynamic
pathway to the energetic ground state is not hindered.

Over the investigated thermodynamic state points it was shown that patchy
ellipses with θa = 45◦ assemble into porous networks with a loop-size distri-
bution centering around size six and depending on the specific thermodynamic
state. The target structure is believed to be a network of purely size six loops
for certain negative chemical potentials. However, at much lower or much higher
chemical potentials, it is believed that other target structures could be uncov-
ered.
We believe that as one goes to very low chemical potentials, networks with very
low particle density could emerge. These networks could either be of an irregular
structure or of a regular one, with a network based on the truncated square tiling
as the only candidate structure. This network type exhibits a lower number den-
sity than the network based on the hexagonal tiling and still fulfills the condition
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of two bonds per patch, meaning it is an energetic ground state.
The theoretical limit at very high chemical potentials, when the minimization of
the grand-canonical potential is dominated by the maximization of the number
of particles, is the closest packed lattice configuration. As proposed in part II two
entropically favoured lattice types exist, the parallel and the diagonal lattice. As
ellipses with patch-bonds are hindered in their rotational degree of freedom, it is
still unclear which of the two lattice types would be entropically favoured. For
lower but still high chemical potentials, we can only speculate on the emerging
phases, which could be network structures with the pores completely filled, or
even stacked chains with dangling particles at each joint.

For patchy ellipses with a patch opening angle allowing for only one bond per
patch, the formation of chains was observed. Overall thermodynamic proper-
ties have been reported, and the assembly process of such chains at high and
low temperatures was demonstrated. An in-depth qualitative and quantitative
analysis is pending. Parts of the analysis presented here comprised the chain-
length distributions as well as insight into the largest cluster analysis for high
temperatures (T ∗ > 0.1). At low temperatures, the radial distribution function
revealed very located correlations, reflecting the inter-particle distances within
chains. For high temperatures, the analysis of the radial distribution function is
pending and hence no quantitative statements on the structural order is possible
yet.

For the system of θa = 15◦ patchy particles, numerous questions are still open
for further analysis and discussion. The assembly of chains at high chemical
potentials could not yet be observed in the present simulations due to the com-
putational time limit. A different MC design should, however, make it possible to
achieve at least a small number of configurations at these thermodynamic state
points. In order to gain a good overall understanding of this system at different
thermodynamic state points, analysis of high-density states is needed.

Concluding, by two examples of the patchy ellipse model, a very versatile phase
behaviour of the patchy ellipse was shown. The phase behaviour of other types
of patchy ellipses, with different geometric patch arrangements, interactions and
also ellipse aspect ratios, will most likely uncover an even richer phase behaviour.
From showing that patchy ellipses with θa = 45◦ and aspect ratio κ = 2 prefer
open lattice configurations, we assume that these types of patchy ellipses, in-
cluding ellipses with higher aspect ratios, are candidate models for versatile open
networks with tuneable pore-sizes.
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A. Appendix - Lattices of Hard
Ellipses

A.1. Derivation of Free energy term A0

In the Einstein Molecule method, the reference system is the Einstein Molecule,
defined in section 4.4.1 with free energy A0, which will be named Amol−id here.
A derivation of this quantity is provided here for a two dimensional Einstein
Molecule with in-plane rotations of particles. The derivation was done following
[22].

For the ideal Einstein Molecule the free energy of the system is given by:

Amol−id
NkBT

= − 1

N
ln (Zmol−id) (A.1)

with the canonical partition function Zmol−id defined via the Hamiltonian of the
Einstein molecule Hmol−id:

Hmol−id = Hmol−id(~p
N , ~rN , ~ψN) = Kmol−id(~p

N) + Vmol−id(~r
N , ~ψN) (A.2)

Kmol−id(~p
N) =

N∑
i=1

~p2
i

2m
(A.3)

Vmol−id(~r
N , ~ψN) = Λtrans

N∑
i=2

(~ri − ~ri,0)2 + Λrot

N∑
i=1

(mod(Ψi −Ψi,0, π))2 (A.4)

From the Hamiltonian it can be seen, that the Einstein molecule is the Einstein
crystal with one particle acting as a carrier of the lattice. Therefor the carrier
particle (particle with index 1) is not allowed to vibrate around it’s lattice posi-
tion, but still it is allowed to move freely through the simulation box.
For the canonical partition function due to distinguishable particles we do not
need the factor 1

N !
. In the Einstein molecule we choose one particle (with index

1) to be the carrier of the ideal lattice. Because we could choose any of the N
particles as the carrier we have to to account for our specific choice with a factor
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1
N

. Therefore, the canonical partition function gives:

Zmol−id =
1

hDN

[ 1

N

1

(2π)N

∫ ∫ ∫
d~pNd~rNd~ψN exp

(
− βHmol−id

)]
(A.5)

=
1

N

1

ΛDtN
c

∫
d~r1

∫
d~r2...d~rN exp

(
− βΛtrans

N∑
i=2

(~ri − ~ri,0)2
)
× (A.6)

× 1

(2π)N

∫
dψ1...dψN exp

(
− βΛrot

N∑
i=1

(mod(Ψi −Ψi,0, π))2
)

(A.7)

In the second line the Compton wavelength (or de Broglie wavelegth) Λc =

h(2mkBTπ)−
1
2 stems from the integral over the momenta of N particles that

are allowed to move in Dt dimensions in the unconstraint Einstein-molecule.
In the next step a transformation to relative coordinates,

~r1 → ~r′1 = 0 (A.8)

~r2 → ~r′2 = ~r2 − ~r1 (A.9)

~r3 → ~r′3 = ~r3 − ~r1 (A.10)

is performed. This change of coordinates is only necessary to show explicitly
that the second integral is in fact independent of the position of particle 1. The
integral over the position of particle 1 then gives the volume of the simulation
box (or area in 2 dimensions). By renaming the remaining integrals, the partition
function gives:

Zmol−id =
V

NΛDtN
c

× κtrans × κrot (A.11)

All in all, the free energy then becomes:

Amol id
NkBT

=
1

N
ln (ρ) +Dt ln (Λc)−

1

N
ln (κtrans)−

1

N
ln (κrot) (A.12)

Here, Dt ln (Λc) is also called the ideal gas contribution.

The remaining parts κtrans and κrot give:

κtrans =
( π

βΛtrans

)Dt(N−1)
2

(
erf (

Lx
2

√
βΛt)

)(N−1)(
erf (

Ly
2

√
βΛt)

)(N−1)

≈
( π

βΛtrans

)Dt(N−1)
2

(A.13)

κrot =
1

(2π)N

( π

βΛrot

)DrN
2
(

erf (π
√
βΛr)

)DrN

≈ 1

(2π)N

( π

βΛrot

)DrN
2

(A.14)

where the error functions can be approximated by 1 if the argument is large
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enough.
In simulations Λc is usually set to 1 such that the term doesn’t contribute. Fi-
nally, for Dt = 2 and Dr = 1 the free energy term, also named A0 becomes:

A0

NkBT
=

1

N
ln (ρ) + (1− 1

N
) ln (

βΛtrans

π
) +

1

2
ln (

βΛrot

π
) + ln (2π) (A.15)

For more details concerning this derivation see [22].

A.1.1. Limiting cases for A0

View limiting cases of A0(ΛE):

• ΛE → 0: ideal gas limit, expecting free energy of the ideal gas A0 = Aid−gas

• ΛE →∞: all positions are fixed, one configuration left, therefore expecting
A0 = 0

Testing this gives:

• ΛE → 0: - limit for κtrans

lim
Λt→0

κtrans = lim
Λt→0

( π

βΛt

)(N−1)(
erf (

Lx
2

√
βΛt)

)(N−1)(
erf (

Ly
2

√
βΛt)

)(N−1)

= lim
Λt→0

( π

βΛt

)(N−1)( 2√
π

Lx
2

√
βΛt +O(Λ

3
2 )
)(N−1)

( 2√
π

Ly
2

√
βΛt +O(Λ

3
2 )
)(N−1)

= lim
Λt→0

( π

βΛt

)(N−1)(LxLy
π

βΛt +O(Λ4)
)(N−1)

=(LxLy)
(N−1)

- limit for κrot

lim
Λr→0

κrot = lim
Λr→0

1

2π

( π

βΛr

)N
2
(

erf (π
√
βΛr)

)N
= lim

Λr→0

1

2π

( π

βΛr

)N
2
( 2√

π
(π
√
βΛr) +O(Λ

3
2
r )
)N

=
1

2π
(2π)N = (2π)N−1
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A.2. Complete Autocorrelation Analysis

Complete results on the autocorrelation-study described in section 4.1.2 are col-
lected here in table A.1 and table A.2.

τ transa.c. [cycles]
N ρ∗ ω[◦] λID = 1 λID = 50 λID = 100

32 0.95 0 1.32E+05 5.00E+03 3.00E+03
32 0.95 30 1.27E+05 8.00E+03 3.00E+03
32 0.98 0 1.15E+05 8.00E+03 3.00E+03
32 0.98 30 2.28E+05 5.00E+03 1.00E+03
72 0.95 0 5.10E+05 6.00E+03 1.00E+03
72 0.95 30 1.78E+05 8.00E+03 1.00E+03
72 0.98 0 8.10E+05 6.00E+03 5.00E+03
72 0.98 30 3.30E+05 1.00E+04 1.00E+04
128 0.95 0 3.57E+06 1.04E+05 4.00E+03
128 0.95 30 2.09E+06 3.60E+04 1.20E+04
128 0.98 0 3.31E+06 3.80E+04 1.00E+04
128 0.98 30 3.41E+06 4.00E+04 1.60E+04
200 0.95 0 1.27E+06 1.72E+05 1.00E+04
200 0.95 30 3.63E+06 6.00E+04 8.00E+03
200 0.98 0 3.36E+06 5.20E+04 1.00E+04
200 0.98 30 4.45E+06 4.40E+04 1.40E+04
288 0.95 0 1.62E+06 1.62E+05 6.00E+03
288 0.95 30 3.74E+06 5.20E+04 8.00E+03
288 0.98 0 3.49E+06 5.80E+04 1.40E+04
288 0.98 30 6.12E+06 8.00E+04 2.20E+04

N ρ∗ ω[◦] λID = 1 λID = 51 λID = 96

392 0.95 0 5.568E+06 5.40E+04 3.0E+03
392 0.95 30 3.657E+06 5.40E+04 3.0E+03
392 0.98 0 6.855E+06 6.30E+04 3.0E+03
392 0.98 30 5.403E+06 3.60E+04 6.0E+03

Table A.1.: Auto-correlation times for translations and rotations τa.c. for different
λ-states (given by the ID for each lambda) for system sizes N = 32,
N = 72, N = 128, N = 200, N = 288 and N = 392, densities ρ∗ and
lattice states ω.
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τ transa.c. [cycles]
N ρ∗ ω[◦] λID = 1 λID = 50 λID = 100

32 0.95 0 1.80E+04 6.00E+03 1.00E+03
32 0.95 30 1.50E+04 5.00E+03 4.00E+03
32 0.98 0 4.50E+04 4.00E+03 5.00E+03
32 0.98 30 2.50E+04 2.00E+03 1.00E+03
72 0.95 0 1.33E+05 4.00E+03 2.00E+03
72 0.95 30 2.70E+04 2.00E+03 1.00E+03
72 0.98 0 3.02E+05 4.00E+03 3.00E+03
72 0.98 30 9.80E+04 5.00E+03 2.00E+03
128 0.95 0 1.15E+06 2.40E+04 4.00E+03
128 0.95 30 1.08E+06 2.00E+04 6.00E+03
128 0.98 0 1.43E+06 2.40E+04 1.00E+04
128 0.98 30 6.70E+05 3.60E+04 4.00E+03
200 0.95 0 8.58E+05 2.20E+04 4.00E+03
200 0.95 30 4.72E+05 1.80E+04 4.00E+03
200 0.98 0 2.73E+06 3.60E+04 6.00E+03
200 0.98 30 2.75E+06 5.20E+04 2.00E+03
288 0.95 0 2.86E+06 2.60E+04 2.00E+03
288 0.95 30 1.73E+06 3.20E+04 4.00E+03
288 0.98 0 2.27E+06 1.60E+04 4.00E+03
288 0.98 30 9.98E+05 3.80E+04 4.00E+03

N ρ∗ ω[◦] λID = 1 λID = 51 λID = 96

392 0.95 0 2.196E+06 1.50E+04 6.00E+03
392 0.95 30 4.200E+05 1.80E+04 3.00E+03
392 0.98 0 1.950E+06 2.40E+04 6.00E+03
392 0.98 30 1.110E+06 2.10E+04 3.00E+03

Table A.2.: Auto-correlation times for rotational Einstein Energies τ rota.c. for dif-
ferent λ-states (given by the ID for each lambda) for system sizes
N = 32, N = 72, N = 128, N = 200, N = 288 and N = 392,
densities ρ∗ and lattice states ω.

A.3. Truncation Analysis on Free Energies

The truncation analysis on the total free energies A
(p)
tot and A

(d)
tot for densities

ρ∗ = 0.95 and 0.98 was performed for system sizes N = 128 and larger. All
results of this analysis are presented here:
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Figure A.1.: Truncation analysis for system size N = 128 for individual simula-
tion trajectories.
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Figure A.2.: Truncation analysis for system size N = 128 average taken over all
simulation trajectories
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Figure A.3.: Truncation analysis for system size N = 200 for individual simula-
tion trajectories.
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Figure A.4.: Truncation analysis for system size N = 200 average taken over all
simulation trajectories
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Figure A.5.: Truncation analysis for system size N = 288 for individual simula-
tion trajectories.
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Figure A.6.: Truncation analysis for system size N = 288 average taken over all
simulation trajectories
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Figure A.7.: Truncation analysis for system size N = 392 for individual simula-
tion trajectories.
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Figure A.8.: Truncation analysis for system size N = 392 average taken over all
simulation trajectories

173



Appendix A. Appendix - Lattices of Hard Ellipses

A.4. Simulation Trajectories

The following figures show the simulation trajectories for different states of λ
(λID = 1, 50 and 100 ) in a system of N = 288 particle. The trajectories are
shown for the lattice’s translational Einstein energy as well as the rotational
Einstein energy. The x-axes are given in units of the sampling step size (=8E+6,
2E+5 and 2E+5 cycles from left to right). The block-analysis is performed with
a block size of sblock = 20. Unit of the y-axes is kBT .
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Figure A.10.: Parallel lattice state (ω = 30◦) at ρ∗ = 0.95. Top row: trajectories
of the translational Einstein energy for λID = 1, 50 and 100 (from
left to right). Bottom row: trajectories of the rotational Einstein
energy.
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Figure A.9.: Diagonal lattice state (ω = 0◦) at ρ∗ = 0.95. Top row: trajectories
of the translational Einstein energy for λID = 1, 50 and 100 (from
left to right). Bottom row: trajectories of the rotational Einstein
energy.
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Figure A.12.: Parallel lattice state (ω = 30◦) at ρ∗ = 0.98. Top row: trajectories
of the translational Einstein energy for λID = 1, 50 and 100 (from
left to right). Bottom row: trajectories of the rotational Einstein
energy.

Vtrans

0 50 100 150 200
mc-time in 8.00e+06 cycles

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

1e 7
tra_ene-average in blocks of size 20 over mc-time - copy 0.0

288_0.98_2.0_ome000_1

(a)

0 200 400 600 800 1000
mc-time in 2.00e+05 cycles

4.5

5.0

5.5

6.0

6.5

7.0

1e 6
tra_ene-average in blocks of size 20 over mc-time - copy 0.0

288_0.98_2.0_ome000_50

(b)

0 200 400 600 800 1000
mc-time in 2.00e+05 cycles

0.0000925

0.0000950

0.0000975

0.0001000

0.0001025

0.0001050

0.0001075

0.0001100

0.0001125

tra_ene-average in blocks of size 20 over mc-time - copy 0.0
288_0.98_2.0_ome000_100

(c)

Vrot

0 50 100 150 200
mc-time in 8.00e+06 cycles

0.9

1.0

1.1

1.2

1.3

1.4
1e 8

rot_ene-average in blocks of size 20 over mc-time - copy 0.0
288_0.98_2.0_ome000_1

(d)

0 200 400 600 800 1000
mc-time in 2.00e+05 cycles

1.6

1.7

1.8

1.9

2.0

2.1

2.2 1e 5
rot_ene-average in blocks of size 20 over mc-time - copy 0.0

288_0.98_2.0_ome000_50

(e)

0 200 400 600 800 1000
mc-time in 2.00e+05 cycles

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

1e 5
rot_ene-average in blocks of size 20 over mc-time - copy 0.0

288_0.98_2.0_ome000_100

(f)

Figure A.11.: Diagonal lattice state (ω = 0◦) at ρ∗ = 0.98. Top row: trajectories
of the translational Einstein energy for λID = 1, 50 and 100 (from
left to right). Bottom row: trajectories of the rotational Einstein
energy.
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B. Appendix - Patchy Elliptic
Particles

B.1. Simulation Trajectories θ = 45◦ and θ = 15◦

Complete record of energy, number of particle and energy per particle trajectories
of all simulations performed, underlying the self assembly study in part III.
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Appendix B. Appendix - Patchy Elliptic Particles

µ∗ = −7.0 µ∗ = −6.0 µ∗ = −5.0 µ∗ = −4.0 µ∗ = −3.0 µ∗ = −2.0

T ∗ = 0.055

T ∗ = 0.07

T ∗ = 0.085

T ∗ = 0.1

T ∗ = 0.115

T ∗ = 0.13

T ∗ = 0.145

T ∗ = 0.16

Figure B.1.: Energy trajectories for EPP with θ = 45◦. For temperatures (rows) and chemical
potential (columns). Monte-Carlo time on the x-axes is given in units of 2000
cycles. The energy on the y-axes is given in units of the square-well depth ε of the
patch potential.
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B.1. Simulation Trajectories θ = 45◦ and θ = 15◦

µ∗ = −1.0 µ∗ = 0.0 µ∗ = 1.0 µ∗ = 2.0 µ∗ = 3.0 µ∗ = 4.0 µ∗ = 5.0

Figure B.2.: Continuation of energy trajectories for EPP with θ = 45◦ in ap-
pendix B.1.
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Appendix B. Appendix - Patchy Elliptic Particles

µ∗ = −7.0 µ∗ = −6.0 µ∗ = −5.0 µ∗ = −4.0 µ∗ = −3.0 µ∗ = −2.0

T ∗ = 0.055

T ∗ = 0.07

T ∗ = 0.085

T ∗ = 0.1

T ∗ = 0.115

T ∗ = 0.13

T ∗ = 0.145

T ∗ = 0.16

Figure B.3.: Number of Particles trajectories for EPP with θ = 45◦. For temperatures (rows)
and chemical potential (columns). Monte-Carlo time on the x-axes is given in
units of 2000 cycles.
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B.1. Simulation Trajectories θ = 45◦ and θ = 15◦

µ∗ = −1.0 µ∗ = 0.0 µ∗ = 1.0 µ∗ = 2.0 µ∗ = 3.0 µ∗ = 4.0 µ∗ = 5.0

Figure B.4.: Continuation of Number of Particles trajectories for EPP with θ = 45◦ in ap-
pendix B.1.
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Appendix B. Appendix - Patchy Elliptic Particles

µ∗ = −7.0 µ∗ = −6.0 µ∗ = −5.0 µ∗ = −4.0 µ∗ = −3.0 µ∗ = −2.0

T ∗ = 0.055

T ∗ = 0.07

T ∗ = 0.085

T ∗ = 0.1

T ∗ = 0.115

T ∗ = 0.13

T ∗ = 0.145

T ∗ = 0.16

Figure B.5.: Energy per Particle trajectories for EPP with θ = 45◦. For temperatures (rows)
and chemical potential (columns). Monte-Carlo time on the x-axes is given in
units of 2000 cycles. The energy on the y-axes is given in units of the square-well
depth ε of the patch potential and the particle number N .
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B.1. Simulation Trajectories θ = 45◦ and θ = 15◦

µ∗ = −1.0 µ∗ = 0.0 µ∗ = 1.0 µ∗ = 2.0 µ∗ = 3.0 µ∗ = 4.0 µ∗ = 5.0

Figure B.6.: Continuation of energy per particle trajectories for EPP with θ = 45◦ in ap-
pendix B.1.
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Appendix B. Appendix - Patchy Elliptic Particles

µ∗ = −6.0 µ∗ = −5.0 µ∗ = −4.0 µ∗ = −3.0 µ∗ = −2.0 µ∗ = −1.0

T ∗ = 0.055

T ∗ = 0.07

T ∗ = 0.085

T ∗ = 0.1

T ∗ = 0.115

T ∗ = 0.13

T ∗ = 0.145

T ∗ = 0.16

Figure B.7.: Energy trajectories for EPP with θ = 15◦. For temperatures (rows) and chemical
potential (columns). Monte-Carlo time on the x-axes is given in units of 2000
cycles. The energy on the y-axes is given in units of the square-well depth ε of the
patch potential.
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B.1. Simulation Trajectories θ = 45◦ and θ = 15◦

µ∗ = 0.0 µ∗ = 1.0 µ∗ = 2.0 µ∗ = 3.0 µ∗ = 4.0 µ∗ = 5.0 µ∗ = 6.0

Figure B.8.: Continuation of energy trajectories for EPP with θ = 15◦ in ap-
pendix B.1.
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Appendix B. Appendix - Patchy Elliptic Particles

µ∗ = −6.0 µ∗ = −5.0 µ∗ = −4.0 µ∗ = −3.0 µ∗ = −2.0 µ∗ = −1.0

T ∗ = 0.055

T ∗ = 0.07

T ∗ = 0.085

T ∗ = 0.1

T ∗ = 0.115

T ∗ = 0.13

T ∗ = 0.145

T ∗ = 0.16

Figure B.9.: Number of Particles trajectories for EPP with θ = 15◦. For temperatures (rows)
and chemical potential (columns). Monte-Carlo time on the x-axes is given in
units of 2000 cycles.
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B.1. Simulation Trajectories θ = 45◦ and θ = 15◦

µ∗ = 0.0 µ∗ = 1.0 µ∗ = 2.0 µ∗ = 3.0 µ∗ = 4.0 µ∗ = 5.0 µ∗ = 6.0

Figure B.10.: Continuation of Number of Particles trajectories for EPP with θ = 15◦ in ap-
pendix B.1.
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Appendix B. Appendix - Patchy Elliptic Particles

µ∗ = −6.0 µ∗ = −5.0 µ∗ = −4.0 µ∗ = −3.0 µ∗ = −2.0 µ∗ = −1.0

T ∗ = 0.055

T ∗ = 0.07

T ∗ = 0.085

T ∗ = 0.1

T ∗ = 0.115

T ∗ = 0.13

T ∗ = 0.145

T ∗ = 0.16

Figure B.11.: Energy per Particle trajectories for EPP with θ = 15◦. For temperatures (rows)
and chemical potential (columns). Monte-Carlo time on the x-axes is given in
units of 2000 cycles. The energy on the y-axes is given in units of the square-well
depth ε of the patch potential and the particle number N .
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B.1. Simulation Trajectories θ = 45◦ and θ = 15◦

µ∗ = 0.0 µ∗ = 1.0 µ∗ = 2.0 µ∗ = 3.0 µ∗ = 4.0 µ∗ = 5.0 µ∗ = 6.0

Figure B.12.: Continuation of energy trajectories for EPP with θ = 15◦ in ap-
pendix B.1.
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