Gerhard Kahl & Florian Libisch

${f STATISTISCHE\ PHYSIK\ 1\ (VU-136.020)}$

3. Tutoriumstermin (15.4.2016)

T9. Gegeben ist ein Einteilchensystem (D=1) mit der Hamiltonfunktion

$$\mathcal{H} = \frac{p^2}{2m}$$

Beantworten Sie folgende Fragen:

- (a) um welches System handelt es sich;
- (b) geben Sie den Phasenraum Γ an;
- (c) zeichnen Sie für zwei Energiewerte E_1 und E_2 ($E_1 < E_2$) jene Kurven in Γ , für die E = const.; um welche Kurven handelt es sich;
- (d) stellen Sie die Bewegungsgleichungen auf und leiten Sie daraus die allgemeine Lösung, d.h. x(t) und p(t), her (mit Anfangsbedinungen $x(t=0) = x_0$ und $p(t=0) = p_0$).

T10. Gegeben ist ein Einteilchensystem (D=1) mit der Hamiltonfunktion

$$\mathcal{H} = \frac{p^2}{2m} + \frac{m\omega^2}{2}x^2$$

Beantworten Sie folgende Fragen:

- (a) um welches System handelt es sich;
- (b) geben sie den Phasenraum Γ an;
- (c) zeichnen Sie für zwei Energiewerte E_1 und E_2 ($E_1 < E_2$) jene Kurven in Γ , für die E = const.; um welche Kurven handelt es sich;
- (c) stellen Sie die Bewegungsgleichungen auf und leiten Sie daraus die allgemeine Lösung, d.h. x(t) und p(t) her (mit Anfangsbedinungen $x(t=0) = x_0$ und $p(t=0) = p_0$).
- T8. Gegeben ist ein sogenanntes Tonks-Gas von N Teilchen. Es handelt sich dabei um ein eindimensionales System, das bei x=0 und x=L durch undurchdringliche Wände begrenzt ist. Sind die Massen aller Teilchen gleich (wie in diesem Beispiel angenommen wird), so spricht man von einem homogenen Tonks-Gas, andernfalls von einem inhomogenen Tonks-Gas. Die Teilchen sind undurchdringlich: so befindet sich, zum Beispiel, das Teilchen 1 immer zwischen der Wand bei x=0 und "links" von der aktuellen Position des Teilchens $2(q_2)$, usf. Teilchen-Teilchen und Teilchen-Wand Stöße sind elastisch.

Beantworten Sie folgende Fragen:

(a) geben Sie den Phasenraum Γ in der Form

$$\Gamma = \left\{ (p^N, q^N) | \dots \right\}$$

an;

(b) berechnen Sie das Volumen des Konfigurationsraums Π .

Setzen Sie für folgende Fragestellungen N=2 und betrachten Sie ein homogenes Tonks-Gas:

- (c) skizzieren Sie den Konfigurationsraum Π ;
- (d) gehen Sie von einer Anfangsbedingung Ihrer Wahl aus, d.h. wählen Sie

$$q_1(t=0) = q_{1;0}$$
 $q_2(t=0) = q_{2;0}$
 $p_1(t=0) = p_{1;0}$ $p_2(t=0) = p_{2;0}$ mit $p_{1;0}: p_{2;0} = \alpha:1;$

skizzieren Sie (für einen nicht-trivialen Wert von α , d.h. $\alpha \neq 0$, $\alpha \neq 1$), wie sich dieser Mikrozustand mit der Zeit im Konfigurationsraum verändert ("Trajektorie" des Mikrozustands im Konfigurationsraum).

Erklären Sie insbesondere, wie sich diese "Trajektorie" bei Stößen der Teilchen untereinander und bei Teilchen-Wand Stößen verändert. Die "Trajektorie" soll mindestens eine Teilchen-Teilchen Kollision sowie mindestens zwei Teilchen-Wand Kollisionen überstreichen;

(e) wie sieht diese "Trajektorie" in dem von p_1 und p_2 aufgespannten Teilraum des Phasenraumes aus.

Zu kreuzen: 9ab, 9c, 9d, 10ab, 10c, 10d, 11ab, 11c, 11d, 11e